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The main purpose of this paper is to show that the zero-
set spaces of Gordon provide a natural and very general
setting in which to develop dimension theory. Defining cover-
ing dimension for zero-set spaces in the natural way, it is
shown that the subspace theorem, the product theorem, and
sum theorem hold. As a consequence it is possible to give a
subspace theorem for arbitrary topological spaces.

1. A subspace theorem for arbitrary topological spaces. From
the general theory in zero-set spaces it is possible to deduce a
subspace theorem in arbitrary topological spaces. To express the
result it is convenient to have on hand a definition of the dimension
of a ring as defined in [1]. This notion also allows the simplification
of certain proofs in dimension theory.

Let R be a commutative ring with identity. By a basis of R we
mean a finite set of elements which generate E. The order of a basis
is the largest integer n for which there exist #n + 1 members of the
basis with nonzero product. A basis {a;} of R is said to refine the
basis {b;} of R if each a; is a multiple of some b;. The dimension of
R, denoted by d(R), is the least cardinal m such that every basis of
R has a refinement of order at most ut.

Let C(X) denote the ring of continuous real-valued functions on
a topological space X. It is shown in 1] that dim X = d(C(X)). For
subspaces A of X, the statement d(C(A4)) < d(C(X)) is equivalent to
dim A £ dim X, the assertion of the subspace theorem. These state-
ments are not always true in arbitrary topological spaces [9, p. 264].
However we obtain a subspace theorem by replacing C(A4) by another
ring of functions associated with A. Let C,(A) denote the set of all
real-valued functions f defined on A such that for each real number
r, the sets {xed| f(x) =< r} and {xe A|f(x) = r} are the intersections
with A of zero-sets of X. Here a zero-set of X is the set of zeros
of a continuous real-valued function on X. For general information
about zero-sets the reader is referred to [9]. It follows from
Theorem 8.5 of [10] that C,(4) is a uniformly closed ring and is
also a lattice.

The proof of the following subspace theorem will be discussed
after Theorem 10.

THEOREM 1. If A is a subspace of an arbitrary topological space
X, then d(C,(4)) < d(C(X)).
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It is also possible to formulate analogous versions of the product
theorem and the sum theorem in arbitrary topological spaces. However,
it will become apparent that the most natural way to formulate these
results is in the context of zero-set spaces.

The ring C,(A) introduced above seems to have been little studied
in the literature and we digress to give some further information
about it.

It is clear that C,(A4) is contained in C(A). A condition for equality
may be given using the concept of “z-embedding” from [11]. A subspace
A of a topological space X is said to be z-embedded in X if every
zero-set of A is the intersection with A of a zero-set of X. In par-
ticular, if X is perfectly normal, every closed set of X is a zero-set
of X, and it follows that every subspace of X is z-embedded in X.

THEOREM 2. Let A be a subspace of a topological space X. Then
C,(A) = C(A) if and only if A is z-embedded in X.

Proof. Suppose A is z-embedded in X and feC(4). For each
real number 7, the sets {xec A| f(x) < r} and {x e A} f(x) = 7} are zero-
sets of A and by hypothesis are the intersections with A of zero-sets
of X. Hence feC,(4). It follows that C,(A) = C(4).

Conversely, suppose C,(A) = C(A) and let Z be a zero-set of A.
Then Z ={xecA|f(x) =0} for some feC(4). Since feC,(4), it
follows that Z is the intersection with A of a zero-set of X. Hence
A is z-embedded in X.

If feC(X), the restriction of f to a subspace A clearly belongs
to C,(A). In the case when A is a zero-set of X, we have a Urysohn
extension theorem for members of C,(4).

THEOREM 3. Let A be a zero-set of an arbitrary topological space
X. Then each feC,(A) has a continuous extension to X.

Proof. Except for notation, the proof is the same as in Gillman
and Jerison [9, pp. 18, 19].

2. Zero-set spaces. In the following, R will denote the real
numbers and N the positive integers. For information on zero-set
spaces, the reader is referred to Gordon [10]. In this section we
review some of the main facts and give some further results.

