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In part I of this paper a conjecture was formulated ac-
cording to which, with a few obvious exceptions, the sequence
{p,(1)> of an idempotent algebra is eventually strictly in-
creasing. In this paper this conjecture is verified for idem-
potent algebras satisfying p.(1) =0, p,(1) > 0, and p. (1) > 0.
In fact, somewhat more is proved:

THEOREM. Let U be an idempotent algebra with no es-
sentially binary polynomial and with essentially ternary and
quaternary polynomials. Then the sequence

D), pa(1D), -+ -, Pu(1D), -+ -

is strictly increasing, that is, for all n = 2

() + 1 = puss(1) «

The proof starts in §2 where a lemma of K. Urbanik is modified
to show that the proof splits naturally into three cases. 8§83 and 4
handle the first two cases. In §5 the third case is analyzed and it
is proved that it splits into two further cases that are settled in §§6
and 7. In each of these sections examples are provided that the case
under consideration is not void.

For the undefined concepts and basic results the reader is referred
to {2].

Examples of algebras satisfying the conditions of the Theorem
abound. On a two element Boolean algebra {0,1} the operation
@AYV HA2 V(EA 2 defines such an algebra.

2. The classification. An algebra U = {A4; F') is idempotent if
every operation fe F has type (arity) > 0, and f(a, ---, a) = a for all
acA. All algebras considered in this paper are assumed to have
more than one element. An n-ary polynomial » of 1 (that is, an
n-ary function or A composed from functions in F') depends on z;
(1 £ ¢ < n) if there exist a,, -+, a,, ¢; € A with p(a, -+, a;, +++,a,) =
ola, +++,al, «=-,a,); p is essentially n-ary, if p depends on %, ---, x,.
For n =2, let p,(11) denote the number of essentially n-ary polynomials.

In this paper we shall deal exclusively with idempotent algebras
satisfying

(1) = 0, p, (1) # 0, and 204(11) # 0.
The sequence {p,(11)> is strictly increasing because 11 must have
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100 G. GRATZER AND J. PLONKA

essentially ternary polynomials with very nice properties. This will
be used to classify all algebras satisfying these conditions.

A ternary (idempotent) polynomial p is called a minority poly-
nomial if

p(x, z,y) = p@, ¥y, 2) = p(y, %, ) =Y ;

p is a majority polynomial, if

p(@, z,y) = p(x, ¥, %) = Py, ®,2) = ;
p is a first projection polynomial, if

@, v, y) = p(r, ¥, v) = p(@,¥,y) = .

Observe that a minority or majority ternary polynomial is essentially
ternary.

LEMMA 1. Let p(x,y,z) be an essentially ternary polynomial
satisfying p(x, y, y) = y. Then one of p(z,y, x) and p(y, x,2) s an
essentially ternary first projection polynomial or one of p(x, y, z) and
p(p(, ¥, 2), ¥, 2) is a majority polynomial.

This statement can be verified by easy computation, observing
that p(y, z, ) = « or ¥, p(y, ¥, ¥) = x or y, and considering the four
cases separately. This argument is the first half of the proof of
Lemma 3 of K. Urbanik [6].

THEOREM 2. Let U be an tdempotent algebra satisfying p,(1) = 0
and p,(N) = 0. Then N satisfies one (or more) of the following three
conditions:

(a) U has a ternary majority polynomial;

(b) U has an essentially ternary first projection polynomial;

(c¢) all essentially ternary polynomials of W are minority poly-
nomials.

Proof. Sinece p,(1) = 0, 1 has an essentially ternary polynomial
p. Since U is idempotent and p,(1) =0, p(x, ¥, y) =z or ¥, p(y, *,y) =
or y, and p(y, ¥, ) = ¢ or y. If the second alternative occurs for any
essentially ternary p, say »(, ¥, ¥) = ¥, then by Lemma 1, p(z, v, %)
or p(y, x, z) is an essentially ternary first projection polynomial, or
one of p(z,y, z) and p(p(x, ¥, 2), ¥, 2) is a majority polynomial. Thus
U satisfies (a) or (b). This conclusion cannot be drawn only if for
any essentially ternary polynomial » we have »(x, v, y) = p(y, 2, ¥) =
2(y, ¥, ) = x, which is (c).



