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Over a ring A let PA be a finitely generated projective right
A-module with A-endomorphism ring B. Anderson has called
PA an injector, perfect injector, projector, perfect projector, if
the functor F = BP 0A ( ) preserves injectives, injective hulls,
projectives, projective covers, respectively. Call PA a flatjec-
tor if F preserves flat modules. Injectors, flatjectors, and
projectors are characterized. The radical of a module over
B is studied, and necessary and sufficient conditions are given
for the radical of B to be left !F-nilpotent. Perfect injectors
are characterized. Previous characterizations of perfect pro-
jectors have assummed the ring A to be left perfect. Here
characterizations are obtained using substantially weaker con-
ditions on PA

Over a ring A let PA be a finitely generated projective right A-
module with A-endomorphism ring B. Let T be the trace of PA and
P* = Hom^P, A) be the A-dual of P Injectors, flatjectors, and pro-
jectors are characterized in §2, the characterizations of injectors and
projectors being extensions of results due to Anderson [1]. For
example, PA is a flatjector if and only if BP (equivalently ^P* (x) BP)
is flat. PA is a projector if and only if the natural map η: AP* (x) P-*

AT is a projective cover. It is shown that PA is a flatjector if and
only if AP* is an injector. Furthermore, every projector is a flat-
jector, the two being equivalent for perfect rings. Examples are
given of a flatjector that is not a projector and a nonperfect ring
where every flatjector is a projector.

In § 3 it is shown that the J5-radieal of BP (R) AX is isomorphic to
BP® AJ(TX). In particular the J5-radical of BP is isomorphic to

BP® AJ{T). A definition of [/-dominant codimension dual to the de-
finition of F-dominant dimension given in [8] is introduced. The
radical N of B being left T-nilpotent is characterized in terms of
the full subcategories ^ idP*) of Jΰi consisting of all left A-modules
of 4P*-dominant codimension ^ 1, and ^ ( Q J of ΊίiA consisting of all
right A-modules of (^-dominant dimension ^ 1 (where Q^Hom^P, W)
for BW an injective cogenerator). It is shown that N is left T-nil-
potent if and only if JT is left Γ-nilpotent, or equivalently /(0/P*)
is small in 0 7 P * for any index set J.

In §4 perfect injectors are characterized in terms of their trace
ideal and certain conditions on large submodules. Anderson [1] has
studied perfect projectors when the ring A is left perfect. Here
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characterizations of perfect projectors are obtained using substantially
weaker conditions on PA, e.g. JT being left Γ-nilpotent. Finally it
is shown that for A semiperfect, PA is a perfect projector if and only
if AP* is a perfect injector.

1* Preliminaries* Throughout this paper we will observe the
following definitions and notation. A will be a ring with unit and
all modules will be unitary. All maps will be written on the side
opposite the scalars. Given an A-module X, its A-dual Hom^ (X, A)
will be denoted by X*. PA will always be a finitely generated pro-
jective right A-module with A-endomorphism ring B. It is easy to
see that AP* is also finitely generated pro jective and that (P*)* ̂  P.
With PA we associate the two-side ideal T of A (called the trace of
PA) generated by the images of all A-homomorphisms from P into A,
i.e., T = Σ/ep* ifti/.

Let A%Jl(%JlA) represent the category of left (right) A-modules. We
have functors

and associated

defined by

IT — AΓ \£) E :( ) : B%& — A%i

natural transformations

μw: FG{B

\J Kjy }/ κ_y **

{fU (X) f (5^) 1A)

,X)-AX

W)-+BW

)Vχ = f(P)x
)μw — pf( )w

for peP,feP*, xeX, and we W.
The following isomorphisms are well known (see e.g. [4]).
I . For ΛX,BUΛtBW

Horn* {BU® AX, BW) s Hom^ (AX, JiomB (BUA, BW))

II. For UA, BMA, BW where UA is finitely generated protective

U® ARomB(BMA, BW) s HomB (BEomΛ(UA, BMA), BW)

Properties of P, P*, T, and B.

(a) T = T,PT = P, and TP* = P*.
(b) B = End(AP*).
(c) BP ® ΛTA = BPA and AT <g> APS s APξ.
(d) im ηx = TX for all I s JJi.
(e) FG is naturally equivalent to the identity functor on
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JVt(FG ~ i»via μ.
(f) BP®ATX~BP®AX^nά YT®APS~ Y®APS-
(g) BP®AX~ B^omA (APS, AX) and Y® AP£ = Hom4 (BPA, YA)B.
(h) For Xe AWl,P(g)AX=0 if and only if TX = 0.
(i) For Ye MA, Hom^ (P, Γ) = 0 if and only if YT = 0.

Proof, (α), (c), (d), and (e) are essentially in [1]
(b) See [10, Lemma 1.1].

(f) BP®AX/TX^sP®AA/T®X^P/PT®AX=0by(3). The

second isomorphism follows similarly,
(g) follows easily from II.
(h) follows easily from (d) and (f).
(i) follows easily from (f), (g), and the dual of (d)

Let K be a submodule of X. We say K is small in X (and write
Γ g l ) if given a submodule H of X such that K+ H= X, then
H = X. We say ϋΓ is large in X (and write i Γ S ' -X") if K has non-
zero intersection with every nonzero submodule of X.

For an A-module X the radical of X, denoted J(X), is defined
to be the intersection of all maximal submodules of X. If X has no
maximal submodules, then J(X) — X (e.g. see [7]). We will write J
for J(A).

The following properties of the radical are well known.
Properties of the radical: For AX,

(a) If x e J(X), then Ax's X
(b) If JΓ'SX, then Z S J ( I ) ,
(c) If /: X-+ Y is an A-homomorphism, then (J(X))fQj(Y).
(d) JXg/(X).
(e) If X is projective, then JX = J(X). [3]
(f) If X is projective, then JX Φ X. [3]

NOTATION. TO minimize confusion in later theorems, the radical
of a module W over the ring B = End (PJ will be denoted by N(W).
In particular, N = iV(E)

LEMMA 1.1. Lei /: ̂ X~>^y δe a projective cover. Then J(Y) =
JΓ.

