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The concepts of formations, J^~-projectors and Ĵ ~-
normalizers have all been developed for solvable Lie algebras.
In this note, for each saturated formation J^~ of solvable
Lie algebras, the class ^Γ(

κ^) of solvable Lie algebras L
in which each ^"-normalizer of L is an ^'-projector is con-
sidered. This is the natural generalization of the Lie algebra
analogue to SC groups which were first investigated by R.
Carter. It is shown that J7~(J^) is a formation. Then some
properties of J^Vnormalizers of L e / " ( ^ ) are considered.

All Lie algebras considered here are solvable and finite dimensional
over a field F. J^~ will always denote a saturated formation of
solvable Lie algebras and L will be a solvable Lie algebra. N(L) is
the nil-radical of L and Φ(L) is the Frattini subalgebra of L. For
definitions and properties of all these concepts see [3], [4], and [9].
For SC groups see [6].

We begin with a general lemma.

LEMMA 1. Let N be an ideal of L and D/N be an J^~-normalizer
of L/N. Then there exists an ^-normalizer E of L such that E +
N= D.

Proof. Let L be a minimal counterexample and we may assume
that N is a minimal ideal of L. If D/N = L/N, then any ^"-nor-
malizer of L has the desired property, hence we may suppose that
D/Nc L/N. Suppose first that N is J^-central in L. Let N*/N =
N(L/N) and C = CL(N). Then N(L) = N*ΠC. Let M/N be a
maximal ^"-critical subalgebra of L/N such that D/N is an j^~-
normalizer of M/N. Now either M is ^"-critical in L or M com-
plements a chief factor of L between N* and N(L). In the first case,
by induction, there exists an ^-normalizer E of M such that E +
N = D and E is also an ^-normalizer in L. In the second case,
L/Ce^ and C + N*/C is operator isomorphic to N*/N* ΠC = N*/
N(L). Hence each chief factor of L between N* and N(L) is j ^ -
central which contradicts M being J^-abnormal.

Now suppose that N is ^-eccentric and assume N^Φ(L). Let
Λί/iV be as in the above paragraph. Again, by induction, there exists
an _^-normalizer E of M such that E + N = D. But iVg Φ(L) yields
that M is ^-critical in L using Theorem 2.5 of [4]. Hence E is an
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^"-normalizer of L and this case is completed.
Finally suppose that N is ^^-eceentric and assume N§£Φ(L).

Then N is complemented by a maximal subalgebra M which must be
^^-critical in L. Now there must exist an ^"-normalizer E of M
such that E + JV — D. Again E must be an ^^-normalizer of L and
the result is shown.

COROLLARY. J7~{jr) is closed under homomorphisms.

Proof. Let N be a minimal ideal of L, L e J?~(J^). Let D/N be
an ^-normalizer of L/ΛΓ. Then D = E + N toτ some ^J^-normalizer
of L. Now i? is an ^-projector of L and £7 + N/N = JD/ΛΓ is an
^"-projector of L/JV.

LEMMA 2. If Le ^{^) and C is an ^-projector of L, then
C is an ^-normalizer of L.

Proof. Let N be a minimal ideal of L. L/NeJ^i^) hence
C + N/N is an ^"-normalizer of L/N by induction. Hence C + N =
D + N ίoτ some ^"-normalizer D of L. Now D is also an ^"-pro-
jector of L and both C and D are .^-projectors of C + N. Then C
and D are conjugate in C + N by an inner automorphism of C + N
induced by an element of N by Lemma 1.11 of [3]. Hence D and C
are conjugate in L and the result holds.

Note that ^{ά?") contains a large class of Lie algebras. In fact
by Theorem 3 of [9] we have

LEMMA 3.

In order to obtain that ά?~(^) is a formation, we record a
characterization of ^^-projectors which is completely analogous to a
result in group theory due to Bauman [5]. Since the proofs carry
over virtually unchanged, we omit them.

DEFINITION. If M is a subalgebra of L, then a series 0 = L o c
• czLn = L is called an ikf-series if L{ is an ideal in Li+1, if MQ
NL(Li) and if each Li+ι/Li is a nontrivial, irreducible M-ίactor of L.

THEOREM 1. If C is an ^-projector of L and {LJ, 0 -^ i ^ n,
is any C-serίes of L, then C covers LJLi^ if and only if C + L{/
L^ e JT.

Proof. See proof of Theorem 1 of [5].
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THEOREM 2. If {L<} is a C-series of L such that C covers LJL^
if and only if C + LJL^ e J^, then C is an ^"-projector of L.

Proof. See proof of Theorem 2 of [5].

