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This paper is devoted to an analysis of the class of mini-
mal sets which are constructed in the following way: Start
with a homeomorphism of the circle without periodic points.
It contains a unique minimal set. Take a finite number of
copies of this minimal set. Define a homeomorphism of this
space onto itself by using the original homeomorphism and
a continuous rule to determine in which copy the image lies.
Finally some of the pairs of doubly asymptotic orbits may
be identified. In other words, minimal skew products of a
specific kind of minimal cascade and a finite permutation group
with some trivial identification are studied.

Their structure group is always a direct product of a circle with
a finite cyclic group, and they can be characterized in terms of their
dynamical properties. If no pairs of doubly asymptotic points are
identified, there is a classification theorem based on four invariants.
One of these invariants is an equivalence class of weakly cohomologous
functions. This weakening of the usual cohomology relation gives an
effective test for isomorphism for this class of minimal sets. More-
over, the minimal cohomology classes contain canonical representatives.

1* Finite skew products* A cascade is a topological space to-
gether with a homeomorphism of it onto itself. At times we will use the
more general concept of a transformation group, but the phase space
will always be compact and metric. Since for a cascade we want to
write the homeomorphism on the left, we will write all our actions
on the left. We will assume that the reader is familiar with the
proximal relation, the equicontinuous structure relation, the enveloping
semigroup, and the surrounding ideas. Finite sets will be important
and we will denote their cardinality by \A\.

Let (X, T) and (Y, H) be transformation groups and let F: X x
T —* H be a continuous mapping satisfying the condition

F(x, st) = F(tx, s)F(x, t)

for all a i n l and for all s, t e T. Then we can define a new trans-
formation group (X x Y9 T) by

t(x, y) = (tx, F(x, t)y) .

This transformation group will be called the skew product of (X, T)
and (Y, H) with respect to F. Bronstein [3] has established the
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following:

THEOREM l . l Let (X, T) and (Y, H) be minimal transformation
groups and let F be as above. If the proximal relation of (Y, H) is
a closed equivalence relation and if y is a distal point of (Y, H), then
(x, y) is an almost periodic point of the skew product ( I x T , T).

Let (X, φ) be a minimal cascade, let Y = {1, , n} with the
descrete topology, and let H = Sn be the permutation group on n-
symbols. Then (Y, Sn) is a minimal equicontinuous transformation
group. A skew product of (X, <j>) and (Y, Sn) will be called a finite
skew product of (X, φ). It follows from Theorem 1.1 that finite skew
products are pointwise almost periodic. For finite skew products with
T' = Z, the group of integers, the defining equation takes the form

(1) F(x, m + n) = F(φ*(x), m)F(x, n) .

For convenience we will denote X x Y = X x {1, , n) by X%. The
finite skew of (X, φ) and (Γ, Sn) with respect to F is also a cascade
and its generating homeomorphism φF is given by

ΦM i) = (φ(x), F(x, ϊ)i) .

Note that F(x, 1) is simply a continuous function from X into Sn.
Conversely, let F: X—> Sn continuously and extend F to Xx Z by the
formulas

F(x, 1) - F(x)

F(x, 0) = e (e denotes the identity of Sn)

F(x, n) = F{φn-ι{x))F{φn-\x)) F(φ(x))F(x) for n > 1

F(x, n) = [F(φn(x), -ri)]-1 for n < 0 .

LEMMA 1.2. Let F:X—*Sn continuously be extended to X x Z
by the above formulas. Then the extension satisfies equation (1) and
φF(x, i) = (Φ(x), F(x)i) is the generating homeomorphism of a finite skew
product.

Proof. Equation (1) is established by considering the various
cases which arise from the possible signs. If m and n are both non-
negative, just use the first three formulas. If they are both nega-
tive, use the fourth formula to reduce it to the nonnegative case.
For the two cases of mixed signs observe that for n < 0

F(x, n) =

and then compute.
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Henceforth, F will be a continuous function from X into Snf

and whenever we need the above extension to X x Z we will simply
write F(x, n). The skew product of (X, φ) and (Y, Sn) with respect
to F will be denoted by (Xn, φF). Note that 7r(a?, i) = a? is a homomor-
phism of (X%, 0F) onto (X, φ).

LEMMA 1.3. // (x, i) and (y, j) are distinct proximal points of
(Xn, φF), then x and y are proximal in (X, φ) and x Φ y.

Proof. Obvious.

We will say (Y, ψ) is a finite extension of (X, φ) if there exists
an open homomorphism Θ of (Y, ψ) onto (X, φ) such that | θ~ι(x) | is
a finite constant independent of x. Note that a finite skew product
of (X, ̂ ) is always a finite extension of (X, φ).

THEOREM 1.4. Let (X, φ) be a minimal cascade on a totally dis-
connected space, and let (Y, ψ) be a given cascade. Then (Y,ψ) is
a finite extension of (X, φ) if and only if (X, ψ) is a finite skew
product of (X, φ).

Proof. Let θ be an open n to one homomorphism of (Y, ψ) onto
(X, φ). It suffices to find a homeomorphism 7 of Y onto Xn such that
7 ° f ° Ί~ι{x, i) = (Φ(x)> F{x)i) where F(x) e Sn. The continuity of 7 ° ψ © 7~x

will guarantee the continuity of JP. Let {̂/u , yn} = "̂"1(a?0)> let
Z7i, •••, Z7% be disjoint open neighborhoods of the y^s, let V be any
open and closed subset of X which is contained in θiUΊ) Π Θ(U2) Π Π
0(ty, and let TF* = θ~ι{V) Π ί/i Then each TFί is open and closed
in Y and 0 maps each Wι homeomorphically onto V. Cover X by a
finite number of open closed and disjoint subsets constructed as above,
call them Vlf

 β, Vm and let Wlh , Wnj denote the decomposition
of θ~\Vj) into disjoint open and closed subsets of Y which θ maps
homeomorphically onto Vj. Set y(y) = (θ(y), i) provided ye W^. Then
7 is the desired homeomorphism.

COROLLARY 1.5. Let (Xn, φF) be a finite skew product of the
minimal cascade (X, φ) where X is totally disconnected. Then every
minimal set of (Xw, φF) is also a finite skew product of (X, φ).

