ON THE COUNTABLE UNION OF CELLULAR DECOMPOSITIONS OF n-MANIFOLDS

WILLIAM L. VOXMAN
ON THE COUNTABLE UNION OF CELLULAR DECOMPOSITIONS OF n-MANIFOLDS

W. V. VOXMAN

Suppose that $G_1, G_2 \cdots$ are cellular upper semicontinuous decompositions of an n-manifold with boundary $M(n \neq 4)$ such that for $i = 1, 2, \cdots, M/G_i$ is homeomorphic to M. Let G be the decomposition of M obtained from the decomposition of G_i in the following manner. A set g belongs to G if and only if g is a nondegenerate element of some G_i or g is a point in $M - (\bigcup_{i=1}^{\infty} H_{G_i})$. It will be shown that if the various decompositions fit together in a “continuous” manner and if G is an upper semicontinuous decomposition of M, then M/G is homeomorphic to M.

Our principal result thus extends previous results obtained by the author ([6], [7]) and Lamoreaux [4], by removing the 0-dimensionality restriction in [6] or, alternatively, by eliminating the finiteness condition in [7]. Furthermore, with the aid of recent work of Siebenmann [5], generalizations to n-manifolds ($n \neq 4$) may be made. As was observed in [7], some conditions must be imposed on the manner in which the decompositions are pieced together. The example described by Bing in [2] demonstrates that the continuity condition to be described below is a necessary one.

Notation and terminology. Suppose G is an upper semicontinuous decomposition of a topological space, X. Then X/G will denote the associated decomposition space, P will denote the natural projection map from X onto X/G, and H_g will denote the collection of nondegenerate elements of G. If U is an open subset of X, then U is said to be saturated (with respect to G) in case $U = P^{-1}[P[U]]$. If \mathcal{U} is a covering of a subset of X, then $P[\mathcal{U}] = \{P[U] : U \in \mathcal{U}\}$.

The statement that M is an n-manifold with boundary means that M is a separable metric space such that each point of M has a neighborhood which is an n-cell. If A is a subset of M, then A is cellular in M if there exists a sequence C_1, C_2, \cdots of n-cells in M such that (1) for each positive integer i, $C_{i+1} \subset \text{Interior } C_i$, and (2) $\bigcap_{i=1}^{\infty} C_i = A$. If M is an n-manifold with boundary, the statement that G is cellular decomposition of M means that G is an upper semicontinuous decomposition of M and each nondegenerate element of G is a cellular subset of M.

If M is a metric space, A a subset of M, then $S_\varepsilon(A)$ denotes the ε-neighborhood of A and $\text{Cl} A$ denotes the closure of A in M. If K
is a collection of subsets of M, then $K^* = \bigcup \{ k : k \in K \}$. The word map will always be used to indicate a continuous function. If \mathcal{U} is a collection of subsets of M and $A \subset M$, then

$$\text{St} (A, \mathcal{U}) = \bigcup \{ U \in \mathcal{U} : A \cap U \neq \emptyset \}.$$

The main result. The principal theorem will be proved by means of repeated applications of the Lemma which appears below. We say that a cellular decomposition G of a manifold M satisfies condition S if for each saturated open cover \mathcal{U} of H^*_0, there exists a closed map h from M onto M such that (1) $G = \{ h^{-1}(x) : x \in M \}$, (2) if $x \in M - \mathcal{U}^*$, then $h(x) = x$, and (3) for each $g \in G$ and $g \subset \mathcal{U}^*$, there exists a $U \in \mathcal{U}$ such that $g \cup h(g) \subset U$.

Lemma 1. Suppose G is a cellular decomposition of an n-manifold with boundary $M(n \neq 4)$. Then M/G is homeomorphic to M if and only if G satisfies condition S.

