A NOTE ON PRIMARY DECOMPOSITIONS OF A PSEUDOVALUATION

C. P. L. RHODES

Some connections are established between a primary decomposition of a pseudovaluation \(v \) on a commutative ring and a primary decomposition of the zero ideal of the associated graded ring of \(v \). The primary decomposition of a certain pseudovaluation \(v_q \) on a one-dimensional local ring \(Q \) is described in terms of the extensions of \(v_q \) to monoidal transforms of \(Q \).

1. Primary decompositions and the associated graded ring. Let \(R \) be a commutative ring with an identity. We consider a pseudovaluation \(v \) on \(R \). By this we mean that \(v \) is a mapping from \(R \) to \(P \), the set of all real numbers together with \(\infty \), such that

\[
v(0) = \infty \quad , \quad v(1) = 0,
\]

and, for \(x, y \in R \),

\[
v(xy) \geq v(x) + v(y),
\]

and

\[
v(x - y) \geq \min \{ v(x), v(y) \}.
\]

For each \(a \in P \), write \(v_a = \{ x \in R \mid v(x) \geq a \} \) and \(v_a = \{ x \in R \mid v(x) > a \} \). The associated graded ring of \(v \), introduced by Szpiro in [11], is \(G = \bigoplus_{a \in R} v_a/v_a \). We shall use \(- \) to denote the natural mapping from \(R \) into \(G \).

Let \(u \) be a pseudovaluation such that \(u \geq v \) (this means that \(u(x) \geq v(x) \) for all \(x \)). We denote by \(T(u) \) the set of all \(x \), not in \(u_w \), such that \(u(x^n) = nu(x) \) for all positive integers \(n \), and by \(S(u) \) the set of all \(x \), not in \(u_w \), such that \(u(xy) = u(x) + u(y) \) for all \(y \in R \). As in [10], we call \(u \) primary if \(T(u) = S(u) \). We denote by \(F(u, v) \) the set of all \(x \) such that either \(u(x) > v(x) \) or \(u(x) = \infty \), and we put \(T(u, v) = T(u) \setminus F(u, v) \).

Let \(I(u, v) \) be the ideal generated in \(G \) by \(F(u, v) \).

Lemma 1. \(\overline{F(u, v)} \) is the set of all homogeneous elements of \(I(u, v) \), and \(\overline{T(u, v)} \) is the set of all homogeneous elements of \(G/\text{rad} \ I(u, v) \). If the pseudovaluation \(u \) is primary then the ideal \(I(u, v) \) is primary.

Proof. Let \(r \in R \) and \(s \in F(u, v) \). Either \(r\overline{s} = 0 \) or \(r\overline{s} = \overline{r}s \). In the latter case either \(v(s) = \infty \) or

\[
v(rs) = v(r) + v(s) < u(r) + u(s) \leq u(rs).
\]
Thus, in each case, \(\bar{r}s \in F(u, v) \). If we suppose, also, that \(r \in F(u, v) \) and that \(\bar{r} \) and \(\bar{s} \) have the same degree, then either \(\bar{r} - \bar{s} = 0 \) or \(\bar{r} - \bar{s} = \bar{r} - \bar{s} \). In the latter case either \(v(r) = \infty \) or \(v(r - s) = v(r) = v(s) < \min \{u(r), u(s)\} \leq u(r - s) \).

Hence, in each case, \(\bar{r} - \bar{s} \in F(u, v) \). It is now clear that \(F(u, v) \) is the set of homogeneous elements of \(I(u, v) \).

Let \(r \in T(u, v) \) and let \(n \) be a positive integer. Then it is easy to see that \(u(r^n) = v(r^n) = nv(r) \neq \infty \); i.e., \(r^n \notin F(u, v) \). Therefore, \(\bar{r}^n = r^n \in I(u, v) \). Now suppose that \(r \in T(u, v) \). If \(r \notin T(v) \) then there exists \(m \) such that \(\bar{r}^m = 0 \). Suppose that \(r \in T(v) \). Then, by 4.1 of [10], there exists \(n \) such that \(r^n \in F(u, v) \). Hence \(\bar{r}^n = \bar{r}^n \in I(u, v) \).

