Pacific Journal of

Mathematics

STRUCTURE HYPERGROUPS FOR MEASURE ALGEBRAS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 47, No. 2, 1973

STRUCTURE HYPERGROUPS FOR MEASURE ALGEBRAS
CHARLES F. DUNkL

An abstract measure algebra A is a Banach algebra of
measures on a locally compact Hausdorff space X such that
the set of probability measures in A is mapped into itself
under multiplication, and if ¢ is a finite regular Borel measure
on X and ¢ <<vec A then pc A. If A is commutative then
the spectrum of A, 4,, is a subset of the dual of A, A*, which
is a commutative W*-algebra. In this paper conditions are
given which insure that the weak-* closed convex hull of 4,
or of some subset of 4,, is a subsemigroup of the unit ball
of A*. This statement implies the existence of certain byper-
group structures. An example is given for which the condi-
tions fail.

The theory is then applied to the measure algebra of a
compact P*-hypergroup, for example, the algebra of central
measures on a compact group, or the algebra of measures on
certain homogeneous spaces. A further hypothesis, which is
satisfied by the algebra of measures given by ultraspherical
series, is given and it is used to give a complete description
of the spectrum and the idempotents in this case.

A hypergroup is a locally compact space on which the space of
finite regular Borel measures has a commutative convolution structure
preserving the probability measures. The spectrum of the measure
algebra of a locally compact abelian group is the semigroup of all
continuous semicharacters of a commutative compact topological semi-
group (Taylor [7], or see [2, Ch. 1]). In this paper we consider the
spectrum of an abstract measure algebra and investigate the question
of whether the spectrum or some subset of it has a hypergroup
structure.

Section 1 of the paper contains a general theorem on the existence of
hypergroup structures on the spectrum of an abstract measure algebra.
The fact that the dual space of an appropriate space of measures is
a commutative W*-algebra is of basic importance in the proof of this
theorem. This section also contains an example of a compact hyper-
group whose measure algebra does not satisfy the hypotheses of the
theorem.

In §2 we recall the definition of a compact P*-hypergroup from
a previous paper [1] and apply the main theorem of §1 to this situa-
tion. The result is that the closure of the set of characters of the
hypergroup in the spectrum is a compact semitopological hypergroup
and is a set of characters on another compact semitopological hyper-
group.
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Section 3 defines a class of P*-hypergroups of which ultraspherical
series form a particular example. A complete description of the
spectrum and the idempotents of the measure algebra is given. The
results are much like those which Ragozin [6] obtained for the algebra
of central measures on a compact simple Lie group.

1. The general situation. We will use the following notation;
for a locally compact Hausdorff space X, C*(X) is the space of bounded
continuous functions on X, C(X) is the space {fe C*(X):f tends to
0 at o}, M(X) is the space of finite regular Borel measures on X, M,(X)
is the set {¢#e M(X): ¢ = 0, #uX = 1} (the probability measures), 4, is
the unit point mass at xe X, and M(X)* is the dual space of M(X).
If X is compact we write C(X) for C3(X). We let w* denote either
of the topologies o(M(X), C(X)) or o(M(X)*, M(X)).

Note that M(X)* may be interpreted as the space of generalized
funections on X, (the projective limit of the spaces {L=(X, p): ¢t € M, (X)}
ordered by absolute continuity) and is thus seen as a commutative
W*-algebra (see [2, p. 9]). We will write f— f(f ¢ M(X)*) for the
involution, f-p¢ for the action of M(X)* on M(X), and {g, /> for
the pairing of M(X) and M(X)*, (te M(X), fe M(X)*). Note{f -, 9> =
e, fo> for f, ge M(X)*, pre M(X), and (¢, 1> = S dp. The unit ball
B (the set {f:||fIl £1}) of M(X)* is w*-compactxand is a commuta-
tive semitopological semigroup under multiplication and the w*-topology.
We will be concerned with compact convex subsemigroups of B.

Suppose there is given for each x, y € X a measure Az, y) € M, (X)

such that for each fe€ Cy(X) the map (z, y) — | fd\(z, y) is separately
X
continuous. Then for each p, ve M(X) the function

x> SXSdek(x, Y dv(y)

is continuous and

[ de@)| )| rine, ) = | | dee| o, v) .

This fact was proved by Glicksberg [3]. We will use this to define
semitopological hypergroups.

