A VERY WEAK TOPOLOGY FOR THE MIKUSINSKI FIELD OF OPERATORS

HARRIS SAMUEL SHULTZ
A VERY WEAK TOPOLOGY FOR THE MIKUSINSKI FIELD OF OPERATORS

HARRIS S. SHULTZ

Using a generalized Laplace transformation the Mikusinski field is given a topology T such that sequences which converge in the sense of Mikusinski converge with respect to T, such that the mapping $q \rightarrow q^{-1}$ is continuous and such that the series $\sum (-\lambda)^n s^n/n!$ converges to the translation operator $e^{-\lambda s}$.

In [3] it is shown that the notion of convergence defined in [8] for the Mikusinski field of operators is not topological. Topologies for the Mikusinski field are given in [1], [3], and [9]. In the present paper we endow this field with a topology T such that sequences which converge in the sense of Mikusinski converge with respect to T, such that the identity

\[e^{-zs} = \sum_{k=0}^{\infty} \frac{(-\lambda)^k}{k!} s^k \quad (\lambda > 0) \]

holds and such that the mapping $q \rightarrow q^{-1}$ is continuous. The author wishes to acknowledge that this paper constitutes proofs of assertions proposed by Gregers Krabbe [7].

Let L denote the family of complex-valued functions which are locally integrable on $[0, \infty)$. Under addition and convolution L is an integral domain. If Q denotes the quotient field of L then Q is the Mikusinski field of operators. Elements of Q will be denoted $\{f(t)\}$; $\{g(t)\}$ and the injection of L into Q will be denoted $f \rightarrow \{f(t)\}$. We define S to be the set of all f in L for which the integral

\[\int_0^{\infty} e^{-zt} f(t) dt \]

converges for some z. For f in S let

\[\bar{f}(z) = \int_0^{\infty} e^{-zt} f(t) dt \]

and $\bar{S} = \{\bar{f} : f \in S\}$. Each element of \bar{S} is holomorphic in some right half-plane. Let B denote the set of all sequences (f_n) of nonzero elements of \bar{S} for which there exists f in L such that

(1) \quad $f_n = f$ on $(0, n)$ \quad for all n.

For a given f the set of all elements of B satisfying (1) will be
denoted \hat{f}. Let B^* denote the set of all elements (\bar{g}_n) of B such that $(\bar{g}_n) \in \hat{g}$ where g is a nonzero element of L. Finally, let X denote the set of all sequences (\bar{f}_n/\bar{g}_n) where $(\bar{f}_n) \in \hat{B}$ and $(\bar{g}_n) \in B^*$. Then X consists of sequences of functions which are meromorphic in some right half-plane.

Lemma. Let $(\bar{f}_n) \in \hat{f}$, $(\bar{g}_n) \in \hat{g}$, $(\bar{F}_n) \in \hat{F}$ and $(\bar{G}_n) \in \hat{G}$ and suppose that g and G are nonzero elements of L. Then $f_n^*G_n = F_n^*g_n$ on $(0, n)$ for all n if and only if $\{f(t)\}: \{g(t)\} = \{F(t)\}: \{G(t)\}$.

Proof. Since $f_n^*G_n = f^*G$ on $(0, n)$ and $F_n^*g_n = F^*g$ on $(0, n)$, the statements $f_n^*G_n = F_n^*g_n$ on $(0, n)$ for all n and $f^*G = F^*g$ are equivalent.

Theorem 1. There exists a mapping Φ of X onto Q such that if q belongs to Q, say $q = \{f(t)\}: \{g(t)\}$, and if (\bar{f}_n) and (\bar{g}_n) belong, respectively, to \hat{f} and \hat{g}, then $\Phi((\bar{f}_n/\bar{g}_n)) = q$.

