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Let © be a separable infinite dimensional complex
Hilbert space, B($) the set of bounded linear operators on
9. Consider a holomorphic map z— K(z) from a complex
neighborhood of some interval of the real axis to B(9D),
such that for z real K(z) is hermitian. These conditions are
satisfied by K(z) = H — 21, with H hermitian. In this special
case K(z) has a bounded inverse S(z) (the resolvent of H),
for z not on the real axis, and S(z) can be represented as
the Hilbert transform of a measure whose values are bound-
ed positive operators (the spectral measure of H); for z on
the real axis K(z) has a (generally unbounded) inverse for 2
not in the point spectrum of H; closely related to the
spectral representation of S(z) is an approximation theorem
which asserts roughly that for most real values of 2z, [K(2)]!
can be approximated by operators of finite rank obtained by
taking the orthogonal projector P onto a finite dimensional
subspace D and inverting PK(2)P on D. The object of this
paper is to give conditions on K (z) sufficient to imply the
conlusions just noted in the special case K(z) = H — z1.

The main theorems are Theorem 1 in §1, and Theorem 4
in §4; each has two parts — a representation for [K (2)]~! for
z complex, and an approximation theorem for [K(z)]"! for z
real. Theorem 4 is used in §5 to prove a convergence
theorem (Theorem 5) for the Kohn variational method in
quantum mechanical potential scattering (the relevant terms
are defined in that section). This application motivated the
writing of the paper.

1. The representation theorem. Throughout this paper we will
be working in a separable complex Hilbert space ©. ¢ will denote
Lebesgue measure on the real line R. We will need to consider
positive operator valued measures on R. Such a measure is a map
vy from Borel subsets B of R to positive bounded operators on £
such that for any f, g€ $ the map v, ,: B—(f, v(B)g) is a complex
measure on R. If {v,} is a sequence of Borel measures on R, with
the total variation of v, bounded in =, the convergence v, — v of v,
to a measure v will always mean weak* convergence (also called
vague convergence).

We begin by stating our main result in its simplest form. This
will be further generalized in § 4.

567



568 M. J. WESTWATER

THEOREM 1. Let {K(2)} be a family of bounded operators on 9,
defined and holomorphic in z, for z in a complex neighborhood of
some finite open interval I of the real awxis. Suppose that

(a) K(z) is hermitian for zel

(b) K'(z) =1+ C(z), with C(z) compact, for ze¢ U

(¢) for some ze U — I, K(z) has a bounded inverse.

Then there exists a discrete set EC I such that, for each open
wnterval J whose closure is contained in I — E, K(?) has a bounded
tnverse S(z) for ze N, — J (where N; is a certain complex neigh-
borhood of J). In N; — J, S(z) admits a representation

(L.1) S(z) = SJ?:@Z + Ry(2)

where v is a positive operator valued measure on J, and R,(z) is
holomorphic in N,.

Let {Dy} be an increasing sequence of finite dimensional sub-
spaces of 9, whose unton D is dense in . Denote by Py the or-
thogonal projection onto Dy. For sufficiently large N the restriction
of PyK(2)Py to D, 1is invertible (as an operator on Dy) for all but a
discrete set of ze I (dependent on N); when this inverse is defined
we extend it to an operator Ty(z) on © by setting Ty(z) = 0 on the
orthogonal complement of Dy. Then as N — oo

Ty()K(z) — 1
weakly in measure (1) on I, i.e., for all f, g€ 9
(fy Tx(2)K(2)9) — (f, 9)

wn measure on I.

REMARK. For C(?) =0, K(2) in Theorem 1 is of the form
—H + z1 with H hermitian, and S(z) is the resolvent of H. There
is no exceptional set £, and (1.1) is the representation of S(z) given
by the spectral theorem.

Proof of Theorem 1. The proof of Theorem 1 follows from:

(i) The special case where |[C(?)|[< o<1

(ii) A perturbation result involving preservation of the validity
of the conclusions of Theorem 1 under an additive perturbation of
C(2) by a constant rank 1 operator. The results we obtain in these
special cases are somewhat stronger than are necessary for the proof
of Theorem 1. We state them as Theorems 2 and 3.

THEOREM 2. Let {V(2)} be a family of bounded operators on 9,
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defined and holomorphic in z, for z in a complexr neighborhood U of
some finite open interval I of the real axis. Suppose that the inter-
section of U with any line Rez = a is either emply or connected.
Let H be a self-adjoint operator and D a core for H. Suppose that
(a) K =—H— V() +z1
®) [[V'ell<o<l forzel.
Then K(z) has a bounded inverse S(z) for ze U — I. For each open
interval J whose closure is contained in I, S(z) admits for ze U — I
a representation

(1.2) s@ =, 20 + R
where v is a positive operator valued measure on J, and R;(z) is
holomorphic in U— (I —J). If D is the union of an increasing
sequence of finite dimensional subspaces Dy of O, and Ty(z) s defined

as in Theorem 1
(1.3) (f, TV K (z)g) — (/, 9)

as N— oo in measure (i) on I, for f€9, gcdomain of H.

THEOREM 3. Let {S(z)} be family of bounded operators on $ defined
and holomorphic in z, for all z with Imz =% 0 in a connected open
set U containing an open subset of I — K of the real axis. Here I
18 @ finite open interval, and E a discrete subset of 1. Suppose that,
for any open interval J whose closure is contained in I — E, there
exists a complex meighborhood N; of J such that, for ze N;—J, S(z)
admits a representation (1.1). Let K be a symmetric rank 1 operator.

Then either 1 — z trace (KS®)) =10, ze U, Imz = 0 or with a
suitably defined discrete set E D E replacing E, and o connected open
set UD I — E replacing U, the family of operators S (2), defined by

S = S(z) 1 — 2zKS(2))™

Yy 2KS(z)
=S@ {1 * 1-— ztr(KS(z))} ’

satisfies the conditions tmposed on {S(z)} in the preceding paragraph.
U is so defined that zc U, Imz+= 0 and 1 —z trace (KS(z)) = 0
together imply ze U.