DErFINITION 1.1. A locally compact space H is called a semi-
topological hypergroup if there is a map M H x H— M,(H) with the
following properties:

(1) M=,y) = Ny, %), (x,yc H), (commutativity);

(2) for each fe C,(H) the map (z, y)— S fd\(z, y) is separately
continuous, (x, ye€ H); "
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(8) the convolution on M(H) defined implicitly by

[, fae) = | duw| wvw)| rine ), (2, e M), Fe (D)

is associative, (note d,xd, = ANz, ¥), (%, ¥y € H)).
If there is a point e € H such that Me, x) = 4,, (xr€ H), then e is
called the identity of H. A bounded continuous function ¢ on H such

that L«ﬁd}»(m, y) = é(x)6(y), (x, y € H), is called a character of H.

If H is a compact semitopological hypergroup then it is easily
shown that convolution on M(H) is separately w*-continuous, and
that M,(H) is a compact commutative semitopological affine semigroup
(“affine” means px(sw, + s;v;) = s,(*y,) + s(¢y;) for s,5 20,8 +
s, =1, p¢,v,v,€ M,(H)). The converse to the latter holds (Pym [4]
proved a form of this statement; we will give a proof of it in the

present context).

ProproSITION 1.2. Let H be a compact space and suppose M,(H)
is a commutative semitopological affine semigroup (in the w*-topology),
then H can be given the structure of a compact semitopological hyper-
group, so that convolution restricted to M,(H) gives the original semi-
group structure.

Proof. Let x denote the semigroup operation on M,(H). This
operation extends uniquely to M(H), and M(H) becomes a commuta-
tive Banach algebra. For each #,yc H let Az, y) = 0,0, € M, (H).
Now we must show that ) satisfies Definition 1.1, and the convolution
induced by X\ is the same as the given. By hypothesis, the function

Tf(x,y) = SH fan(z, y) = S fd(8,x0,) is separately continuous (x, y € H).
H
Glicksberg’s result [3] shows that xr—»S Tf(x, y)du(y) is continuous
H

for each pe M(H). Let y,v be finitely supported (discrete) measures
in M,(H), then by an easy computation we have

|, 75 vap@avw) = | saps,  (recam).

For fixed v the set of ¢ for which this identity holds is w*-closed.
Thus the identity holds for all pe M,(H), all finitely supported ve
M,(H). Repeat the argument to show the identity holds for all
ve M,(H).

It is convenient to isolate the following situation as a lemma.
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LemMmA 1.8. Suppose X is a locally compact space, S is a com-
pletely regular Hausdorf space, and there is a bounded linear map
J: M(X) — C5(S) with the following properties (we will write ||pt|ls
Sor sup {{jx(s)|: se S}:

(1) Jljil=1

(2) there exists c€ M, (X) such that jc = 1 (the constant function);

(3) g~ pells = l[ells, where jise M(X)* is defined by {t,js) =
jts), (s€ S, pre M(X)).

Then the w*-closed convex hull of 7,8, denoted by w* co (4,S), is
a compact (semitopological) subsemigroup of B, the unit ball in M(X)*.
Each map f+ <0, [, (€ H), is an affine semicharacter on w* co (5,S).
Further, if S is compact and jM(X) is sup-norm dense in C(S), then
S has a semitopological hypergroup structure, and the functions
{70,: x e X} are characters of S.

Proof. Let S, be a compactification of S such that jM(X) < C(S),
and let 7% denote the adjoint map: M(S,) — M(X)*,

(given by <3 = | _jpan, e M(X), ne M(S)) .

Denote w*co (5,.8) by S,. We claim j*M,(S) = S,. The map j* is
w*-continuous M(S)) — M(X)* thus j* maps w* co {d,: s€S,} (in M(S))
into S,. That is, j*M,(S)c S,. Conversely let feS,, then there
exists a net {f.} C co (5.S), (the convex hull of 5,.S) so that f, —— f(w*).
But for each a there exists a finitely supported ), € M, (S, so that
J*Ne = fae By the w*-compactness of M,(S)) there exists e M, (S)
so that j*» = f. Thus j*M,(S) = S..

