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A structure theorem is given which characterizes abelian
groups which are ultrapowers with respect to w-incomplete
ultrafilters. It is also proved that any nonprincipal ultrapro-
duct of abelian groups over a countable index set—or, more
generally, with respect to a good ultrafilter—is an ultrapower
with respect to an w-incomplete ultrafilter. The results of
this paper provide a solution to a problem of L. Fuchs.

1. Preliminaries on ultraproducts. We begin by recalling some
basic facts and definitions. (For further information, useful references
are [1], [2], and [9].) Let £ be an infinite cardinal; we identify &
with the set of ordinals less than £: £ = {v: vy <«k}. We write w, for the
vth infinite cardinal; in particular, @ = w,= the set of finite ordinals.
Throughout this section D denotes a nonprincipal ultrafilter on « i.e.,
D is a set of subsets of £ satisfying:

(@) @eb;

by S, TeD=8SNTeD;

(¢ SeD, ST k= TeD;

d S=k=SeDor t— SeD;

() F<Zk, F finite=xr — FeD.

If {A,:v < x} is a set of sets indexed by £, the wultraproduct of the
A, with respect to D, denoted II,.. A./D is the quotient of [I,.. A,
by the equivalence relation

f=pgiff {1 ) =g()}eD

for any f,g9¢€l.<. 4.. We denote the equivalence class of fe[,«. 4,
by f/D. If the A, are abelian groups, we make [[,..A4.,/D into a
group by defining

fID + g/D = (f + 9)/D .
If A, = A for all vy < £, we denote the ultraproduct by A*/D and call
it the wultrapower of A with respect to D.

It is well-known that if D does not satisfy (e)—i.e., if D is prin-
cipal—then there exists y, < £ such that the map

HAv/D——>Av0: f/-Dl_—_>f(”0)

v

is an isomorphism. Thus every group is an ultraproduct with respect
to a principal ultrafilter; for this reason we confine our attention to

67



68 PAUL C. EKLOF

nonprincipal ultrafilters.

We shall be interested in the ecardinality of ultraproducts; in
stating results about cardinality we will identify an ultraproduct of
cardinals with its cardinal number and write 8 = [l,<,a./D for g =
Card (I1,<. «,/D), when the «, are cardinals. The simplest result we
can state is the following (see [1], Chapter 6, Lemma 3.6).

LEMMA 1.1. If a s a finite cardinal, then a = a*/D.

If « is infinite, it is much harder to determine the cardinality of
af/D, and we shall have to impose some additional restrictions on D.
We say D is w-incomplete if there exists sets Y, ¢ D such that Y, N
Y,= @ for n = m and U,..Y, = D.

LEMMA 1.2. (Keisler [8].) Let D be w-incomplete and for each
vy < k let @, be an infinite cardinal. Then

(vg a, /D) = »g a,/D .

LEMMA 1.3. (Frayne-Morel-Scott [4]). If D is an w-incomplete
wltrafilter on k, and {a,:v < k} 1s a sequence of cardinals such that
for all finite cardinals m, {v:a, < m} ¢ D then

Ha/D = 2%,
v<k

We get even better results for regular ultrafilters. D is called
(@, N)-regular if there is a function f mapping « into the finite subsets
of A such that for all vy <\, {# < k:ve f(¢))eD. We say of such an
f that it makes D (o, N)-regular. D is called regular if it is (w, k)-

regular. It is easily seen that D is (w, w)-regular if and only if D
is w-incomplete.

LeMMA 1.4. (Keisler [8].) Suppose f makes D (@, N)-regular; let
m, = cardinality of f(v). Then for any cardinals a,,v < k,
I1a/D = (11 a./D)* .
v<k v<k
In particular, if all the a, are infinite,

Il a./D = (Il a.,/D)* .

v<k v<k

COROLLARY 1.5. (Frayne-Morel-Scott [4].) If D is regular and
a is an wfinite cardinal, then a*/D = a*.

COROLLARY 1.6. Let D be regular and let {a,:v < k} be a set of
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wmfinite cardinals and suppose ¥ = least cardinal such that {v:a, >
V¢ D. Then [[.c.a./D = 7.