We intend to use these results in a slightly different form by
means of

LEMMA 4. Let M be a subalgebra of L,Me^ and H/K be a
nontrivial, irreducible M-factor of L. Then M + H/Ke^ if and
only if the split extension of H/K by M/CM(H/K) is in

Proof. Since M + ίf/iϊe Ĵ ~', M + H/K will be in ^ if and only
if the minimal ideal H/K of M + H/K is ^'-central in M + H/K;
that is, if and only if the split extension of H/K by M + H/CM+H(H/K)
is in j ^ ~ . But

M/CM{H/K) = M/MΓίCM+n(H/K) ~ M + CM+H(H/K)/CM+H(H/K)

= M + H/CM+JI(H/K) .

Now the corresponding split extensions of H/K by M + H/CM+Π(H/K)
and iί/iί by M/CM(H/K) are isomorphic and the result holds.

THEOREM 3. ^~(^~) is a formation.

Proof. ^r{^) is closed under homomorphisms has been noted
already. Hence let Nx and N2 be ideals of L such that L/Nl9 L/N2 e
J7~(^~). We may assume N, Π iV2 = 0 and show that L e y ^ ) .
Let D be an .^"-normalizer of L. Then D + iVΊ/JVί is an ^'-normalizer
of L/JVΊ, hence is an .J^-projector of L/iS7Ί and the corresponding
statement holds for D + N2/N2. Consider a D-series of L which
passes through Â  and iV̂  + iV"2 There is a jD-series of L which
passes through N2 and Nλ + N2 which is the same as the original D-
series above Nλ + N2 and corresponds to the original D-series below
Nί + iV2 in the natural way. In particular, a factor H/K in the new
D-series which is between N2 and Nt + N2 corresponds to H Π NJ
K Π Nλ in the original D-series and we claim that D covers (avoids)
H/K if and only if D covers (avoids) H Π NJK Π N,. For if D avoids
H/K, then D f) H^K, hence D f] HΠ N,QK0 N, and Z> avoids
if Π iVJί: n Λ .̂ Suppose that D covers iϊ/iί. Then H^K+ D. In
order to show that D covers H Π NJK Π JVΊ it is sufficient to show
that D+ (KΓίNJSHΠ N,. Since H^K+ D,D^NL(K) and £ΓS
iVi + Λ̂ 2, it follows that HQK + ( f l n ^ i iV2)). Using the corollary
on p. 241 of [9], H^K+ ((D Π NJ + (D Π W) - i + ( ΰ n JVJ. Then,
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since D Π N, c NL(K) it follows that HC\N^{K+ (D Π iVΊ)) Π iV, S
( # Π iVJ + (J3 Π iVJ S (K n JVJ + A hence Z) covers i ϊ Π NJK Π ΛΓ,.

By Theorem 1 and Lemma 4, a factor JΪ/ϋΓ above iVΊ in the
original Z)-series is covered by D + NJNX (hence .D) if and only if the
split extension of H/K by D + NJCD+Nl(H/K) is in ^ . That is,
iJ/iΓ is covered by JD if and only if the split extension of H/K by
D/Cn(H/K) is in j ^ ~ . A similar statement holds above N2 Every
D-factor in the original series is operator isomorphic to a D-factor
above JVΊ or above N2 and, using the result of the above paragraph,
in the original D-series a factor H/K is covered by D if and only if
the split extension of H/K by D/CD{H/K) is in J?~. Now by Lemma
4 and Theorem 2, D is an ^'-projector of L and ^~{^r) is a
formation.

The following example shows that ^Ϋ"^Ϋ" c ^~{^Ϋ") and that
JfirsV) is not closed under taking ideals. It is a variant of an ex-
ample on p. 52 of [7].

EXAMPLE. Let F be a field of characteristic p ;> 2 and let A be
a vector space over F with basis e0, , e ^ Define linear transform-
ations x, y, z on A by

and

(subscripts mod p). Then [α;, y] = xy — yx = y and [$, 2;] = [7/, ̂ ] = 0.
Let B be the three dimensional Lie algebra generated by x, y, z.
Let L be the semi-direct sum of A and B with the natural product.
As on p. 53 of [7], B acts irreducibly on A so that A is a minimal
ideal of L. Evidently A is self-centralizing in L, hence A is the
unique minimal ideal of L and N{L) = A. Hence each ^/"-critical
maximal subalgebra of L complements A. Furthermore, L is clearly
of nilpotent length three.

Consider first any Λ~-normalizer E of L which is also an ^V-
normalizer of B. Such ^"-normalizer exists since B is a maximal
^//^-critical subalgebra of L. By the covering-avoidance property of
^^-normalizers of B, E = ((z, x + ay)) where aeF. Now B is of
nilpotent length 2, hence E is a Car tan subalgebra of ί?. Now since
ze E, it is easily verified that E is a Car tan subalgebra of L.