2* Finite skew products of circular cascades* Let K denote
the unit circle in the complex plane and let φ be a homeomorphism
of K onto K. If φ has no periodic points, then (K, φ) has exactly
one minimal set which is either all of K or a Cantor subset C. K\C =
U~=i (ai> δ4) where (ai9 b^) is a counterclockwise open interval in K and
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[a>iy bi] Π [ah bj] = 0 when i Φ j . The intervals (ai9 bi) are called com-
plementary intervals of C. We will call all minimal sets coming from
homeomorphisms of K without periodic points circular cascades, and
we will use the terms transitive and intransitive to distinguish the
two types. If (K, φ) is a transitive circular cascade, then {K, φ) is
isomorphic to (K, Mg) when Mg{z) = gz and gn Φ 1 for n φ 0. If
(C, φ\C) is an intransitive circular cascade, then two distinct points
are proximal if and only if they are end points of the same comple-
mentary interval, the proximal relation equals the equicontinuous
structure relation, and the maximal equicontinuous factor is of the
form (K, Mg) where gn Φ 1 for n Φ 0. If we choose g with Im g > 0,
then it is uniquely determined for any circular cascade and will be
denoted by r{φ). So for any circular cascade there exists a homomor-
phism p of it onto (K, Mriφ)) and p(x) = p(y) if and only if x and y
are proximal. Let T(φ) equal the image of the distal points under p.
The set T(φ) is uniquely determined up to congruence, (Two sets A
and B of K are congruent, written A == B, if there exists a z such
that MZ(A) = B.) Clearly Mriφ)[T(φ)] = T(φ) and K\T(φ) is countable.
The author [5] has shown that r(φ) and T(φ) form a complete set of
invariants for circular cascades.

Now let (C, φ) be a fixed intransitive circular cascade and let F
map C continuously into Sn. We can find complementary intervals
fai, δx), , (αp, 6P) of C arranged in counterclockwise order on K such
that F is constant on [bl9 a2] Π C, [δ2, α3] Π C, , [δp, αj Π C and ^(αi) =£
7̂ (6̂ ) i = 1, ., p. In view of Corollary 1.5 and the pointwise almost
periodicity (C», ̂ ) , we will assume (C%, ̂ F) in minimal. In this section
we will be concerned with the proximal and the equicontinuous struc-
ture relations of (Cn, φF).

It is clear from Lemma 1.3 that (x, i) is a distal point of (C», φF)
if x is not the end point of any complementary interval of C and
(C*9 ΦF) is point distal. For the end point of a complementary interval
of C, the proximal cell is given by the following lemma.

LEMMA 2.1. Let (α, b) be a complementary interval of C. Then
the following statements hold:

(a) There exists A+(a} b) {A_{a, b)} in Sn such that {b, A+(a, b)i)
{(&, AJμ, b)i)} is the unique point of Cn which is positively {negatively}
asymptotic to (a, i).

(b) They are the only points proximal to (α, i) and they need not
be distinct.

(c) For any integer n

A+(φ\a), φ%b)) - F(b, n)A+{a, b)F(af n)^

= F{b, n)A_{a, b)F(a, n)^} .
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Proof, (a) Let P(a) be the smallest nonnegative integer such
that n ^ P(a) implies φn(a) Φ α* i == 1, , p. Clearly P(a) = P(b). It
follows that

(a), n) = F(φ™(b), n)

for all n^O. Let

A+(a, b) = F(6, P{b)ΓF{a, P{a)) .

Then for n Ξ> P(a) we have the second coordinates of φ^(a, i) and
φ%(b, A+(a, b)i) equal which implies positive asymptoticity. Similarly
one obtains A_(α, b).

(b) This follows from Corollary 1.5.
(c) First observe that P(φn(a)) = P(a) — n and then apply equa-

tion (1).
Let Zq denote the integers modulo q; i.e., Z/qZ.

LEMMA 2.2. // ψ is an automorphism of the topological group
K x Z0 then

*% ki(mod q))

*% ki(mod q))

where ξ is a qth root of 1 and k and q are relatively prime.

THEOREM 2.3. Let (Kq, ψ) be a discrete flow on Kq=Kx {1, , q).
If {Kq, ψ) has a dense orbit, then {Kqy ψ) is isomorphic to a unique
minimal set of the form (K x Zq, Mδ) where δ = (g, 1), g* Φ 1 for n Φ
0, and g — exp (θi) with θ e (0, π/q).

Proof. Clearly ψ(K x {i}) = K x {pi} where p e Sq; and if p is
not a g-cycle, there is no dense orbit. Thus ψk(K x {1}) = K x {1}
if and only if q divides k and {K x {1}, ψq) has a dense orbit. There-
fore, it is equicontinuous and so (Kq, ψ). We now know that Kq can
be given the structure of a monothetic group and there is generator
δ such that (Kqf ψ) is isomorphic to (Kq, M9).

We can assume that K0 = K x {1} is the identity component, and
that the group structure on KQ is isomorphic to complex multiplication
on K [2, Theorem 2, page 19]. The cosets of Ko in Kq are Ko, KQδ,
K0δ

2, , K$q~l because δk e Ko if and only if q divides k. There
exists h in Ko such that hq — δq. It follows that hrιδ is an element
of Kq of order q and Kq is isomorphic to K x Zq. Therefore, (K, ψ)
is isomorphic to (K x Zq9 Mδ).

Using automorphisms of K x Zq we can change δ. From Lemma
2.2 it is easy to see that exactly one image of δ under an automor-
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phism satisfies the conditions in the theorem.

THEOREM 2.4. The maximal equicontinuous factor of (Cn, φF) is
isomorphic to (K x Zq, Mδ) where δ is uniquely determined by the condi-
tion δ = (g, 1), gn Φ 1 for n Φ 0 and g — exp (θi) where θ e (0, π/q).

Proof. By Theorem 2.3, it is sufficient to show that the maximal
equicontinuous factor of (Cn, φF) is a one-dimensional manifold. Let
(Y, ψ) be the maximal equicontinuous factor of {Cni φF) and let p
denote the canonical projection of (Cn, φF) onto (Y, ψ). There exists
a homomorphism π' of (CΛ, φF) onto (K, Mr{φ)) and hence a homomor-
phism p of (Y, ψ) onto (K, Mr(φ)) such that π' = p ° p. The homomor-
phism πf = pΌ π where π is the projection of Cn onto C and p'(x) =
39'(?/) if and only if a? and y are proximal in (C, φ). Consequently if
x is a distal point of (C, φ), then ίΓ^jpίa?, i)) c {(x, i): i — 1, , ^}.
Let E^x, i] — p~\p{x, i)) Π {(α?, i):i — 1, , w} for any a? in C. Since
each ϋ70[#, ί] consists of points which are distal, ξ an element of the
enveloping semigroup of (CΛ, ̂ F) will be injective on EQ[x, i] and it is
easy to check that ξ(E0[x, i\) c E0[ξ(x, i)]. It follows by using mini-
mality that

\E0[x,i]\ = \E0[y,j]\

for all x, yeC and I ^ί i, j ^ n.