A zero-set space is a pair (X, 2°) where 2 is a family of subsets
of X satisfying certain axioms. The sets in 2" are called zero-sets
and their complements with respect to X are called cozero-sets. The
first of the axioms given by Gordon concerning the separation of
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distinet points of X by a set in %" is not needed in dimension theory
and we will omit this requirement. Further, we find it convenient
to give the axioms for the cozero-sets rather than the zero-sets. Thus
by a zero-set space we mean a pair (X, 2") where 2 is a family of
subsets of X such that the family & of all complements in X of
members of % satisfies the following conditions.

(1) & is closed under countable unions; in particular, Xe &.

(2) & is closed under finite intersections; in particular, ¢ ¢ &

(8) Whenever A and B are disjoint zero-sets of X, there exist
disjoint cozero-sets C and D with Ac C and BC D.

(4) Each cozero-set of X is the countable union of zero-sets of X.

It is interesting to note that these conditions differ from the
axioms for the open sets of a perfectly normal topological space only
in the requirement that we have closure under countable unions rather
than arbitrary unions. It is significant that a good theory of dimen-
sion is available for perfectly normal spaces [2], [3].

The family of all cozero-sets in an arbitrary topological space
satisfies the conditions (1)—(4), [9, Chapter 1]. It is again significant
that the most satisfactory theory of dimension in topological spaces
involves the use of cozero-sets [9, p. 243], [8].

If X and Y are zero-set spaces, a mapping a: X —Y is called a
zero-set mapping if the inverse image of every cozero-set is again
a cozero-set. When Y = R, the cozero-sets are taken to be the open
sets of R. If X is a zero-set space, S(X) will denote the set of
real-valued zero-set mappings on X. It is shown in [9] that

(i) S(X) is a uniformly closed ring and is also a lattice:

(ii) For each cozero-set C of X, there is a zero-set function f e
S(X) such that C = {we X | f(x) = 0}.

Part (ii) is the justification for calling members of & cozero-sets,
and may be derived from a Urysohn’s lemma argument in almost the
same way that an open set in a perfectly normal topological space is
shown to be the cozero-set of a continuous real-valued function as in
[6, p. 148].

With subspaces defined in the natural way as in [10], we also
have the Urysohn extension theorem holding for zero-set spaces.
Again the proof is the same as in [9].

THEOREM 4. Let X be a zero-set space and let A be a zero-set of
X. Then each f e S(A) has an extension to a zero-set function of S(X).

By a basic cover of a zero-set space, we mean a covering of X by
cozero-sets. In defining locally finite families in zero-set spaces, we
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use a condition which iIs somewhat stronger than the condition for
local finiteness in topological spaces.

DEFINITION. A family {U,|a € A} of subsets of a zero-set space
X is said to be locally finite if there exists a countable basic cover
{Vi:|ie N} of X such that each V; meets at most finitely many of
the U,.

We now give a result which is crucial in the development of
dimension theory in zero-set spaces. This says in effect that every
zero-set space is countably paracompact. Countably paracompact spaces
were discussed by Dowker [4] who showed that each perfectly normal
topological space is countably paracompact.

THEOREM 5. Let {U;} be a countable basic cover of a zero-set space.
Then there exists a countable locally finite basic cover {V;} of X such
that V,c U; for each 1.

Proof. Choose zero-set functions f; such that
UU. = 2 £, >0},

and let
Bj; = {=] fi(x) <1/},

and
Wi = {z| fi(x) > 1/k} .

It is clear that V; is a cozero-set and that V;C U;. For each x¢
X, there is some first ¢ for which z ¢ U; but ¢ U, for k < i. Suppose
that x¢ V,. Then z¢ B;; for some 7 < © and therefore f;(x) = 1/7 > 0.
Thus z¢ U, for some k < j < 4. This contradiction shows that x¢ V;
and so {V;} is a basic cover of X.

Given x ¢ X there is some j for which f;(z) > 0. Hence xe W,
for some k and therefore {Wj,} is a countable basic cover of X. If
2>7 and ¢ >k, then ye W;, implies that f;(y) > 1/k > 1/i so that
yeéB;;. Thus ye¢V, and W;, NV, = ¢. Therefore, W;, meets only
finitely many V; and the proof is complete.