Now in general, each ^"-normalizer of L is an ^//"-normalizer
of some ^"-critical maximal subalgebra M of L and ikf must com-
plement A. But L is of nilpotent length 3 and L/A is of nilpotent
length 2, hence ikf must be conjugate to B by Theorem 8 of [8].
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Consequently, any .^-normalizer of L is a Cartan subalgebra of L
and L e ^ ^ ) .

Now the ideal P = A + ((a, 2/)) of L is not in ^{^V). For
((a?)) c ((α, y)) c P is a maximal ^"-critical chain of P, hence ((a?)) is
an .Λ^-normalizer of P. However, the normalizer of ((a?)) in P is
((x, β0)). Hence L £ ^{^T).

We recall that each ^"-normalizer is contained in an .^-projector
(Theorem 6 of [9]). However, the usual converse result, namely each
^'-projector contains an ^'-normalizer has not been obtained, even
for ^V'^V'JF'-Lie algebras. We now show that this result holds if
L e Λr3r(^r)* First we record the following result which is needed.

THEOREM 4. Let L e ^ y ( ^ ) . Then each ̂ "-normalizer of
L is contained in a unique J^~-projector of L.

Proof. Same as the proof of Theorem 9 of [9].

THEOREM 5. Let L e ^ y f / ) . Then each ^-projector of L
contains an ^'-normalizer of L.

Proof. Let N be a minimal ideal of L and let C be an
projector of L. Then C + N/N is an .^"-projector of L/N and C +
N/N contains an ^"-normalizer D/N of L/N by induction. Let T =
C + Nand let .F be an J^-normalizer of L such that F + N = D^T.
Then i*7 is contained in an .^"-projector G of L and D/NξΞ: G + N/JV.
Hence G + iV— C + N by Theorem 4 and G and C are ^'-projectors
of T. By Lemma 1.11 of [3], G and C are conjugate in T by an
inner automorphism of T induced by an element of N. Hence G and
C are conjugate in L and the result holds.

,^-normalizers have the covering-avoidance property but the
converse is not true in general. However, if Le^(^), then the
converse is true.

THEOREM 6. Let Le^~(^~). If D is a subalgebra of L which
covers the J^~'-central chief factors of L and avoids the J?~'-eccentric
chief factors of L, then D is an ^-normalizer of L.

Proof. Let JV be a minimal ideal of L. Then D + N/N has the
covering-avoidance property in L/Ne^~(^~~). By induction, D + N/N
is an ,^-normalizer of L/N and D + N — E + N= T for some ,^-nor-
malizer E of L. Since L e y ( ^ ) , £ is an ^-projector of L and
then also of T. If N is j^-central in L, then NSD and NQE,
hence D — E. Suppose N is ^-eccentric. Then DΓ\N=0 = Ef]N.
Now Γ e . y f , / , hence £7 is an ^-normalizer of Γ by Theorem 3 of
[9]. Furthermore, in a given chief series of T passing through N, E
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covers all chief factors above N and avoids all chief factors below N
and the same is true for D. Since E is an ^^-normalizer of T,
each chief factor below N must be .^-eccentric and each chief factor
above N must be ^"-central. Hence, by Theorem 4 of [9], D must
be an ,^-normalizer of T. By Theorem 3 of [9], D must also be an
J^~-projector of T. Now D and E are conjugate in T (hence in L)
by an inner automorphism induced by an element of N. Hence D is
an .J^-normalizer of L.

Henceforth we shall be concerned with the case J^~ — Λ". Here
we have the following stronger form of Theorem 4.

THEOREM 7. Let L e ̂ ^(Λ^) and D be an ^Γ-normalizer of
L. Then there exists a Cartan subalgebra C of L which contains every
subalgebra H of L in which D is subinvariant. In particular, D is
contained in a unique Cartan subalgebra of L. C is the Fitting null
component of D acting on L.

Proof. D + N(L)/N(L) is subinvariant in H + N(L)/N(L) and
D + N(L)/N(L) is an ^T-normalizer of L/N(L) ejT(^). Hence
D + N(L)/N(L) = H + N(L)/N(L) is a Cartan subalgebra of L/N(L).
Let Ύ - D + N(L) = H + N(L) and let S be the Fitting null com-
ponent of D acting on T. Evidently NT(S) = S and H^S. Further-
more, S = SΠT=Sn(D + N(L)) = D + (S Π iSΓ(L)). Each element
of JD induces a nilpotent derivation on S and £ Π N(L) is a nilpotent
ideal of S. Then, using EngeΓs theorem, S is nilpotent. Hence S is
a Cartan subalgebra of T and also of L by Lemma 1.8 of [3]. If K
is another Cartan subalgebra of L containing D, then D is subinvariant
in K, hence K — S. The last past of the theorem follows from the
next lemma.

