Pacific Journal of

Mathematics

SLOSHING FREQUENCIES IN A HALF-SPACE BY KELVIN

INVERSION

B. ANDREAS TROESCH




PACIFIC JOURNAL OF MATHEMATICS
Vol. 47, No. 2, 1973

SLOSHING FREQUENCIES IN A HALF-SPACE BY
KELVIN INVERSION

B. ANDREAS TROESCH

The frequencies of the free oscillations of an incompres-
sible and inviscid fluid in a half-space with circular and
strip-like aperture are determined by first mapping the half-
space into a bounded domain by the Kelvin inversion. Upper
bounds for the eigenfrequencies are then obtained by a
Rayleigh-Ritz procedure. The results compare quite well
with previous results, which were obtained by less elementary
tools.

1. Introduction. The free oscillations of an incompressible,
inviscid liquid in a container have been investigated extensively (see
[1] and [6], and the references given there). In this paper we de-
termine approximations to the sloshing frequencies for fluid in a
covered half-space, where the free surface is a circular aperture.
The problem represents the limiting case of free sloshing motions in
arbitrary axially symmetric containers with the same free surface,
and its solution furnishes universal upper bounds for the sloshing
frequencies in these containers [11]. Recently, quite accurate results
have been obtained in [4], including rigorous error bounds for the
frequencies. Although the underlying geometry and the problem
statement are quite simple, the solution with the error bounds turned
out to be rather intricate.

We will present here an alternate method and show that quite
acceptable upper bounds may be computed with considerably more
modest tools. There are two reasons that account for the simplifi-
cations. First of all we will choose coordinate functions in the Ray-
leigh-Ritz procedure, which do not satisfy the natural boundary
conditions of the variational formulation of the problem. This leads
to considerable simplifications, but it precludes, on the other hand,
the ready computation of lower bounds. Secondly, the complications
arising from the fact that the domain is unbounded will be avoided
by using a Kelvin inversion. The problem is solved for the image
domain of a large spherical bowl, and only in the final result is the
bowl radius assumed to tend to infinity.

The corresponding variational formulation can still be establish-
ed without difficulty, although the problem is slightly more com-
plicated after the Kelvin transformation (cf. egs. (2.5) to (2.8) below).
In this setting, the problem is solved by a Rayleigh-Ritz method.
The matrix elements turn out to be rational numbers (with the
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exception of a few logarithmic terms) and can therefore be computed
easily and accurately.

The mathematical problem, both in its original form and after
the Kelvin transformation, is stated in §2. The next section
describes in detail how the original differential equation and the
boundary conditions transform under the Kelvin inversion. The §4
establishes the variational principle, and § 5 deals with the choice of
the coordinate functions in the Rayleigh-Ritz procedure. In §6 it is
indicated how the integrals, which represent the elements in the
matrix eigenvalue problem, are evaluated.

The discussion of the limiting process from the large spherical
bowl to a half-space is taken up in § 7. The next section comments
on the two-dimensional sloshing problems in a half-space with a
strip-like aperture, and the numerical results for both the axially
symmetric and the plane case are given in the last section.

2. Problem statement. The sloshing motion of a fluid in a
half-space with a circular free surface of radius a is described by the
following eigenvalue problem for the velocity potential f(z,y, z) [4],
where the eigenvalue appears only in the boundary condition.

The Laplace equation is satisfied in the lower half-space 2z < 0

2.1) 7if =0,

and the boundary conditions on the horizontal x-y-plane are

@2 L@u0=1 @50 for 0Se+y<a

(2.3)

(Zf(x,y,O):O for <2+ ¥y < .

0z

The eigenvalues N are related to the frequencies of oscillation @ and
to the acceleration of gravity ¢ by

N = g .

In the approach taken in this paper, the egs. (2.1) to (2.3) are
satisfied inside a large spherical bowl and on the part of the x—y-
plane which cuts the bowl, whereas on the spherical part of the
bow!l the usual boundary condition for a finite container is imposed
(ef. Fig. 1), namely that the normal derivative of the velocity potential
vanishes

2.4) 9 _ 0 on S.