Let x0 be a distal point of (C, φ). To show that F i s a one-dimen-
sional manifold it suffices to show that p(x0,1) has an open neighbor-
hood homeomorphic to (—1,1). Let I be an open interval in K with
end points in T(φ) such that π'(x0,1) € / . Let V — p'^il) x {i: (x09 i) e
JE70[O?O, 1]}. For sufficently small V, P~~ι{p(V)) = V and p(V) is open in
Y. Let JB be the restriction of the equicontinuous structure relation

of ( C , î.) to V. It is immediate that V/R is homeomorphic to ^ ( F ) .
Because |ϋ70[α;9i]| is a constant V/R is also homeomorphic to ττ'(F) =
/ which completes the proof.

3* Some general lemmas* Through out this section (X, T) will
be a minimal transformation group and E will denote its equicon-
tinuous structure relation. Let E[x] — {y: (x, y) e E) and let D be
the set of distal points of (X, Γ).

LEMMA 3.1. If E[xL] c D for some xx in X and \E[x2] \ is finite
for some x2 in X, then

(a) E[x'\ aD if and only if \E[xf] \ = min {l^^] \:xeX] and
(b) the canonical projection p of X onto X/E is open at x if

and only if xe D.
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Proof, (a) Let f be an element of the enveloping semigroup of
(X, T). Then f maps E[x] into E[ξx\. Since ξ is injective on D,
I E[x] I ̂  I #[£a?] I when E[x] c Zλ Hence | E[x] | = min {| E[x]: x e X}
whenever E[x] c D. If E[x] qL D, then there exists x\ x" e E[x] which
are proximal. Choose ξ so that ζx1 = a?'. Then a?" is not in the range
off and \ElxM < \E[x]\.

(b) Use Proposition 2.3 [8].

The transformation group (X, T) is locally proximally equicon-
tinuous if for every x in X there exists a neighborhood U of x such
that

#n ux u= Pn i7χ *7

where P denotes the proximal relation. Note that if U satisfies this
equation then so does t U where t e T and V when V c U. Hence for
minimal transformation groups it suffices to check it at one point.
Clearly this is a weaker notion then proximal equicontinuity [1].

LEMMA 3.2. The transformation group (X, T) is locally proxi-
mally equicontinuous if and only if there exists ε > 0 such that (x, y) 6
E and d(x, y) < ε implies (x9 y) e P.

We will denote the derived set of A, a subset of X, by A'-, i.e.,
xe A' if and only if given s > 0 there exists ye A such that 0 <
d(x, y) < β. As usual Δ — {(x, x) e X x X}.

LEMMA 3.3. The following are equivalent:
(a) P'\Δ is a closed set in X x X,
(b) there exist ε > 0 such that

P' n {(x, y): d{x, y) < ε] c A

(c) given x there exists an open neighborhood U of x such that
(PnUxUya Δ.

LEMMA 3.4. Let R be a closed invariant equivalence relation on
X which is contained in P and let (Y, T) = (X/R, ϊ7). Then the fol-
lowing statements hold:

(a) If (X, T) is locally proximally equicontinuous, then (Y, T)
is locally proximally equicontinuous.

(b) If Pχ\Δx is closed, then Pγ/Δγ is closed.

Proof, (a) If (Y, T) is not locally proximally equicontinuous,
we can find (ynf y'n) e EY\PY such that (yn, y'n) -»(y, y). Let p denote
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the canonical homomorphism of (X, T) onto (Y9 T) and let xn, x'neX
such that p(xn) = yn and ρ(x'n) = j/». We can assume that (xn, x'n)
converges to (x, x'). Because Ra P it is clear that (xn, α4) e EΣ.
Since p(x) — y — p{x')> (x, xf)cR(Z Px. Let U be an open set satisfying
E f]U x U = P f]U x U. For some τ, TO?, τxf e U and hence for large
n, τxn, τx'n e U and (a?Λ, α£) e Px. Thus (#», j/J,) e Pγ for large w which
is a contradiction.

(b) If Pγ\Δγ is not closed, we can find (yn, y'n) e P£Vk such that
(l/*» Vn) —> (#, 2/) Since given (w^ w2) e PT, we can find fo, z2) e Px such
that p(z{) = wi9 we can find (xn, x'n) e Px such that p(xn) — yn and
P(%n) = 2/w We can assume that (α?n, α?l) —> (a?, α?') Then (a?, a?') e i2 c P x

and (x, xr) e Px. Becuase P'X\AX is closed and (xn, xi) e PJr we see that
x Φ x'. But Pr

x\Ax closed also implies that Pxf) Px a Jx. Thus a? = xf

and we have a contradiction.

4* Locally circular minimal sets* A minimal cascade (F, ψ)
will be called locally circular if there exists a minimal finite skew
product (Cn, φF) of a circular cascade and a homomorphism 0 of (Cn, φF)
onto (Y, α/r) such that Θ{x) = (̂̂ /), x, y e Cn, implies x and y are doubly
asymptotic. Locally circular is some what of a misnomer because
they are not locally circular in the obvious meaning of this term.
However, they can be characterized by using localizations of the
properties which characterize circular cascades. This characterization
is the following:

THEOREM 4.1. Let (Y,ψ) be a minimal cascade on a compact
metric space. Then (Y, ψ) is locally circular if and only if the
maximal equicontinuous factor of (F, ψ) is a one-dimensional mani-
fold, (Yyψ) is locally proximally equicontinuous, and P'\Δ is closed
subset of Y x Y.

Proof. It follows from § 2 that minimal skew products of circular
cascades satisfy the three conditions, and then by Lemma 3.4 so do
locally circular cascades.

Now suppose (Y, ψ) has the three properties stated in the theorem.
Choose s > 0 such that d(x, y) < s and (x, y)eE implies (x, y)e P and
such that d(xf y) < e and (x, y) e P ' implies x = y. If l/(n — 1) < ε,
then P Π {(x, y): 1/n < d(x, y) < l/(n - 1)} is finite. Therefore, P Π
{(x, y):0 < d(x, y) < 1/N} is countable where 1/N<e, and P\Δ is
countable. Since Y/E is uncountable, there exist points such that
E[y] c D. Next we observe that E[y] is finite for all y in Y. If
this were not the case we could find a y and a sequence of distinct
points {yn} such that yn converges to y and yneE[y] for all n. For
large n and m we would have d(yn, ym) < s/2 and hence (yn, ym) e P.
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Holding m fixed and letting n go to infinity would show that (y9 ym) 6
P ' and d(y9 ym) < e. Hence we would have the contradiction y = ym

for large m. Let p be the canonical projection of Y onto Y/E By
L e m m a 3 . 1 . E\yf\ a D if a n d o n l y if \E[y'\ \ = m i n [\E[y] \:yeY} =
a and p is open at y if and only if y e D.