We observe for ge M(X)* that geS, if and only if |[{¢, ¢>| =
ltllss (te M(X)) and <, ¢g> = 1. The latter condition and the Hahn-
Banach and Riesz theorems imply that there exists : e M,(S,) so that
7*n = g. We now show for se S, e M,(S) that (5,9)(*\) € S,. Indeed
for pe M(X), |

@ty GG = [<Gis 11,73 |
= || 3G ] = g el = el -

Also e, (5.8)F*N)D = gis-¢, 750y = {, 7Ny = 1, (note j,s-¢ = ¢, since
gl = 1,4, 4:8) = ji(s) = 1 and ¢e M(X)). Thus (.,5)(j*») €S, and
we conclude from the separate w*-continuity of multiplication that
S.S. < 8S,; so S, is a subsemigroup of B.

For each ze X, fe M(X)* we have that f-0, = <0,, fyd, so the
maps f+ {J,, f> are affine semicharacters of S..
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Now suppose that S is a compact and jM(X) is norm dense in
C(S). Then j* maps M,(S) one-to-one, w*-continuous, and onto S,.
Thus M,(S) with the w*-topology is homeomorphic to S,. We define
a semigroup structure on M,(S) by using this isomorphism (that is,
for », ve M,(S) define vy = (5*)7((F*M(*v))). Thus M,(S) is a com-
mutative affine w*-semitopological semigroup. By Proposition 1.2 S
is a compact semitopological hypergroup. Further for x e X, » € M(S),

S (7o)dn = (9., 7*\), which shows that 74, is a character of S.
N

Note that in the lemma M(X) may be replaced by an L-subspace
A of M(X), (that is, A is a closed subspace of M(X) and e M(X)
and ¢ << veA implies f£e€ A). The dual of A is a w*-closed ideal
in M(X)* and so is itself a commutative W*-algebra. However, the
point masses J, may not be in A.

DEFINITION 1.4. Suppose X is a locally compact Hausdorff space
and A is an L-subspace of M(X). Say A is an abstract measure
algebra if it is a Banach algebra in the measure norm, and A,4,C 4,
(where A, = AN M,(X)). We say A has an identity if there exists
an algebra identity ce A,. If A is commutative we let 4, denote the
spectrum (maximal ideal space) of A, considered as a subset of the
unit ball of the dual A* of A. Further 7 denotes the Gelfand trans-
form of pe A, so fieCy4,).

THEOREM 1.5. Suppose A is a commutative abstract measure
algebra with identity ¢, and E is a w*-closed subset of 4, with the
Sfollowing properties: (1) 1€ E; (2) fe E implies fcE; ) ge E,prc A
tmply |[(g- )7 1le < | Z]lzy (where ||Z||z = sup {|f#(f)|: fe E}). Then
the norm-closed linear span of w* co E is isomorphic to C(Y), where
Y is a compact semitopological hypergroup with an identity, and the
natural map o: A— M(Y) is a homomorphism with w*-dense range.
Further o¢ = d,, where e is the identity in Y. If A contains a point
mass 0,, then 0o, is a point mass in Y. The set E considered as a
subset of C(Y) consists of characters of Y.

Proof. The Gelfand transform maps A — C(E). By Lemma 1.8
w* co (&) is closed under multiplication. Thus the norm closure of
sp (w* co (F)) is a self-adjoint closed subalgebra of A*, hence is iso-
morphic to C(Y), (Y is its spectrum). We define the natural map
j: M(E) — C(Y) so that (g, jny = g fidn, (e A, \ e M(E)); note jxe
C(Y)c A*. Observe jo, = 1, and j]lEIp(E) = w*co (£). We show that
j satisfies the hypotheses of Lemma 1.3. Note that ||j\]|;y is given
by
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vl = sup (<, A | e 4, [l < 1
= sup{|{ gar|:nea, 1)

Let ye€ Y and define j: Y— M(E)* by {\, 7,9 = iMYy), (A€ M(E)).
For e A, € M(E) we have

<y iGNy = | paGy ) = G Gy = i@ V) -
Thus
15+ Ml S sup 15E -2 [l e 4, (121 S 1
Now
150 ke = sup (i<, 57+ MY v e 4, [Iv]] < 1
- sup{lSET)ﬁd)\,I: ved, |yl = 1}

< sup {[[v[l || 2l llgn]lz v e A, [Iv]] = 1}
el LNl

(since 5 = (vp)™ and |[vp|l = V]| [£]). Thus [[5.5- Ny = [Nl
Further jM(E) = sp (w* co F') is dense in C(Y), so by Lemma 1.3 Y
is a compact semitopological hypergroup. Note that Ec C(Y) con-
sists of characters of Y.

