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The classical Hausdorff-Young theorem is extended to the
setting of rearrangement-invariant spaces. More precisely, if
1=p=2,pt+q'=1, and if X is a rearrangement-invariant
space on the circle 7 with indices equal to 2‘1, it is shown
that there is a rearrangement-invariant space X on the integers
Z with indices equal to ¢~! such that the Fourier transform
is a bounded linear operator from X into X. Conversely, for
any rearrangement-invariant space Y on Z with indices equal
to ¢1,2 < q < oo, there is a rearrangement-invariant space
Y on \1/’ with indices equal to p~! such that .7 is bounded
from Y into Y.

Analogous results for other groups are indicated and ex-
amples are discussed when X is L? or a Lorentz space L*".

By L*» = L*(T) we denote the usual Lebesgue space on the unit
circle 7, and by I = [°(Z) the corresponding space on the integers
Z. The index conjugate to p will always be denoted by ¢ so that
p*+ ¢g'= 1. The Fourier transform .7~ defined by

(T F)m) = Fn) = —217; [ r@)ewas,

is a bounded linear operator from L' into [* and from L? into I* so by
the M. Riesz-Thorin interpolation theorem ([9], p. 95), .7~ is bounded
also from L? into I’ whenever 1 < p < 2. This is the assertion of
the classical Hausdorff-Young theorem ([9], p. 101).

Hardy and Littlewood ([5]; [9], p. 109) showed that .7~ is bounded
from L7, 1< p <2, into 12, the “weighted” Lebesgue space of all
sequences {c,} for which

ey = { eslptt + ln)mf” = {S 1@+ nD et + 1))

is finite; since 1<%, as a simple computation shows, their result
improves on that of Hausdorff and Young. A still sharper version,
again due to Hardy and Littlewood ([6]; [9], p. 128), is based upon
the observation that even the (symmetric) decreasing rearrangement
of the sequence {f(n)} belongs to 13, or, what amounts to the same
thing, .77 f belongs to the Lorentz space 1¢? (cf. [3], [4], and [9]
for the precise statements and definitions). Thus .7~ is a bounded
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linear operator from L* into [ whenever 1 < p < 2. More generally,
the recent interpolation theorem of Calderdn ([3], p. 293) shows that
7 is bounded from L7 into 1,1 < p<2,1 <7< o, the Hardy-
Littlewood results thus being contained in the special case r = p.

It is our intention in this paper to extend the above results to
the setting of arbitrary rearrangement-invariant spaces. Intrinsic
interest apart, the need for such a theorem arises naturally in pro-
blems concerning the ideal structure of Lipschitz subalgebras of rear-
rangement-invariant spaces (cf. [1]). Our main results, in which the
L? spaces are replaced by rearrangement-invariant spaces with indices
(cf. [2]) equal to p™', are as follows:

THEOREM A. Let X be a rearrangement-invariant space on T
with indices (p™*, p™), 1= p =< 2. Then there is a rearrangement-
invariont space X on Z with indices (% 9™, p7t + ¢ =1, such that
7 18 a bounded linear operator from X into X.

THEOREM B. Let Y be a rearrangement-invariant space on Z with
indices (¢, ¢, 2 < ¢ £ . Then there is a rearrangement-invariant
space Y on T with indices (p~, p™), 7+ ¢t =1, such that .7 is a
bounded linear operator from Y into Y.

The construction of the spaces X, Y depends crucially on the
properties of the maximal operator S = S(g) of Calderdon ([3]), and
the proof of the boundedness of .7~ follows from the corresponding
interpolation theory. One advantage of this type of proof is that it
is then easy to see that Theorems A and B extend to transforms
given by arbitrary uniformly bounded orthonormal systems as in
earlier results of F. Riesz and Paley ([9], pp. 102, 121). Our results
extend to the Fourier transform defined on Z (the “duals” to Theorems
A, B) and the real line R, and to more general groups (although the
theory presented here requires that the Haar measure be always
o-finite); we shall not aim for this level of generality. Examples are
discussed which show that Theorems A and B contain as special cases
the results of Hardy-Littlewood and Calderdn mentioned above.

2. Rearrangement-invariant spaces. This section contains a
brief synopsis of results from the theory of rearrangement-invariant
spaces required later. We shall assume that the reader is familiar
with the material in the paper of Boyd ([2]) whose notation we shall
by and large adhere to; for further details see [4], [7], and [8].