Proof. If v is a successor cardinal, the result follows from Lemma
1.5. So assume 7 is a limit cardinal and let N = J[,..a,/D; clearly
A= 7. If A=, then by 1.4, A = A* = 7* and we are done. Other-
wise, there exists a cardinal o such that » < p < 7; by definition of
v, {via, > p}eD, so A= /D = p* = p >\, a contradiction.

How much of a loss of generality do we suffer in the answer to
Problem 25 of [5] by restricting ourselves to w-incomplete or regular
ultrafilters? For countable index sets the answer is that there is no
loss; indeed an ultrafilter on @ is nonprincipal = it is w-incomplete
= it is regular ([1], Chapter 6, Lemma 1.17). For uncountable index
sets the answer is connected with open problems in set theory, as
follows.

It is consistent with Zermelo-Frankel set theory plus the axiom
of choice (ZF + AC) to assume that every nonprincipal ultrafilter on
any index set is w-incomplete. It is not known whether this assumption
is a theorem of ZF + AC; however, it can be proved that if there is
£ such that there exists a nonprincipal w-complete ultrafilter on x—
in which case, we say k& is w-measurable—then £ is extraordinarily
large (e.g. £ is inaccessible and there are & inaccessibles cardinals
< k—see [15] for more details). Moreover, it can be proved that if
there exists an w-measurable cardinal and £ is the smallest one, then
any group of cardinality < & is an ultrapower; in fact, any w-complete
ultrafilter D on & is A\-complete for all A < £ ([1], Chapter 6, Theorem
1.11), from which it follows easily that if Card (4) < £, then A is
isomorphic to A*/D.

A regular ultrafilter is w-incomplete and also uniform. (D is
uniform means for every Se D, Card (S) = £.) Every ultraproduct
with respect to a nonprincipal ultrafilter is an ultraproduct with respect
to a uniform ultrafilter ([1], Chapter 6, Corollary 2.4), so there is no
loss of generality for our purposes in restricting attention to uniform
ultrafilters. It is an open problem whether every w-incomplete uniform
ultrafilter on £ is regular. However, it has been proved (by Prikry
[13] for » = 1 and Jensen [6] for arbitrary finite »n) that it is con-
sistent with ZF + AC to assume that for any finite » every uniform
ultrafilter on w, is regular. (More precisely, this is true in the con-
structible universe.)

In §3 we shall need the following result on cardinalities of ultra-
products. We make use of the following terminology. We say that
a property P holds almost everywhere (a.e.) with respect to D in {4A,:
v < k} iff {vy < £: P holds in A,} is an element of D. For example,
Card 4, = v a.e. (w.r.t. D) iff {y <k:Card A, =} eD. As another
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example of this terminology, we say that a function f:kx— w is a.e.
constant (w.r.t. D) if 3In < @ such that {v < &: f(v) = n} e D.

THEOREM 1.7. Let D be a nonprincipal uwltrafilter on w. Suppose
that for each ke w, {a,,.:n < @} is a nonincreasing sequence of car-
dinals. For each n < @ let B, = 1o Qni/D; and let B = lim, . B,
Then there ewists l: @ — @ such that 1 is not a.e. constant (w.r.t. D)

and Ilico Qi i/D = B.

Proof. Since B = B, for sufficiently large n, we may as well
suppose that g = B, for all n. If g is finite, then for each n, a,,, =
B a.e.(w.r.t. D) and hence we can define (k) = largest n < k such
that «,,, = 8. Therefore, we may suppose A is infinite, and so by
Lemma 1.2, 8° = 8. Let 7 be the smallest infinite cardinal such that
v = B. We consider two cases:

Case 1. The cofinality of ¥ > w. Define I: w — @ by (k) = largest
n < k such that «,,, = 7, or I(k) = 0 if no such n exists. Then [ is
not a.e. constant (w.r.t. D), because otherwise there exists » < w and
SeD such that for all ke S, @uir,, < 7; since ¢f(v) > @, there exists
0 < 7 such that «,,,,, < 0 for all ke S; hence B,., = 0“ < B, a con-

tradiction. A.].SO H/c<a) al(k),kD z 'YG)/D = 7Y = 6 SO Hk<a) a’“k)/D - 18’