Since the maximal equicontinuous factor of (Y9 ψ) is a one-dimen-
sional manifold, it has the form (K x Zm, Mδ) where δ = (A, 1) and
A* Φ 1 for ?ι Φ 0 by Theorem 2.3. Let π be the composition of p and
the projection of K x Zm onto ϋΓ. The map π is a homomorphism of
(Y9ψ) onto {K9Mh). We now use a construction due to Veech [8,
Theorem 3.1] to obtain minimal cascades (X, φ) and (X, φ) and homo-
morphisms q, q and π* with the following properties:

(a) the diagram

(Y,ψ) J!—(X9φ)

•i i -
(K, Mh) <J- (X, φ)

is commutative
(b) the map π* is open
(c) if π is open at every point in π^iz), then q~x{z) consists of

exactly one point
(d) if π is open at every point in π~ι{π(y)),

then q^iy) consists of exactly one point.
The transformation group (X, φ) is constructed by taking the

completion of {π"1^): π~ι(z) c D) in the Hausdorff metric coming from
Y. So a point z* of X can also be thought of as a subset of Y. In
this role we observe that z* c 7Γι(q(z*)) and | z* \ = a. Choose e > 0
such that where d(z, y) < ε the following hold:

(x, y)e E implies (x9 y)e P

(x9 y) e P' implies x — y

(xf y)$E implies π(x) Φ π{y) .

Choose δ < ε/2 such that the open sets S(yi9 δ) — {y: d(y, y^) < δ) are
disjoint where {yl9 , yn} = πι{z) c D and z is a fixed point of K.
Let U=f\Uπ{S{yi9δ)) and U€ = 7Γι(U) Γi S(yi9 δ). Clearly π(Ud =
U. If g(s*) e U, then ^ * Π Z74 is a point. If g(«*) = g(w*) e C/, then
(z* Π ί/ί, ^* Π Ui) 6 P. Suppose that («*, w*) is a sequence in X x X
converging to (2*10*) and («*, wj) e P. We have #(2ί) = g(^ί) and
q(z*) = g(^*). We can assume q(z*) e U. If 2* ^ w*, then z* ΓiUiΦ
w* Π ί/"i for some i. It is easy to see that z* Π Ui —> 2* Π ϋi and
w* Π C/i -+w* Π C/i. Therefore, (2* Π Ui9 w* Π ϋi) € P ' which contradicts
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z* Φ w* because d(z* Π Ui9 w* Π E7i) < e. Hence for (X, φ), P' c Δ and
(X, φ) is a circular cascade [5, Theorem 4.1]. If (X,Φ) is transitive,
then (X, ^)is equicontinuous, q is an isomorphism, (F, π) is a covering
space of K, (F, ψ*) is isomorphic to some (K x Zk9 Mδ) which is locally
circular. If (X, φ) is intransitive, then TΓ* is n to one where n = ma —
I q^Tir^z)) I if π"1(z) c D. To finish the proof we must show that
qfa) = g(#2) implies #! and x2 are doubly asymptotic. If qfa) = 9(α )̂9

then either ττ*(α;1) = ττ*(#2) or ^*(a?x), π*(x2) are proximal. The former
is impossible because q maps π*-1(z*) homeomorphically onto z* [8, 219].
(Here 2* is first regarded as a point of X and then as a subset of F.)
Let A< = π*-1(π*(»<)). Then Ax Π A2 = 0 . There exist ye A2 such
that a?!, y are positively {negatively} asymptotic. (Theorem 1.4 and
Lemma 2.1.) We can assume that q(Xi), q(y)e U1 where Uu •••, Un

are as above. Then q(y), q(x2) e Uι Π z}9 zf = π*(α;2) implies q(y) = q(x2)
and hence y = x2. Therefore, (xl9 x2) are doubly asymptotic, and the
proof is completed.

5* Invariants* Let (Y9 ψ) be a locally circular minimal set.
From Theorem 2.4 we know that its maximal equicontinuous factor
is of the form (K x Zq9 Mδ) where δ = (h91). Moreover, δ is unique
if we require that h = eiθ where 0 < θ < π/q. We call this h the
rotation number of (Y, ψ) and denote it by r(ψ). It is a well-defined
invariant of (Y9ψ). Clearly q which is the number of components of
the maximal equicontinuous factor is an invariant, which we denote
by c(ψ). By Lemma 3.1 we know that \E[y]\ where E[y] c D is
also a well-defined invariant of (Y9ψ). We denote it by e(ψ) and we
let n(ψ) = c{ψ)e{ψ). The positive integer n(ψ) will be the canonical
number of symbols in the permutation group. We also need a canoni-
cal circular cascade from which we can recapture (Y9 ψ) by taking
a finite skew product with n(ψ) symbols and identifying some doubly
asymptotic points. A circular cascade (X, ψ) is uniquely determined
up to isomorphism by two invariants-the rotation number r(φ) and a
subset T(φ) of K [5]. Certainly we want to have r{φ) = r{ψ). So
we must have a way of using (F, ψ) to determine a suitable subset
of K. A slight modification of the original definition of T(φ) does
this.

LEMMA 5.1. Let ρ1 and ρ2 be homomorphisms of (Y,ψ) onto
(K, Mr^). Then there exists a weK such that p1 = Mwoρ2.

Proof. Let p be a canonical projection of (F, ψ) onto its maximal
equicontinuous factor (K x Zq9 Mδ) and let π be the composition of p
and the projection of K x Zq onto K. It suffices to show that there
exists weK such that π = Mwop19 There exists a homomorphism pf
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of (K x Zqj Mδ) onto (K, Mr{+)) such that pΌp — pt. If we modify
p1 by a rotation we can assume pτ is also a group homomorphism of
K x Zq onto JRΓ. In other words, there exists weK and a group
homomorphism oΐ K x Zq onto jfiΓ such that Mw o px — pΌ p and pΌ Mδ =
ikfrtth ° j0' So it suffices to show that jθ'(£, i) = #.

It is easy to see that /o'(s, i) = ζ*zn for some n e Z and £ a gth
root of unity. We also have p'(δ) = pf{r{ψ), 1) = r(ψ), and hence we
have ζr(ψY = r(ψ). If w ^ 1, r(ψr) is a root of unity which is impos-
sible because r(ψ) is a generator of ϋΓ (Theorem 2.4). If w = 1, ξ —
1 and f/(z, i) = z.