Let o be the natural map A — M(Y). Clearly oA is w*-dense in
M(Y). Further the convolution on M(Y) is defined in terms of multi-
plication in M(F)*, but the map A— C(E) C M(E)* is a homomorphism,
so ¢ is a homomorphism.

Since ¢ =1 on E we have {, f> =1 for all few*coE. For
fogew*co(E), &, fo)=1=1/<, )<, 9> (since fgew*cokE) thus
f—<¢, £ is multiplicative and norm bounded on sp (w* co(E)), so
there exists a unique point ec Y so that (¢, f> = fle), (f € C(Y)).
Thus o¢ = 8, and ¢ is the identity of Y. If there is a point mass
d,€ A then f— (9,, f> is multiplicative on A*, so ¢4, is a point mass
in Y.

It would be interesting to know whether Y has any characters
other than the elements of E, but the answer is presently unknown
to the author. If 4, has the properties specified for E, then the set
characters of Y is 4,, since ¢A is w* dense in M(Y) and characters
of Y give multiplicative linear functionals on M(Y).

This line of investigation was motivated partly by Taylor’s work
[7] on structure semigroups of convolution measure algebras. Pym
[5] has a result similar to Theorem 1.5 for the spectrum of a com-
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mutative Banach measure algebra M(X) in which multiplication is
separately w*-continuous and the map g+— f-p¢ is bounded in the
spectral norm (¢ || ZZ]l..), for each fe 4y 4.

A compact hypergroup H is defined by Definition 1.1 with “sep-
arately continuous” in condition (2) replaced by “jointly continuous”.
We write H for the set of characters of H, and 4, for the spectrum

of M(H). For pre M(H),éeH, let i(g) :S gdp. In the sequel we
H
will refer to [1] for necessary details.

We will now construct a compact hypergroup H for which neither
44 nor the closure of H in 4, satisfy the hypotheses of Theorem 1.5.

ExXAMPLE 1.6. There exists a compact hypergroup H and n//‘EICﬁ

(the closure of H in 4;) such that gt 4. g, (¢t € M(H)), is bounded
in neither the ||~||.. nor the [|*[.. norm.

Proof. Let H, be the finite hypergroup described in Example 4.6
of [1]. Briefly the points of H, correspond to rows of the matrix

$o b P
e[1 1 1
1l =12 0
1 1/4 0

and multiplication is pointwise. That is, the columns correspond to
the characters of H,. Note that ¢} = (1/8)(¢, — 24, + 94,). Let v be
the measure o, + 6, — 20,, on H,, then ¥(g,) = 0, ¥(¢,) = 0, and ¥(¢,) = 1.

Let H be the Tikhonov product I3, H,, so H is a compact hyper-
group. For n=1,2,..-, let H, = []-, H,. We identify M(H,) with
a subalgebra of M(H) under the map

S de'[l: g f(xl’ trey, T, 6,8, "')d#(xu "'7x'n) ’
" f,

(feC(H), te M(H,)). By a multi-index I we mean a sequence I =
(4,, %2, »-+) where 7, = 0,1,2 and 7, = 0 for all but finitely many s.
For a multi-index I let ¢,(x) = ¢; (%,)¢:,(%;) - -+, then g, € H. Let v, =
Y X «++ X v (n times), an element of M(H,), and let p, = ov, € M(H).
The spectrum of M(H,) is isomorphic to S, = {¢,: I multi-index, 7, = 0
for s > n}. Thus the spectral norm of a measure in M(H,) (or o M(H,))
is realized on S,. Let 47 e H be given by ™ (x) = ¢.(2,) +*+ ¢nl,)
(xeH,m=1,2). We claim ||Z,|l. = ||ft,]l. = 1, in fact for ¢,¢€8,,
lay 69 = Iiei ¥, 650 = 0if ¢, = Y, and (g, v7) = 1. Let m = n,
then (ys o, > = (@/8)". Indeed <y~ po, ¥4 = | yiytidpe, =

.Y, 66> = (9/8)". Let + be a w*-cluster point otl'{ {vP} in 4.
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Then {(yr+ 1, > = (9/8)” and || A, = [ .1l = 1, but [[(v- )"l =
(e p2)" Nl = (9/8)"