LEMMA 5. Let L be a solvable Lie algebra and D be a nilpotent
subalgebra of L. Let F be the Fitting null component of D acting
on L. Then D is subinvariant in F.

Proof. We may suppose that F = L. Let A be a minimal ideal
of L. Now in D + A, A is an abelian ideal and each element of D
induces a nilpotent derivation of D + A. Hence, using Engel's theorem,
D + A is nilpotent and D is subinvariant in D + A. But D + A/A
satisfies the conditions in L/A, hence D + A/A is subinvariant in L/A
by induction. Therefore, D is subinvariant in L.

For Lie algebras of nilpotent length three, a result somewhat
stronger than Theorem 7 holds. The proof is the same as the proof
of Theorem 7, using Theorem 1 of [8] instead of the defining property
of ^{sV), and may be omitted.
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THEOREM 8. Let L be of nilpotent length three (or less) and let
D be a nilpotent subalgebra of L which can be joined to L by a maximal
chain of subalgebras, each self-normalizing in the next. Then there
exists a Cartan subalgebra C of L which contains every subalgebra
H of L in which D is subinvariant. In particular, D is contained
in a unique Cartan subalgebra C of L and C is the Fitting null
component of D acting on L.

We may use this to find a Lie algebra analogue to Theorem 10
of [2].

THEOREM 9. Let M be a self-normalizing maximal subalgebra of
L. Suppose that L is of nilpotent length three. Then each Cartan
subalgebra of M is of the form Mf]C for some Cartan subalgebra C
of L.

Proof. Let D be a Cartan subalgebra of M. Then D is contained
in a Cartan subalgebra C of L by Theorem 8 and Lemma 1 of [8].
Now M Π C is nilpotent and D is a Cartan subalgebra of Mf] C.
Hence D = M Π C.

The final result is of a slightly different nature. We consider
the following: If an ^^-normalizer D of L is contained in the self-
normalizing maximal subalgebra M of L, then is D contained in an
.^-normalizer of M. The analogous question for finite groups is
answered negatively in [1]. The Lie algebra case also has a negative
answer as in shown in the following result. The second part of this
example is also an analogue to the example of [1].

THEOREM 10. There exists a solvable Lie algebra L e
which has an ^4^-normalizer D, ideal A and maximal subalgebra M
containing D such that

(1) D is not contained in an ^/l^-normalizer of M
( 2) NLU(D + A/A) -D NL(D) + A/A.

Proof. This example is also a variant of an example found on
p. 52 of [7]. Let F be a field of characteristic p>2. Let A be the
Lie algebra over F with basis aQ,al9 , ap_u b,c^cu , cp_x and
products [aiyb\ — d for i — 0, , p — 1 and all other products of
basis elements equal to 0. Define linear transformations x, y on A
such that

x(az) = ai+1

xφ) = o y(b) = 0

x(Ci) = ci+1 y(Ci) = id
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(everything mod p). Then x and y are derivations of A and [y9 x] = x.
Let B be the 2-dimensional Lie algebra generated by x and y and let
L be the semi-direct sum of A and B with the natural product.

Let R = ((c0, , cp_i)) and S = ((c0, , cp_u b)). The same argu-
ment used in [7] shows that R and A/S are ^"-eccentric chief factors
of L and S/R is clearly and ^//"-central chief factor of L. Let ikf =
((#, y, 6, c0, , c ^ ) ) , Mx = ((a, #, 6)) and Λf2 = ((y, b)). Each of these is
a maximal .^"-critical subalgebra of the preceding and M is max-
imal, ^^-critical in L. Now exp α0 is an automorphism of L since
char F Φ 2. Then C = M2

θxpα° - ((y, b + co))QM and D is an ^ T -
normalizer of L.

Now the ^//^-normalizers of M have dimension 2 by the covering-
avoidance property of ^f^-normalizers, hence, if D is contained in an
^/"-normalizer of M, then it is one of them. If this is the case, then,
since beZ(M), beD and dimJD > 2, a contradiction.

For the second part, note that

NLIR(M2 + R/R) = ((y + R,b + R, α0 + 12)) .

However, an element of the form aa0 + t,aeF,te R is not in NL(M2)

unless a = 0, since [6, aaQ + t] — —ac0. Hence

NL{M2) + R/R c iVz/Λ(M2 + R/R) .
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