Let p be any homomorphism of (Y,ψ) onto (JBL, Λfr(̂ ,) and let
T(ψ) — {zeK: p~~ι{z) c D}. Suppose θ is an isomorphism (Γ, ^) onto
(Y'fφ') and /O' is a homomorphism of (Y',φf) onto (K, Mrφ). (We
already know that r(^) — r{ψf).) Applying Lemma 5.1 to ρx — p and
p2 — pΌθ we obtain weK such that p = ilί^oρfoθ. Since /0~ιOs) =
ί""1!^'""1^"1^)], jO"1 )̂ consists of distal points if and only if f/^w^z)
consists of distal points. Therefore, {z: p~\z) c D) = {z:pf~\z) c D]
and T(ψ) is a well defined invariant. In addition, T(ψ) is invariant
under Mr(γ) and K\T(ψ) is countable. Hence r(ψ) and Γ('f) uniquely
determine a circular cascade. Note that if (Y,ψ) — (C», ^ ) where
(C, y>) is a circular cascade and F: C—>Sn continuously, it is not true
in general that r(ψ) — τ{φ), T(ψ) = T(φ) and n(ψ) — n.

Next we want to connect our invariants with the circular cascade
(X, φ) and the finite skew product (X, φ) which we constructed in the
proof of Theorem 4.1. The starting point for the construction was
any homomorphism p of (Y,'ψ) onto (K x Zq, Mδ), δ = {h, 1) such that
p(x) = p(y) if and only if (x9 y) e E. In this section we will always
assume that <? = (r(f), 1). Let p be any homomorphism of (Y, ψ) onto
(K, Mr{ψ)). It follows from Lemma 5.1 that we can find p as above
such that p equals the composition of p and the projection of K x Zq

onto K. Consequently if we apply the Veech construction to any
p: (Y, ψ) —> (K, Mr[ψ}) we will always get a circular cascade (X, φ) and
a finite skew product (X, φ) of (X, φ) using n{ψ) symbols. The homo-
morphisms q, q and p* satisfy conditions (a), (b), (c), and (d) in the
proof of Theorem 4.1 and q(x) =. q(y) implies x and y are doubly
asymptotic.

THEOREM 5.2. Let (Y, ψ) be a locally circular minimal set and
let p be a homomorphism of (Y,ψ) onto (K, Mr{ψ)). Suppose (X,φ)
and (X, φ) are the minimal cascades and q, q, and p* are the homo-
morphisms obtained from Veech9s construction [8, Theorem 3.1]. Then
the following statements are true:

(a) The minimal set (X, φ) is a circular cascade, (X, φ) is a finite
skew product of (X, φ) with n(ψ) symbols, and q(x) = q{y) implies x
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and y are doubly asymptotic.
(b) The invariants are related by the equations

r(f) = r(φ) = r{φ)

= T(φ) = T(φ)

(c) The minimal sets (X, φ) and (X, φ) are uniquely determined
up to isomorphism by the isomorphism class of (Y,ψ).

(d) If (Y, ψ) is a finite skew product of a circular cascade, then
q is an isomorphism of (X, φ) onto (Y, ψ).

Proof, (a) This was established in the preceding paragraph.
(b) Because q(x) — q(y) implies x and y are doubly asymptotic,

(Y, ψ) and (X, φ) have the same maximal equicontinuous factor and
we can find a homomorphism ρr such that pf = p © q. It follows that
r(ψ) = r(φ), T(ψ) = T(φ), and φ ) - n(φ).

Since there are points such that \q~\ti) 1 = 1, it follows that q(x) =
q(y) if and only if x and y are proximal. Thus r(ψ) = r(φ). Using
Lemma 3.1 we see that p~"\z) c D if and only if l^""1^)! = 1 which
implies T(ψ) = Γ(^).

(c) Let θ be an isomorphism of between the locally circular
cascades (Yly ψλ) and (Γ2, f2), and let ft be a homomorphism of (Γ^, ψt)
onto (JRΓ, JkfA) where r(ψx) — h = r^a). We must find isomorphisms #
and # to complete the following commutative diagram:

The Λίw is obtained by applying Lemma 5.1. The existence of θ
follows from Theorem 2.2 of [5]. Examining Veech's construction one
sees that X is the closure of {(y, p^lpiy)]): p^lpiy)] c ΰ } in Y x Yγ

where the metric is the metric on Y plus associated Hausdorff metric
and φ(y, A) = (Φ(y), Φ(A)). Finally let θ be the obvious map.

(d) This follows because the projection of a finite skew product
of a circular cascade is either e(ψ) or 2e(ψ) to one and hence p is
either n(ψ) or 2n(ψ) to one.
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Let (X, φ) be a fixed circular cascade, let n be a positive integer,
and let C(X, Sn) denote the continuous functions from X into Sn. We
say two functions F and G in C(X, Sn) are cohomologous if there
exists α e C(X, S>») such that for all x in X

F(α?) = a(φ(x))~ιG(x)a(x) .

It is easy to see that this is an equivalence relation on C(X, Sn). We
will call the equivalence classes cohomology classes of (X, φ) for Sn.
If F and G are cohomologous, then θ(x, i) = (x, a{x)i) is an isomor-
phism of (Xn, φF) onto (Xnf φG). To obtain the converse of this we
need a slightly weaker notion. One can see this by considering F
and G = Fo β where β is an automorphism. Here θ{x, i) — (β"1(x)f i)
is an isomorphism of {Xn, φF) onto (Xn, φG), but if β is properly chosen
there is no isomorphism of (Xn, φF) onto (Xn, φG) which leaves the in-
coordinate fixed We will say F and G are weakly cohomologous if
there exists an automorphism β of (X, φ) such that F and G o β are
cohomologous. This is also an equivalence relation on C(X, Sn).

THEOREM 5.3. Let (X, φ) be a circular cascade and let F, Ge
C(X, Sn) such that (Xn, φF) and (Xn, φG) are minimal. Then (Xn, φF)
is isomorphic to (Xn, φG) if and only if F and G are weakly cohomo-
logous.

Proof. First suppose that F and G are weakly eohomologous.
So there exists a e C(X, Sn) and β an automorphism such that
F(x) = a{φ(x)Y'1G(β(x))a{x). Define θ by θ{x,i) = (β(χ), a{x)i). Then
θ o φF(x, i) - θ(φ(x),F(x)i) = (β(φ(x)),a(φ(x))F(x)i) = (Φ(β(x)),G(β(x))a(x)i) =
φG{β{x),a{x)i) — φG o θ(x, i). Clearly θ is a homeomorphism. Hence (Xn9 φF)
and (X%9 φF) are isomorphic.

