AN ASYMPTOTIC PROPERTY OF SOLUTIONS OF
\[y''' + py' + qy = 0 \]

GARY DOUGLAS JONES
AN ASYMPTOTIC PROPERTY OF SOLUTIONS OF
$y''' + py' + qy = 0$

GARY D. JONES

In this paper, the differential equation

$$y''' + p(x)y' + q(x)y = 0$$ \(1\)

will be studied subject to the conditions that $p(x) \leq 0$, $q(x) > 0$, and $p(x)$, $p'(x)$, and $q(x)$ are continuous for $x \in [0, +\infty)$. A solution of (1) will be said to be oscillatory if it changes signs for arbitrarily large values of x. It will be shown that if (1) has an oscillatory solution then every nonoscillatory solution tends to zero as x tends to infinity.

The above result answers a question that was raised in [1]. The following theorem due to Lazer [1] will be basic in our proof.

Theorem 1. Suppose $p(x) \leq 0$ and $q(x) > 0$. A necessary and sufficient condition for (1) to have oscillatory solutions is that for any nontrivial nonoscillatory solution $G(x)$, $G(x)G'(x)G''(x) \neq 0$, $\text{sgn} G(x) = \text{sgn} G'(x) \neq \text{sgn} G''(x)$ for all $x \in [0, +\infty)$, and

$$\lim_{x \to \infty} G'(x) = \lim_{x \to \infty} G''(x) = 0, \lim G(x) = c \neq \pm \infty .$$

Lemma 2. If $G(x)$ is a nonoscillatory solution of (1), where (1) has an oscillatory solution, then

$$\lim_{x \to \infty} xG'(x) = 0 .$$

Proof. Suppose $G(x) < 0$, $G'(x) > 0$, and $G''(x) < 0$. By Theorem 1, $\int_1^\infty G'(x)dx < \infty$. Let $\varepsilon > 0$. There is an $N > 0$ such that $\int_N^x G'(t)dt < \varepsilon$ for all $x > N$. Thus $\varepsilon > \int_N^x G'(t)dt = G'(\Sigma)[x - N]$ for $N < \Sigma < x$.

But $G''(x) < 0$, so $G'(\Sigma)[x - N] \geq G'(x)[x - N] > G'(x)\cdot x - \varepsilon$ for x large since $G'(x) \to 0$. Thus $2\varepsilon > xG'(x)$ for large x. Hence $\lim_{x \to \infty} xG'(x) = 0$.

Lemma 3. If $G(x)$ is as in Lemma 2, then

$$\left| \int_1^\infty xG''(x)dx \right| < \infty .$$

Proof. Suppose that $G(x) > 0$, $G'(x) < 0$, and $G''(x) > 0$. Integrating by parts, $\int_1^\infty tG''(t)dt = xG'(x) - G'(1) - G(x) + G(1)$. Thus $\int_1^\infty xG''(x)dx < \infty$ since $\lim_{x \to \infty} xG'(x) = 0$ and $\lim_{x \to \infty} G(x) = K < \infty$.

135
Lemma 4. If $G(x)$ is as in Lemma 2, then
\[\lim_{x \to \infty} x^2 G''(x) = 0. \]

Proof. Suppose $G(x) > 0, G'(x) < 0, G''(x) > 0$. Since
\[\int_1^x xG''(x)dx < \infty, \]
for $\varepsilon > 0$ there is an $N > 0$ so that for all $x > N$
\[\varepsilon > \int_N^x tG''(t)dt = G''(\Sigma)\int_N^x tdt \]
for some $N < \Sigma < x$.
But since $G''''(x) < 0$ by (1), we have
\[G''(\Sigma)\int_N^x tdt \geq [G''(x)/2][x^2 - N^2] \geq [G''(x)/2][x^2] - \varepsilon/2 \]
for large x, since $\lim_{x \to \infty} G''(x) = 0$. Thus
\[3\varepsilon > x^2 G''(x) \] for all large x.
Thus $\lim_{x \to \infty} x^2 G''(x) = 0$.