Proof. Clearly if G satisfies condition S, then M/G is homeomorphic to M. Suppose now that M/G is homeomorphic to M and that \mathcal{U} is a saturated open cover of H^*_0. Without loss of generality we may assume that \mathcal{U} is locally finite. Suppose $x \in \mathcal{U}^*$ and U_1, \cdots, U_n are those sets in \mathcal{U} which contain x. Set \[\varepsilon_x = \max \{ d(P(x), M/G - P[U]), \cdots, d(P(x), M/G - P[U_n]) \} \] and define $f_1(x) = \varepsilon_x/2$. Then f_1 is a lower semicontinuous function from \mathcal{U}^* into $(0, \infty)$, and, hence, there exists a continuous map f_2 from \mathcal{U}^* into $(0, \infty)$ such that $0 < f_2 < f_1$. For $x \in \mathcal{U}^*$, define $f_3(x)$ to be $\min \{ d(P(x), M/G - P[\mathcal{U}^*]) \}$, and finally define $f(x)$ to be \[f(x) = \min \{ f_1(x), f_2(x), f_3(x) \}. \] Siebenman's projection approximation theorem [5] may be applied to find a homeomorphism k from \mathcal{U}^* onto $P[\mathcal{U}^*]$ such that $d(P(x), k(x)) < f(x)$ for each $x \in \mathcal{U}^*$. Then $h = k^{-1}P$ is the desired map. To see this we need only check that for $g \in G$ and $g \subset \mathcal{U}^*$, there is a $U \in \mathcal{U}$ such that $h(g) \cup g \subset U$. Let $y = k^{-1}P(g)$. By our construction there exists a $U \in \mathcal{U}$ such that both $P(y)$ and $k(y)$ belong to $P[U]$. But $k(y) = P(g)$; therefore, y and g belong to U, which completes the proof.

Suppose M is a metric space and K is a collection of mutually disjoint subsets of M. If $g \in K$, then K is said to be continuous at g in case for each positive number ε, there exists an open subset V of M containing g such that if $g' \in K$ and $g' \cap V \neq \emptyset$, then $g \subset S_\varepsilon(g')$ and $g' \subset S_\varepsilon(g)$.

Theorem 1. Suppose G_1, G_2, \cdots are cellular decompositions of an n-manifold with boundary $M(n \neq 4)$ such that
(1) If \(g \in H_{\alpha_i} \) and \(g \cap H_{\alpha_j}^* \neq \emptyset \), then \(g \in H_{\alpha_j}^* \).
(2) For each \(k = 1, 2, \ldots \), if \(g \in H_{\alpha_k} \), then \(\{H_{\alpha_i}: i \neq k\} \cup \{g\} \) is continuous at \(g \).
(3) For \(i = 1, 2, \ldots \), \(M/G_i \) is homeomorphic to \(M \).
(4) \(G = \{g: g \in \bigcup_{i=1}^n H_{\alpha_i} \text{ or } g \text{ is a point of } M - (\bigcup_{i=1}^n H_{\alpha_i})\} \) is an upper semicontinuous decomposition of \(M \).
Then \(M/G \) is homeomorphic to \(M \).

Proof. We show that \(G \) satisfies condition \(S \). Let \(\mathcal{W} \) be a saturated open cover of \(H_\alpha^* \). The required function \(h \) will be defined as a limit of a sequence of closed, onto maps which are obtained in the following steps.

Step 1. Let \(K_1 = \{p \in M: \text{there exists a sequence of nondegenerate elements, each from a different } H_{\alpha_i}, \text{ which converges to } p\} \). Note that \(K_1 \) is a closed subset of \(M \). We construct a saturated (with respect to \(G \)) open refinement of \(\mathcal{W} \) which covers \(H_\alpha^* \) and misses \(K_1 \). For each \(g \in H_{\alpha_i} \), let \(U_g \) be a saturated open set with compact closure such that

(1) If \(\varepsilon_g = \min \{\text{diam } g, 1/2 \text{diameter } (K_1), 1\} \), then \(U_g \subset S_{\varepsilon_g}(g) \).
(2) If \(g_i \in H_{\alpha_j}^* \) and \(g_j \in H_{\alpha_j}^* \) (\(i \neq j \)) and \(g_i \) and \(g_j \) are contained in \(U_g \), then \(1/2 \text{diameter } g_i < \text{diameter } g_j < 3/2 \text{diameter } g_i \).
(3) \(U_g \) is contained in some \(W \in \mathcal{W} \) which contains \(g \).

