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Let X be a compact connected metric space and 2¥(C(X))
denote the hyperspace of closed subsets (subcontinua) of X. In
this paper the hyperspaces are investigated with respect to the
property of aposyndesis. The main result states that each of
2% and C(X) is aposyndetic. If X is semi-aposyndetic, then each
of 2% and C(X) is mutually aposyndetic. An example is given
of a non-semi-aposyndetic continuum for which C(X) is not
mutually aposyndetic. In an extension of the main result
for C(X) it is shown that C(X) is countable closed set apo-
syndetic. The techniques utilize the partially ordered structure
of 2¥ and C(X).

A continuum will be a compact connected metric space and X
will denote a continuum throughout. Each of 2% and C(X) is endowed
with the finite (Vietoris) topology and since X is a continuum each
of 2¥ and C(X) is also a continuum (see [5]). If A, ---, A, are
subsets of X, then N(4,, ---, A,) = {Bec2%| for each 1 =1, ---, n,
BNA,# @, and B&E€UUr, 4;}. If n is a positive integer, F,(X) =
{Be2"|B has at most n elements} and F(X) = Ui, F.(X).

For notational purposes, small letters will denote elements of X,
capital letters will denote subsets of X and elements of 2%, and script
letters will denote subsets of 2*. If A< X, then A* (int 4) (bd A)
will denote the closure (interior) (boundary) of 4 in X.

The concept of aposyndesis was introduced by F. Burton Jones
[3] and several extensions of this concept have been studied. Let
p,qe X, p+q. X is aposyndetic at p with respect to ¢ provided
there exists a continuum M such that peint M and qe X — M. If
for each ge X — p, X is aposyndetic at p with respect to ¢, then X
is aposyndetic at p. If X is aposyndetic at each of its points then
X is aposyndetic. X is semi-aposyndetic if for each pair (p, q) of
distinct elements of X, X is aposyndetic at p with respect to ¢ or X
is aposyndetic at g with respect to » (L. E. Rogers [9]). X is mutu-
ally aposyndetic if for each pair (p, g) of distinct elements of X there
exist disjoint continua M and N such that pcint M and gecint N
(Hagopian [2]). Let .&# be a collection of closed subsets of X. Then
X is & -aposyndetic if for each x ¢ X and each Fe.&# such that x¢ F
there exists a continuum M such that xzeint M and MNF = Q
(Bennett [1]). If & is the collection of finite (countable closed) sub-

sets of X and X is & -aposyndetic then X is said to be finitely
(countable closed set) aposyndetic.

Let (X, =) be a partially ordered space. If xe X, then S(z) =
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{ye X|y < 2} and T(x) = {yc X|x < y} are called the lower and upper
sets of « respectively. Similarly, if AS X, then S(4) = U {S(a)|ac A4}
and T(4) = U {T(a)|ac A} are called the lower and upper sets of A
respectively. If X is compact and the partial order is closed ({(z, y)|
2z < y} is closed in X x X), then S(A) and T(A) are closed whenever
A is closed (Proposition 4, p. 44 of [6]). A is said to be decreasing
if A = S(A) and increasing if A = T(A).

The following definition is due to L. Nachbin [6]. A partially
ordered space is normally ordered if for each pair A, B of disjoint
closed subsets of X such that A = S(4) and B = T(B), there exist
disjoint open sets U and V such that Ac U and Bc V and such
that U = S(U) and V = T(V). Itis known that any compact Haus-
dorff space with closed partial order is normally ordered (Theorem 4,
p. 48 of [6]).

In a partially ordered space, a chain is a totally ordered subset.
An arc which is also a chain is called an order are.

It is easy to establish that the natural partial order on 2%(C(X))
induced by inclusion is a closed partial order. If A, Be2*(C(X)),
then there exists an order arc in 2*(C(X)) from A to B if and only
if A< B and each component of B intersects A (Lemma 2.3 and
Lemma 2.6 of [4]).

