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If / is a mapping from an open k-cnbe in Rk into Rn,
2 5Ξ k ^ n, whose coordinate functions belong to appropriate
Sobolev spaces, then the area of / is the integral with
respect to k dimensional Hausdorff measure over Rn of a
nonnegative integer valued multiplicity function.

1* Introduction* If /: Q—>Rn, Q an open &-cube in Rk,
2 ^ k ^ n, is a mapping whose coordinate functions belong to appro-
priate Sobolev classes, it was shown in [6] that / is Jfc — 1 continuous
and that the area of /, as defined in [5], is equal to the classical
Jacobian integral. The purpose of this paper is to investigate, using
the theory of currents as in [2], the geometric-measure theoretic
properties of such a surface and to show that the area is equal to
the integral with respect to k dimensional Hausdorff measure in Rn

of an integer valued multiplicity function.

2 Suppose k and n are integers with 2 ^ k ^ n. Let

Q = Rk Π {x: 0 < Xi < 1 for 1 ^ i ^ k)

and let Λ(k,n) denote the set of all yfc-tuples λ = (λ1? •• ,λΛ) of
integers such that 1 ^ λL < < Xk ^ n. Suppose / : Q—> Rn, f =
(Λ ' , f% f e WltiQ), Pi > k - 1, and ΣJ«i VVχό S 1 whenever
XeΛ(k9ri). Here Wι

p{Q) denotes those functions in LP(Q) whose dis-
tribution partial derivatives are functions in LP(Q).

Let eu •••, en be the usual basis for Rn and let

eλ = eh A Λ eλk

XeΛ(k,n), denote the corresponding basis for the space of fc-vectors
in Rn. For XeΛ(k, n) let px denote the orthogonal projection of Rn

onto Rk defined by letting

Px(v) = (Vh, , Vχk) for y = (yί9 , yΛ) e Rn .

For almost every (in the sense of k dimensional Lebesgue measure
Sfύ ^^Q, let Jf(x) = ΣΛλeΛ(k,n)Jfλ(%)eλ where Jfλ denotes the deter-
minant of the matrix of distribution partial derivatives of fλ = px°f.
In [6] it was shown that the area of /, as defined in [5] is equal to

I Jf(x) I dx where | Jf(x) \ is the Euclidean norm of the A:-vectors
Jf{x).
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Define a current valued measure T over Q by letting

T(B)(φ) = \ φ{f{x)) Jf(x)dx

whenever B is an J5fk measurable subset of Q and φ is an infinitely
differentiate Axform on Rn with compact support. Let σ denote the
finite measure defined over Rn by letting

= \ \Jf(x)\dx

whenever Y is a Borel subset of 22*.
It will be shown in part 3 that T(B) is a locally rectifiable cur-

rent whenever B is an £fk measurable subset of Q and this fact will
be used to define a nonnegative integer valued function N on Rn

which describes the multiplicity with which / assumes its values.
The main results of the paper are summarized here.

THEOREM. Let Hk denote k dimensional Hausdorff measure in
Rn and let oc(k) denote the Sfk measure of the unit ball in Rk.

1. For Hk almost every yeRn

N(y) = lim
a(k)rk

Here B(y,r) denotes the open ball of radius r around y.

S c
N(y) dHky = I (Jf(x) \ dx .

3. There exists a countable family F of k dimensional C1 sub-
manifolds of Rn such that for σ almost every yeRn there is an
MeF with yeM,

limσ(B(y,r)-M) = Q

r->o+ a(k)rk

and

a{k)rk

3* Definition of the function N and proof of the theorem*
We follow a plan analogous to that of [2: 2.1]. For 1 ̂  i S k and
r e I = {s: 0 < s < 1} let P^r) - Q n {x: x* - r}. Let {fj\ be a se-
quence of mollifiers of / as in [6] and let / denote the pointwise
limit of {/,•} wherever it exists. Then / is a representative of / and
according to [6], [7: Chap. 3], and [8: part 3] there exists a collection
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P of the sets P^r) such that for each i, P^r) e P for almost all (in
the sense of 1 dimensional Lebesgue measure) r e I and if q is any
fc-cube in Q whose k — 1 faces all lie in elements of P then