Proof. Let $(\bar{f}_n/\bar{g}_n) \in X$. If $(\bar{f}_n) \in \hat{f}$ and $(\bar{g}_n) \in \hat{g}$ define

$$\Phi((\bar{f}_n/\bar{g}_n)) = \{f(t)\}: \{g(t)\}.$$

If $(\bar{f}_n/\bar{g}_n) = (\bar{F}_n/\bar{G}_n)$ then $\bar{f}_n\bar{G}_n = \bar{F}_n\bar{g}_n$ (all n), that is, $\bar{f}_n^*\bar{G}_n = \bar{F}_n^*\bar{g}_n$ (all n). Therefore, $f_n^*G_n = F_n^*g_n$ (all n) and hence, by the lemma,

$$\Phi((\bar{F}_n/\bar{G}_n)) = \Phi((\bar{f}_n/\bar{g}_n)).$$

Thus, Φ is well-defined. Now, for any $q \in Q$ there exist f and g in L such that $q = \{f(t)\}: \{g(t)\}$. Let $(\bar{f}_n) \in \hat{f}$ and $(\bar{g}_n) \in \hat{g}$. Then $(\bar{f}_n/\bar{g}_n) \in X$ and $\Phi((\bar{f}_n/\bar{g}_n)) = q$. Therefore, Φ is "onto."

For each nonempty open subset Ω of the complex plane let $M(\Omega)$ denote the set of all functions which are meromorphic in Ω. We equip $M(\Omega)$ with the topology of uniform convergence on compact subsets of Ω with respect to the chordal metric. Thus $\varphi_\mu \to \varphi$ in $M(\Omega)$ if and only if

$$\lim_\mu \left[\sup_{z \in K} \frac{|\varphi_\mu(z) - \varphi(z)|}{\sqrt{1 + |\varphi_\mu(z)|^2} \sqrt{1 + |\varphi(z)|^2}} \right] = 0$$

for all compact subsets K of Ω. Let $M = \bigcup M(\Omega)$ where Ω varies over the nonempty open subsets of the complex plane and equip M with the finest topology for which all of the injections $M(\Omega) \to M$ are continuous. Let Y denote the set of all sequences in M and equip Y with the product topology. We may then endow its subset X with the relative topology. Finally, Q is given the quotient topology (relative to Φ and the topology of X). Let T denote this
topology. Thus, T is the finest topology on Q for which the function $\Phi: X \to Q$ is continuous.

Theorem 2. If q_k converges to q in the sense of Mikusinski then q_k converges to q with respect to the topology T.

Proof. Suppose q_k converges to q in the sense of Mikusinski. Then there exists g, f and $f_k (k = 1, 2, \cdots)$ in L such that $\{g(t)\}q = \{f_k(t)\}$ and $\{g(t)\}q = \{f(t)\}$ and such that f_k converges to f uniformly on compact subsets of $[0, \infty)$. Define

$$\bar{f}_{k,n}(z) = \int_0^1 e^{-zt}f_k(t)\,dt$$

and

$$\bar{f}_n(z) = \int_0^1 e^{-zt}f(t)\,dt.$$

Then $(\bar{f}_{k,n}) \in \tilde{f}_k$ and $(\bar{f}_n) \in \tilde{f}$. Moreover, $\bar{f}_{k,n}$ and \bar{f}_n are entire functions and

$$\lim\sup_{n \to \infty} |\bar{f}_{k,n}(z) - \bar{f}_n(z)| = 0 \quad (n = 1, 2, \cdots)$$

for any compact set K. Let $(\bar{g}_n) \in \tilde{g}$ and, for each n, choose a non-empty open set Ω_n such that \bar{g}_n is holomorphic and nonvanishing in Ω_n. Then $\bar{f}_{k,n}/\bar{g}_n$ is holomorphic in Ω_n and

$$\lim_{k \to \infty} \frac{s_{k,n}}{\bar{g}_n} = \frac{\bar{f}_n}{\bar{g}_n}$$

in $M(\Omega_n)$ and therefore in M. Thus,

$$\lim_{k \to \infty} \left(\frac{\bar{f}_{k,n} / \bar{g}_n}{\bar{f}_n / \bar{g}_n} \right) = (\bar{f}_n / \bar{g}_n) \quad \text{in } X.$$

But $\Phi((\bar{f}_{k,n} / \bar{g}_n)) = q_k$ and $\Phi((\bar{f}_n / \bar{g}_n)) = q$ by Theorem 1. Therefore, since Φ is continuous, it follows that

$$\lim_{k \to \infty} q_k = q .$$

Let us define

$$h_\beta(t) = \frac{t^{\beta-1}}{(\beta - 1)!} \quad (\beta = 1, 2, \cdots)$$

$s^0 = \text{the identity element of } Q$

$s^\beta = \{h_\beta(t)\}^{-1} \quad (\beta = 1, 2, \cdots) .$

We also define $e^{-\lambda s} = s\{f(t)\}$, where
Then \(s \) is the differential operator and \(e^{-\lambda s} \) is the translation operator.