LEMMA 1. Let Ae2¥ and Me C(X). Then T(A), T(M)N C(X),
and S(M) N C(X) are continua. Consequently, if &7 is a closed set
n 25(C(X)), then T() is a continuum in 2*(C(X)).

Proof. T(A) is a continuum in 2* because T'(4) = {Be2*| A< B}
is the continuous image of 2* under the function C— AU C. If
Ne T(M) N C(X), there exists an order arc & in C(X) from N to
X, and ¥ < T(M) N C(X). It follows that T(M) N C(X) is connected,
and since the partial order is closed, T(M) N C(X) is a continuum.
S(M) N CX) = C(M), so S(M)NC(X) is a continuum. For each
Ae.o7, T(4) is a continuum in 2*(C(X)) and Xe T(A). It follows
that T() = U{T(4)|Ae &} is a continuum in 2*(C(X)).

LeEMMA 2. 2%(C(X)) s locally conmnected at X.

Proof. Let Z be an open set containing X and N(U,, ---, U,) be a
basic open set such that Xe N(U,, .-+, U,) c %. If Ae N(U,, ---, U,),
then there exists an order are & in 2% (C(X)) from A to X. Since
A, XeNU, ---,U,), each element of & is in N(U, ---, U,). It
follows that N(U, ---, U,) is connected. Hence 2*(CX)) is locally
connected at X.
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The following theorem of Nachbin [6] will yield a useful method
for constructing continua in the hyperspaces.

THEOREM A. Let X be a mormally ordered space with closed
partial order and A be a compact subset of X. Then every continu-
ous, order-preserving, real-valued function on A can be extended to X
wn such a way as to remain continuous and order-preserving.

We now have the necessary equipment to prove the main result.
THEOREM 1. Each of 2% and C(X) is aposyndetic.

Proof. Let Ae2%(C(X)). We will show that 2*(C(X)) is apo-
syndetic at A with respect to each of the other points of 2*(C(X)).
If A= X, then by Lemma 2, 2*(C(X)) is locally connected at A and
hence aposyndetic at A. So we will assume that A is a proper closed
subset (subcontinuum) of X.

Let Be2*(C(X)), B+ A. If Bc A or if B and A are not related
under inclusion, then there exists € A such that x¢ B. Let U be
an open set containing x such that U*N B = @. Let V be an open
set containing A — U such that x¢ V*. Then Ae N(U, V) and B¢
N(U*,V*)= N(U, V)* (Lemma 2.3.2 of [5]). By Lemma 1, T(N(U, V)*)
is a continuum, and A € int T(N(U, V)*). Furthermore, B ¢ T(N(U, V)*).
Hence 2*(C(X)) is aposyndetic at A with respect to B.

Now suppose 4, Be C(X) and Ac B. Let & = {4} U {B} U F(X).
Then & is a compact subset of C(X). Define f: & — [0, 1] by

0 if C=A4 or CeF,(X)

FO=14 i c=B.

Since A is a proper subset of B, f is continuous and order-preserving,
s0 by Theorem A, f has a continuous extension Ffiox )—R (reals)
which is also order-preserving. Since C(X) is a continuum, f(C(X))
is a closed interval, and since f is order- preservmg, for some b =1,
F(C(X)) = [0, b]. Let te(0,1) and consider £, ¢). If Lef (o, t]),
then S(L) < ([0, ¢]). By Lemma 1, S(L) is a continuum. Moreover,
S(L) N Fy(X) + @. Since F(X)c:f"l([o ¢) and F4(0,t) = U {S(L)I
Lefo, th}, it follows that 770, ¢]) is connected, and since 7 is
continuous, it follows that 7-%([0, t]) is a continuum. Furthermore,
Ac int 77([0, ¢]) and B¢ f ([0, t]). Hence C(X) is aposyndetic at A
with respect to B. This concludes the proof that C(X) is aposyndetic.