Finally let \(u \) be primary, and suppose that \(r, s \) are elements of \(R \) such that \(r \in T(u, v) \), \(\bar{s} \neq 0 \), and \(\bar{r}s \in I(u, v) \). Either \(\bar{r}s = 0 \) and so \(v(r) + v(s) < v(rs) \leq u(rs) = u(r) + u(s) = v(r) + u(s) \), or \(\bar{r}s = \bar{r}s \) and so \(v(r) + v(s) = v(rs) < u(rs) = u(r) + u(s) = v(r) + u(s) \). In each case \(v(s) < u(s) \) and, hence, \(\bar{s} \in I(u, v) \). Therefore, \(I(u, v) \) is primary.

REMARK. The set \(S(u) \cap F(u, v) \) is contained in the set \(S_0(u, v) \) of all \(x \in F(u, v) \) such that \(u(xy) = u(x) + u(y) \) for all \(y \notin F(u, v) \). These sets and their images in \(G \) are multiplicatively closed, and \(S_0(u, v) \) is the set of all homogeneous elements of \(G \) which are relatively prime to \(I(u, v) \).

If \(W \) is a collection of pseudovaluations the lower envelope \(w_\circ = \bigwedge W \) is defined by \(w_\circ(x) = \inf \{w(x) \mid w \in W\} \). From Lemma 1 we deduce

Theorem 1. If \(u_1 \land u_2 \land \cdots \land u_n \) is a primary decomposition of \(v \) then \(I(u_1, v) \cap I(u_2, v) \cap \cdots \cap I(u_n, v) \) is a primary decomposition of \(0_v \).

Corollary. Let \(u_1 \land u_2 \land \cdots \land u_n \) be an irredundant primary decomposition of \(v \), and suppose that \(G \) is Noetherian. Then, for each \(i \), there exists \(r_i \in R \) such that \(T(u_i, v) \) is the set of \(x \), not in \(v_\circ \), for which \(v(xr_i) = v(x) + v(r_i) \).

Proof. The decomposition \(0_v = I(u_i, v) \cap \cdots \cap I(u_n, v) \) is clearly irredundant. It follows that the homogeneous elements of \(G \) not in \(T(u_i, v) \) generate a prime ideal which belongs to \(0_v \) and which, therefore, takes the form \(0_v : (G \bar{r}_i) \) for some homogeneous element \(\bar{r}_i \) in \(G \).
REMARK. For each positive \(b \in P \), denote by \(F(u, v, b) \) the set of all \(r \in R \) such that either \(u(r) = \infty \) or \(u(r) - v(r) \geq b \). The proof of Lemma 1 shows that \(F(u, v, b) \) is the set of homogeneous elements of the ideal \(I(u, v, b) \) which it generates in \(G \), and that \(\overline{T(u, v)} \) is the set of homogeneous elements of \(G \backslash \text{rad} I(u, v, b) \). It is easy to verify that, for a (possibly infinite) collection of pseudovaluations \(v_i \geq v, v = \bigwedge_i v_i \) if and only if, for every \(b > 0 \), \(0 \leq \bigcap_i I(v_i, v, b) \).

For all \(b > 0 \) and \(c > 0 \),

\[
I(u, v, b)I(u, v, c) \subseteq I(u, v, b + c) .
\]

Hence each \(u \geq v \) naturally induces a (nonnegative) pseudovaluation \(v' \) on \(G \). Thus \(v = \bigwedge_i v_i \) if and only if \(\bigwedge_i v_i' \) is the trivial pseudovaluation on \(G \).

When \(v \) is homogeneous the following result may be regarded as a special case of [11, Théorème 1]. Recall that \(v \) is said to be discrete if \(v(R \backslash v_\infty) \) generates a discrete subgroup of \(R \).

Theorem 2. Suppose that \(v \) is a discrete pseudovaluation. If \(0_\circ \) has a finite primary decomposition without embedded components then \(v \) has a primary decomposition.

Proof. Suppose that \(H_1 \cap H_2 \cap \cdots \cap H_k \) is the primary decomposition of \(0_\circ \). For each \(i \), write \(\text{rad} H_i = P_i \) and denote by \(S_i \) the set of elements \(r \in R \) such that \(\overline{r} \in P_i \); then \(v(ab) = v(a) + v(b) \) for all \(a \) and \(b \) in \(S_i \), and \(S_i \) is multiplicatively closed. Mappings \(v_i \) are defined, for all \(x \in R \), by

\[
v_i(x) = \sup \{ v(xa) - v(a) | a \in S_i \} .
\]

Observe that if \(a, b \in S_i \) then

\[
v_i(x) \geq v(xab) - v(ab) \geq v(xa) - v(a) \geq v(x) .
\]

By 3.1 and 3.2 of [6], \(v_i \) is a pseudovaluation.