Theorem 3. \(e^{-\lambda s} = \sum_{k=0}^{\infty} (-\lambda)^k / k! \cdot s^k \).

Proof. If \(f \) and \(h_\beta \) are defined as above then \(\tilde{f}(z) = e^{-\lambda s} / z \) and \(\tilde{h}_\beta(z) = z^{-\beta} \) (\(\beta = 1, 2, \ldots \)). Let

\[
\Phi_k(z) = \frac{(-\lambda)^k}{k!} z^k \quad (k = 0, 1, 2, \ldots).
\]

Then

\[
\frac{\tilde{f}(z)}{\tilde{h}_1(z)} = e^{-\lambda s} = \sum_{k=0}^{\infty} \Phi_k(z)
\]

where the convergence is uniform on compact sets. Therefore,

\[
\frac{\tilde{f}}{\tilde{h}_1} = \sum_{k=0}^{\infty} \Phi_k \quad \text{(convergence in } M).\]

That is,

\[
\frac{\tilde{f}}{\tilde{h}_1} = \lim_{N \to \infty} \sum_{k=0}^{N} \Phi_k \quad \text{(convergence in } M).\]

Thus,

\[
(\frac{\tilde{f}}{\tilde{h}_1}, \frac{\tilde{f}}{\tilde{h}_1}, \cdots) = \lim_{N \to \infty} \left(\sum_{k=0}^{N} \Phi_k, \sum_{k=0}^{N} \Phi_k, \cdots \right)
\]

where the convergence is in \(X \). But \(\Phi((\frac{\tilde{f}}{\tilde{h}_1}, \frac{\tilde{f}}{\tilde{h}_1}, \cdots)) = e^{-\lambda s} \) and

\[
\Phi \left(\left(\sum_{k=0}^{N} \Phi_k, \sum_{k=0}^{N} \Phi_k, \cdots \right) \right) = \sum_{k=0}^{N} \frac{(-\lambda)^k}{k!} \cdot s^k.
\]

Since \(\Phi \) is continuous it follows that

\[
e^{-\lambda s} = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{(-\lambda)^k}{k!} \cdot s^k.
\]

Let \(Q^* \) denote the set of nonzero elements of \(Q \) and define \(\Gamma : Q^* \to Q^* \) by the equation \(\Gamma(q) = q^{-1} \) (all \(q \) in \(Q^* \)).

Theorem 4. The function \(\Gamma \) is continuous.

Proof. Let \(X^* = \{ x \in X : \Phi(x) \in Q^* \} \). Since \(Q^* \) has the quotient topology (relative to \(\Phi \) and the topology of \(X^* \)) it suffices to show
that the composition $I^n \Phi$ is continuous [5, p. 95, Theorem 9]. Suppose x_μ is a net in X^* which converges to x in X^*. Let $x_\mu = (\tilde{f}_{\mu,n}/\tilde{g}_{\mu,n})$ and $x = (\tilde{f}_n/\tilde{g}_n)$. If $(\tilde{f}_{\mu,n}) \in \tilde{F}$ then $f_\mu \neq 0$ (since $x_\mu \in X^*$) and therefore $(\tilde{f}_{\mu,n}) \in B^*$. Similarly, $(\tilde{f}_n) \in B^*$. Therefore, $(\tilde{g}_{\mu,n}/\tilde{f}_{\mu,n})$ and $(\tilde{g}_n/\tilde{f}_n)$ belong to X^*. Since $x_\mu \to x$ it follows that $\tilde{f}_{\mu,n}/\tilde{g}_{\mu,n} \to \tilde{f}_n/\tilde{g}_n$ in M for each n. Therefore, for each n there exists Ω_n such that