Thus (2, .77, ) will denote a totally o-finite measure space, ¢ = 0,
satisfying one of the following conditions:
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2.1) {t is nonatomic and ¢(Q) = oo ,
(2.2) ¢t is nonatomic and #(Q) < oo ,

[t is completely atomic, all atoms having equal measure

2.
23) 1, and #(Q) = <.

A (2), () denote respectively the measurable and nonnegative
measurable functions on 2. A function norm is a mapping p: F(Q) —
[0, =] which, for all £, f,e.Z7(2), all scalars X > 0, satisfies:

(2.9 of)=0=f=0 p—ae;

(2.5) o) =no(f) ;.  fisfe - ae.=p0(f) = o(f);
(2.6) o(fi + 1) = o(f) + o(f) ;

(2.7) HE) < oo =00 <o (1)

28  p(E) < o =:§ fdp < Auo(f), for some Ay < oo ;

(2.9) fol fe—ae.=po(f) 1 o(f)  (Fatou property) .

The space X = L consists of all functions fe _#Z(2) for which
Oo( f) < e=. When functions differing on at most a null-set are
identified, X is a Banach space under the norm || f||x = o(| fI), called
a Banach function space. If X contains, along with a function f,,
every function f, equimeasurable with f;, we say that X is a rear-
rangement-invariant space; we may and shall assume that if f, and
Jf. are equimeasurable then ||f,|lx = ||/llx (cf. [7], §16).

If a space X has all the properties of a rearrangement-invariant
space except that instead of the Fatou property (2.9) it satisfies the
weaker Riesz-Fischer property

(2.10) Fe X, 3 0050 < o0 = 0( 3 0) < o0

we shall say that X is a Riesz-Fischer space (cf. [8], Notes I and II).
The nonincreasing rearrangement f* of f is defined as in [2],
and the Hardy maximal rearrangement f** is given by

(2.11) FrE(t) = —1- S:f*(s)ds , 0<t< oo,

We shall make frequent use of the following well-known inequality
(cf. [7], §10)

(2.12) (f + )% S F55 + Frr .

L vz denotes the characteristic function of a set E.
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The domain of definition of f*, fe _#(2), will be denoted by 2%*;
thus if 0 satisfies (2.1) (resp. (2.2),(2.3)) we set 2* = R* (resp.
[0, ()], Z+). To each rearrangement-invariant space X on 2 there
corresponds (via the Luxemburg representation theorem [7], §12) a
rearrangement-invariant space X* on 2*. The norms on X and X*
are related by

(2.13) e = 11/ * Mz s feX.

When X = L’ we shall write X* = L*.
The associate space X’ of X is defined as in [2]; note the result-
ing Holder inequality (setting a = p(2)): ’

@19 | iroidp = [ /00 ®d< 1 fllole,  FeXgeX’.

The dilation operators F,, F,,0 < s < «, and G,,s or s'eZ*?
are defined as follows:
When 2* = R*,0 < s < oo, set

(2.15) ENHE) =f(st), 0<t< o, fe Z(RY).
When 2* = [0,a] and 0 < s < o, set
(2.16) FNHE)=fst), 0st=sa, feZ(0,a]),

where f(t) is defined to have value 0 if ¢ > a.
When 2% = Z+ and me Z+, set

(Guf)(m) = f(mn) ,

C Geapmy = M~ Dl + 1) mez fe @Y,

where [«] denotes the integer part of a.
Now let X be a rearrangement-invariant space on 2. If 2* = R+
we define || E,||x, by

(2.18) 1Bl = sup {[| B f* el fllx = 1) 5 0<s< oo

in case 2* = [0, a], Z* there are analogous formulas for || F,[|, and
|G, lix)» respectively.
The Boyd indices ([2]) of X are defined in the nonatomic case by

_______IOg £l ; —log || B, ||ix)

(2.19)  a(X) = lim b s -

B(X) = lim
(with E, replaced by F, if 2* = [0, a]), and in the atomic case by
2.20) a(X) = }:EE!LWM : B(X) = lim —lolg‘ |G llix) .

og m Moo og m

2 The notation used here differs from that of Boyd ([2]).
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THEOREM 2.1 (Boyd [2]). Let X be a rearrangement-invariant
space on (2, 7, ). Then the limats (2.18) (or (2.19) as appropriate)
exist and

2.21) 0= B(X)<a(X)=1.
Moreover, if X' is the associate space of X, then

(2.22) aX)=1-8X); BX)=1-aX).