Case 2. The cofinality of ¥ = w. In this case there is a strictly
increasing sequence {0,:n < w} of cardinals whose limit is 7. Define
l: o — w by (k) = the largest n < k such that «,,, > 0., or (k) =0
if no such % exists. Then [ is not a.e. constant (w.r.t. D), because
otherwise there exists n < w and Se D such that forall ke S, &y, =
Oniy; hence Bu.i = [lies @urr, /D < B8, a contradiction. (Note that there
are two cases: ¥ > w, in which case B,., £ 07, < B, by definition of
v; or ¥ =  in which case o, is finite, 80 8,11 = Onr, < B.) It follows
from Corollary 1.6 (or from 1.3 in case ¥ = w) that ... @p../D =
v = A,

Let us define & to be the class of all uniform ultrafilters on any
cardinal £ which satisfy Theorem 1.7 with @ replaced by «. After
seeing an earlier version of this paper, Keisler and Prikry obtained
some partial results on the question of whether there exist ultrafilters
on uncountable cardinals which are in 2. The best result at present,
due to Keisler and Prikry [11], is that every good ultrafilter is in &.
Their original proof was from the definition of good ultrafilter, which
we will not give here (see [1], [2], [9] or [10]); here we give a variation
of the argument which uses the fact that if D, an ultrafilter on &,
is good, then, then any ultraproduct with respect to D is k+-saturated;
(in fact, this property characterizes the good ultrafilters on «: see
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[10]). Since every nonprincipal ultrafilter on ® is good, the following
generalizes Theorem 1.7 above.

THEOREM 1.7. (bis). Let £ be any cardinal and let D be a good
ultrafilter on k. Suppose that for each v < £ {a,,,:n < w} is a non-
increasing sequence of cardinals. For each n< @ let B, = [l.<x Ou,/D;
and let B = lim,_ ., B.. Then there exists l: k — w such that 1 is not
a.e. constant (w.r.t. D) and 1, @y.,,./D = B.

Proof. As above, we may assume that B, = g for all » and that
B is infinite. Define v as in the proof above. There are again two cases:

Case 1. The cofinality of v > £. This .case is handled in exactly
the same way as Case 1 in the proof above.

Case 2. The cofinality of v < k. Let {0, £ <} be a strictly
increasing sequence of length A < £ of cardinals, whose limit is 7.
For each vy < k let

UY = {na,, > 04
and let
A =L U pcs -

Let I = {Uu(x): £ <M U {& # 7: n < 0}, a set of formulas in the lan-
guage of the 9,’s. We claim that /" is finitely satisfied in IT,., 2%,/D =
A*. It suffices to prove for each p <\, n < w, that {U.(x), v > n} is
satisfied in 2*. But then we can take z to be f,./D where m > n
and f,:k— o is the constant function at m. Indeed, f,/D satisfies
U.(x) because otherwise {v < k: me U} ¢ D; hence {p:a,,, < 0,}eD
and
Han./D= 0. <8

which is a contradiction. Thus I" is finitely satisfied in 21*, and since
A* is kT-saturated, /I is satisfied by some element I/D. Then it
follows easily from Corollary 1.6 that I: ¥ — w is the desired funection.
This completes the proof.

Keisler has also observed that there are many ultrafilters in &
which are not good. In fact, if D is a uniform ultrafilter on £ > w
and F is a nonprincipal ultrafilter on @ then D ® FE is an ultrafilter
on £ X @ (see [1], p. 125 for the definition of D ® E) which is in &
but which is not good. It is apparently an open problem whether
every uniform (or regular) ultrafilter is in &.

Our results make use of the assumption of w-incompleteness of
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the ultrafilter in another essential way besides the use of Lemma 1.2.
Indeed we need the following result which is a special case of a more
general theorem.

LemMa 1.8. If D is w-incomplete, then 1, <. A,/ D is w,-equationally
compact i.e., any countable system of equations with constants from
I1.<: A./D s solvable in 1,<. A,/D iff every finite subsystem s solvable
tn Il.<c 4./D.

Proof. This is a special case of the fact that [I,.. 4.,/D is w,-
saturated (see [9], §4).

Finally we need the following special case of a more general
theorem. Define 4: A — A*/D by 4(a) = f./D where f,c A" is the
constant function with value a.