If the Kelvin inversion is applied, then the problem takes on the



SLOSHING IN HALF-SPACE BY KELVIN INVERSION 541

following form, in which it is actually solved. Determine the set of
eigenvalues A\ for the eigenvalue problem for the function g:

(2.5) Fig = 0

in the indented sphere C, of radius a/2 (see Fig. 1); the boundary
condition

(2.6) g+ ald =
or

is satisfied on the upper half-sphere, except on the indentation of radius
0. On the indentation

(@.7) 020 =g
holds (n is the outer normal to the shaded domainj. Furthermore,

(2.8) (1 — cos 0) <g + a%) = 2\ag
7

holds on the lower half of the sphere C..
The derivation of this form of the problem is carried out in the
next section.

Fig. 1 The geometry of the Kelvin inversion.

A remark should be added about the singularity which occurs at
the transition from the free surface to the covered part of the
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spherical bowl, i.e., at #* + 4* = ¢’ 2 = 0. From the physical point
of view we have to stipulate that the singularity be weaker than a
source or a sink (cf. [10], p.59 and p.80). This is also the appro-
priate mathematical condition for the problem: as P. Henrici has
shown in a striking example (cf. [4], p. 296), the spectrum of the
problem changes its character drastically (there appear finite eigen-
values ) of infinite multiplicity), if the singularity is too strong.
Since the singularity at the rim is a local phenomenon, the solution
of the dock problem (waves in a half-space covered by a rigid half-
plane) is applicable. This solution is given in [3] (and also used in
[8], p.323) in terms of the complex velocity potential: there is a
logarithmic singularity at the rim. For the Rayleigh-Ritz procedure
used below the exact nature of the sufficiently weak singularity need
not be taken into account. The coordinate functions (see § 5) will
probably represent the true eigenfunctions rather poorly near the
rim; but it is known that the Rayleigh-Ritz method nevertheless
furnishes good upper bounds for the eigenvalues. Under some cir-
cumstances it is advisable to isolate the singular behavior of a
solution by including in the set of coordinate functions a function
with the proper singularity. However, the computation of the matrix
elements in § 6 would then become considerably more involved.

Incidentally, the solution of the dock problem ([3], [8]) has been
used in [12] to obtain the asymptotic distribution of the eigenvalues
for the problem considered here.

3. The Kelvin inversion on the sphere C,. The original prob-
lem is first restated in spherical coordinates =, 6,, @, with the origin
at the center O, of the sphere of inversion C,. The x-y-plane is then
described by

3.1 r, cosd, +a=20,

and its normal unit vector in the z-direction by

n = (cos 8, — sin g, 0).

Hence the boundary conditions, egs. (2.2), (2.3), and (2.4), for the
harmonic function

fx (’)”1, g, (Pl) = f(il?, Y, z)
become, on the plane (3.1),

%cosﬁl—smal—%z A fOr%Tﬂ <6 =7

or, r, 00,
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of, sin 4, df, T 3
—lcosf, —=—2 L1l = for — + 6, <6, < ==
or, YTy, 08, 2 PET g
and furthermore,

ofs

or,

on the large spherical bowl S, of radius R,. For the meaning of the
angle 6, see Fig. 1, where it appears greatly exaggerated, of course.

Next we map the lower half-space into the sphere C, by reciprocal
radii, i.e., by the transformation

a2
Ty = —, 6. =86,, Py = P; .
Ty

For the equation of the sphere C, we then obtain

T

IA

0,

IA

acosb,+7r,=0 for—72E

and for the spherical indentation C, with radius o

=0

where 0 = a*/R..
If we transform £, in the usual manner by introducing ([9] p. 140)

2 2
fz("'z, 02, @2) = a_'fl (g', 02, @2) ’
Ty 7

then f, is again a harmonic function
(3.2) rf,=0.

The boundary conditions on C; turn out to be

(3.3) 7, €08 0, f; + 75 cos 0, % + 7, sin 023—? = =\’ fy
2

2

for3T7r<0z§7T,

3.4)  cosf,fy+ 7, cos B, 2L + sin 9,202 = 0
0Ty 00,

for L ﬁ£0<3_7r,
2+o 2 1

and finally on the indentation

(3.5) 7'2—3% +f.=0 for .=p.
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Clearly, the proper coordinates to solve (3.2) to (3.4) are the
spherical coordinates with the origin at the center of the sphere C,
of radius /2, i.e.,

a
7y €08 0, = 7, cos O, + >

7, sin @, = r, sin G,
Py = Py .