Now suppose that θ is an isomorphism of (X%, φF) onto (XΛ, φG).
It follows that their maximal equicontinuous factors are isomorphic.
Let {K x Zq, Mδ) denote their maximal equicontinuous factor where
§ = (h,ϊ),h = exp (αi), α e (0, π/g) We have the following commuta-
tive diagram:

(K, Mr{φ)) ^-(Kx Zqi Mδ) -?->(Kx Zq, Mδ) — (K, Mr{φ))

where π(x, i) = x, pF, pG, πl9 and π2 are canonical projections onto
maximal equicontinuous factors, and ρF, pG, and θ are induced by
πx o π, τr2 © π and pG o θ. By changing pG by a rotation we can assume
that θ is the identity. (If #(1, 0) = (1, 0), then θ is an automorphism
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of the topological group K x Zq and the identity is the only automor-
phism which leaves δ fixed.) By changing πx and π2 by rotations we
can assume that pF and pG are group homomorphisms Since pF{z, 0) =
zk for some k e Z and pF(l, 1) = ξ, a gth root of unity, we have
pF(z, i) = zkξ\ It is easy to see that pF is \k\q to one. Suppose x
is a distal point of (X, 0). Then TΓ^faφ)) = x and TΓ"1^) = fa o π)""1^)
consists of w-distal points where « = TΓ̂ O?). Moreover, faoTr)-"1^) is
saturated with respect to the equicontinuous structure relation of (Xn, φF)
and hence pF is e(φF) to one on it. But fa o π)~\z) = pΫiPΫiz)) and
hence |k\qe(φF) — n and \k\ — n/qe(φF) — n/c(φF)e(φF) = n/n(φF). Similarly

pG(z, i) = zιrf where η is a gth root of uni ty and 1I \ = n/n(φG) = n/n(φF) =

\k\. Since ^ ( δ ) - r(φ) = pG(δ), ξhk = ηhh or ηhrh. If ίfcfc = r)hrk, then

/i, is a 2ί:gth root of unity which is impossible. If ξhk = ηhk, then
f = η and pF = ^ .

We can write 0(α, i) = (β^a?, i), Θ2(x, i)) where ^ and θ2 are con-
tinuous. We will show that θ^x, i) = θ1(x, j) for all x, i and j . Suppose
x is a distal point in (X,φ). Then π" 1 ^) = {&} x {1, •••, ̂ } consists
of n points and so does ^(TΓ" 1 ^)). NOW θ(π~\x)) = θ(π1oπ~1(z)) ~
Θ[{PF*PF)-\*)\ = θ{pt[pi\z)\ - VΛPΛ*)} - Ί>t[pt{z)\ = 0oβopβ)-^) =
fa o TΓ)"1^) = π " 1 ^ 1 ^ ) ] . From cardinality considerations πΐι{z) is a
point. Therefore, θ(π~ι(x)) = {α;'} x {1, 2, , n} where &' — π^ι{z) for
all distal points x. In other words, if x is distal ^L(a;, ί) = θ^x, j) for
all i and i Since the distal points are dense in X and θ1 is con-
tinuous, we obtain θ1 (x, i) — θ^x, j) for all x, i, and i We can now
write θ^x, i) = ^(OJ). For each x, ax{x)i — Θ2(x, i) defines an element
of Sn, and aL e C(X, Sn) because θ2 is continuous. The equation φGoθ —
θoφF can be written

Therefore, φoθx = ^ o ^ and G^^αXα?) = αx^^))^^) which completes
the proof.

COROLLARY 5.4. Let (X, φ) be a circular cascade and let F and
G be elements of C(X, Sn) such that (Xn, φF) and (Xny φG) are minimal.
Then F and G are cohomologous if and only if there exists an isomor-
phism θ: (Xn, φF) —• (Xn, φG) of the form θ(x, i) = (x, Θ2(x, i)).

Proof. Obvious.

It is clear that an isomorphism between two minimal sets induces
a bijection between their weak cohomology classes, and it follows
from Theorem 5.3 that two different isomorphisms induce the same
bijection. For two weak cohomology classes Wι and W2 we will write
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W1 = W2 provided the corresponding ranges are equal, the domains
are isomorphic, and Wx is carried onto W2 by the induced map.

Let (Y9 ψ) be a locally circular cascade and let p be a homomor-
phism of (Y,ψ) onto (K, Mr^). Now construct the circular cascade
(X, φ) and the finite skew product (X, φ) as above. There exists F e
C(X, Sn&)) such that (X, φ) is isomorphic to (Xn{ψ)9 φF). Let W(ψ) be
the weak cohomology class of F. It follows easily from Theorems 5.2
and 5.3 that W(ψ) is an invariant of (Y9ψ). The invariants n(ψ),
r(ψ), T(ψ), and W(ψ) do not uniquely determine (Y, ψ). However, we
will show that they do uniquely determine (X, φ), which is itself and
invariant of (Yfψ). In other words, we can classify the minimal
finite skew products of circular cascades and hence the locally circular
ones except for the identification of some doubly asymptotic orbits.

THEOREM 5.5. Let (Yίfψ^) and (Y2,ψ2) be two minimal finite
skew products of circular cascades. Then (Yl9 ψj) and (Y29 ψ2) are
isomorphic if and only if

= n(f2)

= r(ψ2)

Proof. If they are isomorphic, then the equations hold because
in the course of this section we have established that n(ψi), r(ψi), T(ψt)9

and W(ψi) depend only on the isomorphism class of (Yi9ψζ).
Assume the equations hold. Let {X, φ) be a circular cascade

determined by r(ψύ = r(ψ2) and T(f 0 = T(ψ2). Then W = W(ψJ =
W(ψ2) can be realized in C(X, Sn) where n = n(ψx) = n(ψ2) (Theorem
5.2). Let FeW. Then (Yl9ψJ and (Y2,ψ2) are both isomorphic to
(Xn9 φF).

6* Normal representatives of cohomology classes* Let (C, φ)
denote a fixed circular cascade where C is a Cantor set in K and φ
is the restriction of a homeomorphism of K without periodic points to
its unique minimal subset C. Observe that if (α, 6) is a complementary
interval of C, then so is (Φ(a)9 Φ(fy). A cohomology class ^ is
minimal if Fe <& implies (C», ΦF) is minimal. We want to investigate
the minimal cohomology classes of (C, φ) for the group Sn. (Note
that we already know that there is only one minimal cohomology
class of (K, Mg) for the group Sn.)