Finally, suppose A, B€2¥ and Ac B. Let U be an open set such
that AcU and B— U* = @. Let % = N(U)* U N(X — U). Ob-
serve that Aeint .22 and B¢ .2%". Now F(X)N .9 is densein 97"
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We will show that F(X) N .5 is connected.
Let {», -+, 2,} e N(X—U). Then foreachi=1,---,n, 2,6 X—-U*
or z;ebd U. Let

the component of X — U* containing «; if x,e X — U*

C.,;: .
x; if z,ebdU.

Then Cf Nbd U # @, because C; is a component of the open set X— U*
and hence meets hd (X — U*)<=bd U. Let ;€ CfNbd U. Let &, =
{{oy, o0, 2y, ¥, Tiry, »+-, 20} ly € CF}. Now &; is the continuous image
of the continuum Cf, so &; is a continuum in N(X — U) containing
{0y, o0, @y, %y Tigyy +o-, ) and {x, <o« 2;_,, %, Bipy, -+, ¥} Then for
each 1=2,+-+,m, 2, N+ @. So UL Z; is a continuum in
N(X — U) containing {z,, ---, #,} and {2, ---, 2,}. For each 7 =1,
cee,m—1, let &= {{o, ---, 2}, y}lye X}. Then & is a continuum
in .2 containing {z;, ---, 2}, «},,} and {«, -+, i}, and for each i = 2,
eeomn— 1, N # @. Hence Ui & is a continuum in 9%
containing {a], ---, 2.} and {x}. Let .# = {{y}|yecC?}. Then _~ is
a continuum in N(X — U) containing {z;} and {z}. So

(Uz)u(U=)ur

is a continuum in .2 containing {x,, .-, z,} and {z,}.

If {x, ---, x,} € N(U)*, we can use a similar construction to show
that %" contains a continuum containing {x,, ---, z,} and {z,}. So if
CeF(X)N .22 and ceC, there exists a continuum in F(X)N %
containing C and {¢}. Hence F(X) N .5 can be written as a union
of continua, each of which meets F,(X). Since U*U (X — U) = X,
it follows that F(X)c F(X) N 2", and since F(X) is connected, it
follows that F(X)N % is connected. Furthermore, F(X) N % is
dense in .97, so 5  is connected. Hence .2 is a continuum con-
taining A in its interior which misses B. This concludes the proof
that 2% is aposyndetic.

A continuum X is said to be unicoherent provided that whenever
A and B are proper subcontinua such that X = AU B, then ANB
is connected. S. B. Nadler, Jr. [7] has proved that each of 2* and
C(X) is unicoherent. D. E. Bennett [1] has shown that a unicoherent
aposyndetic continuum is finitely aposyndetic. These results and
Theorem 1 imply the following corollary.

COROLLARY 1. FEach of 2% and C(X) is finitely aposyndetic.

THEOREM 2. Let X be a semi-aposyndetic continuum. Then each
of 2% and C(X) is mutually aposyndetic.
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Proof. Let M, Ne C(X), M + N. Suppose M N or that M and
N are not related under inclusion and that N¢ Fi(X). Let .o =
{M}U{N}U F/(X) and define f: .o —[0,1] by

0 if A=M or AcF(X)

FD=1 & a=n.

Then f is continuous and order-preserving, so by Theorem A f has a
continuous extension f: C(X) — R which is also order-preserving. Let
FCX)) =10,b](6=1) and ¢,t,e(0,1),¢ <& As in the proof of
Theorem 1, 77([0,t]) is a continuum containing M in its interior
which misses N. Now suppose L e f~ ([t,, b]). Observe that T(L)cC
f‘l([tz, b]) and Xe T(L). By Lemma 1, T(L) is a continuum. Since
FU([t, b)) = U{T(L)|L e F([t, b}, 7([t, b]) is a union of continua,
each of which contains X. Hence f~([t,, b]) is a continuum containing
N in its interior which misses M. Since 7~([0, t.]) nf [t, B) = @,
it follows that C(X) is mutually aposyndetic at (M, N).