ON THE NUMBER OF POLYNOMIALS OF AN IDEMPOTENT ALGEBRA, II 101

3. Majority polynomial, Algebras satisfying condition (a) of
Theorem 2 shall be handled in this section.

THEOREM 3. Let U be an idempotent algebra satisfying p,11) = 0.
If U has a ternary majority polynomial f, then
. + 1= p,.,Q)
Jfor m = 2.

Proof. For any n-ary polynomial p define an (n + 1)-ary poly-
nomial pF"

pF = f(p(a;u Tty .’X/'n), p(xly vy By xn+1): p(xl, tery By xl)) .

Let f; = f and for n = 3 define recursively:

fn—i-l = an .
Finally, we define an (n + 1)-ary polynomial ¢:

g = f(fn(xi, R x’n), fn(xu e, Lyy, xn+1), -772) .

Now we make the following claims:
(i) For n=3,

fn(xu ey Xpy, xl) =% .

(ii) For n =3,
f’n(xl’ Loy v 0, xz) = Ty .

(iii) If the polynomial p is essentially w-ary, then pF is essenti-
ally (n + 1)-ary.

(iv) f. is essentially n-ary.

(v) pF = gF implies p = q.

(vi) g is essentially (n + 1)-ary.

(vii) g = pF for no polynomial p.

Statements (i)-(vii) easily imply the statement of Theorem 3.
Indeed, consider the set

{9} U {pF'|p is an essentially n-ary polynomial of 11} .

By (iii) and (vi) all elements of this set are essentially (n + 1)-ary
polynomials. (vii) shows that the union is a disjoint union, and so
by (v) the set has p,(11) + 1 elements. Thus, p,.,() = p,A) + 1.

Proof of (i). For n =38 f, = f is a majority polynomial, hence
filx, x,, #) = x,. Proceeding by induction, if f,.(z, -, ®,_,, @) = 2,
then
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fn+1(xly ey mn, xl)
= f(fn(xu ) xn), fn(xu *t ety Tnyy xl)) fn(xu cety Xy, xx))

= f(fn(xly %y xn), &, xl) = .
Proof of (ii). For n = 3 (ii) is trivial. By induction, if f
fn(xly wz, ctcy xZ) = xz ’
then

Sy, Loy o o0, )
= f(fn(xu Loy = vy xZ)’ fn(xly Loy ¢ 00y xZ), fn(ml, Loy =00y Lo,y xl))
= f(@,, B, ) = , .

Proof of (iii). Setting z, = ©,., in pF we get p, since f is a
majority polynomial. Hence pF depends on 2z, ---,®,_, and on one
or both of x, and x,,,. Since pF is symmetric in x, and x,., in any two
element subalgebra the first possibility cannot occur, hence pF is
essentially (n + 1)-ary.

Proof of (iv). Trivial induction using (iii).

Proof of (v). pF with %, = x,,, yields p, from which the state-
ment follows.

Proof of (vi). Same as the proof of (iv).

Proof of (vii). Let g = pF. Setting 2, = #,,, we conclude that
f.=v. Thus g = f,F = f..1, in other words,

S(fal@yy ooy @), @y 200y @y Tui), Sul@y 200y Tay, 1))
= f(fm(xu ) xn)y fn(xu sy Tny xn+1)y xZ) ‘

Setting x, = x,,, and using (i) and that f is majority we get

X, = f(fn(xlv T x’n)y &1, 5172) .

Finally, setting 2, = 2, = .-+ = %, and using (ii) we obtain x, = z,, a
contradiction, proving (vii).

An example of an algebra satisfying the conditions of Theorem 3
was given in §1. Further examples are easy to construct.