Parts (1) and (2) are possible because of the continuity condition imposed on the decompositions. Define \(\mathcal{U}_1 = \{U_g: g \in H_{\alpha_i}\} \). Let \(\mathcal{U}_1 \) be a saturated open locally finite star refinement of \(\mathcal{U}_1 \) and \(\mathcal{U}_1^* = \{U \in \mathcal{U}_1: U \cap H_{\alpha_i} = \emptyset \} \). Observe that it follows from (1) that if \(p \in K_1 \), then \(p \in \mathcal{U}_1^* \). Furthermore, from (1) and (2) we have that if \(p \in K_1 \) and \(\{x_i\} \) is a sequence of points in \(\mathcal{U}_1^* \) which converge to \(p \), then the sequence \(\{\text{St}(x_i, \mathcal{U}_1)\} \) also converges to \(p \).

By Lemma 1, there exists a closed map \(h_1 \) from \(M \) onto \(M \) such that

(1) \(G_1 = \{h_1^{-1}(x): x \in M\} \).
(2) If \(x \in M - \mathcal{U}_1^* \), then \(h_1(x) = x \).
(3) If \(g \in G_1 \) and \(g \subset \mathcal{U}_1^* \), then there exists a set of \(U \in \mathcal{U}_1 \) such that \(g \cup h_1(g) \subset U \).

In addition, since \(\mathcal{U}_1 \) is saturated with respect to \(G \), part (3) holds for all \(g \in G \) which are contained in \(\mathcal{U}_1^* \).

Step 2. The decomposition \(G_2 = \{h_1(g): g \in G_2\} \) is clearly cellular and upper semicontinuous. Let \(P' \) be the projection map from \(M \) onto \(M/G_2 \) and \(P \) the projection map from \(M \) onto \(M/(G_1 \cup G_2) \). Then \(P'h_1P^{-1} \) is readily seen to be a homeomorphism from \(M/(G_1 \cup G_2) \) onto...
But it was shown in [7] that $M/(G_1 \cup G_2)$ is homeomorphic to M (using Siebenman's generalization [5] of Armentrout's "projection approximation" theorem [1], the results of [7] may be extended to n-manifolds for $n \neq 4$).

Let $K_2 = \{ p \in M : \}$ there exists a sequence of nondegenerate elements, each from a different $H_{k_1(G_i)}$, which converges to p. We construct a saturated (with respect to $h_i[G]$) open refinement of $h_i[Z_1]$ which covers $H_{k_1(G)}$ and misses K_i. Suppose $g' = h_i(g)$ where $g \in H_{g_i} - H_{G_1}$. Choose $U_{g'}$ to be saturated (with respect to $h_i[G]$) open set such that

1. If $\varepsilon_{g'} = \min \{ \text{diam } g', 1/2 \text{d}(g', K_2), 1/2 \}$, then $U_{g'} \subset S_{g'}(g')$.
2. If $g_i \in H_{k_1(G_i)}$ and $g_j \in H_{k_1(G_j)} (i \neq j)$ and g_i and g_j are contained in $U_{g'}$, then $1/2 \text{diam } g_i < \text{diam } g_j < 3/2 \text{diam } g_i$.
3. $h_i^{-1}(U_{g'}) \subset S_{g_i}(g_i)$.
4. If $W = \bigcap \{ U : U \in h_i[Z_1] \text{ and } h_i(g) \subset U \}$, then $U_{g'} \subset W$.
5. If $V \in Z_1$ and $g \cup h_i(g) \subset V$, then $U_{g'} \subset V$.
6. $U_{g'} \cap \text{Cl} (h_i[H_{G_1}]) = \emptyset$.

Let $Z_2' = \{ U_{g'} : g' \in H_{k_1(G)} \}$ and let Z_2 be a saturated open locally finite star refinement of Z_2' covering $H_{k_1(G)}$. Let

$$Z_2 = \{ U \in Z_2 : U \cap H_{k_1(G)} \neq \emptyset \}.$$

Note that $h_i^{-1}(Z_1') \subset S_{h_i(H_{G_1})}$ and $h_i^{-1}(Z_2') \subset S_{h_i(H_{G_1})}$.

By Lemma 1, there is a closed map h_2 from M onto M such that

1. $G_2' = \{ h_i^{-1}(x) : x \in M \}$.
2. If $x \in M - Z_2^*$, then $h_2(x) = x$.
3. For each $g' \in G_2'$ contained in Z_2^*, there exists a $U \in Z_2$ such that $h_2(g') \cup g' \subset U$.