Let A, Be2*, A+ B. Suppose that Ac B or that A and B are
not related under inclusion and B¢ F(X). Let x€¢ B — A and y< B,
2+ 9. Let U be an open set containing A and y such that x¢ U*.
Let V, be an open set containing y such that Vic U. Let V, be
an open set containing x such that V} cint (X — U). Let W be an open
set containing B — (V, U V,) such that », y¢ W*. If{B—- (V,UV,) =
@, replace N(V,, V,, W) by N(V,, V,) in the remainder of the argu-
ment.) Then Be N(V,, V,, W) and N(V,, V,, W) is disjoint from
the sets N(U)* and N(X — U). As in the proof of Theorem 1,
N(U)* U N(X — U) is a continuum containing A in its interior which
misses B. By Lemma 1, T(N(V,, V,, W)*) is a continuum, and Be
int T(N(V,, V,,, W)*). If Ce T(N(V,, V,, W)*), then C meets V} and V7},
so C meets U and int (X — U). Therefore C¢ N(U)* U N(X — U).
So T(N(V,, V,, W)*) N (N(U)* U NX — U)) = @. Hence 2* is mutu-
ally aposyndetic at (A4, B).

Finally, suppose A, Be F(X), A+ B. We will write 4 = {p},
B = {g}. Since X is semi-aposyndetic, we assume that X is aposyndetic
at p with respect to q. Then there exists a subcontinuum M of X
such that peint M and gqe X — M. Let V be an open set contain-
ing ¢ such that V*N M = @. By Lemma 1, T(N(V)*) is a continuum
in 2%(C(X)) and {g} eint T(N(V)*). Now 2*(C(M)) is a subcontinuum
of 2%(C(X)) and {p}eint 2%(C(M)). Moreover, 2¥(C(M)) and T(N(V)*)
are disjoint, since M and V* are disjoint. Hence 2*(C(X)) is mutually
aposyndetic at ({p}, {¢}). This concludes the proof.

In the preceding theorem we have shown that if X is any con-
tinuum and at least one of A and B is not an element of F',(X), then
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each of 2 and C(X) is mutually aposyndetic at the pair (4, B). We
now give an example of a non-semi-aposyndetic continuum for which
C(X) fails to be mutually aposyndetic at certain pairs of elements
belonging to F,(X).

ExampLE 1. Let X be the planar continuum which is the union
of St={(r,0)|r=1}and S={(r,0){6=0and r=1+1/A+6)}. J.T.
Rogers, Jr. [8] has shown that for this X, C(X) is homeomorphic to
the cone over X. Moreover, the homeomorphism carries F,(X) onto
the base of the cone.

Observe that if p, g€ S, then X is not semi-aposyndetic at (p, g).
To show that C(X) is not mutually aposyndetic at ({p}, {¢}) it will
suffice to show that X x I(I = [0, 1]) is not mutually aposyndetic at
(»', ¢') where p’ = (p,0) and ¢’ = (g, 0).

Suppose M, and M, are disjoint continua containing p’ and ¢
respectively in their interiors. Let N, be the component of (S* x I) N
M, which contains . Let U, ---, U, be a finite cover of N, by
spherical open sets such that (Ui, U)N M, = @. Using the fact
that each component of (S' x I) — (U?, U;) is arewise connected, it
can be established that no component of (S* x I) — (Ux, U;) meets
both S* x {0} and S* x {1}. It follows that |Jz, U; contains a simple
closed curve C which separates S' x I between S' x {0} and S* x {1}.
Furthermore, for some ce C, 7., U; contains an arc [p/, ¢] such that
[v', el N C = {¢].

Let N, be the component of (S* x I) N M, which contains ¢’ and
let V,, -+-, V,, be a finite cover of N, by spherical open sets disjoint
from U7, U;. In the analogous manner, r, V. contains a simple
closed curve D which separates S' x I between S' x {0} and S' x {1}
and for some de D, -, V; contains an arc [¢’, d] such that DN [¢’, d] =
{d}. It can now be shown (this involves a consideration of some pro-
perties of S% that ([2’,¢]UC)N (¢, d]U D) #+ @&, a contradiction.
Hence C(X) is not mutually aposyndetic at ({p}, {¢}).