REMARK. It is possible to show as in [7, p. 221] that each coun-
table basic cover has a star-finite countable basic refinement.
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3. Covering dimension for zero-set spaces. The order of a basic
cover is the largest integer n for which there exist n + 1 members
of the cover with nonempty intersection.

DEFINITION. Let X be a zero-set space. The dimension of X,
denoted by dim X, is the least cardinal m such that every finite basic
cover of X has a finite basic refinement of order at most m.

If (X, 97) is a topological space, then the family 2~ of zero-sets of
X form a zero-set structure on X. The definition of dimension for a
topological space (X, .7") as given in [9, p. 243] is the above definition
for the case of the zero-set space (X, %).

The subspace theorem for zero-sets of a zero-set space is an easy
consequence of the definition. If X is a zero-set space with dim X £ #,
and if A is a zero-set of X, then dim A < n.

We remark that if {U;} is a basic cover and {V,} is a countable
basic refinement of order < %, then there exists a basic cover {W;}
of order < n such that W, c U, for each 7. In fact we only have to
set W, =U{V;|V;cU, V;z U, for k<i. Some of the W, may
possibly be empty.

The following lemma is proved using an argument due to deVries
and given in Nagata [13, p, 22].

LEMMA 6. Let {U;|ie N} be a countable basic cover of a zero-set
space X, and let {Z;|je N} be a countable locally finite cover of X
consisting of zero-sets Z; such that dim Z; < n for each j and such
that each Z; meets at most finitely many U,. Then there exists a basic
cover {V;|ie N} of order < n such that V,C U, for each ¢ N.

Proof. We construct by induction a sequence of basic covers
{U;,;] 1€ N} such that U,,; = U, and U;,;C U,,; for j > k, and such that
each point of Z; is contained in at most » + 1 members of {U;;|i e N}.
Suppose that {U,,;|ic N} has been constructed. To get {U,.,;|iec N}
we restrict {U,,;|7e N} to Z,,, and choose a basic refinement {W, ;|7 ¢
N} of it of order < n such that W, ,cC U,,; for each 4. If we put
Ui = (U, \Z,1) U W,,;, the induction step is completed.

Let V.= N{U.: ke N}. To see that V; is a cozero-set, we let
{A,} be a countable basic cover such that each A, meets at most
finitely many Z,. Since U,..; was obtained from U, ; by removing part
of Z,,,, it follows that for some integer K we have U,; N A, = Ux,; N A4,
for all k> K. Since V, is a countable union of sets of the form
Ug.;N A,, it is a cozero-set. Finally it is clear that each point of X is
contained in at most # -+ 1 of the V..

LEMMA 7. Let {V,} be a countable basic cover of a zers-set space
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X. There exists a basic cover {W,} and zero-sets Z, such that W,C
Z,CVy for each k.

Proof. The sets W, and Z, may be found inductively as in [9,
p. 243].

For normal topological spaces, Dowker [5] has shown that one
may use locally finite covers instead of finite covers in the definition
of dimension. For zero-set spaces one may use countable basic covers
instead of finite basic covers as shown in the next result.

THEOREM 8. Let X be a zero-set space. Then dim X< n if and only
if every countable basic cover of X has a countable basic refinement of
order = n.

Proof. The sufficiency of the condition follows from the remarks
preceding Lemma 6.

Suppose now that dim X < n. In view of Theorem 5, it is sufficient
to prove the result for locally finite covers. Let {U;} be a countable
locally finite basic cover of X and let {4,} be a countable basic cover
of X such that each A, meets at most finitely many U;. Let {V,} be
a locally finite basic cover of X such that V, < A, for each k. Choose
zero-sets Z, as in Lemma 7. Since {V,} is locally finite, so is {Z,}
and since Z,C A,, each Z, meets at most finitely many U,. We have
dim Z, < n for each k. An application of Lemma 6 now yields a basic

refinement of {U;} of order < n. This completes the proof.

Further characterizations of dimension in terms of mappings and
separation of zero-sets may be obtained for zero-set spaces. These
results, and their proofs, are similar to the results in topological spaces
as in [12] and [8].