$\tilde{f}_{\mu,n}/\tilde{g}_{\mu,n} \to \tilde{f}_n/\tilde{g}_n$

in $M(\Omega_n)$. Since the reciprocals $\tilde{g}_{\mu,n}/\tilde{f}_{\mu,n}$ and \tilde{g}_n/\tilde{f}_n are also meromorphic in Ω_n, the identity

$$\left| \frac{1}{z} - \frac{1}{w} \right| \sqrt{1 + \left| \frac{1}{z} \right|^2} \frac{1}{\sqrt{1 + \left| \frac{1}{w} \right|^2}} = \frac{|z - w|}{\sqrt{1 + |z|^2} \sqrt{1 + |w|^2}}$$

implies that $\tilde{g}_{\mu,n}/\tilde{f}_{\mu,n} \to \tilde{g}_n/\tilde{f}_n$ in $M(\Omega_n)$ and therefore in M. Since this is true for each n it follows that $(\tilde{g}_{\mu,n}/\tilde{f}_{\mu,n}) \to (\tilde{g}_n/\tilde{f}_n)$ in X^*. Therefore, $\Phi((\tilde{g}_{\mu,n}/\tilde{f}_{\mu,n})) \to \Phi((\tilde{g}_n/\tilde{f}_n))$ in Q^*. But, by Theorem 1, $\Phi((\tilde{g}_{\mu,n}/\tilde{f}_{\mu,n})) = \Gamma(\Phi(x_\mu))$ and $\Phi((\tilde{g}_n/\tilde{f}_n)) = \Gamma(\Phi(x))$. Therefore,

$$\Gamma(\Phi(x_\mu)) \to \Gamma(\Phi(x)),$$

from which we may conclude that the function $I^n \Phi$ is continuous.

REFERENCES

Received April 26, 1972.

CALIFORNIA STATE UNIVERSITY, FULLERTON
K. Adachi, Masuo Suzuki and M. Yoshida, *Continuation of holomorphic mappings, with values in a complex Lie group* .. 1
Michael Aschbacher, *A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5* .. 5
Larry Eugene Bobisud and James Calvert, *Energy bounds and virial theorems for abstract wave equations* ... 27
Christer Borell, *A note on an inequality for rearrangements* 39
Peter Southcott Bullen and S. N. Mukhopadhyay, *Peano derivatives and general integrals* ... 43
Wendell Dan Curtis, Yu-Lee Lee and Forrest Miller, *A class of infinite dimensional subgroups of Diff^r (X) which are Banach Lie groups* 59
Paul C. Eklof, *The structure of ultraproducts of abelian groups* 67
William Alan Feldman, *Axioms of countability and the algebra C(X)* 81
Jack Tilden Goodykoontz, Jr., *Aposyndetic properties of hyperspaces* 91
George Grätzer and J. Plonka, *On the number of polynomials of an idempotent algebra. II* ... 99
Alan Trinler Huckleberry, *The weak envelope of holomorphy for algebras of holomorphic functions* ... 115
John Joseph Hutchinson and Julius Martin Zelmanowitz, *Subdirect sum decompositions of endomorphism rings* ... 129
Gary Douglas Jones, *An asymptotic property of solutions of y'''' + py' + qy = 0* ... 135
Howard E. Lacey, *On the classification of Lindenstrauss spaces* 139
Charles Dwight Lahr, *Approximate identities for convolution measure algebras* ... 147
George William Luna, *Subdifferentials of convex functions on Banach spaces* ... 161
Nelson Groh Markley, *Locally circular minimal sets* 177
Robert Wilmer Miller, *Endomorphism rings of finitely generated projective modules* ... 199
Donald Steven Passman, *On the semisimplicity of group rings of linear groups* ... 221
Bennie Jake Pearson, *Dendritic compactifications of certain dendritic spaces* ... 229
Ryōtarō Satō, *Abel-ergodic theorems for subsequences* 233
Henry S. Sharp, Jr., *Locally complete graphs* ... 243
Harris Samuel Shultz, *A very weak topology for the Mikusinski field of operators* ... 251
Elena Stroescu, *Isometric dilations of contractions on Banach spaces* 257
Charles W. Trigg, *Versum sequences in the binary system* 263
William L. Voxman, *On the countable union of cellular decompositions of n-manifolds* ... 277
Robert Francis Wheeler, *The strict topology, separable measures, and paracompactness* ... 287