Let \(x \in R \backslash v_\infty \). Then there exists \(i \) such that \(\overline{x} \in H_i \). If \(c \in S_i \) then \(\overline{xc} \neq 0 \), and so \(v(xc) - v(c) = v(x) \). Thus \(v_i(x) = v(x) \), and so \(\bigwedge_i v_i = v \).

We shall now show that \(v_i \), being a typical \(v_i \), is primary. Let \(x \in S(v_i) \) and suppose that \(v_i(x) \neq \infty \). Then there exists \(y \in R \) such that \(v_i(xy) > v_i(x) + v_i(y) \). Therefore, we may choose \(a \in S_i \) such that

\[
v_i(x) = v(xa) - v(a) ,
\]

and

\[
v_i(xy) \geq v(xya) - v(a) > v_i(x) + v_i(y) .
\]
Now write $\bigcap_{i>1} P_i = K$ and choose $c \in R$ such that $\bar{c} \in K \setminus P_i$. Then $\bar{a} \bar{c} \in P_i$, and so $\bar{a} \bar{c} = \bar{a} \bar{c} \in K \setminus P_i$. We may therefore assume (by replacing a by ac) that $\bar{a} \in K \setminus P_i$. This implies that $\bar{a}^3 = \bar{a} \bar{a} \in K \setminus P_i$. Since $v_i(x) = v(xa^3) - v(a^3) = v(xa) - v(a)$, it follows that

$$v(xa^3) = v(xa) + v(a).$$

Therefore, $\bar{xa}^3 = \bar{xa} \bar{a} \in K$, and so (replacing a by a^3) we may also assume that $\bar{xa} \in K$. If $\bar{xa} \in P_i$, then

$$v(yxa) - v(a) = v(yxa) - v(xa) + v(xa) - v(a) \leq v(y) + v(x),$$

which is false. Therefore, $\bar{xa} \in \bigcap_{i>1} P_i$, and so, for some n, $(\bar{xa})^n = 0$. Since $v_i(x) \neq \infty$, we have $v(xa) \neq \infty$ and so $v((xa)^n) > nv(xa)$. Therefore, $v_i(x^n) \geq v(x^n a^n) - v(a^n) > nv(xa) - v(a^n) = nv(xa)$. Thus $x \notin T(v_i)$. Therefore, $S(v_i) = T(v_i)$; i.e., v_i is primary.

2. Extensions of pseudovaluations. In this section we introduce some terminology for use in § 3, and we prove a result pertinent to [2].

We suppose the definition of a pseudovaluation u to be modified as follows:

(i) $u \geq 0$.

(ii) It is not required that $u(1) = 0$ (this facilitates the statement of Lemma 2; moreover, the rings in this section need not contain an identity).

We consider a homomorphism f from a commutative ring R to a commutative ring S. If I is an ideal of S (resp. R) then I^r (resp. I^r) will denote $f^{-1}(I)$ (resp. the ideal generated by $f(I)$ in S). Suppose that v is a pseudovaluation on R. Define v^r to be the mapping from S to P such that, for all $x \in S$,

$$v^r(x) = \sup \{a \in P \mid x \in (v_a)^r\}.$$

LEMMA 2. The mapping v^r is a pseudovaluation on S.

Proof. It is clear that $v^r(0) = \infty$.

Let $x, y \in S$, and suppose that $x \in (v_a)^r$ and $y \in (v_b)^r$ where $a, b \in P$. Then $xy \in (v_a)(v_b)^r \subseteq (v_a v_b)^r \subseteq (v_{a+b})^r$. Thus

$$v^r(xy) \geq a + b.$$

It follows that $v^r(xy) \geq v^r(x) + v^r(y)$.

Similarly, assuming that $a \geq b$, $x - y \in (v_a)^r + (v_b)^r = (v_a + v_b)^r = (v_b)^r$. Thus $v^r(x - y) \geq b$. It follows that
Let \(w \) be a pseudovaluation on \(S \). We shall denote \(wf \) by \(w^* \). It is easy to verify that \(w^* \) is a pseudovaluation on \(R \) which is primary if \(w \) is primary.

Lemma 3. (i) The pseudovaluation \(v \) on \(R \) satisfies \(v \leq v^* \).
(ii) The pseudovaluation \(w \) on \(S \) satisfies \(w \geq w^* \).