When X is L? or a Lorentz space L? both indices are equal to
P

3. The Calderdén maximal operator S. For each fe L'(R*), set

(3.1) (SFH) = SO' F(s)ds + % g S:tsﬂ/z Fds, 0<t< oo,

The operator S so defined is precisely the Calderén maximal operator
S = S(o) ([3], p- 288) for the segment ¢ in the plane joining the
points (1, 0) and (1/2, 1/2). It is a simple matter to check that S(f*)
is nonnegative, nonincreasing and continuous on R7*([3], p. 288) and
hence that (S(f*))* = S(f*). In subsequent sections we shall need to
consider the maximal average (cf. (2.11)) (Sf*)** of Sf*.

LeEMMA 3.1. For any fe LY(R"),

(3.2) (SF*)** () = g:” F(s)ds + ¢ g:ts—m FHe)ds, 0<t< .
Furthermore, we have,

(3.3) SO+ f2)E) = (SFA)Y* @) + (SEH @), 0<t< oo,
and, if f, fye L(T),

S((fy + £ @) = (SO + (SO, 0<t < e

Proof. Equation (3.2) is established by a routine change in the
order of integration. Note the similarity to (3.1). Putting f = f* +
¥, we have f* = (f* + 9% = F* + fF = f, and (3.3) follows directly
from (3.2).

If fe L(T), then f* is supported in [0, 1] and so from (3.2) we
see that (Sf*)** has the constant value g f*(s)ds on [0,1]. Hence,

0
if fi,foe L(T) we have for all {, 0 < ¢ =<1,

S((fl + fz)*)*x(t) = Hfl + fz”L’(T) = Hlele + |If2HL1(T)
= (SO + (S£)** (@) -
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Thus, it remains only to show that the preceding inequality persists
for all ¢ > 1.
Now, if t > 1, we set

@) =1, 0<s=S1t; vu(s) = (st)™*, 1jt<s<1,

so that by (8.2) we have
S92+t = | F*@neds, 6>1.

Note that + is continuous and nonincreasing on [0, 1]. If f, f; € L}(T),
we deduce from (2.12) that

[+ i (i + @ds,  0<ust,
and so it follows by a theorem of Hardy (cf. [7], §5) that
[+ £ @rds < [ (F2@n(e) + £ @(a)ds
i.e.,

S((f: + 7)) = (/)0 + (S7)**(@) t>1.

This completes the proof.
It follows easily from (3.2) that (Sf*)** is nonnegative, nonin-
creasing and continuous on R*.

LeMMA 3.2 (Calderén [3], p. 288). The operator S is of (strong)
type (1, o) and of weak type (2,2). The same is therefore true of
the operator f— (Sf*)**,

The next theorem justifies the terminology ‘maximal operator’
which we have applied to S.

THEOREM 3.3 (Caldersn [3], p. 290). Let U be any linear operator
defined on L (T) whose values are functions defined on Z. If U is
of type (1, ) and weak type (2,2) then

(Uf)* = eSF*,

where ¢ is a constant independent of f.

Since the Fourier transform .7 is of strong (hence weak) types
(1, ) and (2, 2) we deduce the following result:

COROLLARY 3.4. For each fe LXT), there is the estimate
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(T ) =SS,

where ¢ 18 a constant independent of f.

4. Thespace X,. Let X be an arbitrary rearrangement-invariant
space on the circle 7' (no restrictions on the indices are necessary at
this stage). In this case the conditions (2.7) and (2.8) imply

(4.1) L= X< L'

with continuous embeddings, i.e., there are constants ¢; = ¢;(X), 1 =1, 2,
such that

(4.2) Ll = ediflly, fe X5 I flly S el flla felL=.
The set X, of functions on Z is defined by

(4.3) X ={g= ()7 g = (SF*)** for some feX)

and we set

(4.4) Hgllz, = Inf{[| fllx: g™ = (SF*} 5 geXo;
equivalently, by (2.13),

(4.5) lgllz, = inf (| £* e g% = (S5, ge X .

It will be established in the following series of lemmas that the
space X, so defined is a Riesz-Fischer space which fails in general to
satisfy the Fatou property (2.9) (cf. §7) However, we show in the
next section how to construct from X, a second space X with all of
the desired properties.

For notational convenience we shall use ||(+)]] to denote the norm
on X and [|(+)|l, to denote the norm on X,.