Proof. Since J F g J(F) always, we only need to show that J(Y)S
JY. Let yeJ(Y). Then 2/ is contained in every maximal submodule
of Y. Thus (2/)/"1 is contained in every maximal submodule of X
containing K = ker/. But i f ' g X a n d hence is contained in every
maximal submodule of X. Thus (T/)/"1 e J(X) = /X. So 2/ e (JX)/ =
J(X)/ = JY.
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LEMMA 1.2. If a flat module AY has a projective cover, then AY
is projective.

Proof. Let /: AX—+AY be a projective cover of AY. We have
the exact sequence

0 >K >X-t-+ Y >Q

where K — ker/. Let k e K. By [11, Lemma 2.2] there exists θk: X-+
K such that (k)θk — k. But im θk £ IT'S ^ , hence #fc is contained in
the radical of the endomorphism ring of AX (see [11, Prop. 1.1]). So
1 — θk is a unit (see e.g. [7]). Therefore, (&)(1 — θk) = k — (&)0Λ = O
Hence & = 0. Thus AY is projective since / is an isomorphism.

NOTATION. X1 will denote the direct sum of copies of X over
the index set /. If / = {1, , n}, we will simply write Xn for X1.

Let AYSA% and let L be a right ideal of A. Then (F:L) X =
{xe X\Lx Q Y} is a submodule of X containing Y. In particular
rx(L) = (0: L)x is called the right annihilator of L in X. If Γ ^ S l ^
and L is a left ideal of A similar definitions apply. We will write
lx{L) for the left annihilator of L in X.

The following lemmas are left to the reader.

LEMMA 1.3. Let L be a two-sided ideal of A. Then
(a) For AX, rx(L) = Hom^ (A/L, X).
(b) For XA, lx{L) s Hom^ (A/L, X).
(c) rA(L) and lA(L) are both two-sided ideals of A.

LEMMA 1.4. Let BUA be a bimodule with BU flat. If AX is flat,
then BU(><) AX is flat.

2. Injectors, flatjectors, and projectors* For a finitely gener-
ated projective right A-module PA with A-endomorphism ring B,
Anderson [1] has called PA an injector (projector) if the functor F =
BP® A{ ) preserves injectives (projectives). That is, if AX is injective
(projective) in Jffl, then BP® AX is injective (projective) in BΈl. Simi-
larly, we call PA a flatjector if the functor F — BP® A( ) preserves
flat modules. Our purpose in this section is to characterize injectors,
flatjectors, and projectors.

THEOREM 2.1. For PA finitely generated projective the following
statements are equivalent.

(a) PA is an injector.
(b) PS is flat in TtB.
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(c) P * ®BPA is flat in ΈlA.

Proof. (a)<=>(b). This is by Anderson [1, Theorem 2.1].
(b) =» (c). Since both PS and PA are flat (c) follows by Lemma 1.4.
(c) =* (b). Let a : s [ / - ^ 5 F b e a monomorphism and consider the exact
sequence

0 > K > G(U) Ά G(V)

where K = ker G{a). Since PA is flat

0 > F{K) > FG{U) > FG{V)

is exact. Thus F{K) = 0 since FG ~ / > . Since P * (x) BPA is flat

0 > GF(K) > GFG(U) > GFG(V)

is exact. Thus PS is flat since GF(K) = 0 and FG ~ IBm.

We include the following theorem for completeness. With the
obvious changes, the proof is similar to the proof of (c) => (b) in
Theorem 2.1.

THEOREM 2.2. (Anderson [1, Theorem 2.2]). If the trace ideal T
of PA is flat in WlA, then PA is an injector.

The converse to Theorem 2.2 is false as shown by [1, Example
2.3].

For flatjectors we give a characterization similar to the one given
for injectors.

THEOREM 2.3. For PA finitely generated projective the following
statements are equivalent.

(a) PA is a flatjector.
(b) BP is flat in BWl.
(c) AP* ® BP is flat injΰl.

Proof, (a) ==> (b). Since AA is flat and BP~BP®AA, we must
have BP flat.
(b) => (c). Both BP and AP* are flat. Thus (c) follows from Lemma
1.4.
(c) => (a). Let a: UB —> VB be a monomorphism.

Let F * and G* represent the functors ( ) (x) APS and ( ) (x) BPA

respectively* Consider the exact sequence

0 > K > G*(U) ffi G*(V)
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where K = ker G*(a). Since AP* is flat

0 > F*(K) • F*G*(U) > F *

is exact. Thus F*(K) = 0 since JF*G* ~ JwB. Since JP* (x^P is flat

0 > G*F*(K) > G*F*G*(i7) > G*F*G*(V)

is exact. Thus BP is flat since G*F*{K) = 0 and J^G* - I*B.
Let ^X be flat. Then BP® AX is flat by Lemma 1.4. So P^ is

a flatjector.
Theorems 2.1 and 2.3 show that injector and flatjector are dual

properties.

COROLLARY 2.4. For a finitely generated projective module PA,
PA is an injector if and only if AP* is a flatjector.

A ring A is said to be regular if every (right) A-module is flat.
Ware [11] has called a projective module regular if every homomor-
phic image is flat. In the following corollary we give a new proof
to one of Ware's results.

COROLLARY 2.5. (Ware [11, Theorem 3.6]). Let PA be a finitely
generated regular module with B = End (PA). Then B is a regular
ring.

Proof. We first note that Pi is a regular module for any index
set / [11, page 239]. Let UB e TtB and consider U®BPΛ. Let I = U
and define a map φ: Pj~> U® BPA by <P[(pu)ueI] = Σu®pu. Clearly
φ is an A-epimorphism. Thus U<S)BPA is flat in TtA.

In particular P* (x) BPA is flat in fflA. Thus 4 P * is a flatjector by
Theorem 2.3. Hence UB = U®BP®AP$ is flat in WlB. So JB is a
regular ring.

THEOREM 2.6. If the trace ideal T of PA is flat in JJl, then PA

is a flatjector.

With the obvious changes, Theorem 2.6 follows in the same
manner as (c) => (a) of Theorem 2.3. Hence the proof will be omitted.
The converse of Theorem 2.6 is false. In Example 2.3 of [1], PA is a
flatjector, but T is not flat in Jΰl.