Claim. For each $g \in G$ contained in Z_1^*, there exists a $W \in Z_1$ such that $g \cup h_2 h_i(g) \subset W$.

Proof of Claim. Suppose $g \in G$ and $g \subset Z_1^*$. Then there exists $U \in Z_1$ such that $h_i(g) \cup g \subset U$. If $g \in H_{G_i}$ or if $h_i(g)$ is not contained in Z_2^*, then $h_2 h_i(g) = h_i(g)$, and we are done. Suppose then that $g \in H_{G_1}$ and $h_i(g) \cap Z_2^* \neq \emptyset$. Since Z_2' is a refinement of $h_i[Z_1]$ and Z_2 is a locally finite star refinement of Z_2', we may find $U_2 \in Z_2$ and $U_{g'} \in Z_2'$, where $h_i(g) = g'$, such that $h_i(g) \cup U_2 \subset \text{St} (U_{g'}, Z_2) \subset U_{g'}$.

We first show that there exists a $V \in Z_1$ such that $U_{g'} \subset V$. Of course, $h_i(g) = g' \subset U_{g'}$. Let V_1, V_2, \ldots, V_n be those members of Z_1 which contain g. Then by our construction of Z_2',

$$U_{g'} \subset h_i(V_1) \cap \cdots \cap h_i(V_n).$$

Since $h_i(g) \subset U_{g'}$, it follows that $g \subset V_1 \cap \cdots \cap V_n$. But for at least
one \(i = 1, 2, \ldots, \) or \(n, \) \(h_i(g) \cap g \cup V_i. \) Therefore, by (5) in our construction of \(\mathcal{U}'_i, \) it must be the case that \(U_{i^*} \) is contained in \(V_i. \)

We need only observe now that if \(Z \in \mathcal{U}'_z \) and \(h_i(g) \subseteq Z, \) then \(Z \subseteq V_i. \) This is clear since \(Z \subseteq \text{St}(U_{i+1}, \mathcal{U}_i) \subseteq U_{i^*} \subseteq V_i. \) Hence, we have that \(\text{St}(h_i(g), \mathcal{U}_i) \) is contained in \(V_i \) and since

\[
h_i h_i(g) \subseteq \text{St}(h_i(g), \mathcal{U}_i),
\]

the proof of the claim is complete.

We continue inductively. Assume now that covers \(\mathcal{U}'_1, \cdots, \mathcal{U}'_i, \mathcal{U}_i, \cdots, \mathcal{U}_n, \mathcal{V}_1, \cdots, \mathcal{V}_n \) have been defined so that the conditions listed below are satisfied. We denote \(h_k h_{k-1} \cdots h_1 \) by \(h_k \) and \(h_0 = \text{id}. \) For \(i = 1, 2, \ldots, n, \) let \(K_i = \{ p \in M: \) there exists a sequence of nondegenerate elements converging to \(p \) where each element is a member of a different \(H_{h_k} \} \).

(1) \(\mathcal{U}'_i = \{ U_g: g' \in H_{h_k} \} \) is a collection of saturated (with respect to \(h_k \}) \) open sets which refines \(\mathcal{U}'_{i-1} \) and misses \(K_i. \) For each \(g', U_{g'} \) is chosen to contain \(g' \) such that

(a) \(\varepsilon_{g'} = \min \{ \text{diam } g', 1/2 \text{d}(g', K_i) \} \), then \(U_{g'} \subseteq S_{1/2}(g'). \)

(b) \(\text{If } g_j \in H_{h_k} \text{ and } g_k \in H_{h_k} \text{ (} j \neq k \), and } g_j \text{ and } g_k \text{ are contained in } U_{g'}, \text{ then } 1/2 \text{diam } g_j < \text{diam } g_k < 3/2 \text{diam } g_j. \)

(2) \(\mathcal{V}_i \) is a saturated open locally finite star refinement of \(\mathcal{U}'_i \) and \(\mathcal{V}_i^* = \{ U \in \mathcal{V}_i: U \cap H_{h_k}^* \neq \emptyset \}. \)