LEMMA 4.1. If ge X, then
(4.6) gl = cllgllo
where ¢ is a constant independent of ¢.
Proof. Since ge)ﬁ,, there exists a function fe X satisfying
(4.7) g = (Sf)*" .
But then by Lemma 8.2 (or directly)
191l = 119" oy S 1SF) ooy = N e = 11l -

Combining this last estimate with (4.2} we have ||g|l. = ¢||f]|| and so
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taking the infimum of the right-hand side over all f satisfying (4.6),
we deduce from (4.4) that |g|l. = ¢llgll.

LEMMA 4.2. |iglli=0<=g=0.

Proof. If g = 0 then, by (4.4), ||g|l, = 0. The reverse implication
is a direct consequence of Lemma 4.1.
The proof of the next lemma is obvious and we omit it.

LEMMA 4.3. (@) [[xglle = N1l
(b) |g1|§'gz]:’”ngoéngHo-

LEMMA 4.4. |lgi + @:lb = [[g.]l + llga]h

Proof. Let g, 0,€ X, and fix ¢ > 0. Then there exist fi, e X
with gf/* < (SfH)** and ||f;]] < llg:lls + €/2,7 = 1,2. It follows from
(2.12) and (3.3) that

(g + 60" = g + 95" = (SFH)* + (Sfi)**
= S(f* + 5 = S((F* + 5% .

Hence, from (4.5) and (2.18)
g, + g1l = IA* + FF Ml S A e + 15 e = A+ (12
and by the choice of f, f;

Hgl + gz”o = Hng(J -+ Hggilo + €.

Since ¢ is arbitrary, this completes the proof.

LEMMA 4.5. Characteristic functions of all finite sets belong to
X..

Proof. If g is the characteristic function of a set of n points,
then g**(t) = 1, 0 < ¢t < m; g**(¢) = n/t, t = n. Now the constant func-
tion f(6) = n, 0 < @ < 27, belongs to L~(T), hence, by (4.1), to X.
It is a simple matter to check that ¢g** < (Sf*)** and hence that
ge X'O. We omit the details.

LEMMA 4.6, For each NeZ* there is a constant A, < o such
that

(4.8) = 1o = Adlgl, geX,.

Proof. Since 3. <vlg(m)| = 2N + 1)|lgll., the estimate (4.8)
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follows directly from (4.6).
LEMmA 4.7. XO has the Riesz-Fischer property.

Proof. Let (9,)=., be a sequence of functions g.c X, with
< 1galle < =. By (2.10), we must show that g = 3., g, belongs to
X,. Now for each ne Z* there exists a function f, € X such that

gx* = (Sf*, Nl S 1lgalle + 27"
It follows that

49 Slfle=S A1 S+ S 2" < e

But X* has the Riesz-Fischer property so from (4.9) we deduce that
the function f= f* = Y=, fF belongs to X*.
Again using (4.9) and (4.2) we see that for each fixed te R*,

S G = 5 e < ¢ 3 1 e < o
Hence by the dominated convergence theorem and (3.2)

S 0 = 3 ([ 72 @ds + 0|7 sipzeds)

n=1

- g:’t S f(eds + ¢ S:f—m S, fi(s)ds
But then
o= (80) = 5o s e =65

n=1

Since f*e X*, it follows from (4.5) that ge X,. This completes the
proof.

THEOREM 4.8. Let X be any rearrangement-invariont space on
T. Then the space X, is a Riesz-Fischer space and 7~ is a bounded
linear operator from X into X,.

Proof. That X, is a Riesz-Fischer space is the content of Lemmas
4.2, +--,4.7. If fe X then by (8.4), (7 f)* < ¢Sf* = S(cf*) and so
(T 1) < (S(ef*))**. Since ¢f e X it follows from (4.4) that 7 fe X,
and that ||.7 fll, < |lefllx = ¢|| fllx- This completes the proof.

5. The space X. We denote by x. the characteristic function
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of the set {—un,+--,—-1,0,1,.--, n}<Z, and for each funection g
defined on Z we set

(5.1) llgllz = sup [lgxallo = Lm [[gall, .