Before giving a characterization for projectors, we need the fol-
lowing lemma.

LEMMA 2.7. The map ηA: P* (g)ΛP—> T is both a right and left
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minimal A~epimorphism.

Proof* We will only prove the left case as the right case follows
by symmetry.

Suppose we have a: AX —* AP* ® BP such that aηA is onto. Ten-
soring with PA we have

F(X) Ά F(P* ® P) £M F(T)

where F{a)F{ηA) is onto. Since F(P* (x) P) = FG(P) = P ^ JP(T),

is an isomorphism. Thus jP(α) is onto. So

GF(X) -

X

is a commutative diagram where GF(a) is onto. Hence, a is onto.

THEOREM 2.8. For PA finitely generated protective the following
statements are equivalent.

(a) PA is a projector.
(b) BP is protective in BWl.
(c) ΛP* (x) BP is protective JSJt.

(d) VA AP* ®P—* AT ̂ S α protective cover for AT.

Proof, (a) <=> (b). This is by Anderson [1, Theorem 3.1].
(b) •=> (c). Since BP is protective we have a split exact sequence

BWT=1BP >0

where I is some index set. Thus

> 0

is also split exact. Since G(BZ) ~ AP*T, we see that G(P) = AP* (x) BP
is a direct summand of a projective, and hence is protective.
(c) => (d). This is immediate from Lemma 2.7.
(d) => (b). As in Corollary 2.5, AP* ® B P is the homomorphic image
of a direct sum of copies of AP*, say AP*X. Since ^ P * (g)ΛP is pro-
jective, we have

is split exact. Tensoring with PA, we see that BP is a direct summand
of a direct sum of copies of BB. Thus BP is projective.

The following theorem is added for completeness. With the
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obvious changes, the proof is similar to the proof of (d) ==» (b) of Theo-
rem 2.8.

THEOREM 2.9. (Anderson [1, Theorem 3.2]). If the trace ideal
T of PA is projective in JMl, then PA is a projector.

The converse to Theorem 2.9 is false as shown by [1, Example
2.3].

One might ask when the functor F = BP (x) A( ) preserves finitely
generated projectives? That is, if AX is finitely generated projective,
when is BP (x) AX finitely generated projective? This question is
answered by the following theorem.

THEOREM 2.10. For PA finitely generated projective the following
statements are equivalent,

(a) F — BP (x) A( ) preserves finitely generated projectives.
(b) BP is finitely generated projective in J5R.
(c) BP* (x) BP is finitely generated projective in J)Jl.

Proof, (a) ==> (b). Since AA is finitely generated projective, so is
P ~ P (v) A

Br — Br î y j±.

(b) => (c). Since BP is finitely generated, the index set / used in
(b) ==> (c) of Theorem 2.8 can be taken to be finite. Thus AP* (x) BP
is finited generated projective.
(c) => (b). Again the index set /used in (d) ==> (b) of Theorem 2.8 can
be taken to be finite. Thus BP is finitely generated projective.
(b) => (a). If AX is finitely generated projective, then there is a split
exact sequence

Thus tensoring with PA we see that BP® ΛX is a direct summand fo

BP® AA
n ~ {BP® AA)n ~ BP

n. Since BP
n is finitely generated projec-

tive, so is BP (x) AX.

THEOREM 2.11. If the trace ideal T of PA is finitely generated
projective in Jffl, then F = BP® A( ) preserves finitely generated pro-
jectives.

Proof. By Theorem 2.9, PA is a projector, hence BP is projective.
By [10, Theorem 2.2, Corollary 4] BP is finitely generated. Hence the
theorem follows by Theorem 2.10.

REMARK. By Theorems 2.3 and 2.8 we see that every projector
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is a flatjector. On page 328 of [1] Anderson gives an example of a
projector (hence flatjector) that is not an injector. Also, Anderson
constructs an injector that is not flat over its endomorphism ring,
and thus is neither a flatjector nor a projector.

In [3] Bass defines a ring A to be left (right) perfect if every
left (right) A-module has a projective cover, and semiperfect if every
cyclic (left) A-module has a projective cover. Bass shows that A is
left perfect if and only if evey flat left A-module is projective. This
is also easily seen from Lemma 1.2.

By Theorems 2.3 and 2.8, for a left perfect ring A, PA is a flat-
jector if and only if PA is a projector. The question arises as to
whether a left perfect ring can be characterized in terms of every
flatjector being a projector. We exhibit an example to show that
the answer to this question is no.

EXAMPLE 2.12. Let A be a simple ring that is not left perfect.
Let PA be a finitely generated projective right A-module. Since A
is simple, PA is a generator, and hence BP is projective (see [2]). Thus
over A, every flatjector is a projector, but A is not left perfect.

We end this section with an example of a flatjector that is not
a projector.

EXAMPLE 2.13. Let B be a ring that is not left perfect and let

BQC be a B — C bimodule such that BQ is flat, but not projective.
Let A be the ring

IB BQa

[o c
and let

(1 0
e ~ \o o

Then PA — eA is finitely generated projective and End (PA) = eAe ~
B. As a 5-module, / ~ ΰ ΰ 0 BQ. Thus BP is flat, but BP is not
projective. Hence PA is a flatjector but not a projector.

3. Radicals* Our purpose in this section is to answer the fol-
lowing questions. For PA finitely generated projective with B =
End (PA)

( 1 ) given AX, what is the radical of BP (x) AX (in particular

BP ~ BP<g) AA), and
( 2 ) when is the radical of B left Γ-nilpotent?
Letting T be the trace ideal of PΛ9 Sandomierski [10] has defined
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an A-module AX(XA) to be T-accessible if TX = X(XT = X). Clearly,
both PA and AP* are T-accessible.

LEMMA 3.1. AX(XA) is T-aecessible if and only if AX(XA) is the
homomorphic image of a direct sum of copies of AP*(PA).

Proof. We will do the left case only as the right case follows
in a similar manner.