(3) For \(i = 1, 2, \ldots, n \) and \(1 \leq j \leq i - 1, \)

\[
h_j^{-1} \cdots h_{i-1}^{-1} \subseteq S_{1/2}(h_j, H_{h_k}^*)
\]

and

\[
h_j^{-1} \cdots h_{i-1}^{-1} \subseteq S_{1/2}(h_j, H_{h_k}^*)
\]

(4) For \(i = 1, 2, \ldots, n, \) \(h_i \) is a closed map from \(M \) onto \(M \) such that if \(G_i = \{ \hat{h}_i(g): g \in G_i \} \) then

(1) \(G_i = \{ h_i(x): x \in M \}. \)

(2) \(\text{If } x \in M - \mathcal{V}_i^*, \text{ then } h_i(x) = x. \)

(3) \(\text{For each } g' \in G_i \) which is contained in \(\mathcal{V}_i^*, \text{ there exists } \)

\(\hat{h}_i(g') \cup g' \subseteq U. \)

(5) \(\text{For } i = 1, 2, \ldots, n \) and \(0 \leq j \leq i - 1 \), if \(g \in G \) and \(\hat{h}_i(g) \)

is contained in \(\mathcal{V}_i^*, \text{ then there exists } U \in \mathcal{V}_i^* \) such that \(\hat{h}_i(g) \cup \hat{h}_i(g) \subseteq U. \)

(6) \(\mathcal{V}_i^* \cap \text{Cl}(h_{i-1}(H_{\hat{h}_i}^* \cup \cdots \cup H_{\hat{h}_i}^*)) = \emptyset. \)

Step \(n + 1. \) Let \(G_n = \{ \hat{h}_n(g): g \in G_n \}. \) A proof similar to that employed in Step 2 shows that \(M/G_n \) is homeomorphic to \(M. \) Let \(K_n = \{ p \in M: \) there exists a sequence of nondegenerate elements converging to \(p \) where each element is a member of a different \(H_{h_k} \}. \)
We construct a saturated (with respect to $\hat{h}_n[G]$) open refinement of $h_n[\mathcal{U}_n]$ which covers $H_{\hat{h}_n[G]}$ and misses K_{n+1}. Let $g' = \hat{h}_n(g)$ where $g \in H_g = (H_{\hat{h}_1} \cup \cdots \cup H_{\hat{h}_n})$. Choose $U_{g'}$ to be a saturated open set containing g' such that

1. If $\varepsilon_{g'} = \min \{\text{diam } g', 1/2 \text{diam } (g', K_{n+1}), 1/n + 1\}$, then $U_{g'} \subset S_{g'}(g')$.
2. If $g_i \in H_{\hat{h}[G]}$ and $g_j \in H_{\hat{h}[G]} (i \neq j)$ and g_i and g_j are contained in $U_{g'}$, then $1/2 \text{diam } g_i < \text{diam } g_j < 3/2 \text{diam } g_i$.
3. For $i = 1, 2, \ldots, n$, $(h_{i}h_{i+1} \cdots h_{n})^{-1}(U_{g'}) \subset S_{i/n}(\hat{h}_{i-1}(g'))$.
4. For $i = 1, 2, \ldots, n$, if U^i is the intersection of those sets in \mathcal{U}_i which contain $\hat{h}_{i-1}(g)$, then

$$U_{g'} \subset \hat{h}_n(U^1) \cap \hat{h}_n h_{n-1} \cdots h_2(U^2) \cap \cdots \cap h_n(U^n).$$

5. For $0 \leq i < n$, if $\hat{h}_i(g) \cup \hat{h}_n(g) \subset U \in \mathcal{U}_n$, then $U_{g'} \subset U$.
6. $U_{g'} \cap \text{Cl } \hat{h}_n[H_{\hat{h}_1}^* \cup \cdots \cup H_{\hat{h}_n}^*] = \emptyset$.

Let $\mathcal{U}_{n+1} = \{g' \in H_{\hat{h}_n[G]}\}$, let \mathcal{U}_{n+1} be a saturated open locally finite star refinement of \mathcal{U}_{n+1} and let $\mathcal{V}_{n+1} = \{U \in \mathcal{U}_{n+1}: U \cap \hat{h}_n[H_{\hat{h}_n[G]}^*] = \emptyset\}$. By Lemma 1 there exists a closed map h_{n+1} from M onto M such that

1. $G_{n+1}^* = \{h_{n+1}^{-1}(x): x \in M\}$.
2. If $x \in M - \mathcal{V}_{n+1}$, then $h_{n+1}(x) = x$.
3. For each $g \in G_{n+1}^*$ contained in \mathcal{V}_{n+1}^*, there exists $U \in \mathcal{U}_{n+1}$ such that $g \cup h_{n+1}(g) \subset U$.