LemMMmA 1.9. For any ultrafilter D, 4 embeds A as a pure subgroup
of Af/D.

Proof. This is a special case of the fact that 4 embeds A4 as an
elementary substructure of A ([1], Chapter 5, Lemma 2.3).

§2. Ultrapowers of abelian groups. Our analysis of when an
abelian group is an ultrapower begins with Lemma 1.8. If A is an
ultrapower with respect to an w-incomplete ultrafilter, then A is .-
equationally compact. Therefore, A is algebraically compact ([5],
Exercise 6, p. 162) and we have a structure theorem for A ([5], Pro-
position 40 or [3], §1):

(I) A=T14,® A

where ff,, is the completion in the p-adic topology of a direct sum of
cyelic Z, modules (Z, = valuation ring of p-adic valuation of @, the
rationals; i.e., Z, = {m/n € Q: (p, n) = 1}) and A, is the maximal divisible
subgroup of A. Thus if we let M~ denote the direct sum of £ copies
of M, we can write

(I1) 4, = @ Z(p") > © 7>
(where Z(p") = cyclic group of order p"); and
(I1I) A =@ Z(p7)™ S QY
(where Z(p~) is the quasicyclic group of type »~ ([5], p. 15)). Hence

the algebraically compact group A is completely determined by the
cardinals «,,,, 8,, 7,» and . We sum up some information about these
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cardinals in the following lemma. (Here mA = {mu: x € A} and mA[n] =
{aemA: na = 0}; “dim” means dimension as a vector space over Z(p).)

LeEMMA 2.1. Let A be an algebraically compact group decomposed
as in (1), A1) and (I111) above; let T be the torsion subgroup of A. Then:

(0) «,,, = dim p"*Alp]/p"Alp];

(i) @ B, =dimA/(T+ pA);

(b) B,=lim,..dimp"A/p"*'A, and equality holds if the righthand
side 18 finite;

(i) (@) 7, = dim A,[p];

d) v, = lim,_., dim p*A[p], and equality holds if the righthand
side is finite;

(iii) (@) 0 = rank A,/(TN A4,)

(b) 6 < lim,_.. rank (nl4) .

Proof. Most of these results are readily checked; for (a) see [7],
§11 (the «,, are the Ulm invariant); for (i)(a) see [7], Lemma 21.
Also see [3] for some of these results and for an analysis of the use
of the invariants in (0), (i)(b), and (ii)(b) to characterize abelian groups
up to elementary equivalence.

The uniformity inherent in the ultrapower construction leads to
the fact that the inequalities in the above lemma become equalities
in an ultrapower:

LEMMA 2.2. Let B be an abelian group and D an w-incomplete
wltrafilter on a cardinal £. Let A = B/D. Then A is algebraically
compact, and if A is written as in (I), II), and (III) above, then for
all primes p:

(i) B, = lim,..dim p"A/p~"A;

(ii) v, = lim,_., dim p"A[p];

(iii) ¢ = lim,_, rank (n! A).

Proof. (i) There is a canonical map
P: p"A[p""'A — (p"B/p"*'B)"|D

defined by: @(p*(a/D) + p"A) = f/D where f(v)= p"a(y) + p"*'B,
and conversely a map

v (p"B/p""'B)*|D — p"A/p* T A

defined by: +(f/D) = a/D + p"*'A, where a(y) + p*"'B = f(v). It is
easy to see that @ and + are inverses of each other, so that

p"A[p" A = (p"B[p"*"'B)*[D .



74 PAUL C. EKLOF

Let ¢, = lim,_,, dim p"A/p"*'A and o, = lim,.,dim p"B/p"*'B. By
Lemma 2.1(i)(b), B, < 0, and equality holds if o, is finite, so we may
assume o, is infinite. By the above isomorphism, ¢, = (¢,)/D. On
the other hand, we will prove that g, = (¢,)*/D. Since D is w-incom-
plete there is a partition £ = U<, X, such that for all », X, ¢ D.
Define ¢q: k — @ by: q(v) = n if yve X,. Then define a function
f: 1;[ p""B—— A/T + pA

(T = torsion subgroup of A) as follows: if f € II,< p*”B then 6(f) =
a/D + (T + pA), where p?“a(y) = f(v). 0 has the property that if f, g€
dom @ and {v: f(v) = g(v) (mod p***')} ¢ D, then 6(f) # 6(g9). Therefore
B, = Card (A/T + pA) = I}k Card (p*”'B/p**'B)/D and hence B,=
(0)"/D. Hence B, = 0,.