Suppose that X = TX. Let I = F{X) and define φ: P* 7 -* GF(X)
by [(z;)ie/]9 = Σ %% ® i' Clearly ψ is an A-epimorphism. But via ηΣ9

TX is the homomorphic image of ̂ P* J .
Conversely suppose that we have an A-epimorphism φ: AP*τ —* AX

for some index set /. Letting Γ - P * 1 , X=(Y)φ=(TY)φ= T(Y)φ =
TX.

If BL s B^omA (P*, X), then AP*L - {Σ *<7l*e P*, ge L) is a Γ-
accessible submodule of ^X In fact, P* Hom^ (P*, X) = TX.

THEOREM 3.2. (Sandomierskί [10, Theorem 2.2]). ΪT&e correspond-
ence BL-+AP*L is a one-to-one inclusion preserving correspondence be-
tween the submodules BL of BΈi.omA (P*, X) and the T-accessible submod-
ules of AX. The inverse correspondence is given by AY~-^Hom^P*, Y).

By Theorem 3.2 we see that if AS is a simple A-module, then
^Hom^P*, S) ~ BP® AS is either zero or a simple 5-module.

We say that a proper submodule 4 7 is a maximal T-accessible
submodule of AX if AY is T-accessible and there are no T-accessible
submodules strictly between AY and AX. By Theorem 3.2, AY is a
maximal T-accessible submodule of TX if and only if BP®AY~
JHom^ (P*9Y) is a maximal submodule of BP® AX= ΰHom^ (P*, X).

THEOREM 3.3. TΛe correspondence Y-*{Y:T)X is a one-to-one
inclusion preserving correspondence between the T-accessible submodules

AYof AXand the submodules AU of AX such that (TU: T)Σ — U. The
inverse correspondence is given by U—+TU.

Proof. We show that both composites yield the identity,
(i) Consider W = (Y: T)x. Since Y^Wand TY = Γ, it is easy

to see that TW - Y. Hence (TW: T)x = (Y: T)x = W. Thus

Y > W >TW= Y.

(ii) Consider U such that (TU: T)x = U. Then

U >TU >(TU:T)X = i7.

One easily checks that the correspondence is inclusion preserving.
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THEOREM 3.4, For AX T-accessible the correspondence defined in
Theorem 3.3 yields a one-to-one correspondence between the maximal
T-accessible submodules of X and the maximal submodules of X.

Proof, (i) Let 7 be a maximal T-accesible submodule of AX
and suppose that (Y:T)XSV£X. Then Y= T(Y: T)xSTV^TX =
X. Thus TV= Y so that F £ ( Γ : T)x. Hence (Y: T)x is maximal
in X.
(ii) Let U be a maximal submodule of AX and note that U^(TU: T ) X S
X. Ii(TU:T)x = X, then X=TX=T(TU: T)XSTU. That is, U =
X, a contradiction to the maximality of U. Thus U = (TU: T)x.
Now the fact that TU is a maximal T-accessible submodule of X fol-
lows easily from the correspondence and the maximality of U.

COROLLARY 3 5 Let AX be T-accessible. Then AX has a maximal
submodule if and only if AX has a maximal T-accessible submodule.
Furthermore, if U is a maximal submodule of X, then U contains a
unique maximal T-accessible submodule TU of X; and if Y is a
maximal T-accessible submodule of X, then Y is contained in a unique
maximal submodule (Y: T)x of X.

The next two lemmas follow from Theorems 3.4 and 3.2 respec-
tively and are needed to answer our first question.

LEMMA 3.6. For AX, let AM be the intersection of all maximal
T-accessible submodules of TX. Then TM = TJ(TX).

REMARK. If there are no maximal T-accessible submodules of
TX, we set M = TX.

Proof. By Corollary 3.5 there are no maximal T-accessible sub-
modules of TX if and only if there are no maximal submodules of
TX. In this case the lemma becomes trivial.

Thus let {Hi}ieI be the set of all maximal submodules of TX.
Then by Theorem 3.4 {TH{}ieI is the set of all maximal T-accessible
submodules of TX. Clearly MSJ(TX) so that TMQ TJ(TX). But
TJ(TX) = T(Πi,i HJ £ rim Tfy = M. Thus TJ(TX) £ TM.

LEMMA 3.7. For AX, let AM be defined as in Lemma 3.6 and let
{Li}ieI be the collection of maximal submodules of sHom^(P*, X). Then
P*(n<βi£<) = TM.

Proof. By Theorem 3.2 there are no maximal T-accessible modules
of TXif and only if there are no maximal submodules of ^Hom^ (P*, X).
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In this case the lemma becomes trivial.
By the remarks following Theorem 3.2 {P*Li}ieI is the set of

all maximal T-accessible submodules of TX. Thus P*(f)ieI L{) ξi
ΠietP^Lt = M, and so P*(fl e/£;) £ TM.

Conversely, TMSP*Lt for all iel. By Theorem 3.2 Hom^(P*,
P*Lt) = L^ hence Hom^ (P*, TM)^Li for all iel. That is, Hom^ (P*,
TM) S Πίez Li. Again by Theorem 3.2 TM = P* Hom^P*, TM) S P*

THEOREM 3.8. Let PA be finitely generated projective with trace
ideal T and B — End (PA). For AX, we have

(a) P*N(RomA (P*, X)) = TJ(TX).
(b) ΛΓ(Hom^ (P*, X)) = Horn,, (P*,

Proof, (a) By Lemmas 3.7 and 3.6, P*iV(Hom^ (P*, X)) =

(b) By Theorem 3.2 and (a) we have that i\Γ(Hom^ (P*, X)) =
Hom^ (P*, P:W(Hom^ (P*, X)) = Hom^ (P*, TJ(TX)). But it is easy
to see that Hom4 (P*, TJ(TX)) = HomA (P*, J{TX)).

Thus we have the following description of the radical of BP (x) AX.

COROLLARY 3.9. (a) For AX, N(BP0 AX) ~ P(x) J{TX).
(b) iV(5P)

Proof, (a) follows from Theorem 3.8 since P ^ X ^ H o m ^ P * , X)
for all AX.
(b) follows in the same manner as (a) using BP = 5 P ® .I-A

The following corollary is well known. See for example [11,
Prop. 1.1].

