A NOTE ON AN INEQUALITY FOR REARRANGEMENTS

CHRISTER BORELL

If \(a = (a_1, \ldots, a_n) \) is a \(n \)-tuple of positive real numbers let \(a^+ = (a_1^+, \ldots, a_n^+) \) denote the rearrangement of \(a \) in increasing order and \(a^- = (a_1^-, \ldots, a_n^-) \) the rearrangement of \(a \) in decreasing order. In this note a characterization is given for those functions \(f : \mathbb{R}^+ \to \mathbb{R} \) such that

\[
\sum_{i=1}^{n} f\left(\frac{a_k^+}{b_k^+}\right) \leq \sum_{i=1}^{n} f\left(\frac{a_k^-}{b_k^-}\right) \leq \sum_{i=1}^{n} f\left(\frac{a_k^+}{b_k^-}\right)
\]

holds for all \(a, b \in \mathbb{R}^+_n \). Here \(n \) is a fixed integer \(> 1 \).

In [3] Minc proved that

\[
\prod_{i=1}^{n} (a_k^+ + b_k^+) \leq \prod_{i=1}^{n} (a_k + b_k) \leq \prod_{i=1}^{n} (a_k^+ + b_k^-) .
\]

This inequality was generalized by London [1, Theorem 1], who (in an equivalent form) proved that (1) holds if the function \(f(e^x - 1), x \geq 0 \), is convex and \(f(x) \geq f(0), x > 0 \).

London [1, Theorem 2] also proved (1) if \(f \) is convex and \(f(x) ;> f(0), x > 0 \), which in fact is contained in the previous case.

The proofs in [1] are based on an interesting representation theorem of Mirsky.

The purpose of this note is to characterize those functions \(f \), for which (1) holds.

The left inequality in (1) is in fact a special case of a theorem of Lorentz [2, Theorem 1]. This theorem especially gives, that if \(\Phi = \Phi(u, v) \) belongs to \(C^{\infty}(\mathbb{R}^+ \times \mathbb{R}^+) \) then

\[
\sum_{i=1}^{n} \Phi(a_k^+, b_k^+) \leq \sum_{i=1}^{n} \Phi(a_k, b_k) \quad \text{all} \quad a, b \in \mathbb{R}^+_n \quad (n > 1)
\]

if and only if

\[
\frac{\partial^2 \Phi}{\partial u \partial v} \leq 0 .
\]

From this it is fairly easy to deduce that (2) and (3) are both equivalent to

\[
\sum_{i=1}^{n} \Phi(a_k, b_k) \leq \sum_{i=1}^{n} \Phi(a_k^+, b_k^-) \quad \text{all} \quad a, b \in \mathbb{R}^+_n \quad (n > 1) .
\]

We shall give an independent proof of these equivalences, which differs from that given in [2].

39
Let \(a, b \in \mathbb{R}^n_+ \) and choose \(\varepsilon \in \mathbb{R}_+ \) such that \(\varepsilon < \min (\min a_k, \min b_k) \). If \(A \) is a finite set, let \(|A| \) denote the number of distinct elements in \(A \).

By adding the identities

\[
\Phi(a_k, b_k) = \Phi(\varepsilon, \varepsilon) - \Phi(a_k, \varepsilon) - \Phi(\varepsilon, b_k) + \int_{\varepsilon}^{a_k} \int_{\varepsilon}^{b_k} \frac{\partial^2 \Phi}{\partial u \partial v} \, du \, dv,
\]

\(k = 1, \ldots, n \)

we have

\[
\sum_{k=1}^{n} \Phi(a_k, b_k) = n \Phi(\varepsilon, \varepsilon) - \sum_{k=1}^{n} \Phi(a_k, \varepsilon) - \sum_{k=1}^{n} \Phi(\varepsilon, b_k)
+ \int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} \sum_{k} \{ k | a_k \geq u, b_k \geq v \} | \frac{\partial^2 \Phi}{\partial u \partial v} | du \, dv.
\]

(5)

Set

\[
N(a, b; u, v) = |\{ k | a_k \geq u, b_k \geq v \}|.
\]

Then

\[
N(a^+ b^-; u, v) \leq N(a, b; u, v) \leq N(a^+ b^+; u, v)
\]

and so (2) and (4) follow from (3) and (5).

To prove, (4) implies (3), set

\[
D(u, v) = N(a, b; u, v) - N(a^+, b^-; u, v).
\]

In view of (5), (4) is then equivalent to

\[
\int_{\varepsilon}^{\infty} \int_{\varepsilon}^{\infty} D(u, v) \frac{\partial^2 \Phi}{\partial u \partial v} \, du \, dv \leq 0.
\]

(6)

If (4) holds for some \(n > 1 \), then it also holds for \(n = 2 \). To see this we only need to apply (4) to the \(n \)-tuples \(a = (a_1, a_2, \varepsilon, \cdots, \varepsilon) \) and \(b = (b_1, b_2, \delta, \cdots, \delta) \), where \(\varepsilon > \max (a_1, a_2) \) and \(0 < \delta < \min (b_1, b_2) \).