(ii) A similar argument shows that if g, = lim,_, dim p"A][p]
and p, = lim,_. dim p"B[p], then v, = t, = (¢,)*/D. (In this case
consider the canonical embedding

I1 »"*'B[pl/D — Aip]

which proves Card (A;[p]) = (¢,)"/D.)

(iii) Let 7 = lim,_.. (rank (n! 4)) and let ¢’ = lim,_., (Card(n!B)).
If A is not of finite exponent, then 7/ = W,. Since n! A = (»!B)*/D,
we see that for sufficiently large =, 0 < v = rank n! A = Card (n! 4) =
(7')*/D—Dbecause for uncountable groups, rank = cardinality. Consider
the map

2 (@W))B — A/(T'N Ay

defined as follows: x(f) = /D + (T N A,), where if f(v) = (g(v)!)*D,,
then a(y) = q(v)! b,. It is easy to check that y induces an embedding
72 1L @@)!fB/D — A,/(T N A)
and therefore, since Card (n!)*B = 7’ for sufficiently large # and {v:

q(v) = m}e D for all m, we have that § = (¢')"/D. Hence 6 =7 =
()/D.

THEOREM 2.3. Let A be an abelian group. The following are
equivalent:

(1) There is an w-incomplete ultrafilter D on a cardinal & and
an abelian group B such that A is isomorphic to B*/D;

(2) A is algebraically compact, and if A s written as in (I), (I1),
and (III) above, then for all primes p

(i) B, =lim,.,dim p"A/p" A
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(ii) v, = lim,_., dim p"A[p]
(ili) ¢ = lim,_. rank (n! A4)
and for all n < w,
(iv) If 0 = a,n, B, Or 7, then either o is finite or 0° = o;
(v) FEither 6 = 0 or 0° = J;
(3) For all ultrafilters D on w, A is isomorphic to A°/D.

Proof. (3) = (1) is trivial. As for (1) = (2) we have proved (i),
(ii), and (iii) in Lemma 2.2; (iv) and (v) follow from Lemma 1.2 and the
facts, proved in 2.2, that g, = (¢,)*/D, v, = (¢£,)"/D, 6 = (¢')*/D, and from
the fact that if «a), = dim p"'B[p]/p"Blp], then «, , = (a,.)"/D.

(2)=(83) Let A’ = A“/D; we will prove that A’ is isomorphic
to A. We may assume D is nonprincipal, i.e., w-incomplete. Then
by 1.8, A’ is algebraically compact, so it may be decomposed as in
@), 1), and (I1L):

A =114, A4,
A, = @ Z(p") o B Zf?
= @ Z(p™)r @R .

By Lemma 1.9, A is isomorphic to a pure subgroup of A’. Hence it
follows from Lemma 2.1 that «,, < ap., 8, = B, ¥, = 7, and 0 < 0.
We want to prove the opposite inequalities. It is easy to prove that

p" " A'[p]/p"A’[p] = (p**Alpl/p"Alp])*/D .

Thus by 2.1(0) and 1.1 if «,,, is finite, «, , = «,,,; and if «,,, is infinite,
Oy = O = poe
We know that

prA[p AT = (p"Alp" T A)/D

for all n. If g, is finite, then by Lemma 2.1(i)(b), 8, = dim p"A4/p"+'A
for sufficiently large n, and hence g, = lim, .. dim p"4’/p""'4A = B,. If
B3, is infinite, by hypothesis g, = dim p"A/p"*'A = Card (p"A/p"A) for
sufficiently large %, and thus by 2.1(i)(b), 8, < lim,_., Card p"A’/p""'A’ =
B = By

We know that

p"A'[p] = (p"Alp))°/D

for all . If v, is finite, then by 2.1(i)(b), v, = 7,.

If v, is infinite, then by hypothesis v, = Card p”A[p] for sufficiently
large n, so by 2.1(i)(b) 7, < lim,_.. Card p"A[p] = 72 = 7,.

