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Using a generalized Laplace transformation the Mikusin-
ski field is given a topology T such that sequences which
converge in the sense of Mikusinski converge with respect
to T, such that the mapping ¢ — ¢! is continuous and such
that the series > (—A)"s*/n! converges to the translation
operator e,

In [3] it is shown that the notion of convergence defined in [8]
for the Mikusinski field of operators is not topological. Topologies
for the Mikusinski field are given in [1], [3], and [9]. In the present
paper we endow this field with a topology T such that sequences
which converge in the sense of Mikusinski converge with respect to
T, such that the identity

oo . k
e =3 (=™ s* (> 0)

= k!
holds and such that the mapping ¢ — ¢! is continuous. The author

wishes to acknowledge that this paper constitutes proofs of assertions
proposed by Gregers Krabbe [7].

Let L denote the family of complex-valued functions which are
locally integrable on [0, ). Under addition and convolution L is an
integral domain. If @ denotes the quotient field of L then @ is the
Mikusinski field of operators. Elements of @ will be denoted {f(¢)}:
{9(t)} and the injection of L into @ will be denoted f — {f(¢)}. We
define S to be the set of all f in L for which the integral

Sw e ()t
converges for some z. For f in S let
7@ = erwat

and S = {f: feS}. Each element of S is holomorphic in some right
half-plane. Let B denote the set of all sequences (f.) of nonzero
elements of S for which there exists f in L such that

(1) fo=fon (0, n) for all n .

For a given f the set of all elements of B satisfying (1) will be
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denoted . Let B* denote the set of all elements (@.) of B such that
(.) € where g is a nonzero element of L. Finally, let X denote
the set of all sequences (f,/d.) where (f,) B and (§,) € B*. Then
X consists of sequences of functions which are meromorphic in some
right half-plane.

LEMMA. Let (F.)ef, @.)€d, (F)eF and (G,)eG and suppose
that g and G are monzero elements of L. Then f¥G,= F*g, on
(0, n) for all m if and only if {f{t}}: {9(®} = {F@®)}: {G®)}.

Proof. Since f}G,=f*G on (0,n) and F*g,= F*g on (0, n),
the statements f}G, = F}g, on (0, n) for all n and f*G = F*g are
equivalent.

THEOREM 1. There exists a mapping @ of X onto @ such that

if q belongs to Q, say ¢ = {f): {9()}, and if (f.) and (7.) belong,
respectively, to f and §, then O((f./7.) = q.-

Proof. Let (F./g)eX. If (f.)ef and (§.) g define
O((f/7.) = {f®}: {g®)} -

If (fu/g.) = (F./G,) then f,G, = F.g, (all n), that is, £,*G, = Frg,
(all n). Therefore, /G, = F}g, (all ») and hence, by the lemma,

O(F./G.)) = O((F4/F0)) -

Thus, @ is well-defined. Now, for any ¢ € @ there exist f and g in
L such that ¢ = {f(®}: {g(t)}. Let (f.)ef and (F.)eg. Then
(fu/G.) € X and @((f./7.)) = q- Therefore, @ is “onto.”

For each nonempty open subset 2 of the complex plane let M(Q)
denote the set of all functions which are meromorphic in 2. We
equip M(2) with the topology of uniform convergence on compact
subsets of 2 with respect to the chordal metric. Thus ¢,— @ in
M(Q) if and only if

lim [ sup |gp,,(z) - gD(z) | ] =0
# Lk T+ [, FV1I+ |2@R)

for all compact subsets K of 2. Let M = J M(2) where 2 varies
over the nonempty open subsets of the complex plane and equip M
with the finest topology for which all of the injections M(Q2) — M
are continuous. Let Y denote the set of all sequences in M and
equip Y with the product topology. We may then endow its subset
X with the relative topology. Finally, @ is given the quotient
topology (relative to @ and the topology of X). Let T denote this
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topology. Thus, T is the finest topology on @ for which the function
@: X— @ is continuous.

THEOREM 2. If q, converges to q in the sense of Mikusinski then
q, converges to q with respect to the topology T.

Proof. Suppose gq, converges to ¢ in the sense of Mikusinski.
Then there exists g, f and f, (k = 1,2, ---) in L such that {g(t)}g =
{£:(®} and {g(®)}g = {f(¢)} and such that f, converges to f uniformly
on compact subsets of [0, «). Define

Fusle) = | e futtyat
and
P = [enrat .

Then (f,,,) € f, and (F,) e f. Moreover, f,., and f, are entire functions
and

lim [sup Ifin(?) = fa@)1=0 (m=1,2,--+)

for any compact set K. Let (§,) €§ and, for each n, choose a non-
empty open set 2, such that g, is holomorphic and nonvanishing in
2,. Then f,,/g, is holomorphic in 2, and

in M(2,) and therefore in M. Thus,

But @((f../d.) = ¢, and @((f./d.)) = q¢ by Theorem 1. Therefore,
since @ is continuous, it follows that

limg, = ¢q .
koo

Let us define

¢
ho(t) = —2 ( =1,2,...)
0 = = 2
s’ = the identity element of @
8% = {hs(t)} ™ (B=1,2,-).

We also define ¢ % = s{f(t)}, where
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{0 0=st<h
f(t)_h O<A<t.

Then s is the differential operator and e~ * is the translation operator.
THEOREM 3. ¢ = >, (—N¥k!sk.

_ Proof. If f and h; are defined as above then f(z) = e*/z and
he(z) =27%(8=1,2,--+). Let

Pu(e) = L2 o (h=0,1,2-).

Then

where the convergence is uniform on compact sets. Therefore,

Flh = ®,  (convergence in M) .

k=0
That is,
—_— N
/h, = lim > @, (convergence in M) .
N—oo k=0
Thus,

R — - . N N
(F/Rs Py o) = 1im (3 20 Sy, +++)
N-voo \Ek=0 k=0
where the convergence is in X. But @ ((f/hy, f/h,, +++)) = ¢™** and

¢<<§ Py I};%, )) =3 (’>'“)k s .

Since @ is continuous it follows that

Let @Q* denote the set of nonzero elements of Q@ and define I:
Q* — @* by the equation I'(¢) = ¢ (all ¢ in Q*).

THEOREM 4. The function I' is continuous.

Proof. Let X* = {xe X: O(x) € @*}. Since Q* has the quotient
topology (relative to @ and the topology of X*) it suffices to show
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that the composition I"°@ is continuous [5, p. 95, Theorem 9]. Suppose
z, is a net in X* which converges to & in X*. Let o, = (Fun/Gun)
and @ = (f,/G.). If (Fun) e f then fu # 0 (since z, € X*) and therefore
(fun) € B*.  Similarly, (f,)eB*. Therefore, (G,./fu.) and (7./f.)
belong to X*. Since x,— x it follows that f,,./G,.. — f./. in M for
each n. Therefore, for each n there exists £, such that

f#,n/gﬂ:n —"fn/gn

in M(Q,). Since the reciprocals §,,,/f.. and §,/f, are also mero-
morphic in 2,, the identity

1 1

T

implies that §,./fus— 0./f» in M(Q,) and therefore in M. Since
this is true for each n it follows that (§,./fu.) — (@./f) in X*.
Therefore, O((Fu,n/frn) — P(G./f2) in Q* But, by Theorem 1,
P(Gpul Frn)) = T(@(x,)) and O((F./f.) = (D(x)). Therefore,

I(0(z,) — I'(0(x)) ,

_ |z — w|
T VIF 2P VI w]

from which we may conclude that the funection I7°@ is continuous.
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