Suppose further that there exists an increasing sequence {Dy} of
finite dimensional subspaces of 9, together with a sequence {Ty(z}} of
operators, defined for Imz = 0 and z€ U, such that

(a) PyTyw(z)Py = T\(2), Py the orthogonal projection onto D,

(b} for each set J as in the first paragraph, T\(z) has a represen-
tation
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Ty = | 220 4 Ry
72—

with vy a finite sum of positive masses, each of rank 1 as an oper-
ator, and Ry(z) holomorphic in Nj.

(¢) limy.. Ry(2) = R(2), z€ N; (weak limit)

(d) the total variation of vy on J is bounded in N, and lim,_.,
Yy = VY

(e) for almost all ze I a sesquilinear form K (z) is defined with
Sorm domain containing D, D = J Dy, and independent of z, such
that

(f; Tw(2)K(2)9) — (f, 9)

as N— « in measure () on I, for f€9, gedomain K(z).
Then the sequence of operators {Ty(z)} defined by

- _ ZKTN(z)
Ty = T {1 + 728}

stands in a similar relation to the operators {S(2)}, and the sesquilinear
forms K(z) = K(z) — zK.

Conclusion of proof of Theorem 1 (assuming Theorems 2, 3). To
see that Theorems 2 and 3 imply Theorem 1 note first that the con-
clusions of Theorem 1 are local in z, i.e., it suffices to show that each
2, € I is contained in an open interval I, such that the statements of
Theorem 1 are valid with I replaced by I,, Choose a real number ¢
with 0 < ¢ < 1. Then C(z) = C(z,) + (C(z) — C(z,)) with

I1C(2) — C(zo) || < 1/20

for z — 2z, sufficiently small, and, since C(z,) is compact and sym-
metric, C(z) = F + (C(z)) — F) with ||C(z,) — F|| < 1/20, for some
symmetric F' of finite rank p (say). This gives a splitting of K (2)
in a neighborhood I, of I

K(z) = K\(2) + zF

With K/(z) =1+ C,(?), and ||C,(?)|| < 0 for o€ I,. Theorem 2 is ap-
plicable to the family {K,(z)}. Condition (c) of Theorem 1 implies

1+ 28,()F = S,()K ()

is invertible for some ze N — I, so det (1 + 2S,(?)F) % 0 for z = w
(say).

We claim that we can choose a splitting F = 35_, F; of F as a
sum of a finite number of symmetric rank 1 operators F;, in such a
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way that

det (1 + wS(w)X,) = 0, with 3, = S5, F;, for all k, 1<k <s.
Theorem 1 is obtained by a finite induction on %; at each step one
has we U and 1 — @ trace (KS(w)) # 0, so that the first possibility
admitted in Theorem 3 does not occur.

To justify the claim made in the preceding paragraph consider
the vector space V of symmetric operators X of finite rank whose
range is contained in the range of F. The set

D = {Z|det (1 + ®S()X) = 0}

is an algebraic subset of V, and 0¢ D, FF¢ D. V is a vector space of
dimension (p(p + 1))/2 and, since every X eV can be written as a
sum of p rank 1 operators, it is possible to choose a basis {F;} for V
in which each E; has rank 1. A suitable splitting of F is obtained
by choosing a piecewise linear path joining 0 to F, each of whose
vertices 0 = %, 3, -+, X, = F does not lie in D, and each of whose
edges is parallel to one of the basis vectors.

2. Proof of Theorem 2. The proof of Theorems 2 and 3 follows
very closely the proof given by Stone [18] of the first part of the
spectral theorem for a self-adjoint operator H, i.e., the part in which
the spectral measure is constructed. The second part of the spectral
theorem in which the spectral measure is shown to be projection
valued, the projections giving a resolution of the identity, depends
upon the Hilbert identity satisfied by the resolvent; here we do not
have an analogous identity satisfied by S(z), and therefore we can
only assert that the measure constructed is a positive operator valued
measure. Stone’s method is to approximate H by a sequence H, of
symmetric operators of finite rank, and to obtain the matrix elements
of the spectral measure of H as limits of the corresponding matrix
elements of the spectral measures of the H,. That H, has a spectral
measure is a reformulation of the spectral theorem for a symmetric
operator in a finite dimensional space.

We divide the proofs of Theorems 2 and 3 into a series of lemmas.
T2 appearing at the beginning of the statement of a lemma indicates
that the notation and hypotheses of Theorem 2 are in force.

Lemma 1, due to Stone, asserts strong convergence of the ap-
proximate resolvents constructed from the operators H, to the
resolvent of H. From it we obtain Lemma 2 which asserts strong
convergence of the operators Sy(z) to the operator S(z), which plays
the role of the resolvent in our Theorem 2. The explicit estimate
enables us to verify a condition on the uniformity of the convergence
which is essential in the argument which follows. Lemma 3, essen-
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tially due to Rellich, plays the same role in our argument as the
spectral theorem for a hermitian operator of finite rank in that of
Stone. Lemmas 4, 6, and 8 are elementary lemmas concerning sequences
of meromorphic functions ®,(z) having simple poles on the real axis;
in each case a convergence condition is given for Imz # 0 and the
conclusion concerns the behavior of the sequence of z real. Lemma 5
gives a basic estimate for the Lebesgue measure of the set on which
a meromorphic function of the type described is large. Lemma 7
is an elementary measure theoretic lemma needed in the proof of
Theorem 8. Theorem 2 follows from these lemmas and the Stieltjes
inversion formula for Hilbert transforms exactly as the first part of
the spectral theorem follows from the corresponding assertions ir
Stone ([18]); this argument is isolated as Lemma 9.

Notice that in Theorem 2 no condition similar to condition (¢) in
theorem is given or needed. The necessity for this condition appears
in Theorem 8, where the possibility arises that S(z) may not exist
for any z, Theorem 3 asserts that it suffices to demand that S(z)
exist for one complex value of 2. This result follows from the key
Lemma 10. The connection between Theorem 1 and the theory of
J self-adjoint operators pointed out at the end of §3 makes it clear
that Lemma 10 is best possible. Lemma 11 gives the implication of
Lemma 10 for the approximating measures. Theorem 3 then follows
from these lemmas and the Stieltjes inversion formula.