If § is finite, then by hypothesis A has finite exponent so A’ does
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also and thus ¢’ = 0. If dis infinite, then by hypothesis § = rank (n! A) =
Card (n! A) for sufficiently large », and thus since

nl A’ = (n! A)*/D ,

we know ¢’ < lim,_.. Card (n! 4) = §° = 6. The proof of the theorem
is complete.
We may generalize Theorem 2.3 as follows:

THEOREM 2.4. Let A be an abelian group, £ a cardinal. The
following are equivalent:

(1) There is an (w, £)-regular ultrafilter on a cardinal N and
an abelian group B such that A is isomorphic to B*/D.

(2) A satisfies 2.3(2)(1), (ii), and (iii) and furthermore:

(iv), If 0 = a,,., By O7 Y, then either o is finite or o = o;

(V). Either 6 = 0 or 6° = J;

(3) For all w-incomplete ultrafilters D on &, A is isomorphic
to Ar/D.

Proof. The proof uses Lemma 1.4 to prove 2.4 (iv), and (v), and
otherwise is completely analogous to the proof of 2.3.

3. Ultraproducts of abelian groups. We will prove that any
ultraproduct of groups with respect to an ultrafilter in & is an
ultrapower. Combined with the results of §2 this gives structure
theorems for ultraproducts over certain ultrafilters. Using Theorem
1.7 we see that this applies to a large class of ultrafilters.

THEOREM 3.1. For any abelian group A the following are equi-
valent:

(1) There exists an ultrafilter De & on a cardinal & and there
exist groups B,,v < k£ such that A is isomorphic to 1], B,/D;

(2) For all wltrafilters D on w, A is isomorphic to A“/D.

Proof. (2) = (1) is obvious taking into account 1.7. For the
converse, assuming (1), it follows from Lemma 1.8 that A is algebra-
ically compact. Thus it suffices to prove that conditions (i)-—(v) of
Theorem 2.3(2) are satisfied. To prove (i) it suffices to consider the
case when B, is infinite. Let g, = lim,_,dim p"A/p"**A. Then if
0,, = Card p"B,/p"*'B,, tt, = lim,_., (I.<. ¢.,./D). By definition of &,
there exists a function l: ¥ — @ which is not a.e. constant (w.r.t. D)
such that p¢, = T1,<: 0i1,./D. Define a map

¢: 11 (p'*'B,/p'**'B,) — A/(T + pA)
v<K
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such that ¢(f) = a/D + (T + pA), where p'™a(y) + p'“*'B, = f(v).
We claim that ¢ induces an injection

¢: 11 (0" B,/p""*'B,)|D — A[T + pA) .

<k
Indeed, if ¢(f/D) = 0, then there exists t/De T, b/D c A such that
{vek:aly) = tly) + pbv)}eD.

Suppose m(t/D) = 0 where m = np”, (p, n) = 1. Then since {v € £: I(v) =
r} € D we have

{vek: np'a(y) = np'™+'b(V)} e D
and thus since (p,n) = 1,
vek: f(v)=0leD

i.e., f/D=0. Therefore, g, = Card (A4/T + pA) = t,; since the opposite
inequality is true by Lemma 2.1(i)(b), we have 8, = t,. The proofs
of 2.83(2)(ii) and (iii) are similar and we will not give them here. For
the proof of (iv), consider, for example, 8,; B, = Il.<« 0x,./D for suffi-
ciently large =; if o,, is infinite a.e. (w.r.t. D) then by 1.2, 8% = B,
on the other hand, if o,, is finite a.e. and B, is infinite, then By =
B, by a recent result of Shelah [14]; the proofs of the other cases of
(iv), and of (v), are similar. Thus the proof is complete.

Recall that, by 1.7 and 1.7(bis), nonprincipal ultrafilters on w and,
more generally, good ultrafilters on any cardinal are in &. This
leads to the following corollaries:

COROLLARY 3.2. For any abelian group A, the following are
equivalent:

(1) There exists a nonprincipal wltrafilter D on w and groups
B, such that A is isomorphic t0 [{.co B./D;

(2) For all ultrafilters D on w, A is 1somorphic to A*/D.