COROLLARY 3.10. N = N(B) - HomA (P*, JP*) - Horn., (P, PJ).

Proof. That JV = Hom,4 (P*, JP*) follows from the fact that
5 - End (AP*) and ΓP* - P*. That N= ΈLomΛ (P, PJ) follows by a
dual argument.

COROLLARY 3.11. Letting N = N(B), we have
(a) P*ΛΓ- TJP*.
(b) iVP - PJΓ.

Proof, (a) P*λΓ - P* Homu (P*, JP*) - TJP*.
(b) follows by symmetry.

We now move on to our second question. For a right A-module
VA, Morita [8] has defined a right A-module Y to be of V-dominant
dimension Ξ> n (written F-dom. dim. Y Ξ> n) if there is an exact
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sequence

0 >Y >Y, > >Yn

such that each Yi is a direct product of copies of V. Dually, for a
left A-module AU, we say that a left A-module X is of [/-dominant
codimension Ξ> n (written [7-dom. codim. X ^ n) if there is an exact
sequence

such that each X% is a direct sum of copies of U.
Let ®»(FJ be the full subcategory of WlΛ consisting of all A-

modules of F-dominant dimension ^ n. Similarly, let ^(A U) be the
full subcategory of Jΰl consisting of all A-modules of [/-dominant
codimension ^ n.

In particular &L(AP*) consists of all modules AX that are homomor-
phic images of a direct sum of copies of AP*. By Lemma 3.1 we see
that ^ C L P * ) is the full subcategory of T-accessible left A-modules.

Let WB be an injective cogenerator in fΰls. That is WB is injec-
tive and S^W*) = SJί5. Let QA = ΈίomB(APg, WB)A. Then QA is in-
jective by [8, Lemma 1.3]. By the natural isomorphism (see I)

Horn, (YΛ, Horn* (AP*, WB)A) s Hom5 (Γ<g) APS, WB)

and the fact that WB is a cogenerator, we have

Y(x) Ap* = 0 if and only if Horn^ (Γ^, QJ = 0 .

LEMMA 3.12. (a) AXe <g[(AP*) if and only if AjT® AX = 0.
(b) YA 6 to^Qj) if and only if HomA (A/T, Y) = 0.

Proof, (a) Since A/T ® AX ~ X/TX, we have that A/T (g) X =
0 if and only if X is T-accessible
(b) Let iΓ= Γl {ker f\fe Hom^(Γ, Q)}. Since Q4 is injective Hom^(if,
Q) = 0, which implies that K(g) AP* = 0. Thus KT = 0. That is,
K^lγ{T). On the other hand, lT(T)(g)AP* = 0, so that ΈLomA(lγ(T), Q) =
0. Thus ^(Γ) g iΓ. Therefore, ίΓ = Z7(T)s Hom^ (A/Γ, Γ).

If 7 e ^(Qi), there is a monomorphism φ: Y—> Π^z Q{i) where
Q{i) ~ Q and I is some index set. Let ft be the ίth projection map
and let fi = ft<p. Then i Γ g flίβ/ker/J = 0.

Conversely, if K=0, let / = Hom^ (Γ, Q) and define φ: Y-+ J\iel Q{i)

by φ(y) = (f(y))fei Since ker φ = if = 0, <£> is monomorphism

LEMMA 3.13.

(a) For Xe ^(AP*), P/PJ0,1s P/NP (g) ΛX.
(b) For Ye SJ^QJ, Hom^ (P/PJ, Y) = Hom^ (P/NP, Y).
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Proof. By Corollary 3.11, NP = PJT. Thus we have the fol-
lowing exact sequence

o I L ^ JL
PJT NP PJ

(a) For Xe <%l(AP*)

PJ/PJT (g)AX > P/NP(g)AX > P/PJ®AX > 0

is exact. But PJ/PJT® AX ^ PJ(g)A/T0X = 0 by Lemma 3.12.

(b) For F e

0 > HornA (P/PJ, Y) > Hom^ (P/NP, Y) > Horn^ (PJ/PJT, Y)

is exact. But Hom^ (PJ/PJT, Y) ~ Hom^ (PJ® A/T, Y) = Ή.omA(PJ,
Hom4 (A/T, Y)) - 0 by Lemma 3.12.

A two-sided ideal H of a ring A is said to be left T-nilpotent if
given any sequence {ΛJJLi £ -H" there is a finite index w such that
hh ftw = 0. We need the following necessary and sufficient con-
ditions for a two-sided ideal H to be left Γ-nilpotent.

THEOREM 3.14. Let H be a two-sided ideal of A. Then the fol-
lowing statements are equivalent.

(a) H is left T-nilpotent.
(b) Hom^ (A/H, YA) = 0 implies YA = 0.
(c) A/H® AX = 0 implies AX = 0.
(d) For AXΦ 0, HX'S Y.

REMARK. Condition (b) says that if YA Φ 0, then lγ(H) Φ 0. Con-
dition (c) says that if AX Φ 0, then HX φ X. The proof of (d) => (a)
is essentially in Bass [3] but will be included here for completeness.

Proof, (a) => (b). Let 0ΦyeYA. If lγ(H) = 0, then there exists
ate H such that ya1 Φ 0. Again, there exists α2e H such that 7/α:α2 ^
0. Clearly this will lead to a contradiction of (a) if lγ(H) = 0. Thus
lγ(H) Φ 0.

(b) => (c). Suppose that A/H® A% = 0. Let D = End (AX) and let
WD be a cogenerator in SK .̂ Then

0 = Horn,, (A/H® AXD, WD) ~ Hom^ (A/H, Horn,, (AXD, WD)) .

Thus by (b) Hom^ (XD, WD) = 0. Since TΓ̂  is a cogenerator, X^ = 0.
Hence AX = 0.
(c) => (d). Let ^X =̂  0 and suppose HX is not small in X. Then there
exists K £ X such that JΪX + iΓ = X. However, for X = X/K we
have £ΓX = X. Thus by (c) X = 0, a contradiction. So ί/X'S X.
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(d) => (a). Let {hifei S H and let AN be a free left A-module with
basis {%}Γ=i Now N — JVΊ + N2 where JVΊ is the submodule of N
generated by {/&Λ+1}Γ=i and N2 is the submodule of N generated by
{rii — λ<wί+i}5Li.. Since Nλ g ϋΛΓ we have that N = iV2. So

t

Thus, by uniqueness of representation, aλ = 1 and 0 = atht = at_Jίit__Jιt =
. . . = hj%2 ht. Hence H is left T-nilpotent.