LEMMA 1. (Stone [18]) Let H be a self-adjoint operator, z
complex number, Imz == 0. Let D= Uy~ Dy, {Dy} an increasing
sequence of finite dimensional subspaces of . Suppose that D is a
core for H, so that D 1is contained in the domain of H, and (z — H)
D is dense in ©. Denote by Ty(z) the bounded operator on  defined
by extending the inverse of Py(z — H)Py on Dy to an operator on $
by setting it equal to zero on the orthogonal complement of Dy.
Then as N — co

Tw(z) — (z — H)™* strongly .

We give the proof because we need not only the result stated
but also the estimate given by the proof.

Proof. Given ¢ > 0, and fe 8, choose he(x — H) D so
e —fll <e.
Suppose b = (z — H)k, ke D. Then ke D, for all N > N,, so
z—H)'f=@—-—H(f—Nh+k
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Tv(z)f = Tu(2)(f — h) + Tu(2)(z — H)k
but ke D, so
Tyv(2)(z — HYk = Ty(z)Py(z — H)Pyk = Pyk =k .
Also
I~ < [Imz™, [ Ty@) ] < [Imz[”.
This gives
Iz —H)y'f— T <2/Imz[7|f— R <2[Imz[".
REMARK 1. If L is a closed subspace of  and yec$ we denote

by d(y, L) the distance from y to L. The above proof gives the
estimate

Iz — By f — Tu(a)f 1| < 2|Tmz [ d(f, ( — H)D,) .

LEMMA 2. (T2) K(2) has a bounded inverse S(z) in U — I. For
zeU—-1T

{2.1) lim Ty(z) = S(2) (Strong limit) .
Nsoo

Proof. Let z ¢ U. By supposition z, = Re z, € U and the segment
%%, 1s contained in U. Write H, = H + V{(z,), R(z, H) = (z — Hy)™
Note that in some neighborhood of z,

o1z —2|<|Imz]|.
Then
K™ = (21 — H, + V(z) — V(z))™
2.2) - (zl _H + g Vi) du)

_ [1 + R(z, Hy) S V() du]ﬂ Rz, H) .
K}

Since “R(z, H,) Sz V'(u) du “ Lolz—2/|]/Imz[7 <1 in a neigh-
borhood of z,, the inverse of the first factor in (2.2) exists and may
be computed as a geometric series. Since (V(z) — V(z,)) (2 — z,)™" is
holomorphic in 2z, the resulting representation of S(z) = K(2)™* as a
norm convergent series whose terms are holomorphic establishes that
S(z) exists and is holomorphic in a neighborhood of z — z,.

Finally the approximation theorem (2.1) follows from Lemma 1
and the following observations:
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1. If Ay— A, By— B strongly as N— «, and {4,} is norm
bounded, then A,By — AB strongly.

2. If A,,,— A, strongly as N— « (for all k), and || 4y,.]| < ¢,
with 3¢, < o then Sy = 3, Ay, — S = 3. A, strongly.

3. Since D is a core for H and V(Rez) is bounded hermitian, D
is a core for K(Rez) = —H — V(Rez) + Rezl.

REMARK 2. From the explicit estimate given in Remark 1, we
obtain

1S@f = Tu(@) 1| < 2EREL 4., [K(Re ) + i Tm2] Dy)

LEmMA 8. (T2) Ty(2) is meromorphic in U. Its poles are on the
real axis; they are simple and the residues are positive (operators).

Proof. For z real, write H(z) = H+ V(2). Ty(z) may be con-
sidered as the extension to § of the resolvent R(w, PyH(z)Py) of
P,H(z)Py (considered as a hermitian operator on D), evaluated at
@ = z. By the spectral theorem

2.3) R (0, PyH@)P,) = 5, — 2@
™0 — M)

By the argument used in the proof of Lemma 2, R (w, PyH (z)Py) may
be shown to be holomorphic as a function of two variables for z and
o in U with |Imw| > o|Imz|; in particular, T,(z) is holomorphic
for ze U, |Imz|+ 0. By a theorem of Rellich ([9], p. 120) the eigen-
values \j(z) are holomorphic in a neighborhood of I, as also are the
projectors Pj(z). It follows then, from (2.8) with @ = z, that Ty(z)
is meromorphic in a neighborhood of I (and so in all of U) with its
only poles at points of I such that z — Ay(z) = 0 for some 7. Ay(2)
has derivative trace(V (2)Pi(z)), which is bounded in absolute value
by o. Thus d/dz(z — \y(2)) > 1 — a > 0 for z real, showing that
2z — ANiy(2) = 0 for at most one value of zel, say for z = vi. The
corresponding pole is simple with a positive residue (a positive multiple
of Py (vy))-

The following lemmas will allow us to pass from the approxima-
tion theorem off the real axis given by Lemma 2 to the type of ap-
proximation on the real axis which appears in Theorems 2 and 3.

LEMMA 4. Let I be a finite open interval of the real axis, U a
complex meighborhood of I. Suppose that {Py(z)} is a sequence of
functions meromorphic in U. For each N suppose that Py(z) has
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only simple poles and that these lie on the real awis. For J any
open interval with closure contained in I denote by Cy(J) the sum
of the absolute values of the residues of the poles of Py(z) in J.

Suppose that (Im z)* @,(z) — 0 as N — o uniformly on compacts
contained in U, for some positive integer k; and that the residues of
@x(z) are all positive. Then for any J as above, limy Cy(J) = 0.

Stmilarly, if |(Im2)*@y(2)| is bounded, uniformly on compacts
wn U, and the residues of @,(z) are all positive then, for any J, C{J)
1s bounded uniformly in N.

Proof. We omit the simple proof.

The next lemma is the starting point for the classical theory of
the Hilbert transform.