COROLLARY 3.3. For any abelian group A and cardinal £ > @
consider the following conditions:

(1) There exists a regular wltrafilter D on &k which is in & and
groups B, such that A is isomorphic to 1, B,/D;

(2) There exists a good wltrafilter D on £ and groups B, such
that A is isomorphic to [1... B,/D;

(3) For all w-incomplete ultrafilters D on k, A is isomorphic to
A+/D.

Then (3) = (2) and (2) = (1); if 2* = 2% then (1) = (8).
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Proof of 3.3. (3) = (2) since there exists a good ultrafilter on &
[12] and every good ultrafilter is w-incomplete. (2) = (1) since every
good ultrafilter is regular and, by Theorem 1.7 (bis), every good
ultrafilter is in &. Assuming (2) we will prove (3), by proving that
A satisfies 2.4(2). A satisfies 2.3(2)(1)—(iii) by 3.1 and 1.7 (bis). To
prove (iv), and (v),, consider, for example, B, = [l.<: 0.,./D (for suffi-
ciently large n: we use the notation of the proof of 3.1). If o,, is
infinite a.e. (w.r.t. D) then B85 = B3, by 1.4. On the other hand, if
0,, is finite a.e. and g, is infinite it follows from 1.4 that g, = 2-.
(For example one can prove that if D is good then there exists f
making D (w, k) regular such that the power of f(v) < m if m™ <
0,, < (m+ 1)™*'; then take a, = m and apply 1.4.) The proofs of
the other parts of (iv), and (v), are similar.

Finally, assuming (1) and 2¢ = 2° we prove (3). The prove is the
same as that above except in the case where g, (or «,,, or 7, or o)
is finite. In that case we conclude B, = 2 because by 1.3 B, = 2" = 2~.
This completes the proof of 3.3.

In contrast to 3.1 and 3.3 we have the following:

THEOREM 3.4. (a) If 2 > 2°, there is a regular ultrafilter D on
Kk which is in & and groups B, such that [],., B,/D is not isomorphic
to A*/D’ for any group A and any regular ultrafilter D' on k.

(b) If there is a regular wltrafilter D on k& which is mot in &
then there exist groups B, such that [[,<. B,/D is not an ultrapower
with respect to any w-incomplete ultrafilter.

Proof. (a) We identify £ with £ X w and let D be any ultrafilter
on £ X @ of the form E & F where E is a regular ultrafilter on &
and F is a nonprincipal ultrafilter on @ (see [1] for the definition
of EQ F). It is readily checked that D is regular and in &. For
(v,m)ek x  let p,, = n and define

B,,. = Z([p~)"" DR
for some fixed prime p. If C = [].xo B.,./D, then for all m
7, = dim p"C[p] = 11 0,,s/D = TL (Il 0un/E)/F = [L n/F = 2° < 2°.

w v<k

Hence 75 ++ v, so C does not satisfy 2.4(2)(iv),.

(b) Let D be a regular ultrafilter on a cardinal £ such that there
exist nonincreasing sequences of cardinals {o,,:n < w} such that if
l: £ — w satisfies

V];Ixo-l(v),u/D = lim (H O'n,u/D)

n— v<k

then [ is a.e. constant with respect to D. Fix a prime p and let
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B, = @ Z(p™)“m~ D Z(p~)*
1=

m<w

where the exponents are chosen such that for all v and =,
S ) + B = 0a,
ma2n+1

i.e., dim p"B,[p] = 0,,. (This is possible because {0, n < @} is
nonincreasing.) Let C = [[,.. B./D. We claim that dim C,[p] =
lim,_., dim p"C[p] which implies C is not an ultrapower. Let ¢ =
lim,_.. dim p"C[p] = lim,_. (I].<: 0.,./D); T = 2¢ because D is regular.
And 7 > 2 because otherwise we are in Case 2 of Theorem 1.7 (v =
w) and the same proof works. For any f/DeC,lp], if g:6—w is
defined as in the proof of 2.2, define Il;:x— w by [l (v) = largest
m < q(m) such that p™|f(v). Suppose dim C,[p] = 7; then there is
an le w* such that I, = I for ¢ elements f/DeC,[p]. Then I is not
a.e. constant and

dim I] »'"'B,[p]/D = <
v<K
Hence I1... 0:.,../D = 7, which is a contradiction.
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