4. First projections polynomial. In this section the Theorem
is proved, in a somewhat sharper form, for algebras having an es-
sentially ternary first projection polynomial.
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THEOREM 4. Let 1 be an idempotent algebra with p,(0) = 0. If
N has an essentially termary first projection polynomial f, then for
n =3

(n — Dp, M) = Pur (W) -

REMARK. Since, for n = 3, (n — Dp, 1) = 2p,(1) = p, (1) + 1,
Theorem 4 is stronger than the corresponding special case of the
Theorem.

Proof. For an m-ary polynomial p and 1 <7 < »n set

PF: = f(p(x, - -+, ), iy Tusa) -
Then we make the following claims:

(i) oF; = qF; implies p = q.

(ii) If ¢+ j, then pF; = qF;.

(ili) pF; depends on z,, .-, %,.

Since substituting «; = x,,, in pF; yields p, we see that if pF,
is not essentially (n 4 1)-ary, then by (iii) pF; = p. By (i), pF;=
pF; if © + j; hence for 7 # j we cannot have both pF; and pF; not
essentially (n + 1)-ary. Thus for an essentially n-ary p

{meli = 17 2, ."’n}

contains at least » — 1 essentially (n + 1)-ary polynomials. Further-
more, by (i) and (ii) the sets

{pF;li1=1,2,---,m} and {gF;|2 =12, ---,m}
are disjoint if p and ¢ are distinct essentially n-ary polynomials, from
which Theorem 4 follows trivially.

Proof of (i). »F; with z;, = x,,, yields p, hence (i) is trivial.

Proof of (ii). Let us assume that ¢ ++ j and pF,; = ¢F};, that is,

f(p(xly Ty wn), L, xn+1) = f(Q(xly Ty mn)y i, xn+1) .

Set ¢ = x, for k #4,1 < k < n, in this identity; since p,(11) = 0 after
the substitution p = « or »; and ¢ = # or z,. The four possibilities
yield the following identities:

S, @5, ©r)) = f(@, T, Tury)
J@, %, Bny,) = f(25, T, Tps) »
S, %, @ny)) = f®, 2, ay) »
S, %, %0y)) = fl&;, @, Tpy) -
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The first and third contradict that f is essentially ternary, while the
second and fourth mean that f is symmetric in its first and second
variable, contradicting that f is a first projection polynomial.

Proof of (iii). Setting x; = x,,, in pF; gives p, hence pF’; depends
on Xy, *=<, L4, Tiyyy ==+, &,. Assume that pF,; does not depend on x,.
Then

f(p(xly ) xn): xi: xn-i—l)
= f(p(xly cee, X5y, L1y Bit1y ° % xn)y Lnti1s x'rH-l)
= p(xl, oy Lty L1y Vigry * 0y x’n) .
Substituting x = »; for j #14,1 <7 < n and using p,(11) = 0 we get
one of
S@, & Toyr) = @
f(xi, xia wn—{—l) = Xnt1 o

The first contradicts that f is essentially ternary, while the second

is ®; = %,,,, a contradiction.
An example of an algebra satisfying the condition of Theorem 4

can be defined on the two element set {0, 1} taking
+ @+ Y+ 2y +2)
as operation
uw+v=wAY)V W AD).
Taking both
@AYV @A)V EAD and s+ @+ Y@+ )Y+ 2)

as operations we get an algebra satisfying the conditions of Theorems

3 and 4.
Note that in Theorems 3 and 4 p,(11) # 0 follows from the assump-

tions.

5. The second classification. In this and the subsequent seec-
tions we consider an idempotent algebra 11 with »,(11) = 0 in which
all essentially ternary polynomials are minority polynomials.

LEMMA 5. W1 has exactly one essentially ternary polynomial.
Proof. Let fand g be essentially ternary polynomials, and consider

the polynomial f(g(x, v, 2), ¥, 2) = h. Then h(x, y, %) = f(g(x, y, ©), ¥, ¥) =
Sy, y,®) = 2. Thus h cannot be essentially ternary, because it is not
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minority. Due to p,11) =0, A(x, y,2) = «, or y, or z. h(x, y,x) =2
eliminates h = y. Furthermore,

h(xy w’ Z) = f(g(x: €, Z), @, Z) = f(zi T, Z) =%,

eliminating » = z. Hence, h = z, that is, we proved the identity

fo@,y,2),v,2) = 2.
Now let a,a’,b,ce A and f(a, b, ¢c) = f(a’, b, ¢). Then
a = f(f(a, b,¢), b, c) = f(fla,b,c),bc)=a,
by the above identity (used with f = g)
(@ =)f(f(@, b,¢),b,¢) = (a=)fl9(a,b,0),b,0),

and so by the above remark, f(a, b, ¢) = g(a, b, ¢), proving that f = g,
completing the proof of Lemma 5.