DEFINITION. Let F: C-+Sn continuously and let (ai9 b{), ΐ = l , , p
denote the complementary intervals of C such that F{al) Φ Fφt). We
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say F is normal if for n > 0 and 1 ^ i, j ^ p

{φ"{a%), φ\b<)) Φ (ah hi)

with at most one exception of the form

Let ^ be a cohomology class of (C, 0) for Sn. We say i*7 is a normal
representative of ^ if F is in ^ and i*7 is normal. One of the ad-
vantages of normality is the existence of a simple test for minimality.

THEOREM 6.1. Let F be normal. Then (Cn, φF) is minimal if
and only if the subgroup of Sn generated by the range of F acts transi-
tively on {1, •••, n).

Proof. The subgroup of H of Sn generated by the range of F
consists of all finite products of the form F(x1)F(x2) F(xn). It is
clear that if (C», φF) is minimal, then H acts transitively on {1, , n).
(This observation does not require the normality of F. Just examine
the orbit closure of any point in (C», φF).)

Suppose F is normal and H acts transitively on {1, •••, n}. If
for each i, 1 <̂  i <̂  n, C x {i} is contained in one minimal set of (C», φF),
then C x {i} and C x {F(x)ί} are in the same minimal set for all x in
C. Consequently it suffices to prove that C x {i} is contained in one
minimal subset of (C», φF). This is where the normality of F is needed.
Let (ajf bj) j = 1, , p be the complementary intervals of C such
that F(a{) Φ F(bi). If the allowed exception occurs, we can assume
by renumbering that

(Φ(a2), ΦΦύ) = (alf 60 .

Let (α, b) be any complementary interval of C except (α1? δO Then
it is clear that φF(a, i) and φF(b, i) belong to the same C x {j(m)}
either for all m > 0 or for all m ^ 0 when 1 ^ j(m) ^ n because F is
normal. Therefore, they are asymptotic in one sense and in the same
minimal set. Since the minimal sets of (C», φF) are open and closed
in Cn, it follows that, for each i, C x {i} is contained in one minimal
subset of (Cn, φF).

We will show that every minimal cohomology class has a normal
representative and that the complementary intervals (αt , 60 can be
specified. Let F be a fixed continuous map from C to Sn such that
(Cn, φF) is minimal. We will proceed by taking Cn apart and reas-
semblying it.

DEFINITION. A finite collection of complementary intervals will
be called admissible if they satisfy the following conditions:
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1. If F(a) Φ F(b) for some complementary interval (α, b), then
(α, b) is in stf.

2. If (α, b) and (Φn(a), φn(b)) are in j*f and w > 0, then (^fe(α), ^fc(6))
is in j ^ for fc = 1, , n — 1.
Henceforth, j ^ will be an admissible collection of complementary inter-
vals. We will also assume that Ssf = {(au 60, •••, (αg, bq)} is indexed
counterclockwise and (al9 δx) has been chosen so that (Φn(a1), Φn(b^) g
j ^ for all u > 0. Let I{ = [6<, αί+1] Π C if i < g and Iq = [δς, α:] Π C.
Define L : to be the identity element of Sn and L{ = A_(aif b^Li^. Now
let

The proof of the next lemma is straight forward and is left to
the reader.

LEMMA 6.2. The following statements are valid:
(a) Mi Π Ms — 0 when i Φ j .
(b) Cn = U?=i M<.
(c) The map Θ defined by θ(x9 k) = (x, j) if (x, k) e M5 is a homeo-

morphism of C% onto Cn

The next step is to determine G: C—+Sn such that θoφFo θ~ι = φG

and then investigate the intervals on which G is constant. From
Corollary 5.4 we know that F and G are cohomologous. So G is a
representative of the cohomology class of F. Define G by G(x)i = i
if φpiθ^ix, i)) e Mό. It is easy to check that G(x) is injective on
{1, , n} and hence an element of Sn. If φF{θ~ι(x, i)) e Mi9 then G{x)i=
j and θoφFo θ^ix, i) = (̂ (α;), i) = (^(OJ), G(a?)i) = σ̂(α?, ί). Therefore,
θoφFoθ~ι = φG. Notice we did not establish the continuity of G, but
this follows from the continuity of φG which we know because φG =

LEMMA 6.3. The function G constructed as above is normal.

Proof. We will present only an outline of the proof leaving the
details to the reader.

The first step is to show that if (α, 6) is a complementary interval
of C such that (a, b)$sf and (φ(a), φ{b)) <£ s$?, then G(a) = G(b).

Next suppose that (a, b) is a complementary interval such that
(a, b ) Z S s f a n d {φm(a), φm{b)) = ( α i ( m ) , b j { m ) ) e j ^ w h e r e j ( m ) = 2 , - - 9p
and 1 g m g JV. The goal here is to show that G(φm(a)) = G{φm{b))
for 0 ^ m S N - 1. It suffices to show that G(a, m) = G(δ, m) for
O^m^ N because G(^m(α;)) = G(x, m + l)G(a?, m)"1. Observe that
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G(x, m)k = kf if and only if Φ7oθ~\x, k)Mk, and that (α, i) and (b, i)
are negatively asymptotic for 1 <£ i ^ m. This part can now be com-
pleted using the definition of Mk.

From the above it follows that G(a) Φ G(b) implies (α, &) e s^f and
(Φ(a), φ(b)) $ ό>f or (φ(a), φ(b)) — (al9 bλ) by eliminating the other possi-
bilities. In other words, G is normal.

THEOREM 6.4. Every minimal cohomology class of (C, φ) for Sn

has a normal representative.

Proof. Let W be a minimal cohomology class of (C, φ) for Sn

and let F G ̂ . Then clearly we can find an admissible collection of
complementary intervals for F and construct G cohomologous to F as
above. By Lemma 6.3 G is normal.

Let F b e a normal representative of <£*, and let J{F) = {(α1? 6j), ,
(aq, bq)} be the complementary intervals of C satisfying

(a) F(ai)ΦF(bi),i = l, --,q.
(b) If (α, &) is any complementary interval for which F(a) Φ F(b),

then either (α, 6) = (α;, 6̂ ) for some i in {1, •••, q) or (^(α), 9(6)) =
(αly δ:) but not both.

(c) They are arranged counterclockwise in C. We will refer to
J(F) as the jumps of F and when it happens that F(a) Φ F(b) and
(Φ(a), φ(b)) — (aL9 5L) we will say that F has an exceptional jump at
(a, b).