LEMMA 5. Suppose ¢; > 0, and z;, are real numbers defined for
1<i<m. Let 6>0. Set f(2) = > .¢/(z—2). Then

pllF@1 >0 =2 (Se).

COROLLARY. Let the ¢; be complex, and f(z) defined (for z real)
as before. The t{z| |f(2)| > 0} < 16/0 (31 c)).

Proof. For the proof of Lemma 5 and its corollary see [20].

(Lemma 5 can be stated in terms of ¢(z) = [f(2)]™": g(2) regarded
as a transformation of the line onto itself is (Lebesgue) measure pre-
serving if Ye¢; = 1. But the point of view suggested by this formula-
tion does not seem to have been developed.)

LEMMA 6. We retain the mnotation and hypotheses of the first
paragraph of Lemma 4. Suppose

(@) (Imz)*Py(z)—0 as N— oo uniformly on compacts contained
wn U, for some positive integer k

(b) for any J, lim,_, Cy(J) = 0.
Then as N — co, @y(z) — 0 in measure (1) on I.

Proof. It suffices to show that for each open interval V whose
closure is contained in I, as N — o ®,(z) — 0 in measure on V.

Suppose V = (¢, d). (a) implies [(z — ¢)(d — 2)]* Py(z) — 0 as N— o
uniformly on the boundary of a rectangle R with vertices ¢ = ig,
d =+ ie, € > 0 sufficiently small that it is contained in U. Let

Py(z) = Yu(2) + Ti(2)
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be the splitting of ®,(z) into the sum +,(2) of the principal parts at
its poles in V, and 7,(z) holomorphic in V. From (b) it follows that
[(z — e)(d — 2)]* ¥y(2) — 0 as N — o uniformly on the boundary of R.
Hence also [(z — ¢)(d — 2)]*74(2) — 0 as N — « uniformly on the
boundary of R. By the maximum modulus principle

[z — ) (d — 2)]* zu(2) — 0

as N — o uniformly in the interior of R and in particular on V.
Thus 7y(z) — 0 in measure (¢#) on V. But (b) and the corollary to
Lemma 5 imply +y(2) — 0 in measure () on V. Hence ®y(z) — 0 in
measure (¢) on V.

DEFINITION. A sequence {®,} of measurable functions on a
measure space M = (X, R, m) is bounded in measure if

ve >0 1K = K(¢)

and
N,=Nye)om{x| |pPy@)| > K} < ¢ VN> N,.

The definition is motivated by

LEMMA 7. A sequence {Py} of measurable functions on M 1is
bounded tn measure if and only if, for every sequence {fy} of measurable
Sunctions converging to zero in measure on M, the sequence {fyPx}
also converges to zero im measure on M.

Proof. We omit the proof.

Note that if, for some subsequence {Nj}, the functions {(?y,(x))™"}
converge to zero in measure on a set of strictly positive measure,
then the sequence {®,} is not bounded in measure. However, the
converse is false. Counterexample: Take M = [0, 1], with Lebesgue
measure . Consider the sets

E, = {# | the Nth binary digit of = 1} .
Set @y(x) = N for xe Ey, @y(®) = 1 for z¢ E,.

LeEMMA 8. We retain the motation and hypotheses of the first
paragraph of Lemma 4. Suppose

(@) |(dmz)*Py(2)| is bounded as N — co uniformly on compacts
contained in U, for some positive integer k

(b) for any J, Cy(J) is bounded as N — co.
Then as N — oo, Py(z) is bounded in measure (1) on I.
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Proof. The proof is essentially the same as that of Lemma 6.

Note that, by Lemma 4, condition (b) can be replaced in Lemma
6 and in Lemma 8 by the condition that the residues of ®,(z) in J
be positive.

Proof of the second part of Theorem 2. We can now prove the
on-axis approximation (1.8) in Theorem 2. Write

Px(z) = (f, Tv(x)K(2)9) — (f, 9)

for fe 9, gcdomain of H. Lemma 3 shows that ®,(z) is meromorphic
in U with simple poles on the real axis and positive residues. Lemma 2
shows that condition (a) of Lemma 6 is satisfied. In fact the remark
following Lemma 2 gives

| Py(2) | (Im 2)* < %l‘—l_‘—“f)—‘ I f | d(K (2)g, [K(Rez) + i Imz] D) .

The right side of this inequality is continuous in z for ze U and
decreases monotonically to zero as N -— « for each fixed z, so by
Dini’s theorem the convergence is uniform on compacts contained in
U. (K(Rez)D may not be dense, so we do not know whether for z real
d(K (2)g, K(2)Dy) — 0 as N — co; for this reason an additional factor
|Im z | has been multiplied into the inequality.) It remains to verify
condition (b) of Lemma 6.

24) = % ek

where ¢, is the residue of ®,(z) at the pole vi. We saw in the proof
of Lemma 38 that ¢ has the form

iy = h(f, Pywh) [K(¥Y) — PyK(vy) Pyl 9)
where 7% is positive and < (1 — 0)™'. Schwarz’s inequality gives
CJ) < [A() By ()"
with
Ay = 3 P STy

. v/L -3
i€ ,‘\.CJ

By(J) = > [[PiW(K W) — PyK@Ey)Pyg P 75 .

i€ (v."\.e‘/

We claim A,(J) is bounded, and B,(J) — 0 as N — <. Consider the
functions (f, T,(2)f). These functions are meromorphic in U with



578 M. J. WESTWATER

simple poles at the points vi. The residues at these poles are positive,
and A,(J) is the sum of the residues at poles in J. (Imz)(f, Tyv(2)f)
is bounded on compacts in U, uniformly in N, so by Lemma 4, A,(J)
is bounded in N.

Next consider the functions

My(z) = (9, (K(z) — PyK(2)Py) Ty(2)(K(2) — PyK(2)Py)g) .

These are meromorphic in U with simple poles at the points vi.
The residues at these poles are positive, and B,(J) is the sum of the
residues at poles in J. Since (g, (K(2) — PyK(2)Py)g) is holomorphic
in U, By(J) is also the sum of the residues at poles in J of

M(2) = Mx(2) + (9, (K(2) — PyK(2)Py)9)
= (9, K(2) Tv(z)(K(2) — PyK(2)P))9) .