The space X then coAnsists of all functions ¢ for which ||g||z < .
Note that if g € X, then |gx.| < |g] 80 by Lemma 4.3 (b), ||g¥.lle =
llglle From (5.1) we deduce that g€ X. Thus

(5.2) XX

and

(5.3) lHallx = llgll, geX,.
The properties (2.4), - (2 8) for X are easily verified from the

correspondmg properties for X, (Lemmas 4.2, ,4.6). To see that

X is rearrangement-invariant, let g, € X and suppose that g, and g,
are equimeasurable. If Ne Z™*, then ¢,x, assumes only finitely many
values. But then the fact that g, and ¢, are equimeasurable implies
the existence of Me Z+ such that the values of g,y all are assumed
by g9.xx. Hence (¢:xx)* = (9:xx)* so by Lemma 4.3 (b), ||gxnlle =
Nogxxllo = 1l9.llyz. This holds for all Ne Z+ so we deduce from (5.1)
that g, X and ||g.lls < ||g./|3. Interchanging the roles of g, and g,
we obtain the reverse inequality and so finally we have ||g.||+ = || g.]|2-

The Fatou property is “built-in” to the norm on X. Indeed it is
clear from (5.1) that ||gx./lz 1 |lgllz as #— o, for any g e X, and by
Theorem 5.9 of ([8], Note II,) this is enough to ensure that X has
the Fatou property. The next theorem is useful in identifying the
space X when X is given in concrete terms (e.g. a Lorentz or Lebesgue
space); see §7. We omit the obvious proof.

THEOREM 5.1. Let X be a rearrangement-invariant space on T.
Then X = X, (with identical norms) if and only if X, has the Fatou
property.

THEOREM 5.2. Let X be a rearrangement-invariant space on T.
Then the space X is a rearrangement-invariant space on Z and 7~
is a bounded linear operator from X into X.

Proof. That X is a rearrangement-invariant space has been
established above. The boundedness of .7~ follows from (5.2), (5.3),
and Theorem 4.8.

6. Indices of X. The first theorem in this sgction enables us
to estimate the indices of X in terms of those of X,.
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THEOREM 6.1. Let X be any rearrangement-invariant space on
T. Then the indices of X, and X are related by

(6.1) BX) £ B8X) =aX) = aXy) .

Proof. Fix ge Xand meZ*. Itisclear that (G.0*) 1w = Glg*YLmn)
for all neZ+, and so

1Gag™ ]2

Il

sup H(Gug ) llo = sup Gl Lomn) o

= Gallity sUP 19 Lmalle = 1| G lliipllllz -

that B(X'o) = B(X). An entirely analogous proof for the operators
G, now shows that || G114 = || Gyallit, and hence that a{X) < a(X).
The proof is completed by applying (2.21).

It follows from (2.18) that ||G,|% = ||Gallit, and hence by (2.20)

In order to compute the indices of X, we need the following
lemma,

LeEMMA 6.2. Let f*eLMR7"),g*cl™Z*) and fix meZ*. If
g** < (SF*)** then the following inequalities also are wvalid:

(6.2) (Gimg™)** = mS(B, f*)",

(6.3) (Gog*)** = M S(E,y, ) .
Proof. We show first that

(6.4) (Guag™)*™ = Eya(g™) -

Indeed, if te R*, then ¢ has a unique decomposition t = km + «,
keZ*,0=<a<m, so from (2.17)

(Guag®)*(®) = = | (o) ()ds
%[S:ﬂg*(l}ds e T Skm g* (k)ds + S gk + 1),58]

(k—1)m 13
_mlP& s a _ _ﬂt/m*
= —t—[jZ:lg 1) +%g (ke 1)] = So g*(s)ds
= g**(t/m) = E,,(97%)(@) .

The identity

(6.5) B (S = mS(H, f*)*F

is established by a similar “change of variable” argument. The desired
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result (6.2) now follows from (6.4), the hypothesis g** < (Sf*)**,
and (6.5). The inequality (6.3) can be established in similar fashion.

THEOREM 6.3. Let X be any rearrangement-invariant space on
T. Then

(6.6) aX) =1 pX).

Proof. Fix meZ* and let 6 be any number satisfying ¢ > 1.
Then for each gc )A(o, g # 0, there exists a function fe X such that
g** < (SF¥** and || £} < dllgll. It follows from (6.2) that (G,,g%)** =
mS(F, f*)**, since E, = F, for s > 1, and so from (4.5) we deduce
that G,.0* € X, and

Gumg™ llo = M| Fp f* ||z = || Fpll ol £
Hence, by choice of f, we have
1 Gyng™ o = MO Follxllgllo -

This last estimate holds for all ge X, so we find that I Gipm iy
mo||F,||x. This in turn holds for all ¢ > 1 so we have ||Gy.lli3,
m||F.,|lx), and by (2.19) and (2.20) this suffices to show that a(X;)
1 — B(X). The proof is complete.