For PA finitely generated protective we now give necessary and
sufficient conditions for the radical N of the endomorphism ring B
of PA to be left T-nilpotent in terms of the subcategories
and S

THEOREM 3.15. Let PA be finitely generated projective with trace
ideal T and B = End (PJ Let N be the radical of B. Then the
following statements are equivalent.

(a) N is left T-nilpotent.
(b) For Ye SJ^QJ, Hom^ (A/J, YA) = 0 implies Y = 0.
(c) For Xe ΐ f^P*) , Ά/J® AX = 0 ίmpiίβs X = 0.
(d) J Γ is Zβ/ί T-nilpotent.

Proof. (α)=>(b). Let Γ e S ^ Q J . If Hom^ (A/J, Γ) = 0, then
by Lemma 3.13 Ή.omA (P, KomA (A/J, Y)) ~ΈίomA{P® AAjJy Y) s

(P/PJ, Γ) = Hom4 (P/ΛΓP, Γ) £*Ή.omΛ(B/N<g)BP, Y) = ΈίomB(B/N,
(P, D) = 0. Thus Hom^ (P, Γ) = 0 by Theorem 3.14. Hence

Hom^Γ, Q) = 0 which implies that Γ = 0 since Ye^>t(QA).
(b) => (c). Let Xe &1(ΛP*) and suppose A/J(x) AX = 0. Let i) =

End (4X) and let WD be a cogenerator in 30^. We have Homΰ (A/J®

AX, W) = HomA(A/J,ΐlomD(X, T7)) = 0. By Lemma 3.12 Hom^X, W)Ae
ΦiίQJ since Hom^ (A/Γ, Horn,, (X, PΓ)) = Horn,, (A/T®AX, W) = 0.
Thus Hom^ (X, TF) = 0 by (b). So XD — 0 since TF̂  is a cogenerator.
Thus ^X = 0.
(c) => (d). For AK, suppose that A/JT® AK = 0; that is, JTK = K.
Since J T i f S TK^K, we see that JΓίΓ - Tif, i.e., A/J® ΓiΓ - 0.
Thus iΓ = TK = 0 by (c). So JT is left T-nilpotent by Theorem 3.14.
(d) => (c). Let Xe &Ϊ.(ΛP*) and suppose that A/J® AX = 0, i.e., JX =
X. Since TX = X, JΓX - X. Hence X - 0 by (d).
(c) =» (a). For ΰC7, if B/N®BU= 0, then P * ®BB/N®BU~ P*/P*N
®BU=0. By Corollary 3.11

rp* p* p*

0 >J±— >-J— >J— >o
TJP* P*N JP*
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is exact. Hence P*/JP*®BU^ A/J®AP*®BU = 0. Thus P*(g)BU=
0 since P* ®BUe <%l(AP*). But then BU ~ P®AP* (x) BU = 0.

If the radical J of A is left T-nilpotent, then (b) of Theorem
3.15 holds. Hence if J is left T-nilpotent we have that N is left
T-nilpotent. This gives a functorial proof of a well-known result.

COROLLARY 3.16. For PA finitely generated projectίve the following
statements are equivalent.

(a) N is left T-nilpotent.
(b) For Xe <g[(AP*), J X ' S X.
(c) e/(AP*7)'£ AP*Z for any index set I.

REMARK. R. Ware [11, Lemma 5.3] has shown the equivalence
of (a) and (c) in the case that PA is a protective module which is a
finite direct sum of cyclic modules.

Proof, (a) => (b). Let AX be T-accessible. If JX is not small
in X, there exists £Γ £ X such that JX + H = X. However X =
XjH is also T-accessible, and JX = X. Thus by Theorem 3.15, X = 0,
a contradiction.
(b)=>(c). This is trivial since AP*Z e ^{AP*) for every index set I.
(c) => (b). Let a: AU—+AXbe an A-epimorphism where JU'S U. Then
I s U/K where if - ker a. Since /[ tf/iq - (JU+ K)/K, if (JC7+ JΓ)/JBΓ+

H/K = U/K, then JU + K + H = U. Thus K+ H= U, which implies
that E ~ U. Hence J X ' S X (b) now follows from Lemma 3.1.
(b) => (a). Let Xe &[(AP*) and suppose JX = X. Then X = 0 since
J X ' g X . Hence ΛΓ is left T-nilpotent by Theorem 3.15.

4* Perfect injectors and perfect projectors* For PA finitely
generated protective Anderson [1] has called PA a perfect injector
(perfect projector) if the functor F = BP (x) A( ) preserves injective
hulls (projective covers). Clearly a perfect injector (perfect projector)
is also an injector (projector). Perfect injectors are characterized in
terms of their trace ideal and certain conditions on large submodules.

LEMMA 4.1. Let I be a right ideal of A. Then A/I is flat in
fΰlA if and only if xe I implies xe Ix.

Proof. Let xe I and consider the exact sequence

0 >I >A

By [5, Proposition 2.2], assuming (A/I)A is fiat, there exists a
map θ: AA -»IA such that θ{x) = x. Thus x = θ{x) = θ(lx) = θ(ί)x e Ix.

Conversely if x e Ix, then x — ix for some i e I. Define θx: A —• I
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by Θx(a) — ia for aeA. Then Θx(x) — ix = x. Again by [5, Proposi-
tion 2.2] we have that (A/I)Λ is flat.

THEOREM 4.2. For PA finitely generated projectίve the following
statements are equivalent.

(a) PA is a perfect injector.
(b) F = BP (x) A( ) preserves essential monomorphisms.
(c) A/T is flat in 9KA.
(d) The functor AT®A( ) preserves essential monomorphisms.
(e) AX £ ' AE implies TX S ' TE.