Choose \(0 < u_i < u_2, 0 < v_i < v_2 \) and set \(a_i = u_i, a_2 = u_2, b_i = v_i, \) and \(b_2 = v_2 \). Then \(D(u, v) = 1 \) if \(u_i < u \leq u_2, v_i < v \leq v_2 \) and \(= 0 \) elsewhere. Therefore (3) follows from (6).

Analogously we can prove that (2) implies (3).

In [2] there are also necessary and sufficient conditions on \(\Phi \) in order for (2) ((4)) to hold, when \(\Phi \) is only continuous. It is easy to see that (2) \(\iff \) (3) \(\iff \) (4) in this case too, if (3) is interpreted in the distribution sense, that is the left-hand side is a negative measure. A formal proof goes via regularization of \(\Phi \).

We now return to the inequality (1). This corresponds to
\[\Phi(u, v) = f\left(\frac{u}{v}\right), \]

which gives

\[\frac{\partial^2 \Phi}{\partial u \partial v} = -\frac{1}{v^2} \left\{ f''\left(\frac{u}{v}\right) \cdot \frac{u}{v} + f'\left(\frac{u}{v}\right) \right\} \leq 0, \]

that is

\[f''(x) \cdot x + f'(x) \geq 0, \quad x > 0. \]

This means that (1) holds if and only if the function \(f(e^x) \), \(-\infty < x < +\infty\), is convex.

REFERENCES

Received March 1, 1972.

UNIVERSITY OF UPPSALA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

J. DUGUNDJI∗
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

* C. DePrima will replace J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Adachi, Masuo Suzuki and M. Yoshida, Continuation of holomorphic mappings, with values in a complex Lie group</td>
<td>1</td>
</tr>
<tr>
<td>Michael Aschbacher, A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5</td>
<td>5</td>
</tr>
<tr>
<td>Larry Eugene Bobisud and James Calvert, Energy bounds and virial theorems for abstract wave equations</td>
<td>27</td>
</tr>
<tr>
<td>Christer Borell, A note on an inequality for rearrangements</td>
<td>39</td>
</tr>
<tr>
<td>Peter Southcott Bulen and S. N. Mukhopadhyay, Peano derivatives and general integrals</td>
<td>43</td>
</tr>
<tr>
<td>Wendell Dan Curtis, Yu-Lee Lee and Forrest Miller, A class of infinite dimensional subgroups of Diff^r (X) which are Banach Lie groups</td>
<td>59</td>
</tr>
<tr>
<td>Paul C. Eklof, The structure of ultraproducts of abelian groups</td>
<td>67</td>
</tr>
<tr>
<td>William Alan Feldman, Axioms of countability and the algebra C(X)</td>
<td>81</td>
</tr>
<tr>
<td>Jack Tilden Goodykoontz, Jr., Aposyndetic properties of hyperspaces</td>
<td>91</td>
</tr>
<tr>
<td>George Grätzer and J. Plonka, On the number of polynomials of an idempotent algebra. II</td>
<td>99</td>
</tr>
<tr>
<td>Alan Trinler Huckleberry, The weak envelope of holomorphy for algebras of holomorphic functions</td>
<td>115</td>
</tr>
<tr>
<td>John Joseph Hutchinson and Julius Martin Zelmanowitz, Subdirect sum decompositions of endomorphism rings</td>
<td>129</td>
</tr>
<tr>
<td>Gary Douglas Jones, An asymptotic property of solutions of y''' + py' + qy = 0</td>
<td>135</td>
</tr>
<tr>
<td>Howard E. Lacey, On the classification of Lindenstrauss spaces</td>
<td>139</td>
</tr>
<tr>
<td>Charles Dwight Lahr, Approximate identities for convolution measure algebras</td>
<td>147</td>
</tr>
<tr>
<td>George William Luna, Subdifferentials of convex functions on Banach spaces</td>
<td>161</td>
</tr>
<tr>
<td>Nelson Groh Markley, Locally circular minimal sets</td>
<td>177</td>
</tr>
<tr>
<td>Robert Wilmer Miller, Endomorphism rings of finitely generated projective modules</td>
<td>199</td>
</tr>
<tr>
<td>Donald Steven Passman, On the semisimplicity of group rings of linear groups</td>
<td>221</td>
</tr>
<tr>
<td>Bennie Jake Pearson, Dendritic compactifications of certain dendritic spaces</td>
<td>229</td>
</tr>
<tr>
<td>Ryōtarō Satō, Abel-ergodic theorems for subsequences</td>
<td>233</td>
</tr>
<tr>
<td>Henry S. Sharp, Jr., Locally complete graphs</td>
<td>243</td>
</tr>
<tr>
<td>Harris Samuel Shultz, A very weak topology for the Mikusinski field of operators</td>
<td>251</td>
</tr>
<tr>
<td>Elena Stroescu, Isometric dilations of contractions on Banach spaces</td>
<td>257</td>
</tr>
<tr>
<td>Charles W. Trigg, Versum sequences in the binary system</td>
<td>263</td>
</tr>
<tr>
<td>William L. Voxman, On the countable union of cellular decompositions of n-manifolds</td>
<td>277</td>
</tr>
<tr>
<td>Robert Francis Wheeler, The strict topology, separable measures, and paracompactness</td>
<td>287</td>
</tr>
</tbody>
</table>