(1) fj I Bdry q converges uniformly to / | Bdry q,
(2) Hi (fjβάτy q)) = 0
(3) Lk_,(f I Bdry q) - l i m ^ Lk_, (/,-1 Bdry q), where Lk_λ

denotes k — 1 dimensional Lebesgue area.
Henceforth we will denote by / the pointwise limit of mollifiers

{fj} as described above. A &-cube q c Q whose k — 1 faces all lie in
elements of P will be called "special".

For the notation concerning currents we refer to [3].

LEMMA 1. If f is bounded then T(B) is a rectifiable current
whenever B is an £?k measurable subset of Q.

Proof. If q c Q is a special Λ>cube then

lim ( I Jfά(x) - Jf(x) I dx - 0
j-*oo Jq

and hence the sequence {fj${q)} of currents converges weakly to T{q).
The supports of the fj$(q) and T{q) are all contained in a fixed com-
pact set,

fjM)^ \ \JfM\dx,

and

M(dfs,(q)) ^L^(f

where M denotes mass in the space of currents. Thus, by [4: 8.14,
8.13], T(q) is an integral current whenever q is special.

Since it is clear that

M(T(A))^\jJf(x)\dx

whenever A is an ^fk measurable subset of Q, the lemma follows.
Let [ |T| | denote the finite measure over Q defined by letting

|| JΓ| | (A) denote the supremum of the numbers ^=1M{T{Bό)) taken
over all countable disjoint collections of £?k measurable subsets
B5 c A whenever A is an ^fk measurable subset of Q. Clearly

|| T|| 04)^ ί \Jf(x)\dx

whenever A is an jχfk measurable subset of Q.

For £fk almost every xeQ there is a fc-covector ω in Rn with
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I ω I = 1 such that ω Jf(x) = | Jf(x) I and

I t follows t h a t \\T\\(A) = [ \Jf(x) \dx whenever A is an £?h meas-
JA

urable subset of Q.
For each positive integer N let fN— {fι

N, , /,*) where

N if f(x) ^ N

f{x) if I f{x) I < N

-N if f{x) ^ -iSΓ.

Then /Λ, is bounded and /£ e TΓ̂ (Q) for 1 ^ i <£ w. For any measur-
able set -BcQ let

^(5)(^) - ( φ(fN{x)) ft(^)ώ
B

whenever ψ is an infinitely differentiate fc-form on Rn. Note that,
if Y is a bounded Borel set in Rn, then, for sufficiently large N,
TN{B) L Γ = Γ(J?) L F whenever S is an ^fk measurable subset of Q.
Consequently, if Y is a bounded open subset of Rn then T(B) L F is
rectifiable whenever B is a measurable subset of Q.

Analogous to [2: 2.1 part 3] we have

LEMMA 2. There exists a countable collection F of k dimensional
C1 submanifolds of Rn such that σ(Rn — \J F) — 0.

Proof. Suppose r and ε are positive real numbers and let

5 ( 0 , r) = Rnf){y: \y\<r}.

Let {Al9 •••, Am} denote a finite collection of disjoint measurable sub-
sets of f-\Bφ,r)) such that &>h (/"'(^(O, r)) - UJU Λ) = 0 and
<τ(B(0, r)) - ε < ΣJU MίΓίA,.)). Note that T(AS) = T(A,)\_Bφ, r) is
rectifiable for i = 1, « ,m. Thus, by [4:8.16], there exists for
each j" a countable collection Gy of ^-dimensional C1 submanifolds
of Rn such that || T(Ad) \\ {Rn - \J Gs) = 0. Letting G = \JT=i Gs, we
have