Theorem 5. If $G(x) > 0, G'(x) < 0, G''(x) > 0$ is a solution of (1) which has oscillatory solutions then two linearly independent oscillatory solutions of
\[y''' + p(x)y' + (p'(x) - q(x))y = 0 \]
satisfy the differential equation
\[(y'/G(x))' + [(G''(x) + p(x)G(x))/G''(x)]y = 0. \]

Proof. Let $u(x)$ and $v(x)$ be two solutions of (1) defined by $u(1) = u'(1) = 0, u''(1) = 1, v(1) = v''(1) = 0, v'(1) = 1$. By [1], $u(x)$ and $v(x)$ are linearly independent oscillatory solutions of (1). Let
\[U(x) = u(x)G'(x) - G(x)u'(x) \]
\[V(x) = v(x)G'(x) - G(x)v'(x). \]
Then $U(x)$ and $V(x)$ are linearly independent oscillatory solutions of (2). Now
\[\begin{vmatrix} V(x) & U(x) \\ V'(x) & U'(x) \end{vmatrix} = \begin{vmatrix} G(x) & v(x) & u(x) \\ G'(x) & v'(x) & u'(x) \\ G''(x) & v''(x) & u''(x) \end{vmatrix} \]
AN ASYMPTOTIC PROPERTY OF SOLUTIONS OF \(y'' + px' + qx = 0 \)

\[
\begin{pmatrix}
G(1) & 0 & 0 \\
G'(1) & 1 & 0 \\
G''(1) & 0 & 1 \\
\end{pmatrix} = G(x)
\]

Thus

\[
G(1)G'(x) = \begin{vmatrix}
V(x) & U(x) \\
V'(x) & U'(x) \\
V''(x) & U''(x) \\
\end{vmatrix}
\]

and

\[
G(1)G''(x) = \begin{vmatrix}
V'(x) & U'(x) \\
V''(x) & U''(x) \\
V'''(x) & U'''(x) \\
\end{vmatrix}
\]

Now \(U(x) \) and \(V(x) \) are solutions of the differential equation

\[
\begin{vmatrix}
V(x) & U(x) & y \\
V'(x) & U'(x) & y' \\
V''(x) & U''(x) & y'' \\
\end{vmatrix} = 0 .
\]

But

\[
\begin{vmatrix}
V(x) & U(x) \\
V'(x) & U'(x) \\
V''(x) & U''(x) \\
\end{vmatrix} = V(x)[-p(x)U'(x) - p'(x)U(x) + q(x)U(x)]
\]

\[-U(x)[-p(x)V'(x) - p'(x)V(x) + q(x)V(x)] = -p(x)G(1)G(x) .
\]

Thus (4) becomes

\[
(5) \quad G(1)G(x)y'' - G(1)G'(x)y' + [G(1)G''(x) + p(x)G(1)G(x)]y = 0
\]

or

\[
(y'/G(x))' + [(G''(x) + p(x)G(x))/G^2(x)]y = 0 .
\]

Our main result now follows.

Theorem 6. If \(G(x) \) is as in Theorem 5, then \(\lim_{x \to \infty} G(x) = 0. \)

Proof. Suppose not. By Theorem 1, \(\lim_{x \to \infty} G(x) = K < \infty \). Suppose without loss of generality that \(K = 1 \). Now for large \(x \), \(G(x) < 2 \), hence

\[
1/G(x) > 1/2 .
\]

Also

\[
G''(x) \geq G''(x)/G^2(x) \geq G''(x)/G^2(x) + p(x)G(x)/G^2(x) .
\]

Since (3) is oscillatory, by the Sturm-Picone Theorem [2]
(6) \((y'/2)' + G''(x)y = 0 \)

is oscillatory. Letting \(y = x^{1/2}z \), (6) becomes

(7) \((xz)' + (2x^2G''(x) - 1/4)x^{-1}z = 0 \).

But since \(\lim_{x \to \infty} x^2G''(x) = 0 \), \((2x^2G'' - 1/4) \) is eventually negative and so (7) is clearly nonoscillatory. From this contradiction, we conclude \(\lim_{x \to \infty} G(x) = 0 \).