The only essentially ternary polynomial shall be denoted by f.
Keep in mind that

f(f@,v,2),9,2 =2,

and that f is fully symmetric.

The next important step is again due to K. Urbanik. We call a
ternary function g on A a Boolean group reduct if a Boolean group
operation + can be defined on A(i.e., {4; +) is an abelian group satis-
fying 2x = 0) such that g(x, y,2) = © + y + 2. The proof of the next
lemma is identical with the proof of Lemma 5 of K. Urbanik [6].

LEMMA 6. f is a Boolean group reduct if and only if
f(f(x’ y’ z)’ x’ u)
does mot depend on x. If this is the case + is defined by fixzing an
arbitrary element 0€ A and x + y = f(z, y, 0).

Accordingly, the proof of the Theorem in the minority polynomial
case splits into two completely different cases according to whether or
not f(f(z, v, 2), «, u) depends on .

6. The minority polynomial is not a Boolean group reduct.

THEOREM 7. Let 1l be an idempotent algebra satisfying p,(1) = 0.
Let f be the umnique essentially termary minority polynomial of 1.
If f(f(z, vy, 2), x, w) depends on x, then for n = 2

pn(u) + 1 —S— pn+1(u’) M
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Proof. We define f;, = f and, inductively, for » = 3
fn+1 = f(fn(xly Tty xn)’ @1, xn+1) .
For an n-ary polynomial p and 2 <7 < n we set

PG = f(plw, -+, @), Ty Turd)
pGi = p(xl) x2, tty xi——ly f(xu xly xﬂ'H)s x‘H—l’ Y x%) .

Observe that pG; with », = x,,, yields p.
We make the following claims:
(i) f. is essentially n-ary, and

Si(@,, Loy By) = @, fu(®@,, @,, Tay Bg) = Ty
f'/b(xly Loy Ly Lyy = v, xn) = fn—2(xu Lyy =, xn) for = =5.

(ii) If p and g are essentially n-ary polynomials and 1 £ 4,5 < n,
then pG; = ¢G; implies p = q.

(ili) For an essentially m-ary polynomial p, at least one of
»G,, +--, pG, is essentially (n + 1)-ary.

Using (1)-(iii) it is easy to prove Theorem 7. Indeed, by (ii) and
(iii)
P = {pG;|p is essentially n-ary, ¢ =1, ---, n}
contains at least »,(N) essentially (n + 1)-ary polynomials. By (i),
9 = Forr(®y By Bussy Ty Ty o0 2, 0,)
is also essentially (n + 1)-ary. If ge P, that is,
= pG; ,

for some essentially n-ary p and 1 <17 < n, then the substitution
X, = X4, yields

Surr(Tay Ty @4y By 000y @) = D(X,, Xy oo ©y By) .

By the second part of (i) the left-hand side does not depend on =,
while the right-hand side does, a contradiction. Thus g¢ P, and so
P U {g} contains at least p,() + 1 essentially (= + 1)-ary polynomials,
proving Theorem 7.