The analogue of (6.6) for the lower index B(X,) is a little more
difficult to establish, although the proof follows the same lines as
that of Theorem 6.3. The difficulty arises from the fact that we
cannot, in general replace E,, f* by F,.f* (since the former is sup-
ported in [0, m], the latter in [0, 1]). However, it is fairly straight-
forward to estimate their difference and for this we need the following
lemma. For each meZ*, we set

(6.7) Fa(®) = 7Y m(8) 0=t=1.

IA A TIA

LEMMA 6.4. Let Y be a rearrangement-invariant space on [0, 1]
with lower index B satisfying 0= g = 1/2. Then for each &> 0,
there is a constant ¢ = c(¢), depending only upon & (and Y), such that

(6.8) 1Fnlly = c(e)(@m)emete, mezZ* .

Proof. 1t is clear from (6.7) that fF(t) = (£ + 27™) Y 01_e—myi0y
0<t¢t<1. Thus, if f,, is defined by

fmk - fﬁx(gk—m—l_g-‘m,gk—m_g—m] y k = 1, 2, sy, m ,

we have ff = >\r., f,.. and hence

(6.9) alle = 152 1l = 3 Wl = S 1155 -
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Now if i(t) = ¢t + )73, 0=<¢t <1, we have
Filt) = (& + 27 en(®) = (@) Fansa () ()
so from (6.9) we deduce that

6.10) [1fully = 33 @50 Funes i 1 bl = ¢0 2 2 Fitll, -

It follows from (2.19) that there is a positive integer M = M(e)
such that k= M implies ||Fil|y < (2%)#7. Hence, if m = M, we
have from (6.10)

M m
fn iy = Co]; 25| For [y + Go k:ZU: . ZE 2Ry
M m
é ¢ Z 2};/2 + Co Z‘ (21/2——,3+s)k s
k=1 k=1

since || F, |l =1 if s = 1. The first term on the right-hand side is
a constant, say c¢,, depending only on M and hence ultimately only
upon ¢; by hypothesis on 8 we have 1/2 — 58+ ¢ > 0, so the second
term is dominated by a multiple of (2!#7¢+)", Hence

fnlly = ei(8) + e{e)(@7)F787 = e(e)(2™) 77, m = M(e) ,

where ¢ = max (¢, c), and it is clear that by a suitable choice of
constant ¢(e) this inequality can be made to persist for all me Zt,
This completes the proof.

THEOREM 6.5. Let X be a rearrangement-invariant space on T
with wpper index « = a(X) satisfying 1/2 L a £ 1. Then

(6.11) BX) =1~ a(X).

Proof. Fix ¢ >0 and meZ*. If geX'0 then there is a function
fe X satisfying

(6.12) g = (Sfr)**.
From the inequality {6.3) of Lemma 6.2 we have
(6.13) (Gong®)**(t) = 27" S(Eyn f*)**(2) 0<t< oo
Now it is routine to verify that for all { = 1,
2 S(Bemn [ (1) = 2 S(Fen f )71
614 (el smep(sds)

and hence by (6.13)
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(Gamg™)**(8) = 27"S(Fom f*)**(2)

6.15
( ) _l_t-—1/2<2—m/2 Sl_ms—lﬂf*(S)dS) , t>1.

In order to find a similar estimate for ¢t < 1, we observe that (Gyng*)**
is constant on [0,1] so for each s,0<s =<1, we have from (6.14)
(with ¢ = 1),

(Gang™)**(s) = (Gamg™)**(1)
< 2 S(Fym ) (1) + (2—m/2 Sl_ 71 £+ (6)ds )
< 2 S(Fyn f5) 5 () + (2-m/2 gl_ gt f*(s)ds) ,
the last inequality because S((-)*)** decreases on R* (cf. §3). Com-
bining this with (6.15) we have
(6.16)  (Gamg®)**(t) < 27"S(Fy-n f*)**(2)

-+ ;D(t)(Z""‘Iz S;Mms_llzf*(s)d‘S) s 0<t<< oo,
where @(t) = min (1,¢7#). Now if A(t) = 1,0=¢ <1, it is a simple
matter to check that o(t) = (Sh*)**(f), 0 < t < o, so using (3.3) we
can reduce (6.16) to the form