Proof. (i) Let \(x \) be an element of \(R \) such that \(v(x) = a \). Then \(f(x) \in (v^*)^e \) and so \(a \leq v^*(f(x)) = v^*(x) \).

(ii) Let \(y \) be an element of \(S \) such that \(y \in ((w^*)^e)^e \). Since \((w^*)^e \) is primary, \(y \in (w^*)^{ae} \) and so \(w(y) \geq a \). It follows that \(w(y) \geq w^*(y) \).

Theorem 3. \(v = v^* \) if and only if \(v_a = (v_a)^e \) for each \(a \in R \).

Proof. If \(v = v^* \) then, for each \(a \in P \),

\[
(v_a)^e \subseteq \{ x \in R \mid v^*(f(x)) \geq a \} = (v^*)_a = v_a,
\]

and so \((v_a)^e = v_a \). Conversely, suppose that \(v_a = (v_a)^e \) for each \(a \in R \). Let \(x \in R \) and let \(f(x) \in (v_a)^e \) where \(a < \infty \). Then \(x \in (v_a)^e = v_a \), that is \(v(x) \geq a \). It follows that \(v \geq v^* \), and hence that \(v = v^* \).

We refer to [2, p. 296, Definition 2] for the definition of a best filtration. If \(v \) has a best filtration \(\{A_i\}_{i=0}^\infty \) then, by [2, p. 297, Lemma 1], the set of all distinct \(A_i \)'s is the same as the set of all distinct \(v_a \)'s where \(a < \infty \). Thus, taking \(f \) to be an inclusion map, our theorem includes, in the case of nonnegative pseudovaluations, Theorem 2, p. 299, and Theorem 4, p. 301, of [2].

3. An example in a one-dimensional ring. Let \(Q, m \) be a one-dimensional local ring and let \(q \) be an \(m \)-primary ideal of \(Q \). We shall consider the pseudovaluation \(v = v_a \) determined by the powers of \(q \) according to the rule

\[
v_a(x) = \sup \{ n \mid x \in q^n \} .
\]

By considering the associated graded ring \(G \) of \(v \) and proceeding as in Theorem 2, we could show that \(v \) decomposes into primary pseudovaluations corresponding to the isolated primary components of \(0_0 \) together with an “irrelevant” component. Apart from the irrelevant component this decomposition is unique (by [10]). We shall now show how the theory of monoidal transformations developed by Northcott and Kirby provides an alternative description of this
decomposition.

Let A denote the intersection of the primary components of 0_0 of rank nought, and write $Q/A = Q'$ and $qQ' = q'$. Then not every element of mQ' is a zero divisor. Let R be the q'-resolute of Q', for the definition of which see p. 136 of [4]; let Q_i, \ldots, Q_r be the monoidal transforms of Q' with respect to q', i.e., the rings of quotients of R with respect to the maximal ideals p_1, \ldots, p_r of R; and, for $i = 1, \ldots, r$, let f_i be the composition of the natural homomorphisms $Q \to Q' \to Q_i$. Using the symbols e_i and c_i to relate to f_i in the same way that e and c were related to f in §2, we observe that ψ_i is the pseudovaluation on Q_i determined by the powers of the ideal q^i. However, by [4, Theorems 1 and 8, and Lemma 3] q^i is a principal ideal of Q_i. Therefore, by an example in §3 of [10], ψ_i is primary, and so $\psi^{(\psi_i)}$ is primary.

Now, denoting by q_i the restriction to R_i of q^i, $\rad q_i = \psi_i$ and $q_1 \cap q_2 \cap \cdots \cap q_r$ is the primary decomposition of 3ψ (by the corollary on p. 142 of [4] and since $\Im \psi \subseteq \rad \psi$). Therefore, for all n,

$$R\psi^n = q_1^n \cap q_2^n \cap \cdots \cap q_r^n.$$

By an argument on p. 88 of [8], $R\psi^n = q^n$ for all sufficiently large n. Therefore, for $n \geq h$ say,

$$q^n + A = (\psi^{(\psi_i)} \cap \cdots \cap \psi^{(\psi_r)})_n.$$

However, we may choose h such that $A \cap q^h = 0_0$ and, hence, for $n \geq h$, $q^h \cap (q^n + A) = q^n$. Therefore, using e_i and c_i to relate to the natural map f_0 from Q to Q/q^h, we have, for all n,

$$q^n = (\psi^{(\psi_0)})_n \cap (\psi^{(\psi_1)} \cap \cdots \cap \psi^{(\psi_r)})_n.$$

Finally we show that $\psi_0 = \psi$ say, is primary. If $x \in f_0(m)$ then, for some k, $w(x^k) = \infty$ and so $x \in T(w)$. On the other hand, if x is a unit of Q/q^h then $w(x) = 0$ and, for any y,

$$w(xy) = w(y) = w(y) + w(x);$$

i.e., $x \in S(w)$. Thus $T(w) = S(w)$.