On the surface C, the relations

o7,
-‘ZTE = —q sin (—@) cos <—6—3)
00, 2 /
- 2 (%)

075 a 2

00, 2 sin? ( 03)

00, 2

hold. Hence, the boundary conditions (3.3), (8.4) transform, after
some straightforward simplifications, to

(3.6) (1 — cos 6,) < fita gf) — 2af,

3

on the lower half-sphere, denoted by S;:

T
’Y’s=%-, ~2—<03§7Z',

and to
(3.7) fitall=o
0Ty
on the upper half-sphere:
a 5 T
=2, j=<6,<Z,
7’3 2 = 3 < 2

where fy(ry, 0;, P;) = furs, 0,, P,) satisfies
(3.8) 7Pfy=0

inside the indented sphere C,. The angle & > 0 excludes the inden-
tation from C,. The boundary condition (3.5) on the indentation is
best left in the old coordinate system. Thus the problem statement
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of §2 is established, and the subscripts can be dropped for the
spherical coordinates.

4, The variational principle. It is not difficult to find by in-
spection the variational principle which leads to the eigenvalue
problem (2.5) to (2.8).

Let the functional L [g] be defined as

(4.1) L gl = Ngl/D [g]
with

c

@y N = ||| irorav 2] as - L]

i

g ds,

2 2 48

(4.3) Dlg] = SSSZ mg

In Ng] the volume integral is taken over the indented sphere, one
surface integral is taken over the surface S of the sphere C,, with-
out the indentation, and the other surface integral over the indenta-
tion C,. In D[g] the surface integral extends over the lower half-
sphere. We show now by the standard method of the calculus of
variations that the stationary values of L are the eigenvalues \ of
the problem (2.5) to (2.8):

I\ ro-ragav+ L1 gagas - 1| gogas
14 a S 0

h vOy

2 o
— S aS =20,
SSSZ (1 — cos0) ved

and using Green’s theorem

~\[\,eergav + (] o922 as + || o9 2Las+ 2| sagas
v s 0 on e, . om a JJs

1 ([ { 2 _

';SL&M“”ELZ T cosg) 0998 =0"
The differential equation and the boundary conditions (2.5) to (2.8)
follow now at once. We notice, in particular, that the boundary
conditions turn out to be natural boundary conditions. This enables
us to choose as admissible function in the variational principle any
continuous function with piecewise continuous first derivatives for
which the integrals exist.

5. The Rayleigh-Ritz method. We now proceed to find the
stationary values of (4.1) by the Rayleigh-Ritz method. Since the true
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eigenfunctions of the problem are harmonic, it is desirable to choose
as coordinate functions a complete system of harmonie functions (cf.
[6] p- 240, [7] p.96). An obvious choice for g is then

n=N n=N 2/’-
(5.1) g= 3 a,f, cosmp =3, an(
n=m n=m a

)nP;”(cos 0) cos m® ,
m=12, ---.

The functions P are the spherical harmonics, and the a,’s are the
free coefficients in the Rayleigh-Ritz method.

For the sloshing modes without radial nodal lines, the above ex-
pression for g is not the best possible choice, because for m = 0 the
original problem possesses the eigenvalue A = 0 with a constant
eigenfunction. Under the inversion, this function does not remain
constant and should be included in the set of coordinate functions.
Although the Rayleigh-Ritz method would still furnish upper bounds
for the eigenvalues, the results would be considerably less accurate
without this function, especially for small N. For this additional
function the index n = —1 is chosen, in order not to disturb the
standard notation for the Legendre polynomials P,. By the inversion
on the sphere one obtains

(5.2) =2 = (ff + % — L cos 19>—”2

If N— oo, this coordinate function would of course be redundant.
For m = 0 we now choose

(5.3) g=qa_f_, + ?j ., ( 2(: )n P, (cos 8) .

Since the trigonometric functions are orthogonal, the problem is
decomposed into its symmetry classes m = 0,1, 2, ---, and each sym-
metry class can be investigated separately. This fact has already
been taken into account in the coordinate functions introduced above.
The factor cos m@ could of course be replaced by sin m® without
altering the subsequent steps, and it then follows that all eigenvalues
for m = 1 are double eigenvalues.