4, The sum, subspace, and product theorems.

THEOREM 9. (The sum theorem.) Let X be a zero-set space and
let X = U, Z; where each Z; is a zero-set. If dim Z; < n for each
%, then dim X < n.

Proof. This result may be proved as in Hemmingsen [12, Theorem
4.2]. For the case when the family {Z;} is locally finite, the result
is immediate from Lemma 6. It is only the latter case which is needed
in the proof of the subspace theorem.

THEOREM 10. (The subspace theorem.) If X is a zero-set space
and A is a subspace of X, then dim A < dim X.
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Proof. We have already observed that the result holds when A4
is a zero-set of X.

Suppose next that A is a cozero-set of X. Choose a zero-set
function fsuchthat 0 < f <1land A = {z| f(x) > 0}. LetZ, = {x|1/(: +
NS fle) =14, (i =1,2,+++),and let U, = {&| f(x) > 1/i}. Then {U}
is a basic cover of A and each U; meets finitely many Z;,. Thus {Z}
is a locally finite collection in 4. Also A = Uz, Z; and since dim Z; =
n for each 7, we have dim A < n by Theorem 9.

Finally we consider an arbitrary subspace A of X. Let {U;} be
a finite basic cover of A. We can write U, = V; N A for cozero-sets
V; of X. The cozero-set V = U,V, has dimension < n (by the pre-
ceding paragraph) and so the basic cover {V,} of V has a basic refine-
ment {W;} (in V) of order < n. The trace of {W;} on A is then a
basic refinement of {U;} of order = %. Thus dim A £ n and the proof
is complete.

If X is a zero-set space, we may show, as in [1], that dim X =
d(S(X)). Moreover, if S*(X) denotes the bounded functions in S(X),
the same argument may be used to show that dim X = d(S*(X)).

Theorem 1 now follows from Theorem 10. If & is a topology
on X, we let 2 denote the family of zero-sets in X of elements of
C(X). If A is a zero-set subspace of (X, 27), then dim A < dim X.
Hence d(S(4)) £ d(S(X)). The result follows if we observe that C,(4) =
S(4) and C(X) = S(X).

The product of zero-set spaces is discussed in [10, p. 152]. The
product theorem for zero-set spaces will be derived from the subspace
theorem and the product theorem for compact topological spaces.

Let X be a zero-set space for which S(X) separates the points of
X. Gordon [10] has shown that such a space has a compactification
BX with the property that S*(X) is isomorphic to S(8X). Moreover,
if BX is given the weak topology induced by S(8X), then C(8X), the
ring of continuous functions on BX for this topology, coincides with
S(BX). Thus d(C(BX)) = d(S(8X)) and it follows that the dimension
of BX is the same whether considered as a zero-set space or as a
topological space.

THEOREM 11. If X is a zero-set space, then dim X = dim gX.

Proof. Since S*(X) and S(B8X) are isomorphic, dim X = n =
d(S*(X)) = n = d(S(BX)) = n = dim X = =n.

THEOREM 12. (The product theorem.) If X and Y are zero-set
spaces, then
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dim (X xY) < dim X + dim Y.

Proof. Suppose first that S(X) and S(Y) separate the points of
X and Y respectively. Since X X Y < gXx BY, the subspace theorem
yields dim (X x Y) < dim (8X x B8Y). By the product theorem for
compact topological spaces [12], we have dim (RX X RY) = dim X +
dim gY. Since dim X = dim X and dim Y = dim BY, it follows that
dim (X x Y) < dim X + dim Y.

Now suppose that X and Y are arbitrary zero-set spaces. We
may define, as in the construction on p. 41 of [9], zero-set spaces X’
and Y’ such that S(X) is isomorphic to S(X’) and S(Y) is isomorphic
to S(Y’), and S(X") and S(Y’) separate the points of X’ and Y’ respec-
tively. It is clear from the construction that S(X x Y) is isomorphic
to S(X’ xY’). It follows that dim (X xXY) = dim (X’ x Y’). The
result follows on applying the first part of the theorem to X’ and Y.
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