2. P*-hypergroups. See [1] for a reference for this seection.

DEFINITION 2.1. A compact hypergroup H is called a P*-hyper-
group if:

(1) there exists an invariant measure m, < M,(H) and a con-
tinuous involution %+ &', (xe€ H) such that

| (®@pygam, = | fR@gdm,

and such that eesupport Mz, %), (f,9e C(H),xe H), (R(x): C(H) —
C(H) is defined by R(z)f(y) = S fa(z, y), fe C(H), xc H);

(2) HHCcoH, that is, for each ¢, € H there exists a non-
negative function n(g, ;) on H with only finitely many nonzero
values such that g(x)y(x) = ..5 (e, ¥; @)w(x), (€ H).

Recall from [1] that each subhypergroup K of H is, by definition,
closed and is normal (v € K implies 2’ € K), if H is P*. Furthermore,
K is itself a P*-hypergroup with invariant measure mgy.

DerINITION 2.2, Let H be a compact P*-hypergroup and let
peM(H). Define pu*e M(H) by

| s = (| (@) du@)), (7 e cu)

Then p— p* is an algebra involution and (#*)(¢) = (f(e)), (¢ € H)
(see Theorem 3.5 [1]).

DEFINITION 2.3. The set B(H) = {fi: e M(H)} = C*(H) is a self-
adjoint separating algebra of continuous functions on H and contains
the constants. Let £H be the compactification of H induced by this
algebra. Equivalently £H is the spectrum of the sup-norm closure
of B(H), and H is a dense open subset.

THEOREM 2.4. tH is a compact semztopologwal hypergroup, and
H is a discrete subhypergroup. Further kH, as a subset of 4y (the
spectrum of M(H)), is w*-closed, contains 1, and is self-adjoint.

Proof. Let j be the bounded linear map: M(H) — C(tH) which
is determined by (j)(9) = fi(9) = S ddp, (e M(H), ¢ H). Observe
H N
Wil = || 2]l.. Also jo, = 1. For ¢,+-eH, ptc M(H) we have
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i@+ = | Fvde = 3 06, vi0)| ade = 3 05, v o))
we H we H
But [j(3- ()| £ Sueir M8, ¥; @) | fl(@)| = [[£]]. = [[7¢t]l.. Thus we
can apply Lemma 1.8 and obtain that £H is a seimitopological hyper-
group. Further M,,(/cﬁ) is isomorphic to }”* co(H)c M(H)*, and the
functions {jo,: x € H} are characters of £H.

We now apply Theorem 1.5 to £H and obtain the following:

THEOREM 2.5. Suppose H is a compact P*-hypergroup, then there
exists a compact semitopological hypergroup Y such that kH is a set
of characters of 'Y, the norm-closed span of w* co (f] ) 1s tsomorphic to
C(Y), and there is a monomorphism o: M(H) — M(Y) with w*-dense
range.

3. Simple P*-hypergroups. In this section H will always denote
a compact P*-hypergroup. We will describe an additional hypothesis
which allows a complete description of 4,. This hypothesis is realized
in the algebra of ultraspherical series (see Example 4.3 [1]). The
author suspects that the algebra of central measures on a compact
simple Lie group also satisfies the hypothesis.

Recall from [1] that the center of H, Z(H), is {x € H: y € H implies
that A(x, ¥) is a point mass}. Further Z(H) is a compact subgroup
of H and is the set {ze H: [¢(z)| = 1, (¢ ¢ H)}.

DEFINITION 3.1. Let % be a positive integer. Say H has property
S, if for each compact set K< H\Z(H) the sum >,.# ¢(g)(supg 6] <
co, (Where c(g) = (S i¢|2dm,[> > (The letter “S” suggests “simple”
H
in the sense that if K is a subhypergroup of H such that K ¢ Z(H)
then K is open; see 3.4.) Say H is an SP-* hypergroup if it has
property S, for some n.

DEFINITION 3.2. Let M,(H) = {¢tc M(H): |¢|Z(H) = 0}, an L-sub-
space of M(H). Note M(H) = M(Z(H)) ¢ M,(H). Let 7 be the norm-
bounded projection: M(H)— M(Z(H)). For pe M(H) we write p¢t =
T+ My SO 1y, € My(H).