REFERENCES

Received March 23, 1972.

MURRAY STATE UNIVERSITY
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Adachi, Masuo Suzuki and M. Yoshida, Continuation of holomorphic mappings, with values in a complex Lie group</td>
<td>1</td>
</tr>
<tr>
<td>Michael Aschbacher, A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5</td>
<td>5</td>
</tr>
<tr>
<td>Larry Eugene Bobisud and James Calvert, Energy bounds and virial theorems for abstract wave equations</td>
<td>27</td>
</tr>
<tr>
<td>Christer Borell, A note on an inequality for rearrangements</td>
<td>39</td>
</tr>
<tr>
<td>Peter Southcott Bullen and S. N. Mukhopadhyay, Peano derivatives and general integrals</td>
<td>43</td>
</tr>
<tr>
<td>Wendell Dan Curtis, Yu-Lee Lee and Forrest Miller, A class of infinite dimensional subgroups of $\text{Diff}^r(X)$ which are Banach Lie groups</td>
<td>59</td>
</tr>
<tr>
<td>Paul C. Eklof, The structure of ultraproducts of abelian groups</td>
<td>67</td>
</tr>
<tr>
<td>William Alan Feldman, Axioms of countability and the algebra $C(X)$</td>
<td>81</td>
</tr>
<tr>
<td>Jack Tilden Goodykoontz, Jr., Aposyndetic properties of hyperspaces</td>
<td>91</td>
</tr>
<tr>
<td>George Grätzer and J. Plonka, On the number of polynomials of an idempotent algebra. II</td>
<td>99</td>
</tr>
<tr>
<td>Alan Trinler Huckleberry, The weak envelope of holomorphy for algebras of holomorphic functions</td>
<td>115</td>
</tr>
<tr>
<td>John Joseph Hutchinson and Julius Martin Zelmanowitz, Subdirect sum decompositions of endomorphism rings</td>
<td>129</td>
</tr>
<tr>
<td>Gary Douglas Jones, An asymptotic property of solutions of $y''' + py' + qy = 0$</td>
<td>135</td>
</tr>
<tr>
<td>Howard E. Lacey, On the classification of Lindenstrauss spaces</td>
<td>139</td>
</tr>
<tr>
<td>Charles Dwight Lahr, Approximate identities for convolution measure algebras</td>
<td>147</td>
</tr>
<tr>
<td>George William Luna, Subdifferentials of convex functions on Banach spaces</td>
<td>161</td>
</tr>
<tr>
<td>Nelson Groh Markley, Locally circular minimal sets</td>
<td>177</td>
</tr>
<tr>
<td>Robert Wilmer Miller, Endomorphism rings of finitely generated projective modules</td>
<td>199</td>
</tr>
<tr>
<td>Donald Steven Passman, On the semisimplicity of group rings of linear groups</td>
<td>221</td>
</tr>
<tr>
<td>Bennie Jake Pearson, Dendritic compactifications of certain dendritic spaces</td>
<td>229</td>
</tr>
<tr>
<td>Ryōtarō Satō, Abel-ergodic theorems for subsequences</td>
<td>233</td>
</tr>
<tr>
<td>Henry S. Sharp, Jr., Locally complete graphs</td>
<td>243</td>
</tr>
<tr>
<td>Harris Samuel Shultz, A very weak topology for the Mikusinski field of operators</td>
<td>251</td>
</tr>
<tr>
<td>Elena Stroescu, Isometric dilations of contractions on Banach spaces</td>
<td>257</td>
</tr>
<tr>
<td>Charles W. Trigg, Versum sequences in the binary system</td>
<td>263</td>
</tr>
<tr>
<td>William L. Voxman, On the countable union of cellular decompositions of n-manifolds</td>
<td>277</td>
</tr>
<tr>
<td>Robert Francis Wheeler, The strict topology, separable measures, and paracompactness</td>
<td>287</td>
</tr>
</tbody>
</table>