We are now ready to find the upper bounds for the functional
L [g] in eq. (4.1). In order to take advantage of the fact that all the
coordinate functions are harmonic, the eq. (4.2) is transformed by
Green’s theorem

Vi =[], o5+ 3)as o (G~ 5)es-

For each symmetry class m, eq. (5.1) leads to
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L, [9] = N, [9]/Dn 9]
Nold = Sy {[|_7(3L + L) cost mo ds

gk a

+ gg fj(af" f"> cos’ m;DdS}

Oy

2 :
D, [g] = Zaakggslfjfkmeos mp dS .

If we minimize L with respect to the coefficients « ([7] p. 96), we
obtain the algebraic eigenvalue problem of the form

det (A —AB) =0.

6. The computation of the matrix elements. The matrix

elements are, after suppressing the common factors from the integration
over @

@i = \_fi af"—i—f’” sin 6 d6
S (ar 4

6.1)
i (0fe _ L) g s
N S:/zwo fj(an p)p sin 0, af,
) b=\ fifi—2 % sinode.
(6.2) it S file (l—cosﬁ) 4s1n

It is convenient to leave the second integral of a;, in the spherical
coordinates centered at O,. In spite of their appearance, both matrices
A and B are symmetrical.

The matrix elements a;, and b;, are evaluated under the as-
sumption that 6, = 0, and hence 6, = 0,0 = 0. These assumptions
will be justified in the next section. For all m, and j = m, k= m

k
fo= (22 Prieos o) ,
a
and setting cos d = ®, the eqs. {(6.1) and (6.2) simply become

63)  an=2 S @k + 1) Pr(a) Prw) do = 2 U H ™5
4 )= 2 (G —m)!
with the Kronecker symbol d;.(see [5], p. 116), and
2 (0
6.4) b= L S_l Py() P (TET) do .

For m = 0, there are the additional elements a_, ,, @_,_,, b_, ;, b_,,_;.
Using eq. (5.2) for » = a/2, we obtain
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2 (0
(6.5) b =2 S_l (?1 v o Pu) o k=01,
] R
(6.6) b= S i =G

Both integrals in the elements a, _, and a_,,_, vanish, since we
find from eq. (5.2) that on C;

6.7) Oy Juo g
or a

and on the indentation C,

Ofs _ fo_
(6.8) T 0

As the matrix A is symmetrical, the elements a_,, also vanish;
indeed, in this case, the two integrals are equal in magnitude and of
opposite sign.

It remains to evaluate the integrals in egs. (6.4) and (6.5). If
the Legendre functions P are expressed in terms of (1 — %), as given
in [5] p. 111, and the division is carried out, then the finite series
can be integrated termwise. The results look cumbersome, if they
are spelled out, but they are easily implemented recursively in a
computer program.

7. The limit of an infinitely large spherical bowl. The inte-
grals in eq. (6.1) have been evaluated for 6, = 0, and hence § = 0,
© = 0. This is permissible, because the contribution of the indentation
in the sphere C, to the matrix elements can be made arbitrarily small.
All the coordinate functions, with the exception of f_,, are regular in
the neighborhood of the point O,. By shrinking the radius o of the
indentation C, to zero, we can make the contribution of the indenta-
tion to the matrix elements a;, as small as we wish. In the elements
a,_, and a_,_, the integrand vanishes even for finite o according to
(6.7) and (6.8). This result is of course expected, as \ = 0 should
remain an eigenvalue for the problem after the Kelvin inversion.

The roots ) of the characteristic polynomial are all nonnegative
and depend continuously on its coefficients, i.e., on the elements of
the matrices A and B. Therefore, if the indentation is ignored
entirely, the Rayleigh-Ritz eigenvalues differ arbitrarily little from
those for a small indentation, or, in terms of the original problem,
from the Rayleigh-Ritz eigenvalues of the lower half-space bounded
by a sphere of large radius R,.
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8. The planar case. For the case where the sloshing motion
takes place in two dimensions, the same method can be applied. The
free surface is now a strip of width 2a perpendicular to the plane in
which the velocity vectors lie. Fig. 1 still depicts the situation, ex-
cept that the inversion takes place on a circle rather than on a sphere.
The sloshing frequencies now represent universal upper bounds for
sloshing in a canal where the fluid motion is perpendicular to the
canal axis.