REMARK. The equivalence of (a), (b), and (c) is essentially (using
Lemma 4.1) Anderson's result [1, Theorem 2.4].

Proof, (c) <=> (e). Let AX § ' AE and suppose (A/T)A is flat. Ten-
soring with (A/T)A we get the exact sequence

0 > X/TX • E/TE .

Therefore, X f] TE = TX. Let 0 Φ K^ TE^E. Then K n TX -
KnTEΓ\X=KΓ\XφO since X E ' JE?. Thus TX S ' TE.

Conversely, by Lemma 4.1, to show (A/T)A is flat, it is sufficient to
show xe T implies xe Tx. If x& Tx, by Zorn's Lemma choose AI^AA
maximal with respect to the property that Tx £ /, but x$I. Then
(Ax + 1)11 & Ajl, hence by assumption T((Ax + I)/1) £ ' T(A/I). Since
T((Ax + 1)11) = 0, we must have T(AJI) = (Γ + /)// = 0. That is,
Γ e / . This is a contradiction since xe T.
(c) => (d). Let a:AX—+AE be an essential monomorphism. Clearly
we may assume a is the inclusion map. Since (A/T)A is fiat, so is TA,

and thus T®AX—% T(x) AE is one-to-one. Again since (AjT)A is flat,
T(x) X ^ TX and T®E^TE. Hence (d) follows by (e).
(d) => (c). The proof of (d) => (c) is almost identical (with the obvious
changes) to the proof of (e) => (c), and hence will be omitted.

The following corollary indicates when T is a direct summand of
A.

COROLLARY 4.3. For PA finitely generated protective the following
statements are equivalent.

(a) PA is a perfect injector and TA is finitely generated.
(b) TA = eA for some idempotent e e A.

REMARK, Corollary 4.3 generalizes a result of Anderson's [1,
Corollary 2.7] that over a right perfect ring A, PA is a perfect injec-
tor if and only if TA is a direct summand of AA.
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Proof, (a) => (b). By Theorem 4.2 we have that (A/T)A is flat-
Since TA is finitely generated, (A/T)Λ is protective by [5, Corollary
to Proposition 2.2] Therefore TA is a direct summand of A4.
(b) => (a). Clearly (A/T)A is flat and TA is finitely generated. Thus
(a) follows by Theorem 4.2.

We now give an example of a perfect injector whose trace is not
finitely generated.

EXAMPLE 4.4. Let A = J{iQJKi where K{ = K a field and the
index set / is infinite. Let T — Kf. We may write T = faA)1 where
e\ = βi e A and Kζ = ^A. Let PA — eλA. Then PA is finitely generated
protective and the trace ideal of PA is T. (A/T)A is flat since A is a
regular ring, hence PA is a perfect injector. However, TA is not
finitely generated.

Ideally we would like to give a characterization of perfect pro-
jectors dual to that of Theorem 4.2. In general we do not know
enough pertinent information about small submodules to obtain an
exact dualization. Anderson circumvented this problem by assuming
that the ring A is left perfect. He gives the following theorem.

THEOREM 4.5. (Anderson [1, Theorem 3.3]). Let A be left perfect
and let PA be finitely generated projective. Then the following state-
ments are equivalent.

(a) PA is a perfect projector.
(b) F = B P (x) A( ) preserves minimal epimorphisms.
(c) JT = Jf]T.
(d) A(A/T) is projective in JSR.

Our purpose in this discussion is to extend Anderson's result by
replacing the condition that A be left perfect with substantially
weaker conditions on PA.

LEMMA 4.6. For AK^AX9 the following statements are equivalent.
(a) BP®AK'^BP®AX.
(b) TKr^ TX.

Proof, (a) => (b). Suppose that TK + H = TX. Since F is an
exact additive functor, we may write F(TK + H) = F(TK) + F{H) =
F(K) + F(H) = F(TX) = F(X). Thus F(H) = F(X) which implies
that TH = TX. Hence H = TX since TH^H^ TX.
(b) => (a). Suppose that F(K) + L = F(X). Then P*F(K) + P*L =

+ P*L = P*F(X) = TX. Thus P*L = TX which implies that
= F(X).
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COROLLARY 4.7. The functor F — BP® A{ ) always preserves pro-
jective covers of T-accessible left A-modules.

Proof. Let AY be Γ-aecessible and let a: AX-+AY be a pro jec-
tive cover of AY. We have the following commutative diagram

*/AP

/ l
0 >AK >AX >AY >0 (exact)

where K = ker a, g follows by Lemma 3.1, and / follows by the projec-
tivity of AP*T. Since K'S X, / is onto. Thus AX is Γ-accessible, so
TKf £ X = TX. Therefore, F(a): F{X) ~> F(Y) is a minimal epimor-
phism by Lemma 4.6.

Since AX is projective

is split exact. Thus

F(P*Z) > F(X) > 0

is also split exact. Hence F{X) is protective since it is a direct
summand of F(P^) ^ BB\

The following result follows easily from Theorem 2.8 and Lemma
4.6, hence the proof will be omitted.

THEOREM 4.8. For PA finitely generated protective the following
statements are equivalent.

(a) PA is a perfect projector.
(b) BP is pro jective and for AX pro jective, AK'S AX implies

TK'S TX.

THEOREM 4.9. Let PA be finitely generated pro jective with trace
ideal T and B = End (PA). Let the radical N of B (equivalently JT)
be left T-nilpotent. Then the following statements are equivalent.

(a) PA is a perfect projector.

(b) BP is projective and JT = J Π T.
(c) BP is projective and TJ g JT.
(d) BP is projective and PJ = NP.

REMARK. The proof that JT = JpiT in (a) => (b) is due to
Anderson [1].