Now
(@) | < K (@R)g]] || Ts(z)(K(2) — PxK(#)Pygll -

The first factor is bounded on compacts in U, and the second factor
is (by Lemma 2) < 2/(1 — 0)%) |Im 2| d(K (2)g, [K(Re z) + 7 Im 2] Dy),
and so, like |®,(z)]|, satisfies condition (a) of Lemma 6. Lemma 4
is thus applicable to the functions \y(z), and implies lim B,(J) = 0,
N — oo,

We have now shown C,(J)— 0 as N-— . The convergence to
zero in measure (¢) on [ of the functions ®,(z) now follows from
Lemma 6.

Proof of the jirst part of Theorem 2. To complete the proof of
Theorem 2, it remains to obtain the representation (1.2) for S(z).
The argument used by Stone [18] (Chapter 5, § 2) carries over with-
out essential change.

The argument rests on the weak™ compactness of a bounded set
of Borel measures, and on the Stieltjes inversion formula. We recall

this formula for the reader’s convenience: Let v be a Borel measure
on R,

7@ = Sj u—(-t)t

(Im z % 0) its Hilbert transform, F'(t) = v((— <o, t]) the distribution
function of y. Then F' (and hence v) may be recovered from ¥ by
means of the formula

F) — F) = lim - | 5@dz .
e—04 2757/ JC:
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Here a and b are points of continuity of F, and C, is a contour ob-
tained from a positively oriented rectangle with vertices a — 7, b — 1,
b+1, and a + 7 by deleting the segments of its boundary in the
strip [Imz| < .

It suffices for all z, ¥y and every interval J whose closure is
contained in I, to obtain a decomposition

@ sew = | L0+ R, @

of (x, S(2)y) as the sum of the Hilbert transform of a Borel measure
Y., on J, positive for x = y, and a function R;,(z) holomorphic in

U— (I~-—J). For the total variation of v,, on J we must have a
bound

Ve, llr < M) [[2 ] 11yl

and v,,, must be shown to be sesquilinear in %, y. We do not put a
subscript J on vy, , because the Stieltjes inversion formula shows that
if J,cJ,, and we have such a representation of (x, S(2)y) for both J,
and J, then v/, is the restriction to J, of vl2,.

The decomposition for (x, S(z)y) is obtained from the correspond-
ing decompositions for the approximations (x, Tw(2)y) by an application
of Lemma 9 (below). We have seen (Lemma 3) that T,(z) is mero-
morphic in U with simple poles on the real axis having positive
residues. By splitting (z, Ty(?)y) into the sum of the principal parts
at the poles in J and a function R};’(z) holomorphic in U — (I — J),
we obtain the desired decomposition of (x, Ty(2)y). The measure vy,
is just the discrete measure supported by the poles of (x, T(2)y),
which assigns to each pole its residue. ||v¥,|l; is the sum of the
absolute values of the residues at poles in J, and for this we obtain
a uniform bound of the form M(J) ||« || ||¥ |l as in the proof of (1.3).
We note that for & = y the residues are positive. The conditions of
Lemma 9 are thus satisfied by the functions ®,(2) = (x, Tx(2)y) for
any z,y€$ and the resulting measures v,, depend on z, ¥ in the
way described in the preceding paragraph.

This completes the proof of Theorem 2.

LEMMA 9. Let I be a finite open interval of the real axis, V a
complex meighborhood of I. Let ®y(z) be a sequence of functions
defined and holomorphic in V — I. Suppose that

(a) |oy()| < K|Imz|[™ for all N, some integer k and some
K > 0, uniformly in z on compacts contained in V

(b) Py — P(z) as N— oo, pointwise in V — I

() for every interval J, whose closure is contained in I, there
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are positive measures Yy ; on J, and functions ry, (), holomorphic
in V— (I —J), such that ®y(2) = Dy, ;(2) + Vy,s(7).

Then, for each such J, the measures vy,; converge as N— co to a
measure v; and (2) = (&) — U,(2) admits a holomorphic extension
to V—-(U—-J).

Proof. From (a) we obtain a bound |lvy || < B for all N. By
weak* compactness of bounded sets of measures, we obtain a sub-
sequence of v, , converging as N -— o to vy, (say). Define

V(2) = P() — (2) .

Then 9y (z) —¥,(z) for ze V — I, and so ¥y (2) —y(2) as j— co. If
J = (a,b), we can choose a rectangle R with vertices a =& te, b * i¢
contained in V, and show that the functions (b — 2)"(z — @)*yy,(2)
converge uniformly on the boundary of R and hence also in its interior.
Thus +(z) admits a holomorphic extension lim;.., vy (2) to V —(I—J).
Finally, we note that, since vy, can be recovered uniquely from o(z)
by the Stieltjes inversion formula, the passage to a subsequence of
vy, was not necessary, and, in fact, v, ;, — v, ag N — oo,

3. Proof of Theorem 3. If v is a Borel measure on the real
line with compact support, we denote by

5(2) = P S g_”_(t_)t

its Hilbert transform. ¥(z) is holomorphic in z for z not in the sup-
port of y, and (see [20]) exists almost everywhere (£) (as a principal
value integral) for z in the support of y. We wite ||y || for the total
mass of v.

LEMMA 10. Let v be a positive Borel measure on the real line
with compact support, and g(z) a function holomorphic in the con-
nected open set U of the complex plane. Suppose U is symmetric
with respect to the real awis, and g(Z) = 9(2), ze U. Exclude the
trivial case: v a measure whose support does not intersect U,

P(z) + gz =0

identically. Define

E=Eyqg = {ze U | either Imz = 0 and (z) + g{z) = 0 or

du(t)

Imz =0, ¢g'(z) > Sm

, and P(z) + g(z) = 0} .
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Then E is discrete. If g is a polynomial of degree < 2m, E contains
at most m points in Imz > 0.