We will show that if H is an SP-* hypergroup and m(Z(H)) =0
then M,(H) is an ideal in M(H) and its annihilator in 4, is 4,\H.
Thus 4,\H is isomorphic to 4,,,. The case my(Z(H)) > 0 will also
be discussed.

ProrosITION 3.3. Suppose H s an SP-* hypergroup with property
S, for some positive integer m and pe M,(H), then p"e L'(H), (note

U= pxfleee xpt (0 times)).
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Proof. First suppose pec M,(H) has compact support K with
ZH)NK = @. Then for geH, |p@)| = || ddu|s llpllsupelsl. We
claim g e L*(H) ¢ L'(H); indeed 3;.46(¢) | (") (9) F = pc(d) | (o) [ <
e 1F">s e(9) (supk |])*™ < . The set of such g is norm-dense in
M,(H) and the map p#— g* is norm-continuous taking a dense subset of
M,(H) into L'(H), a closed subspace of M(H).

For M,(H) to be a nontrivial ideal it is necessary that L'(H)C
M,(H). We present a lemma which gives several equivalent charac-
terizations of this.

LEMMA 3.4. Let K be a subhypergroup of a compact P*-hyper-
group H. The following statements are equivalent:
(Recall K+ = {pe H: 4| K = 1})

(1) K is open;

(2) muz(K)>0;

(8) each hypercoset of K* is finite;

(4) some hypercoset of K* is finite;

(5) mg is a monzero multiple of myi K.

Proof. We first observe that each of (8) and (4) is equivalent to
K* being finite. It K* is finite then each hypercoset ¢ K+, (¢ € H), is
finite, since ¢+ has finite support in H (vel ). Further K* is con-
tained in the support of ¢- (- K*) for each ¢ e H, so if some hyper-
coset is finite then K+ is finite (for more details see 3.16 [1]).

(1) implies (2): Note that the support of my is H, (3.2 [1]).

(2) implies (8): The characteristic function yxe L*(H) and
(") = | dms = ma(K) > 0 for p& K*. But Seeh cza)l(9) @) <
o0, thus K+ is finite, (since ¢(¢) = 1).

(8) implies (1) and (5): Recall (mg)” is 1 on K* and 0 off
K* (38.14 [1]). Since K* is finite we have my = f - my where fe C(H);
in fact fesp H. Since the support of mj is H we see that f =
and f= 0 off K. We will show that f is constant on K, which im-
plies that K is open and my is a nonzero multiple of my|K. Since
f+ my is the invariant measure on K, the identity (f-my)xtt = f+my
holds for each pe M, (K), (1.12 [1]). By Proposition 8.4 [1] this im-
plies that

@) = | Ros@iew) ,  @eK).

Thus f(x) = R(x)f(y") for each z,ye K. Let a = supgf and let K, =
(e K:fw) = a). ForazeK,yeK,a=f@)=Ra)f@)=| firay),
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but this implies that f is constant with value a on the support of
M, ). Thus K, is a nonempty (closed) ideal in K, but K is normal
so K, = K and f is constant on K.

(5) implies (2): Clear.

Note if H is an SP-* hypergroup and z ¢ H\Z(H) then
{peH: |g()| = 1}

is finite, so if K is a subhypergroup of H with K& Z(H) then K*' is
finite implying K is open (by 3.4).

The following will be needed for the case where Z(H) is open
in H.

LemmA 3.5. Supp(lse K is an open subhypergroup of a compact
P*-hypergroup H,r € K and pe M(H) with |pt|K = 0, then

S {e(9)A(9): g H, | K = 4} =0,

(note this is a sum over a (finite) hypercoset of K*).

Proof. We will show that 3y x_v ¢(¢)¢ is equal to a multiple of
4 on K and is zero off K. By Lemma 3.4 there exists d = 1 such
that mx = dmy|K. Let feC(H) be defined by f=+yon Kand f=0
of K. Then f(3) = | fvdmy = (1/d)| Fydms, o 7g) = (de(y) for
é| K = + and f(q&) = 0 otherwise, <note c(ar) = (gKlq/rlzde> , see 3.17
[11)-
Thus fespH and is given by the series (de(¥)™ g1 x=v c()d. Now

0= | Jau = @) 5 o9)| sz

= (dc(v'f))"lwéw o($)E(9) -

For the following H will be an SP-* hypergroup, and for nota-
tional convenience we will write G for Z(H).