Proof, (a) ==> (b). By Theorem 2.8, BP is projective and ηA: AP* ®

BP-+ AT is a projective cover. Hence J(T) = JT by Lemma 1.1.
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Clearly JT^JΓiT. Let xe JΠ T and suppose that x£JT = J(T).
Then there is a maximal submodule H of T such that x g if. Since
# e J, the natural map A > A/A# is a projective cover. By (a) P —»
P/P£ is a protective cover, hence BPx ' £ *P. But P = PT = PH + Px,
since Γ = if + Ax. Thus P = PH, and so P* (x) P = P* (x) Piϊ. Hence
T = TH^ H, a contradiction. Thus JT = J Π T.
(b)=>(c). Clearly TJQJΓiT. By assumption J Γ) T = JT. Thus
TJ^JT.
(c)=>(d). Clearly PJT^PJ. Since TJ^JT we have that P/ =
P Γ J S PJT. Thus PJ - PJT. Hence PJ = NP by Corollary 3.11.
(d) => (a). Let a: AX—+AY be a pro jective cover. BP<g) AX is pro jec-
tive since PA is a projector. Let K — ker α. Since i ί ' g X , iΓg
/(X) = JX. Since P^ and ̂ Z are flat, both P(x) JX and PJ®X=:
NP0X have the same image in P(x)X under the maps P(x) JX—*
P (x) X and P/ (x) X — P(g) X respectively. Thus P (x) Z" g ΛΓP (x) X.
Hence P(g) K'S P® X because iVis left T-nilpotent. Therefore P ®
X 2 P (x) F is a projective cover.

To suppose iV is left T-nilpotent is one way to weaken Anderson's
condition that A be left perfect. Another way is as follows. Instead
of assuming that every left A-module has a projective cover, we
assume that a particular left A-module has a projective cover. But
first we need the following lemma.

LEMMA 4.10. A(A/T) is projective in Jΰl if and only if A —
T + rA(T).

Proof. If A(A/T) is projective then / is a direct summand of

AA. Hence AA = AT + AU. Clearly AU^rA(T). Thus A = T + rA(T).
Conversely, if A = T + rA(T), then 1 = ί0 + u where toe T,ue

rA(T). If te T, then t = ίl = tt0 + tu = tt0. That is, T = AtQ; hence

AT is finitely generated. Furthermore, for te T we see that t = ttoe
tT. Hence by Lemma 4.1, Λ(A/T) is flat. Thus A(A/T) is projective
[5, Corollary to Proposition 2.2].

THEOREM 4.11. Le£ PA he finitely generated projective with trace
ideal T and B = End (PJ. Then the following statements are equiva-
lent.

(a) PA is a perfect projector and A(A/T) has a projctive cover.
(b) F1 — BP®A{ ) preserves minimal epimorphisms and A(A/T)

has a projective cover.
(c) A(A/T) is projective in Jΰl.

Proof, (a) => (c). Let a: AX-+ A(A/T) be a projective cover of

Λ(A/T) and let K = ker a. Then F(a): F(X) -> F(A/T) is a projective
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cover. However, F(A/T) = 0 which implies that F(X) = 0 since
ker F(a) ' £ F(X). Hence F(K) = 0, so TK = 0.

By the projectivity of AA we have the following commutative
diagram.

β
/

^ > 0 (exact)

where p is the natural map. β is onto since i f ' £ X . Now K =
(T)β = Γ(Γ)/S = TK = 0. Thus α is an isomorphism, hence ^(A/Γ)
is projective.
(c) => (a). Let a: AX-~> AY be a projective cover and let K = ker α.
Since A(A/T) is projective, so is ^Γ, Hence ί^ is a projector by
Theorem 2.9. Thus BP(£) AX is projective.

By Lemma 4.10, A = Γ + r^(Γ). Hence X - AX = TX + rA(T)X.
Suppose that TK + H= TX. Then TiΓ+ίΓ+r^(Γ)X- TX+rA(T)X =
X. Thus £Γ + rA(T)X = X since TiΓS i^ 'S X. Now Ή ϊ + TrA(T)X =
TX, and so TH ^ TX. Therefore, H - TX, so that TK'Q TX.
Hence jF(α): ^(X) —• F(Y) is a projective cover by Lemma 4.6.
(b) <=> (c). This is essentially the proof of (a) <=> (c).

COROLLARY 4.12. Let A be semίperfect. Then the following state-
ments are eqίvalent.

(a) PA is a perfect projector.
(b) AP* is a perfect injector.
(c) A(A/T) is projective in JSfl.

Proof, (a) => (b). Since A is semiperfect, A(A/T) has a projec-
tive cover. Thus A(A/T) projective (hence flat) by Theorem 4.11.
So AP* is a perfect injector by Theorem 4.2.
(b) ==> (c) A(A/T) is flat by Theorem 4.2. Since A is semiperfect,

Λ(A/T) has a projective cover. Thus A(A/T) is projective by Lemma
1.2.
(c) => (a). This follows easily by Theorem 4.11.

EXAMPLE 4.13. We give an example to show that the condition
that A(A/T) have a projective cover is not redundant.

Let F be a field, F 7 a n infinite dimensional vector space over F,
and A the ring of all linear transformations of FV Since FV is a
generator, VA is finitely generated projective and F— End (VA) (see [2]).
Let e: ^F—•ify be the projection map onto the one-dimensional sub-
space Fv of FV. Clearly VA ~ eA; hence, the trace ideal of VA is T —
AeA. Properties of A, FVA, and T.
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(a) T = Socle (AA) (see [6]).
(b) Λ(A/T) is not projective since AT is not a direct summand of

AA9 as AT is not finitely generated.
(c) For 4X, Hom^ (X, A) = 0 if and only if F(g) ^X = 0.
(d) ^A is self-injective (e.g. see [9]).
(e) FV(g)Λ() preserves minimal epimorphisms.
(f) VA is a projector, hence a perfect projector by (e).

Proof, (c) follows by the isomorphism

Hom^ (X, A) = Hom^ (X, Horn,, (V, V))

= RomF(V(g)AX,V).

(e). Let a: AX~> ^ F be a minimal epimorphism with ϋΓ = ker a. Then

0 >V(g)AK >V®AX >V®AY >0

is an exact sequence. But F(x) AK = 0 since Hom^ (X, A) = 0. That
is, given /: K—+A9 then / extends to /: X—+A by the self-injectivity of

AA. Now f(K) 'S A which implies f{K) = 0, as J(A) = 0. Hence / = 0.
(f). By Theorem 2.8, VA is a projector since FV is projective.
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