The final theorem extends the main result and Corollary 1 for
C(X). First we need the following lemma.

LEMMA 3. Let MeC(X) and &7 be a countable closed set in
C(X). Then there exists a decreasing open set Z in C(X) such that
MeZ and (bd Z) N 7 = Q.

Proof. Let ¢ > 0 and let d denote the metric on X. For each
ze M let S.(x) = {ye X|d(x,y) <¢&. Let U, = U,enS.(x) and %, =
N(U). Then %/ is a decreasing open set in C(X) which contains M.
If Lecbd Z., then there exists y e L such that
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It follows that for each x ¢ M, d(x, ) = ¢ and for some x, € M, d(z,, y) =
e. Therefore if ¢, + ¢, and L, e bd (%) and L, bd (%.,), then L, # L,.
Since .&7 is countable there exists ¢ > 0 such that bd (%) N . = @.

THEOREM 3. C(X) is countable closed set aposyndetic.

Proof. Let MeC(X) and .o~ be a countable closed set in C(X)
such that M¢ o7, If M = X, then by Lemma 2, C(X) is locally con-
nected at M and hence C(X) is countable closed set aposyndetic at M.

Suppose M is a nondegenerate proper subcontinuum of X. Let
M = 7 N S(M). By Lemma 3, for each L e.%; there exists a
decreasing open set %, such that L € Z/; and bd (%) N (& U {M}) = @.
Since .o is compact there exist Z;, -+, %, such that .o% c Ui, %,
Let . = Fi(X)N 7. Foreach xe. let 7, be a decreasing open
set such that {rje 7; and (bd 7;) N (&7 U {M}) = @. Since .& is
compact there exist 7;, .-, 7; such that .o Cc U™, 7;.

Let

= s () o (3 )] = o [0 ) v (D7)

and let .7 = & — .%. Then .97 and .7 are disjoint closed subsets
of .o7. Define f:.o7 U {M} U F\(X)—[0,1] by

0 if Ae.og orif AeFy(X)
A =112 if A=M
1 if Ade.os.

Then f is continuous and order-preserving, so by Theorem A, f has
a continuous extension f C(X)—1[0,b] (b = 1) which is also order-
preserving. 7 has the property that if ¢e[0, b], then F-([0, t]) and
F7([¢, b)) are subcontinua of C(X). Since C(X) 1is unicoherent,
7410, 3/4]) N FH([1/4, b]) is a continuum containing M in its interior
which misses &7

Now suppose that for some x,¢ X, M = {z). Let .o/, = .o/ n
F\(X). For each {z} € o let %, be a decreasing open set such that
{z}e 7, and (bd %) N (5 U{M}) = . Since .o, is compact there
exist @, « -+, ¥, such that o4 c Ui, .. Let o4 = .on (UL %.,) =
N (U, %7) and let .o = o7 — .o4. Then .94 and . are disjoint
closed subsets of .o7. Define f: (Ui, ) U .7 U F(X)—[0,1] by

P Ae(U ) UFX)
1 if Aev.
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Then f is continuous and order-preserving, so f has a continuous,
order-preserving extension f: C(X) —[0, b] (b = 1). Lettc(0,1). Then
7 (10, t]) is a continuum containing M in its interior which misses .57,

Let .7 = C(X) — Ui #.;e - is a closed set containing M in
its interior which misses .%4. Since each of %, , ---, %, is decreas-
ing, it follows that _ is increasing. So .~# = T(_~) and by Lemma
1, T(_#) is a continuum. Observe that C(X) = 7uo, th) U._~. Since
C(X) is unicoherent, ([0, t)) N .« is a continuum containing M in
its interior which misses .o~. Hence C(X) is countable closed set
aposyndetic.
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