Proof. Let z, +-+, 2, be m (distinct) points of EN{z|Imz = 0},
C a simple closed contour in U containing these points and their
complex conjugates in its interior. Write D(@) = [Ii. |z — [~
Cauchy’s residue theorem and the definition of E give the inequality

dvt) o 1 S 92) g4,
r D(t)  2mi JeD(z)

@3.1) S

(for z complex D(z) is defined as [I%, (2, — 2) (z; — 2)).

If g(z) is a polynomial of degree < 2m — 2, the right side of (3.1)
is zero (since D(z) has degree 2m). (3.1) then forces v to be the zero
measure. z,, ---, 2, are then zeros of g, which implies g is identical-
ly zero, and we have the trivial case. This proves the final assertion
of Lemma 10.

Now return to the general case: g(z) holomorphic. Clearly any
limit point z, of E must lie on the real axis in the support of y.
For otherwise, §(z) would be holomorphic in a neighborhood of z,
and so $(2) + g(2) would vanish identically, and we would have the
trivial case. In (3.1) split ¢ into the sum of the first 2m terms of
its Taylor series about 2z, and a remainder R,(z). This gives

dv(t) ~ 9" V(2 1 R,.(2)
8.2 Sn D(t) < @m — 1)! T o Sc D(z) oz .

Since 2, is a limit point of E, we may for any ¢ > 0 choose the m
points to lie within the circle |z, — 2| = . We then take for C the
circle |z — z,| = 26. For R,(z) we have an estimate

| Ra(?) | < K2 — 2™

in some fixed circle with center z,. The second term on the right of
(8.2) is thus 0(¢). Taking the limit ¢— 0 we obtain by Fatou’s
lemma

dod)  _ 9"
(2, — )™  (2m — 1)!

(3.3) S

We claim (3.3) implies that z, is not in the support of y. This
contradiction will complete the proof of Lemma 10.

Consider for # real the series >, #*™/((z, — £)*™). For |z| suf-
ficiently small, (8.3) implies that its partial sums are v integrable as
functions of ¢, and gives a uniform bound for the y-integral of the
mth partial sum. By Fatou’s lemma the sum of the series is v inte-
grable. But for |x|> |2, — t| the series diverges. The interval
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|2, — t] < |2|/2 therefore does not intersect the support of .

Note that Lemma 5 implies that if {v,} is a bounded sequence
of positive measures on the real line, each a finite sum of point
masses, the sequence {U,(2)} of their Hilbert transforms is bounded
in measure. The following Lemma 11 may therefore be considered
as a generalization of Lemma 5.

LeMMA 11. Let {vy} be a bounded sequence of positive measures
on the real line, each a finite sum of point masses. Suppose that
for each N the support of y, ts contained in some finite interval I
(independent of N). Let g(z) be a function holomorphic in the open
set U of the complex plane. Suppose U symmetric with respect to
the real awmis, and ¢g(Z) = g(z), z€ U. Then either some subsequence
of {vy} converges to a positive measure v such that 9(z) + g(z) =0
identically, or the sequence @, (z) = (Vy(z) + ¢g(z))™ 1is bounded in
measure (1) on UN R.

Proof. A sequence of functions is bounded in measure (%) if and
only if every subsequence contains a subsequence with this property.
By compactness of a bounded set of measures supported by I, every
subsequence of {v,} contains a subsequence which converges weakly.
To prove that {®,} is bounded in measure {¢) on U, it therefore suf-
fices to prove that for every subsequence of {v,} which converges,
the corresponding subsequence of {®,} is bounded in measure on
UNR. So we may as well assume at the outset that, as N — oo,
yy converges to some positive measure y.

For ¢ > 0, and J a finite closed interval contained in U, set

G ={ved| |py@)|=e}.
We have to show that for every J
(3.4) lim (im p#(GY)) = 0.
=0 N—ooo
Denote by E the set defined in Lemma 10. Since E is discrete
it suffices to prove (3.4) for J a closed interval not intersecting K.

With this condition on J, we claim that, for some ¢, > 0 and B > 0,
the functions

Py,el?) = (Uy(2) + 9(2) — )™,
for sufficiently large N, satisfy
| Pya(2) | < BlImz|™

for all real « such that |a| <&, and z in some neighborhood V of J.
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If not, for some zeJ we will have sequences 2, of nonreal num-
bers converging to zero, «,, B8, of real numbers converging to zero,
and N, of positive integers — <o such that

dvy,(t)  Img(z,)
(3.5) Slzn—tiz_ Tl + g
(3.6) gﬁﬂ_—t_l dvy (1) + Reglz,) — a, = 0.
[Bn — ]

From (3.5) we have, for any ¢ > 0, and all »

Jg—t|>06 ]Zn — t‘z h Im Zn

(3'7) + Bn .

As n — oo the left side of (3.7) converges to

S du(t)
w—tizs (1 — t)° :

For, if » is sufficiently large, |z — Rez,| < 6/2, and then

Sw——ti?é {i 2, 1_ ¢ - E E £ } dyy, (1)

1 1 1
< |lvy su { - }
]] Nﬂ“ts\x—?;& 'zn__ tlz lx_ tiZ

—0 as m - co, since the measures v, are uniformly Dbounded,
while

S dyy (t) N 5 dy(t)

l—tizs |4 — ¢ le—tize | @ — T |

as n — oo, since yy, —y as N — oo,
The right side of (3.7) converges to ¢’(x) as m — oo, so taking first
the limit » — co, and then the limit 6 — 0 we obtain

dy(t)

< ¢g'(x) .
FET (@)

(3.8) S

From (3.8) it follows that U(x) exists. For ¢ > 0 denote by v,(vy,;)
the restriction of y(y;) to |# — t| > d. Then

| P(x) — Re Dy, (2,) | < |5(®) — 5i(@) | + |Re ¥y (2,) — Re Ty s(2,) |
+ |Ts(x) — Re Dy s(z,) |
[0y 5] )
(@ — 9 |2, — T
dy(t)
(@ — 9

(3.9)

=Y

+ 15:(x) — Re Ty, 5(2.) |

<35 S + |5:(@) — Re Dy (2, |
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for sufficiently large n. As n— o« the second term in (3.9) — 0 by
the convergence of vy, to yv. Since 6 > 0 was arbitrary we obtain

(3.10) Y(x) = lim Re ¥y (2,) as n— oo
= —g(x) (from (3.6))

(3.8) and (3.10) show z<¢ E; but this contradicts the choice of J.
Next we assert that for sufficiently small ¢, and large N,

Py(@) + g'(x) <0 for all xe GY .