Proof of (). We start by proving the formulas in (i). Obviously,

fs(xu Lo,y wz) =

and

f4(x1’ x29 ny x4) = f(f;(xly ny xz); xu x4) = f(xly xl) 3'/'4) =T .
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Thus, for » = 5, by induction,

fn(xly Loy Bgy Lyy * 2+, xn) = f(fn—l(xu Loy Tgy Lyy ==+, xn—-l)? X, xn)

= f(fn—s(xly Lyy ¢, xn—l)y L1y xn)

= fn—z(xly Lyy =02, xn) .
(For n = 5 interpret f,_, as x..)

fs is essentially ternary by assumption. fi(z,, ., 2, ) = fi(%,, ., %),

hence f, depends on z,, x,. By assumption, f, depends on x,. Finally,
filx,, @, x,, ©) = x,, hence f, depends on x,. Thus f, is essentially 4-ary.
Proceeding by induction for n = 5, f, with @, = », yields f,_, (2, « -+, ©._,),
hence f, depends on x,, ---, ©,_,. Finally, f, with , = x, gives

fn—-z(xu Lygy =02, xn) ’

which depends on z, and z,, hence f, depends on %, and «,.

Proof of (ii). Obvious; by setting », = x,., in »G; = ¢G; we get
p»=4q.
Proof of (iii). »G; with », = z,,, gives »p(x, ---, x,), hence pG;

depends on «,, - -+, %,. Furthermore, pG, with o, = 2, = --- = 2, gives
fl@, ©, Tpy) = @, and pG(1 > 1) with ¢, = x,,, gives

p(xn cety Wiay gy Ly *° 0 xn) ’

hence all pG;, 1 <7 < n depend on ®,,,. Thus if none of pG, ---, PG,
is essentially (» + 1)-ary then none of them depend on ..

So assume that none of pG, ---, »G, depend on z,. Then by
substituting x, = ,., in pG, we get the identity

(* ) f(p(xu tc x’n)y Xy, xn%—l) = p(x'nH) ) w'n) .
For 7 > 1 we obtain
p(xn-Hy DByy =00y Xiy 202y xn) = p(xl, ceey By f(x“ &1, xn+1)) ) m'ﬂ)
= p(x“ oo Ty e, xn) .

Since this holds for all ¢ > 1, p is symmetric. Then, using the identity
(*) repeatedly we obtain

D@, ooy B0) = D@y Tayy * 00y T) = (D@, Tuyy =0, T), Ty Tn)
= f(f(p(@,, Ty Bus,y * =2, T), Ty Ty, By )
= f( . .f(p(xl’ Ty oo, 371), x,, 902) .o )
= @y, By =00, Ta)

Hence, p = f,. But then (*) states that f,.(x, ---, 2,.,) does not
depend on z,, a contradiction.
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Idempotent algebras satisfying p, = 0 and having a unique ternary
minority polynomial can be constructed from Steiner quadruple systems
and vice versa. A Steiner quadruple system is a set A and a set S
of four element subsets of A with the property that any three ele-
ment subset of A belongs to one and only one member of S. For
such a system define an algebra <{4; f) as follows:

f is a minority function and for three distinct elements a, b, cc A
there is a unique member Be S with a,b,ce B; let B = {a, b, ¢, d};
set f(a, b, c) = d.

Conversely, if an idempotent algebra (A4; F') satisfies p, = 0 and
f is the unique ternary minority polynomial, then set

S = {{a, b, ¢, fla, b, O)}[a, b, c€ 4, [{a, b, ¢}| = 3} .

Then this defines a Steiner quadruple system.

The smallest Steiner quadruple system which is associated with
an algebra satisfying the conditions of Theorem 7 can be defined on
A=1{1,2 -..,10} as follows (see [1]):

1 2 3 10 1 3 5 8
4 5 6 10 4 5 7 8
7T 8 9 10 1 2 6 9
1 4 7 10 2 3 89
2 5 8 10 1 5 6 7
3 6 9 10 1379
1 5 9 10 2 4 6 8
2 6 7 10 1 2 7 8
3 4 8 10 3 4 5 9
3 5 7 10 2 3 5 6
2 4 9 10 1 4 8 9
1 6 8 10 1 3 4 6
2 3 4 7 2 5 79
5 6 8 9 1 2 45
4 6 7 9 3 6 7 8

Obviously, the associated f is not a Boolean group reduct since |A| = 10
is not a power of two. However, an example, which is due to N.S.
Mendelsohn, shows that even if |A| is a power of two, examples of
algebras satisfying the conditions of Theorem 7 can be defined on A
provided that |A|=16. Let A ={1,2,.--,16} and let S be given
by the following table:

1 2 3 4 2 3 5 8
12 5 6 2 3 9 12
12 7 8 2 3 13 16
12 9 10 2 3 6 7
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3 8 11 13 6 8 9 13
3 8 12 14 6 8 15 16
4 5 9 11 6 8 11 12
4 5 12 15 6 10 14 16
4 5 14 16 7T 8 9 11
4 5 10 18 7 8 10 12
4 6 8 10 7T 8 13 15
4 6 11 13 7 8 14 16
4 6 12 14 8 9 10 14
4 6 9 15 9 10 11 12
4 7 9 14 9 10 13 15
4 7 10 15 9 11 13 14
4 7 11 16 9 11 15 16
4 7 12 13 9 12 13 16
4 8 11 15 9 12 14 15
4 8 12 16 10 11 13 16
4 8 13 14 10 11 14 15
4 9 10 16 10 12 13 14
5 6 7 8 10 12 15 16
5 6 9 16 11 12 13 15
5 6 10 12 11 12 14 16
5 6 13 15 13 14 15 16

In this example,
S @, 0y @), @, ) = f(@0, 2, [, 2, ) 5
and therefore
¢+ y=flx,y,0)

defines a Boolean group operation for any fixed 0 A. However,
flx,y,2) # 2+ y + 2. To prove this it suffices by Lemma 6 to illustrate
that f(f(x, v, 2), «, v) depends on z. Indeed, f(f(1,4,5),1,6) =3 and
f(f(9,4,5),9,6) = 2.

It may be of interest to note that recently C. Treash [5] has
solved the word problem for algebras {A4; f) of type <{8), where f is
a minority function and

f(f(x,y,Z), y,Z) = .

7. Boolean reducts. In this section we settle the final case of
the Theorem.

THEOREM 8. Let 1 be an idempotent algebra satisfying p,(1) = 0,
;) = 0, and p,(1N) # 0, having a unique essentially ternary minority
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polynomial f. If f(f(x, vy, 2), x, u) does not depend on x, then

2.0 + 1 = p,, (W)
for mn=2,3,+-.

Proof. By Lemma 6, a Boolean group operation -4- can be defined
on A such that f(#, ¥,2) =« + y + 2. Let »p be an essentially 4-ary
polynomial of 1 (recall that p,1l) = 0). It follows from Lemma 6 of
[6], that there exists a ternary polynomial p, of {4; f> such that
p(x, ¥, 2, u) = (2, ¥, 2, u) Whenever z, ¥y, 2, and u are not all distinct.
If p, = x, then we can conclude that p is an essentially 4-ary first
projection polynomial, that is, it satisfies

o(x, ¥, 2, ) = x whenever z, y, 2z, and w are not all distinct.

If po=9,p, =2, or p, = u, we get a first projection polynomial by
permuting the variables of p. If p, =2+ y + 2, then p + ¥y + z is
the first projection polynomial. Observe that p + y + z is essentially
4-ary, since otherwise p + ¥ + z would be a polynomial of f, implying
that p = (p + ¥y + 2) + ¥y + z is a polynomial of f. If p, =2+ 9y +
#, -+~ we proceed similarly.

Thus there exists in 1 an essentially 4-ary first projection poly-
nomial g. (This statement is a small part of Lemma 7 in [6].)

Now we start our constructions.

Let p = p(x,, ---, 2,) be an essentially n-ary polynomial, n = 4.
We construct an (n + 1)-ary polynomial 7 as follows:

p(x, x, -+, %, Y, 2) is a ternary polynomial of 1, hence it is =, y, 2,
or x + y + z;

(1) ifpx, -+, 2,9,2) =&, thend = g0, * -+, ), Tacsy Tny Tara);

(2) if p(xy e, Y, z) =y, then p = g(p(xly ftcy wn): L1y &y xn-H);

(8) if p(x, «-+,%,¥,2) =2 thenp = g(p(®@, ++-, ), Ty Tus, Tars);

(4) if p(x, «++, 2, 9,2 =2 + 9y + 2, then

D =g@@, *+*, ¥u) + Tuey + Fuy Tuesy Tuy Tagr) + Tuey + Lo

Furthermore, for n = 4 we define g, by recursion: ¢, = ¢ and

Gots = g(gny xz, xS) xn+1) .