ε ^ σ(B(0, T)) - Σ M(T(AS)) = Σ (II 2Ί| (Aj) - M{T{A5)))
3=1 i = l

Σ
i

T7II (A, n /- 1 (i2K - U G)) = σ(5(0, r) -
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and the lemma follows.
If μ is a measure over Rn, yeRn, and AczRn we let

a{k)τk

whenever the limit exists. In case A = Rn we write θk(μ, y).
Recall that, if S is a k dimensional rectifiable current in Rn and

Y is a Borel set in Rn with Hk(Y) = 0, the SL Γ = 0. Thus σ is
absolutely continuous with respect to Hk. This fact together with
Lemma 2 and the finiteness of σ allow us to conclude using [1: 3.1,
3.2] that:

1. θk(σ, y) exists for Hi almost every yeRn.
2. For σ almost every yeRn there exists an MeF such that

yeM, θk(σ, y) < <*>, and θk(σ, Rn - M9y) = 0.

3. ί θk(σ,y)dmy^σ(R«).

A proof of the following statement concerning rectifiable currents
can be found in [2: 2.1 part 7]: If S is a rectifiable k dimensional
current in Rn, M is a k dimensional C1 submanifold of Rn,

y e M — spt dS ,

θk(\\ S \\, y) < oo, 0*(||S||, Rn - M, y) = 0, and P is an oriented k
plane tangent to M at #, then there exists a unique integer m such
that

lim — i — F[SLB(» f r) - m(P ΠB(y, r))] = 0
r-̂ o+ a(k)rk

where ί7 denotes the flat norm [4: 3.2].
Now suppose q is a special fc-cube in Q and yeRn. If there is

an ΛfeF with yeM — /(Bdryg), ^fe(σ, #) < oo, and

^ f e(σ, i2 % - ikΓ, y) = 0 ,

let P denote an oriented fc-plane tangent to M at y, let m(q, y) denote
the integer such that

l i m — i — F [T(q) L B(y, r) - m(q, y) (P Π B(y, r))] - 0
r-o+ a(k)rk

and set α(g, T/) = m(g, y) ζ(y) where ζ(y) is the simple unit ^-vector
orienting P. Otherwise set a(q, y) = 0.

Then, for Hk almost every yeRn,

θk(T(q) L Λ v) = lim
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whenever φ is an infinitely differentiate λ -form in Rn. Consequently

T(q) (φ) - \ φ(y) a(q9 y)dHky whenever φ is an infinitely differenti-
JRn

able ft-form and hence

M{T{q)) ^ ί I a(Q, V) ί dHfy

whenever q is a special fc-cube
For yeRn let N(y) denote the supremum of the numbers

ΈjqeG \a(Q, y) I taken over all finite collections G of nonoverlapping
special fc-cubes in Q.

Suppose N(y) Φ 0 and G is a finite collection of nonoverlapping
special A -cubes such that a(q, y) Φ 0 for qeG. Let o) denote a k-
covector with | ω \ = 1 and ω ζ(y) = 1. Then

Σ |α(ϊ,»)l Σ
qeG qeG

= Σ \θ*(T(q)Lω,y)
G

Thus iSΓCi/) ̂  ^fc(σ, y) for iϊw

fc almost every yeRn.
On the other hand, if G is any finite collection of nonoverlap-

ping special fc-cubes,

geί? j R n qeG
^ ,r,x, w , , ^ ^ Σ I^to, 1/) I dH*y .

The supremum of the numbers ΣqeG M(T(q)) taken over all finite col-
lections G of nonoverlapping special λ -cubes is readily seen to be
σ(Rn) and hence

σ(Rn) ^ ί N(y)dHky ^ ( θ\σ, y)dHky ^ σ{Rn) .
J Rn J i2 w

Thus N(y) — ̂ fc(σ, ̂ /) Jϊ^ almost everywhere and

N(y)dHky= [ \Jf(x)\dx.
JQ
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