Claim. Suppose $g' = \hat{h}_{n+1}(g)$ is contained in \mathcal{U}_{n+1}^* (g' is an element of G). Suppose $0 \leq i < n + 1$. Then there exists $U \in \mathcal{U}_{i+1}$ such that $g' \cup \hat{h}_i(g) \subset U$.

A proof patterned after the proof of the Claim in Step 2 may be used to establish this Claim.

Define $h = \text{Lim } \hat{h}_n$. To see that h is well defined, we observe that for each $x \in M$, there exists an integer N such that for $n > N$,

$$\hat{h}_n(x) = \hat{h}_N(x) = h(x).$$

This is clearly the case if $x \in H_{\hat{h}_n}^*$, since if N is the first integer such that $x \in H_{\hat{h}_N}^*$ then $h_{n}(x)$ does not belong to the succeeding \mathcal{U}_n^*, and, hence, is left fixed. If $x \in \text{Cl } H_{\hat{h}_n}^*$ then choose N such that

$$d(x, \text{Cl } H_{\hat{h}_n}^*) > \frac{1}{N}.$$
hand, if no such U exists, then there is a sequence $\{g_n\}$ of nondegenerate elements from distinct decompositions G_{i_n} which converges to x. But it was noted in Step 1 that in this case $x \in \mathcal{U}_i^*$ and thus $h(x) = x$.

We next show that h is continuous. Suppose $\{x_i\}$ is a sequence of points in M converging to a point x. If there exists an open set U containing x such that $U \cap H_{a_i}^* = \emptyset$ for all but at most a finite number of i, then it follows again from (3) of the induction Step $n + 1$ that $\{h(x_i)\}$ converges to $h(x)$. If no such U exists, then there are two cases to consider.

Case 1. $x \in (\text{Cl } H_{a_i}^* - H_{a_i}^*)$. Suppose for each i, $x_i \in g_{n_i} \in G_{i_n}$. We may assume that the x_i lie in \mathcal{U}_i^* since if not $h(x_i) = x_i$. But as it was observed in Step 1, since the sequence $\{g_n\}$ converges to x, we have that the corresponding sequence $\{\text{St}(g_{n_i}, \mathcal{U}_i)\}$ also converges to x. It follows from the Claim in Step $n + 1$, that $h(x_i) \in \text{St}(g_{n_i}, \mathcal{U}_i)$, and, therefore, $\{h(x_i)\}$ converges to $h(x)$.

Case 2. $x \in H_{a_i}^*$. Let n be the first integer such that $x \in g_n \in H_{a_n}$. But then $h_n(g_n)$ is a point and our construction in the inductive steps reduces this case to Case 1.

That h is onto may be seen by the following argument. Suppose p is a point in M. We assume that $p \in g' \subset G$ where $g' \subset \mathcal{U}_i^*$ (if not, $h(p) = p$). For each positive integer i, there exists a point x_i in \mathcal{U}_i^* such that $h_i(x_i) = p$. It follows from the Claim in Step $n + 1$ that for each i, $x_i \in \text{St}(g', \mathcal{U}_i)$. Since $\text{St}(g', \mathcal{U}_i)$ has compact closure (see Step 1), there exists an accumulation point x of the sequence $\{x_i\}$. For simplicity of notation let us assume that $\{x_i\}$ converges to x. We show that $h(x) = p$.

Let $g \in G$ be the member of the decomposition which contains x. Choose N large enough so that $h_n(g) = h(g)$ for each $n \geq N$. First we suppose that there exists a positive integer $K \geq N$ such that for $n \geq K$, $S_{iK}(g) \cap H_{a_n}^* = \emptyset$. Of course, the sequence $\{h_K(x_i)\}$ converges to $\hat{h}_K(x)$. But it follows from (3) of Step $n + 1$, that for i sufficiently large, we will have $\hat{h}_k(x_i) = \hat{h}_i(x_i) = h(x_i)$. Thus $h(x) = p$, since $\hat{h}_i(x_i) = p$ for all i.