The mathematical problem which describes the motion is, in terms
of the velocity potential f, as follows:

(8.1) rf=0 for z < 0
(8.2) % (@, 0) = \f(z, 0) for 0 < || <a
(8.3) _Z_zi(w,m:o for a < ||,

and, as we replace the half-space by a large cylinder S,,

(8.4) gi =0 on S, .

After the Kelvin inversion, we obtain
(8.5) g =0

in the indented circle C,, and as boundary conditions

6 o9 _ 0
(8.6) on

on the upper half-circle of C, and on the indentation C,,

8.7) (1 — cos ) 29 = 2ng
on
on the lower half- circle of C,, denoted again by S,.
Egs. (8.5) to (8.7) are the Euler-Lagrange equation and the natural
boundary conditions of the variational problem, which consists of
making the functional

Lig = [[irgraal] G—trgas

stationary. The double integral is extended over the indented circle
(see Fig. 1).
The obvious choice for the coordinate functions for the Rayleigh-
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Ritz method is now
f,,:(—i?‘l)nsinnﬁ, n=12 ..
a

for the odd modes,

f,,:(£>ncosn0, n=20,1,2 «..
a

for the even modes.

There is no need to introduce a special function corresponding to
eq. (5.2), since for the inversion by reciprocal radii in two dimensions
a constant function transforms into a constant, and this term is in-
cluded by setting # = 0 for the even modes. The limit R, — o also
causes no problem.

A simple calculation furnishes for the matrix elements in

det(A—AB)=0
the results
(8.8) Qjp = JT Oy,
and
bir = (=17 a(Cliiy % Cjrs)

with the upper sign for the even, the lower sign for the odd modes.
The integrals

C = Sz/z cos nP dp = gn/«; cos 2 ne do
" o 1+ cos® o cos* @

which appear in b;, are readily evaluated as finite sums.

9. Numerical results. The numerical results for the upper
bounds of the sloshing eigenvalues in a half-space are summarized in
Table 1. They are based on the solution of a 16 by 16 matrix eigen-
value problem. Since the matrix A is diagonal in both the plane
and the axi-symmetric case (cf. egs. (6.3) and (8.8)), the eigenvalue
problem is of the simplest type.

By observing the trend of the results as the order of the matrices
A and B is increased to 16 by 16, and by applying an Aitken ex-
trapolation, the eigenvalues can be improved, namely by a fraction
of a percent for A, and by a few percent for ), However, the ex-
trapolated values are no longer guaranteed to be upper bounds.

In Table 2 the present results are compared with previous results
for three representative examples.
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TABLE 1
Planar case axi-symmetric case

m%((ii%s rﬁzggs m=0|m=1|{m=2|m=3|m=4|m=5|m==6
als 2.009 3.462 | 4.133| 2.759 | 4.130 | 5.415| 6.651 | 7.857 | 9.041
alz 5.148 6.665 | 7.385| 5.915| 7.376 | 8.764 | 10.103 | 11.409 | 12.688
als 8.332 9.885 | 10.630 | 9.097 | 10.602 | 12.047 | 13.45 | 14.82 | 16.16
als 11.583 | 13.17 | 13.94 12.32 | 13.86 | 15.35 | 16.80 | 18.22 | 19.62
als 14.98 16.62 | 17.40 15.64 | 17.22 | 18.76 | 20.26 | 21.73 | 23.18

Upper bounds for the sloshing eigenvalues in a half-space, with strip-like
aperture of width 2a¢ in the planar case, and with circular aperture of
radius a in the axi-symmetric case.

TABLE 2
Present results Ref. [2] Ref. [4]
Planar case
odd mode, al; 2.009 2.018 2.006
axi-symmetric case
m=1, als 9.097 9.25 9.033
m =25, als 21.73 — 21.14

Comparison of three typical examples with the upper bounds from {2] and

4.

Added in proof. The reader should also consult the paper by
J. W. Miles, On the eigenvalue problem for fluid sloshing in a half-
space, Z. Angew. Math. Phys., 23 (1972), 861-869.
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