For, if not, we have, for some sequences N, of positive integers
—s oo, and x, of points of J converging to zc.J

im |Jy (2x,) + g(x.) | = 0
Uy, (@,) + g'(x,) = 0.

But then, by essentially the same argument as in the preceding
paragraph, we can show 2 ¢ K, and this contradicts the choice of J.
We have established that, for some neighborhood V of J, the
functions @,(z) are meromorphic in V, having simple poles on the
real axis with negative residues (the residue of ®,(z) at z =z is
Fy(®) + ¢'(x))™), and satisfy |@,(2)|< Bl|Imz|™ in V, i.e., that in
V they satisfy the conditions of the first and final paragraphs of
Lemma 4. By Lemma 8 and the remark which immediately follows
Lemma 8, the sequence ®,(2) is bounded in measure (&) on .J.

Lemma 9 gives the following corollary to Lemma 11.

LEmMMA 12. Let g(z), U,y be as in Lemma 10, and E the discrete
subset of U defined in Lemma 10. Then on each interval J contained
in UN R whose closure does mot intersect K, there exists a positive
measure T, such that in some complex neighborhood V; of J

7,(2) + (9() + 9(2))~"
1s holomorphic in V.
REMARK. If J, CJ, are two intervals for which 7, , z,, are defined,
7,, is the restriction to J, of 7,. Thus we may say that we have
defined a positive measure 7 =7(v,9) on UN(R — E). It is not

hard to see that  may be extended to a measure defined also in
the neighborhood of a point ¢e F provided that

dy(?)
(¢ — t)?

for the extended measure ¢ is a negative point mass

g'(c) >

’
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(3.1 o) = {0 — [ 20

In the special case in which ¢g(z) = —o a real constant, the set
E is empty for any v. We denote by T(o)y = v(v,g) the measure
given by Lemma 12. For ¢ = 0 and y the zero measure T(o)y is
not defined; we exclude this case by supposing that v is not the zero
measure. In Appendix A we will use the measures T(o)y to remove
the restriction in L.emma 11 to holomorphic functions g(z).

Proof of Theorem 3. We are now ready to prove Theorem 3.
It is convenient to have 0¢ U. If 0ec U, we begin by replacing U
by U — {0}.

Let J be an interval whose closure is contained in I — E. Given
an increasing sequence {D,} of finite dimensional subspaces of , we
can construct finite rank approximations T,(z) to S(z) acting in Dy,
which satisfy conditions (a) — (d) of the final paragraph of Theorem 3.
To do this we first form P,S(z)Py, and use (1.1) to write it as the
sum of the Hilbert transform of a measure on J whose values are
positive operators on D,, and a function holomorphic on J whose
values are operators on D,. Then to obtain T(2) we replace the
measure by a weak® approximation which is a finite sum of point
masses, each a positive rank 1 operator.

Define

4 KT,(z)
T\ = To(a) {1 2Bl
@ = T T Rk @)
for ze U such that Ty(z) is defined, and 1 — z tr (KTy(z)) # 0.
The sets U, E will be defined by specifying, for each J, the sets
UnWU—-I-J), EnJ. It will be evident that this is done con-
sistently. Write K = | K| sgn K, where | K| is positive and

sgn K = +1.
Apply Lemma 10 to the positive measure w(t) = tr (| K| v{(f)) on
J, and the function ¢g(z) = tr (| K | B;(2)) — 27" (sgn K), holomorphic
in U- (I ~J). Since @) + g(z) =2 (—1+2tr[KS®)]) (sgn K)# 0

we are not in the trivial case. Lemma 9 gives a certain discrete
subset E(w,g) of U— (I —J), and we set

InU—-(I-N)=U~Q1~J)~E@,q9),

and ENJ = E(w,g)NJ.
Next in Lemma 11 note that we could consider, instead of the
single function g(z), a sequence g,(z2) of functions holomorphic in U
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and converging to ¢(2), ®y(?) then being defined as (Py(z) + gx(2))~"
The conclusion of the Lemma, and also the results established in the
course of the proof are otherwise unchanged. We will refer to this
trivial generalization of Lemma 11 as Lemma 11’.

Lemma 11’ is to be applied to the measures wy(t) = tr (| K| vy(t)),
which converge to w(t), and the functions

9v(2) = tr (| K| PyR,(2)Py) — 27" (sgn K) ,

which converge to g(z). The proof of the lemma shows that if J is
an open interval whose closure is contained in J, and does not
intersect E, then J has a complex neighborhood V; such that, for
sufficiently large N,

|@y(2) + gv(2)| > B|Imz| zeV3

for some B > 0. Thus T,(z) is defined for z¢ V5 with Imz = 0, as
also is S(z). The proof of the lemma shows also that, for sufficiently
large N, the poles of (@y(x) + gy(x))™ on the real axis are simple
with negative residues.

Let f be any vector in . We wish to represent (f,S(z)f) =
+(2), z€ V7, as the sum of the Hilbert transform of a positive measure
on J (with the proper dependence on f) and a function holomorphic
in V3. To do this we consider the functions

V(@) = (f, T )

which are meromorphic in V. A pole of +,(2) is either

(o) a pole of Ty(z)
or

(B) a zero of 1 — z tr (KTy(?)) .
Call the pole z = z,, We compute the corresponding residue:

(o) let R, be the residue of Ty(2) at z = z,. Then, since R, and

K both have rank 1, we find that we must have K,K = 0 (otherwise,

the pole does not persist in 7T,(z)) and then the residue is (f, R,f)>0
(8) The residue is

(f. Tulz) K To(a)f) < .
—tr (KT}(2) — %"

Thus the residues are positive. Note also that the formulae show
that the residues of Ty(z) are of rank 1.
For Imz+# 0, ze V5 we have

| Im 2 [ yry(2) — | Im 2 [ 4r(2) as N— oo
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uniformly on compacts contained in V. To obtain the representation
(1.1) for S(z), J, we have thus only to apply Lemma 9 to the func-
tions +ry(2).

