Vol. 47, No. 2, 1973

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 307: 1  2
Vol. 306: 1  2
Vol. 305: 1  2
Vol. 304: 1  2
Vol. 303: 1  2
Vol. 302: 1  2
Vol. 301: 1  2
Vol. 300: 1  2
Online Archive
The Journal
Editorial Board
Submission Guidelines
Submission Form
Policies for Authors
ISSN: 1945-5844 (e-only)
ISSN: 0030-8730 (print)
Special Issues
Author Index
To Appear
Other MSP Journals
Nonexpansive projections on subsets of Banach spaces

Ronald Elroy Bruck, Jr.

Vol. 47 (1973), No. 2, 341–355

If C is a convex subset of a Banach space E, a projection is a retraction !r of C onto a subset F which for each x C maps each point of the ray {r(x) + t(xr(x)) : t 0}∩C onto the same point r(x). A retraction r is said to be orthogonal if for each x, xr(x) is normal to F in a sense related to that of R. C. James. This paper establishes three main results. First, a nonexpansive projection is necessarily an orthogonal retraction; if E is smooth, the converse is also true. Second, if E is smooth then there can exist at most one nonexpansive projection of C onto a given subset F. Third, if E is uniformly smooth and there exists a nonexpansive retraction of C onto F, then there exists a nonexpansive projection of C onto F. The proximity mapping is a nonexpansive projection in a Hilbert space, but not in a general Banach space.

Mathematical Subject Classification 2000
Primary: 47H99
Secondary: 46B99
Received: 14 June 1972
Published: 1 August 1973
Ronald Elroy Bruck, Jr.