1 Kok
(Gong™) () £ S(27"Fins + (20| s (s1as)it) (1)
0<t<Cee,
It follows from (4.4) that G,.g* e X, and

1Gong* o S 277 Fomnf* Lo+ (272|578 p(5)ds) | 2% -
(6.17)

1
2

< 20| Frnllon | £+ o270 | 5707 (0)ds) -

We estimate separately each of the terms on the right-hand side
of (6.17). From (2.19) we note that there is a constant M = M(e)
such that m = M implies || Fyn||x, = (2™)*". Hence, if m = M,

(6.18) 2| Frnlloll Il = @)L

To estimate the second term we invoke the Holder inequality (2.14)
to obtain

(6.19) S:«msdllzf*(s)ds S el s m g o

Now, by hypothesis, the upper index a of X satisfies 1/2=a =<1 so
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by (2.22) the lower index of (X*)' is equal to 1 — a and hence lies
between 0 and 1/2. It follows from Lemma 6.4 and (6.19) that there
is a constant ¢ = ¢(¢) such that

1

(6.20) 2™ S s (s)ds = @) || fllx(2m) T meZ*.

—
We can now combine (6.18) and (6.20) with (6.17) to obtain
[ Gamg™ [lo = e(e)@™) I FII m = M),

and hence, taking the infimum over all f satisfying (6.12),

[ Gemg™ [le = (&)™)l gllo m = M(e) .

This is valid for all ge X, so (2.18) shows that

Gon 3y = c(&)@") 7, m = M(e) ,

and by (2.20) this in turn implies that 8(X,) =1 — @ — &. Finally,
since ¢ is arbitrary, we have 8 = 1 — «, and this completes the proof.

We are now in a position to prove our main result (Theorem A)
which we restate as follows:

THEOREM 6.6. Let X be a rearrangement-invariant space on T
with indices (p~, p™), 1 < p < 2. Then the space X is a rearrange-
ment-invariant space on Z with indices (¢, ¢7Y), p™' + ¢t =1, and
7 is a bounded linear operator from X into X.

Proof. In view of Theorem 5.2 we need only show that the indices
of X coincide and are equal to ¢~*. But from (6.1), (6.6), and (6.11)
we have

=l-aX)=pX)spX) saX) saX)£1-8X) =g,

and so the proof is complete.

When 2 < p £ o, it is no longer true that .~ maps L* into [°.
Indeed (cf. [9], p. 101), there are functions in L=, hence in L?”, whose
Fourier transforms do not lie in any of the classes I", 1< r < 2.
For precisely this reason we cannot expect the indices of X to exceed
1/2 whenever X has indices equal to p™,2 < p £ . In fact, we
shall see in §7 that the following result holds.

THEOREM 6.7. Let X be a rearrangement-invariant space on T.
II XS L* (hence certainly +f X has indz’Aces Ph2< p = ), then
X = >, with equivalent norms, and so a(X) = B(X) = 1/2.

7. Examples. We give a brief description of the space X when
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X is a Lorentz space®. In particular, we show that the results of
Hardy-Littlewood and Calderon mentioned in §1 are contained in ours
as special cases.

(1) If X=L", 1<p<2 1<r<c, then X,=X=1",
P+ ¢ = 1. Indeed, if g€ l’, then f(t) = f*{E=¢t"g** @), 0<t <1,
belongs to L* and

02(6) S 5 = |l S (857

Hence, by (4.3), geX'0 and so l7< X.. Conversely, if geXo and
fe L satisfies g** < (Sf*)**, it follows from Hardy’s inequality (cf.
[4], Chap. I) that [|g|lwr = || fllor. Hence, by (4.4), gel™ and

gllir = 1lgllz,» This shows that X, = 1" with comparable, hence

equivalent, norms. Finally, since l‘"A has the Fatou property, it
follows from Theorem 5.1 that X, = X = I7.
(2) If X= L' then X, = ¢, and X = [*. This follows in much
the same way as above upon observing that there are functions f in
1/t
L for which | f*(s)ds tends to zero arbitrarily slowly as t— oo.
[

Note that ¢, does not have the Fatou property. Indeed, ¢, is generated
by the function norm o(f) = || flle, f€ ¢y, O(f) = oo, f¢c¢,. Thus, if
Y. is the characteristic function of the set {1, 2, .-+, n} and y is identi-
cally equal to 1 on Z*, we have y, | x pointwise but p(x,) = 1 for all
n while o(y) = co. The space X = I~ of course has the Fatou property.
(8) When X = L? Theorem 6.6 fails to reproduce the Plancherel
theorem, i.e., X s #*. This is of course due to the weak-type
behavior of the Calderdn operator S (cf. Lemma 3.2). Thus, at least
as far as the HausdorfI-Young theorem is concerned, our results for
spaces of index 1/2 are uninteresting and will not be pursued here.
(4) If XS L* then X = X, = i**. For if X< L*, then