THEOREM 6.5. Let F be a normal representative of the minimal
cohomology class ^. Let J>f — {(cl9 cZ:), •••, (cp, dp)} be a collection of
complementary intervals of C numbered counterclockwise and satis-
fying the following conditions:

(a) φ(ci9 d{) Φ (ch dj) for all n > 0, 1 g ΐ, j ^ p.
(b) For each i there exists n such that F(φn(ci)) Φ F(φn(di)).
(c) For each complementary interval (α, b) such that F(a) Φ F(b),

there exists n and i such that (φn(a), φn{b)) = (c{, di).
Then there exists G a normal representative of rέ? such that

Proof. First suppose that for each (aiy bι) the integer n(i) such
that (Φnii)(ai), φn{i)(bi)) = (cji dj) for some j is positive. Here we can apply
the construction of G preceding Lemma 6.3 to j ^ ' = {{φk{a^, Φk(bi)):
0<,k^n(i)} U {(^(αO, Φ"1^))} z> J(F), and if we start numbering sfr

with (d, di) we get J(G) c {(cx, dO, •••, (cP9 dp)}. In the general case
we first construct an Ff cohomologous to F to which the above argu-
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ment applies. We obtain F' by applying our initial argument to
"1 which determines ψ

COROLLARY 6.6. If there exist complementary intervals (al9 bλ), ,
(ap, bp) such that every complementary interval (α, b) has the form
(Φk(ai), φk(bi)) for some i and k, then there are only a finite number
of minimal cohomology class of(C9 φ) for Sn.

Proof. For every minimal cohomology class <& there exists Fe
<& such that J(F) c {(al9 b,), , (api b9)}.

The problem of computing the number of minimal cohomology
classes for a given p and n will be the topic of a future paper with
William N. Anderson, Jr.

The indexing of J(F) is only crucial when there is an exceptional
jump; i.e., there exists a complementary (a, b) such that F(a) Φ F(b)
and F{φ~~ι{a)) Φ F{φ~x{b)). In this case we always want (α, b) = (al9 bt).
When this is not the case we change the indexing freely, but for
convenience we always index counterclockwise. We will write J(F) ~
J(G) provided J(F) and J(G) consist of the same complementary inter-
vals; and if both F and G have an exceptional jump, it occurs at the
same complementary interval for both of them. We will say F and
G are conjugate if there exists σ e Sn such that F(x) — σ~~ιG{x)σ for
all x in C. The second advantage of normal functions in the following:

THEOREM 6.7. Let F and G be normal representatives of mini-
mal cohomology classes. If J(F) ~ J(G), then F and G are cohomo-
logous if and only if F and G are conjugate.

Proof. Let a: C—>Sn continuously such that G(x) = a(φ(x))~1F(x)a(x)
and let (α, b) be a complementary interval such that a(a) Φ a(b) and
(α, b) Φ (al9 60 where J(F) = {(al9 &,), , (aVf bg)}. Then F(φ*(a)) =

F{φn{b)) for either all n ^ 0 or all n < 0. In the first case it follows
that a{φ{a)) Φ a(φ(b)) and hence by induction a(φn(a)) Φ a(φn(b)) for all
n ^ 0 which contradicts the continuity of a. In the second case we
obtain the contradiction by using G{φ~ι{x)) = a{x)"ιF{φ"ί{x))a(φrι{x)).
Thus a(a) = a(b) unless (α, b) = {au 6X). Since a is finitely valued, a
is not constant if and only if there exist two complementary intervals
with a(a) Φ a{b). Therefore, a is constant and F and G are conjugate.

Let F be a normal representative of a minimal cohomology class.
The permutations A+(a, b) and A_(a, b) are computable. Let J(F) =
{(aί9 &i), •••, (aP9 bp)}9 and let (α, b) be a complementary interval. If
(φn(a)9 φ*(b))$J(F) for all n, then clearly A+(a, b) = e and A_(a9 b) =
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e. If (ψn(a), φn{b)) = (α«, δ;) where w ^ 0, then Lemma 2.1 (c) can be
applied and we get

A+(a, δ) = Fφt, -n)A+(ai9 b%)

and

A_(α, 6) - i^δ, , -n)A_(aif b<)F(ai9 -

Now consider (ai9 &<) e J(F). Then A^α*, δ<) = F{b%)-ιF{a%) and A_(ai? 64) =
e for i > 1. If there is no exceptional jump, then A^(al9 δx) = e. When
there is an exceptional jump

because A_(φ~1(a1)9 ̂ "H&i)) — e ft follows that for i > 1, (α<, i) and
(δέ, j) are doubly asymptotic if and only if A+(aif bt)j = j . But this
is certainly not ture for all j , and for some j the proximal cell of
(ai9 j) contains two points which are not proximal. Thus if J(F) con-
tains more than one complementary interval, (C, φF) is not locally
almost periodic. When F does not have an exceptional jump the
same comments can be made about (αx, j). If there is an exceptional
jump, then {Φ~~ι{a^),j) and (^(δi),^) are boubly asymptotic if and only
if jP(^-1(δ1))-1-F(δ1)"'1ί7(α1)^"1(α1))i - j . We will say (Cn, φF) is trivial
if there exists a circular cascade (C, φ') and r > 0 such that (C», ^ )
is isomorphic to (C'r, φ'G) where G(x) = (1, 2, , r) for all x.

THEOREM 6.8. Let F be a normal representative of a minimal
cohomology class. Then (Cn, ΦF) is trivial if and only if \ J{F) \ = 1
and F(x)F{y) = F(y)F(x) for all x and y in C.

Proof. First suppose (Cn, φF) is trivial. It follows that it is locally
almost periodic and {φ~ι{a^, j) and (^"1(6ί), j) are doubly asymptotic for
all j . Consequently \J(F) | = 1 and F(φ-\bd)-ιF(bd-Ύ(adF(φ-ι(fld) = 1.
Since \J(F)\ = 1, F(x) takes on only two values, Ffc) = Fiφ-^aJ), and

Now suppose | J(F) | = 1 and F(x)F(y) = F(y)F(x) for all a? and 2/.
Hence (α, i) and (δ, j) are doubly asymptotic where (a, δ) is any com-
plementary interval except (αx, 6χ) which is the only complementary
interval in J{F). It follows that P' c /̂. If we can find ΛΓsuch that
the minimal sets of (C», ̂ J) are circular cascade, we will be done.
Let N - c(φF). We can apply Theorem 4.1 [5] to finish the proof
provided (Cn, φF) and (C», φF) have the same equicontinuous structure
relation. Because (C», ̂ .p) is minimal we know that its equicontinuous
structure relation coincides with its regionally proximal relation i.e.,
E(φF) = Q(φF) [6, Theorem 1.1 and Theorem 1.2 or 4, Theorem 2.12].
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Since we know that Q(φF) = Q{φN

F) c E{φN

F) c E(φF), it follows that
E(φF) = E(φ§).
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