Now suppose that each open set containing x intersects an infinite number of the $H_{a_i}^*$, and, hence, each open set containing $\hat{h}_n(x)$ will also intersect infinitely many of the sets $H_{a_i}^*$. Thus, $\hat{h}_n(x)$ belongs to K_{n+1} (see Step $n + 1$). Since $\{\hat{h}_n(x_i)\}$ converges to $\hat{h}_n(x)$, it follows from conditions (1) and (3) of Step $n + 1$ that the sequence

$$\{\text{St}(\hat{h}_n(x_i), \mathcal{U}_n)\}$$

also converges to $\hat{h}_n(x)$.

But the Claim in this step ensures that for $j > N$, $\hat{h}_j(x_i) \cup \hat{h}_N(x_i)$ belongs to $\text{St}(\hat{h}_N(x_i), \mathcal{U}_N)$. In particular then for $i > N$,
\[\mathring{h}_i(x_i) \cup \mathring{h}_N(x_i) \subseteq \text{St} (\mathring{h}_N(x_i), \mathcal{U}_N), \]
and since, \(\mathring{h}_i(x_i) = p \), it again follows that \(h(x) = p \). Thus \(h \) is an onto map.

It is easily seen from our construction of \(h \) that \(G = \{ h^{-1}(x) : x \in M \} \).

Finally, we must show that \(h \) is closed. It suffices to show that if \(K \) is a compact subset of \(M \), then \(h^{-1}(K) \) is also compact. Since \(h \) is onto, for each \(x \in K \), there exists a unique element \(g_x \in G \) such that \(h(g_x) = x \). If \(g_x \in \mathcal{U}^*_1 \), let \(U_{g_x} \) be a member of \(\mathcal{U}_1 \) which contains \(g_x \). If \(g_x \) is not contained in \(\mathcal{U}^*_1 \) let \(U_{g_x} \) be an open set containing \(g_x \) with compact closure. Note that it follows from Step 1 that if \(g_x \) is contained in \(\mathcal{U}^*_1 \), then \(\text{St} (U_{g_x}, \mathcal{U}_1) \) has compact closure. Since if \(g_x \in \mathcal{U}^*_1 \), then \(g_x \cup h(g_x) \subseteq \text{St} (U_{g_x}, \mathcal{U}_1) \), and if \(g_x \) is not contained in \(\mathcal{U}^*_1 \), then \(h(g_x) = g_x \), the collection \(\{ U_{g_x} : x \in K \} \) is an open cover of \(K \). Let \(U_{g_{\pi_1}}, \ldots, U_{g_{\pi_n}} \) be a finite subcover of \(K \), where the first \(i \) terms are members of \(\mathcal{U}_1 \). To finish the proof we need only observe that

\[h^{-1}(K) \subseteq \text{St} (g_{\pi_1}, \mathcal{U}_1) \cup \cdots \cup \text{St} (g_{\pi_i}, \mathcal{U}_1) \cup U_{g_{\pi_{i+1}}} \cup \cdots \cup U_{g_{\pi_n}} \]

and that the right hand set has compact closure. Thus, the conditions of property \(S \) have been satisfied, and, hence, \(M/G \) is homeomorphic to \(M \).

A decomposition of a metric space is said to be nondegenerately continuous if for each \(g \in G, H_g \cup \{ g \} \) is continuous at \(g \).

Corollary 1. Suppose \(G \) is a cellular nondegenerately continuous upper semicontinuous decomposition of \(E^3 \). Suppose there exists a countable number of planes in \(E^3, Q_1, Q_2, \ldots \) such that for each \(g \in H_g, g \) is contained in at least one of these planes. Then \(E^3/G \) is homeomorphic to \(E^3 \).

Proof. For \(i = 1, 2, \ldots \), let \(G_i \) be the decomposition of \(E^3 \) such that \(H_{G_i} = \{ g \in H_G : g \subseteq Q_i \} \). Then \(E^3/G_i \) is homeomorphic to \(E^3 \) [3], and since it is readily verified that \(G_i, G_2, \ldots \) satisfy the conditions of Theorem 1, \(E^3/G \) is homeomorphic to \(E^3 \).

References

Received March 6, 1972.