It is now clear that

Theorem 4. In the notation developed above

$$\psi^{(\psi_0)} \cap \psi^{(\psi_1)} \cap \cdots \cap \psi^{(\psi_r)}$$

is a primary decomposition of ψ.

It is easy to extend this theorem and obtain a primary decomposition of the pseudovaluation ψ, determined by an ideal I of rank 1
A NOTE ON PRIMARY DECOMPOSITIONS OF A PSEUDOVALUATION

in a 1-dimensional Noetherian ring R. Let M_1, \ldots, M_m be the associated prime ideals (necessarily maximal) of I, and, for $j = 1, \ldots, m$, let g_j be the natural homomorphism from R to the ring R_j of quotients of R with respect to M_j. For each positive integer n,

$$I^n = \bigcap_j (I^n)^{e_j c_j},$$

where e_j, c_j relate to g_j, and so

$$v_i = \bigwedge_j v_i^{e_j c_j},$$

which yields a primary decomposition of v_i on application of Theorem 4 to each $v_i^{e_i}$.

We conclude by describing a result, in the same vein as the foregoing, which is implicit, as a special case, in [9]. Suppose that our ring R is a domain; let \bar{v}_i denote the least homogeneous pseudovaluation $\geq v_i$; and let $\bar{R}_1, \ldots, \bar{R}_h$ be the rings of quotients with respect to the maximal ideals of the integral closure of R which contain I. Then \bar{v}_i decomposes into valuations

$$\bar{v}_i = \bigwedge_i (\bar{v}_i^{e_i})^{c_i}$$

where, for each i, e_i, c_i refer to the natural mapping $R \to \bar{R}_i$.

REFERENCES

8. ———, *The reduction number of a one-dimensional local ring*, Mathematika, 6 (1959), 87-90.

Received May 15, 1972.

UNIVERSITY COLLEGE, CARDIFF, WALES, U. K.
David Parham Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach .. 303
Colin Bennett, A Hausdorff-Young theorem for rearrangement-invariant spaces ... 311
Roger Daniel Bleier and Paul F. Conrad, The lattice of closed ideals and a*-extensions of an abelian l-group ... 329
Ronald Elroy Bruck, Jr., Nonexpansive projections on subsets of Banach spaces ... 341
Robert C. Busby, Centralizers of twisted group algebras ... 357
M. J. Canfell, Dimension theory in zero-set spaces ... 393
John Dauns, One sided prime ideals ... 401
Charles F. Dunkl, Structure hypergroups for measure algebras ... 413
Ronald Francis Gariepy, Geometric properties of Sobolev mappings 427
Ralph Allen Gellar and Lavon Barry Page, A new look at some familiar spaces of intertwining operators ... 435
Dennis Michael Girard, The behavior of the norm of an automorphism of the unit disk ... 443
George Rudolph Gordh, Jr., Terminal subcontinua of hereditarily unicoherent continua ... 457
Joe Alston Guthrie, Mapping spaces and cs-networks ... 465
Neil Hindman, The product of F-spaces with P-spaces ... 473
M. A. Labbé and John Wolfe, Isomorphic classes of the spaces $C_\sigma(S)$... 481
Ernest A. Michael, On k-spaces, k_R-spaces and $k(X)$... 487
Donald Steven Passman, Primitive group rings ... 499
C. P. L. Rhodes, A note on primary decompositions of a pseudovaluation ... 507
Muril Lynn Robertson, A class of generalized functional differential equations ... 515
Ruth Silverman, Decomposition of plane convex sets. I ... 521
Ernest Lester Stitzinger, On saturated formations of solvable Lie algebras ... 531
B. Andreas Troesch, Sloshing frequencies in a half-space by Kelvin inversion ... 539
L. E. Ward, Fixed point sets ... 553
Michael John Westwater, Hilbert transforms, and a problem in scattering theory ... 567
Misha Zafran, On the spectra of multipliers ... 609