S;ts“"zf*(S)ds Sl fllm = 6l fllx

and so (Sf*)**(t) decays as t* as t— co. Moreover, this rate of
decay is always attained (take f = constant). Thus, arguing as in
example (1) above, we see that X, and hence X coincides with &=,
with equivalent norms.

8. The space V. Let Y be a rearrangement-invariant space on
the integers Z. We wish to construct a rearrangement-invariant
space Iv’ on T such that .7 is bounded from Y into Y. Thus we
define Y to be the collection of all functions f on T for which
(Sf)** < g**, for some ge Y, and we set

3 For the definition of Lorentz spaces, see [3] or [4], Chap. L.
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(8.1) I £lly = inf {{|glly: (SF¥** < g**}, feY.

We remarked in the preceding section that (Sf*)** cannot decay
faster then ¢~ so in order that Y contain the constant functions we
need to know that there are functions ¢g in Y such that ¢ decays
more slowly that {2, This will be the case if, for instance, the
indices of Y are equal to ¢7%, 2 < ¢ < <o, because then I**< Y.

THEOREM 8.1 (Theorem B). Let Y be a rearrangement-invariant
space on Z with indices (7', q¢™"),2 < g = co. Then the space Visa
rearrangement-invariant space on T with indices (p™, p™), p™* + ¢ =
1, and 7~ is a bounded linear operator from Y into Y.

Proof. The properties (2.4), .-+, (2.8) for Y are established in
much the same way as for the space X, in §4; we prove only the
triangle inequality (2.6).

Thus, if £, f.€ Y, then given € > 0 there are functions g;€ Y
such that (Sfi)** < g#* and |lg:lly S | filly +€/2,7=1,2. From
Lemma 3.2 we have

(S(fy + £ = (SfF)** + (S = g + g% = (gF + g)**,
so from (8.1) we deduce that f, + f, € Y and

I, + fLlly S g + oflly = Mok lly + o5 lly
= |lg.lly + l19:lly £ Al + 140y + .

Since ¢ is arbitrary, this shows that ||, + folly < Ay + [[f:lly as
desired.

Note that the infimum in (8.1) is attained. Indeed, if fe Y then
Hfly = llgslly where g, = g7 is the unique function in Y satisfying
(9)**(m) = (Sf***(m — 1), me Z*. Thus, if £, 1 f, we have (Sf;})** 1
(Sf*)** and hence g, 1 g,. Since Y hasvthe Fatou property we have
I1fally = 197, 1l T1l9slly = 1| f||¥, 2and hence Y also has the Fatou property.

The proof of the boundedness of &~ and the computation of the
indices are much the same as before so we omit the details.

9. Extensions. The preceding theory extends fairly easily to
more general groups but one or two remarks are in order. If G is
a locally compact abelian group with dual group I (we assume that
the Haar measures are g-finite) then the Fourier transform 77 defined
on (L'+ L*(G) is bounded from LYG) into L>(I") and from L*G)
into L*(I"); hence, if X is a rearrangement-invariant space on G with
indices (p7, p™),1 < p < 2, then XS (L' + LG) and so .7, maps
X into (L* + L=)I).
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Once these properties of .7, have been noted, the group structure
is no longer needed. The space X, is constructed as before and the
computation of the indices is the same. We define b'e by means of
the norm [|g||+ = sup||gXz,|lz,, Where the supremum is taken over all
sequences {F,};., of sets E, of finite measure such that £, 1 I
Of course, if I" has finite measure then X, and X are identical, but
if I" has infinite measure then the example X = L', in which case
X is L=(I") and X, is the closure in L*(I") of functions of compact
support, shows that X and X, need not coincide (cf. §7, Ex. (2)).
Similar remarks apply to the construction of the space Y.

Note that Theorems A and B are not special to the Fourier trans-
form .77; they are valid for any operator of weak types (1, ) and (2, 2).
In the same vein, we remark that Theorems A and B have obvious
analogues for operators of weak types (p,, ».) and (g, ¢.), 1 £ p;, ¢; < .
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