University of Idaho
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Adachi, Masuo Suzuki and M. Yoshida</td>
<td>Continuation of holomorphic mappings, with values in a complex Lie group</td>
<td>1</td>
</tr>
<tr>
<td>Michael Aschbacher</td>
<td>A characterization of the unitary and symplectic groups over finite fields of characteristic at least 5</td>
<td>5</td>
</tr>
<tr>
<td>Larry Eugene Bobisud and James Calvert</td>
<td>Energy bounds and virial theorems for abstract wave equations</td>
<td>27</td>
</tr>
<tr>
<td>Christer Borell</td>
<td>A note on an inequality for rearrangements</td>
<td>39</td>
</tr>
<tr>
<td>Peter Southcott Bullen and S. N. Mukhopadhyay</td>
<td>Peano derivatives and general integrals</td>
<td>43</td>
</tr>
<tr>
<td>Wendell Dan Curtis, Yu-Lee Lee and Forrest Miller</td>
<td>A class of infinite dimensional subgroups of $\text{Diff}^r (X)$ which are Banach Lie groups</td>
<td>59</td>
</tr>
<tr>
<td>Paul C. Eklof</td>
<td>The structure of ultraproducts of abelian groups</td>
<td>67</td>
</tr>
<tr>
<td>William Alan Feldman</td>
<td>Axioms of countability and the algebra $C(X)$</td>
<td>81</td>
</tr>
<tr>
<td>Jack Tilden Goodykoontz, Jr.</td>
<td>Aposyndetic properties of hyperspaces</td>
<td>91</td>
</tr>
<tr>
<td>George Grätzer and J. Plonka</td>
<td>On the number of polynomials of an idempotent algebra. II</td>
<td>99</td>
</tr>
<tr>
<td>Alan Trinler Huckleberry</td>
<td>The weak envelope of holomorphy for algebras of holomorphic functions</td>
<td>115</td>
</tr>
<tr>
<td>John Joseph Hutchinson and Julius Martin Zelmanowitz</td>
<td>Subdirect sum decompositions of endomorphism rings</td>
<td>129</td>
</tr>
<tr>
<td>Gary Douglas Jones</td>
<td>An asymptotic property of solutions of $y''' + py' + qy = 0$</td>
<td>135</td>
</tr>
<tr>
<td>Howard E. Lacey</td>
<td>On the classification of Lindenstrauss spaces</td>
<td>139</td>
</tr>
<tr>
<td>Charles Dwight Lahr</td>
<td>Approximate identities for convolution measure algebras</td>
<td>147</td>
</tr>
<tr>
<td>George William Luna</td>
<td>Subdifferentials of convex functions on Banach spaces</td>
<td>161</td>
</tr>
<tr>
<td>Nelson Groh Markley</td>
<td>Locally circular minimal sets</td>
<td>177</td>
</tr>
<tr>
<td>Robert Wilmer Miller</td>
<td>Endomorphism rings of finitely generated projective modules</td>
<td>199</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>On the semisimplicity of group rings of linear groups</td>
<td>221</td>
</tr>
<tr>
<td>Bennie Jake Pearson</td>
<td>Dendritic compactifications of certain dendritic spaces</td>
<td>229</td>
</tr>
<tr>
<td>Ryōtarō Satō</td>
<td>Abel-ergodic theorems for subsequences</td>
<td>233</td>
</tr>
<tr>
<td>Henry S. Sharp, Jr.</td>
<td>Locally complete graphs</td>
<td>243</td>
</tr>
<tr>
<td>Harris Samuel Shultz</td>
<td>A very weak topology for the Mikusinski field of operators</td>
<td>251</td>
</tr>
<tr>
<td>Elena Stroescu</td>
<td>Isometric dilations of contractions on Banach spaces</td>
<td>257</td>
</tr>
<tr>
<td>Charles W. Trigg</td>
<td>Versum sequences in the binary system</td>
<td>263</td>
</tr>
<tr>
<td>William L. Voxman</td>
<td>On the countable union of cellular decompositions of n-manifolds</td>
<td>277</td>
</tr>
<tr>
<td>Robert Francis Wheeler</td>
<td>The strict topology, separable measures, and paracompactness</td>
<td>287</td>
</tr>
</tbody>
</table>