PROPOSITION 3.6. If m;G = 0 then the projection n: M(H) — M(G)
is a homomorphism and is bounded in the H-sup-norm (|| 2l

Proof. For pec M(H) we set p# =y + p,. By 3.3 there exists
an integer n so that p; e LY(H). Thus fi, —0at < on H. Let ve@,
then E, = {pc H: |G = v} is a hypercoset of G* and is infinite (see
3.17 [1]). Let v ekH\H (kH is the closure of H in 4,) be the limit
of an infinite convergent net {g.}C E,. Then f(y) = lim, fi(g,) =
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lim, (wp)~(7) + ()" ($)) = () (7v). Note also |Z(y)| = ||f]l.. Thus
(™., = llZll. and the funetional gt (z)"(v) is multiplicative for
each ve(G. Hence 7 is a homomorphism.

The following is now evident, (note for p,e M,(H) that Z, =0
off H).

THEOREM 3.7. If muG = 0 then each element of 4,\H is of the
Sorm pi— ()~ (y) for some € 4,. This corr espondence 1S an 1somor-
phism (of compact semzitopological sengroups) of AH\H with 4, The
hypeoﬂgroup kH s isomorphic to H U kG (where kG is the closure of
G in 4,), and H is attached to kG so that an unbounded net {4} H
clusters at a point @[rehG if {p.| G} c G clusters at .

In this particular situation, co 4, is already a semigroup. Let
S be the spectrum of the norm-closed span of 4, in M(G)*, then S is
a compact semitopological semigroup (Taylor [7], or see [2, Ch. 1]).
Let o, be the canonical homomorphism: M(G)— M(S). Let Y be the
spectrum of the norm-closed span of co(d,) in M(H)*. Then Y is
the disjoint union of H and S. The homomorphism o: M(H) — M(Y)
is given by oyt = o(y) + f,; recall wre M(G) so o(mp) e M(S) and
M, € M(H). Since ¢ has w*-dense range we see that A is an ideal
in Y.

THEOREM 3.8. Suppose mu;G =0 and ¢ is an idempotent in
M(H ), then wt is an idempotent in M(G) and [, has ﬁmte support
in H. Thus {¢eH H(p) = 1} is im the hypercoset ring of H.

Proof Since 7 is a homomorphism, wx¢ is idempotent in M(G).

Thus (££,)" — (wp)” is integer-valued, but tends to zero at o on
H, so is zero for all but ﬁmtely many points in H. By Cohen’ ’s
theorem [2, Ch. 5], = {yeG: (x)™(v) = 1} is in the coset ring of G.

The set {s¢ Ii (n'pe)’\(¢) =1} = {¢e H: |G e 8}, which is in the hyper-
coset ring of H (see 3.18 [1]).

If G is open in H then each hypercoset of G* is finite. In this case
M,(H) is not an ideal (unless H = G), but ¢ € M,(H) does imply £ =0
off H. Each element of 4,\H is of the form i (zp)~(v), (i € M(H))
for some € 4 G. (Note if mpee LNG)C L} (H ) then (m)™ is zero off
G c 4, and is zero off Hc 4,.) Thus 4,\H is 1somorph1c to 4,\G. It
can be shown that 4, is isomorphiec to (4,\G) U H with A attached
to kG\G in the obvious way.

THEOREM 3.7. If G is open tn H and /¢t is an @dempote'nt N
M(H) then {¢ < H: H(9) = 1} is in the hypercoset ring of H.
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Proof. Set ¢ = zp + .. We will show /i, is finitely supported
on H, thus wp differs from an _idempotent in M(G) by a trig poly-
nomial on G (an element of spG c C(G)). Since 2, —0 at o on H,
the set F = {ge H: | () (¢)] > 1/3} is finite. Let F, = Uscr o+ G*,
a finite union of hypercosets of G*, then F, is finite since G* is finite
(see 3.4). We claim (¢,)” = 0 off F,. Indeed, let ¢ € H\F, and sup-
pose ¢, ¢ H with ¢|G = ¢,|G, then ¢, ¢F, and (xp)° (¢) = (@) (4).
Thus |2(3) — A6)| = () (8) — (1) @) < 2/3. But 2 is integer
valued so fi(¢,) = fi(¢) and (2¢,)"(¢,) = () (¢). Thus /1, is constant on
6+ G- and by Lemma 3.5 we have (¢,)” = 0 on ¢-G-.
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