Then we claim the following:

(i) For an essentially n-ary p, the polynomial 7 is essentially
(n + 1)-ary.

(ii) If p and ¢ are essentially n-ary polynomials and p # ¢, then
D #q.

(i) For n =4, g.(x, «++, %, Tp_y, £,) = Gy, Xy Bgy + 0+, By) = Ty

(iv) g, is essentially w-ary.

(V) gny, = P for no essentially n-ary polynomial p.

Now Theorem 8 is clear:
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{P|p essentially n-ary} U {gns.}

is a set of p,(11) + 1 essentially (» -+ 1)-ary polynomials by (i), (i), (iv),
and (v).

In the subsequent proofs Case 1, .--, Case 4 refer to the cases
in the definition of 7.

Proof of (i). Case 1. p with z,,, = x, yields p(z,, «--, x,), hence
P depends on z,, ---, 2, ,. The substitution «,,, = x,_, gives that
P depends on z,. Setting x =,= .-+ =x,_, in 7 (observe that
(@, -, T, X,_y, ®,) = &, by assumption) yields g(z,, ©,_,, ., ¥»+,), hence
P depends on z,,,.

Case 2. Use the substitutions

Tpyy = By, Bppy = Ty, ANd @, = 000 =T, 5.
Case 3. Use the substitutions
Lnt1 = Ly Tpp1 = Bn—1s and Xy = 00 = Ty
Case 4. Just as in the previous cases,
Bppy = ¥, DA Dpyy = Tpy

establish that 7 depends on %, ---, ®,. Setting 2, = +-- =,_, in D
we get b = g(®,, Tn_iy T, Tury) + Luy + %,. Observe that b+ x,_, + o, =
9, %,_y, T, %,.,) depends on z,.,, therefore so does 2. Thus » depends
on &,,,.

Proof of (ii). Setd,={n—-Lnn+1}, A, ={,nn+ 1}, A, =
{IL,n —1,n+ 1}, and A, = {n — 1, n,n + 1}. If » belongs to Case ¢
and k,lec A;, k # I, then 2, = x, substituted into 7 yields p. Observe
that |[A;N 4;] =2 for 1 <4,7 <4. Now if p = @, p belongs to Case
1, ¢ to Case j, then we can choose k,le A;N A;, k # I. Substituting
2, = x; into p = q gives p = q.

Proof of (iii). For n = 4, g.(x, ,, %, ) = 9. (2, &, T3, T;) = Xy
since g, = ¢ is a first projection polynomial. Assuming the identities
for n, we compute:

gn+1(x1y sy Xy Ly, wn+1) = g(gn(xu e, Xy x’n)y Lyy Loy xﬂ+1) =%
and

gn+l(x1, wz, m:n %y x.?) = g(gn(xly xZ’ x37 ) wa)y xz; xsy CU3) = xl .

Proof of (iv). g, = g so the statement is true for » = 4. Assume
it for n. Substituting 2,., = 2, or #,,, = , into g,,, yields g,, hence
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9a+, depends on «,, -+, x,. Substituting «; = &, = .-+ = x, into g,.,

gives by (lll) g(gn(xu x27 x3y ) x3)’ mz, xsy xn+1) = g(xly xZ’ x3’ wn+1)? hence
¢.+, depends on x,...

Proof of (v). Observe that g,,,(z,, %, 2, %, +++, ,,,) = 2,. Hence,
if g,., = P, then »(w, x,, %, 2, -+, ®,y,) = .. Further substituting
Ty = @, or (Case 3) x,,, = v,_,, we conclude that

p(xly xZ; xz, xh M x'n) = xl .

This is impossible if p belongs to Cases 2 or 3, and it immediately
yields a contradiction in Case 1 (namely, x, = g(,, ©,_,, %, T,4,)) and
in Case 4.
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