It remains to show we can obtain an approximation theorem on
the real axis for S(z) if the approximations 7T,(z) satisfy (e) in ad-
dition to (a) — (d). For definiteness suppose K is positive, so we can
write K =kF®k (if K is negative we can write K = —k&® k, and
make appropriate changes of sign). We compute

(f Ts(@ K ()9) — (f, 9) = ((f, Tv(®) K (2)9) — (f, 9)}

(k, Tv(2) K(2)g9) — (k, 9)
+alf, D) {2 aD S o)

+ 2(f, Tx(2)k) (k — Pyk, g)

1 2 Th@F) (k, Tu(@)k) (B — Pyk, 9)
{1 — 2(k, Ty(2)k}}

By hypothesis the sequences {(f, Tx()K(z)g) — (f, 9)}, and
{(k, Tx(:) K (2)9) — (k, 9)} — 0

(3.21)

in measure (1) as N — co. The sequence {(k — Pyk, g)} — 0 as N — co.
The remaining sequences {(f, Tx()k)}, {(k, Tv(z)k)}, {[1 — 2(k, Ty(®)k)]™"}
which appear in (3.21) are bounded in measure () as N — . Hence,
by Lemma 7, (3.21) — 0 in measure (¢) as N — co.

REMARK. In Theorem 1 we suppose C(z) = C independent of z
so that K(z) has the form

Kz=K—-z2(1+C).
If A+ C) is invertible we may write
T=@0+C)"K
and define a new scalar product
@, 9] = (A + Ca,y) .

This product will generally not be positive definite since 1 + C may
have a finite number, ¥ (say), of negative eigenvalues. § together
with the product [+, -] is then a Pontryagin space $, of index ¥, as
defined in [11]. The operator T is hermitian with respect to [-;-],
i.e., [T=, y] = [x, Ty] for all x, y. The representation (1.1) essentially
gives a spectral representation for the resolvent of T; the existence of
such a spectral representation for a self-adjoint operator in a
Pontryagin space was established by Krein and Langer [10]: a
slightly more general theorem is given by Langer [12]. To make the
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connection with [10] it is necessary to extend the measure vy across
the points of E when this is possible, as indicated in the remark
following Lemma 12. In the terminology of [11] points of K are
critical points, regular if (3.11) is well-defined and singular other-
wise.

4. A stronger form of Theorem 1. Theorem 1 is not applicable
in the context to be deseribed in §5. In this section we prove a
strengthened version of Theorem 1 (Theorem 4). Theorem 4 is ob-
tained from Theorem 1 by weakening certain of the conditions; for
the reader’s convenience we give a full statement, although this
entails some repetition.

THEOREM 4. Let {K(2)} be a family of bounded operators on 9,
defined and holomorphic in z, for z im a complex mneighborhood U
of some finite open interval I of the real axis. Suppose that

(@) K(z) is hermitian for zel

(b) K(2) = K\(2) + D(2) for ze¢ U
where (bl) D(z) is compact valued and holomorphic for ze U.

(b2) For each z€ I the pair of hermitian operators K = K,(z) and
L = — K]/(z) satisfy the following conditions (i), (ii) for some positive
constants A, B (possibly dependent on z)

(1) [le||< All Kzl + B|[Lz|| for all x€9

(ii) of — d s the lower bound of the numerical range of L

2B*||L|jd <1

(¢) for some ze I, K(z) has nullity zero.
Then there exists a discrete set E C I such that, for each open
interval J whose closure is contained in I — E, K(2) has a bounded
inverse S(z) for z€ N; — J (where N; is a certain complex meigh-
borhood of J). In N, —J, S(z) admits a representation

(4.1) sw:&%%+&@

where v 18 a positive operator valued measure on J, and R,(z) is
holomorphic in Nj.
Suppose that the condition (i) of (b2) is replaced by

(i) 2| < A|(x, Kz)| + B|(x, L) | for all ze 9 .

Let {Dy} be an increasing sequence of finite dimensional subspaces
of 9, whose union D is densc in §. Denote by P, the orthogonal
projection onto Dy. For sufficiently large N the restriction of
P,K(2)P, to Dy is invertible (as an operator on Dy) for all but a
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discrete set of ze I (dependent on N); when this tnverse is defined
denote by Ty(2) its extension to an operator on §© which vanishes on
the orthogonal complement of Dy. Let f(?), g(z) be wector valued
functions holomorphic in 2z imn a mneighborhood of I. Then as
N-—» oo

(F(2), Tx(2) K(2)9(2)) — (f(2), 9(2))

m measure (1) on I.

Complement to Theorem 4. We retain the notations and hy-
potheses of Theorem 4. Suppose that i(z) is a vector valued function
holomorphie in z in a neighborhood of I, and that for each vl — FE
the equation

K(@)u = h(x)

has a unique solution u = g(x). Suppose that the function z— g(x)
is weakly measurable on I — E, and that the function x — || g(%) || is
Lebesgue integrable on any interval J whose closure is contained in
I— E. Then g(x) can be extended to a function g¢(z), defined and
holomorphic on a neighborhood of I — E. In particular,

(4.2) (F(2), Tx(2)(2)) — (F(2), 9(2))

in measure (1) on I as N— « by the second part of Theorem 4.

REMARKS. If K(z) satisfies condition (b) of Theorem 1 we may
choose some z,¢ I and set

D(z) = S C(2)dz

K\(2) = K(z) + (z — zo)l .

Then D(z) satisfies condition (bl) of Theorem 4, and K,(z) satisfies
(b2) with A =0, B=1.

The rather clumsy conditions (i), (ii) are to be understood es-
sentially as a positivity condition on L. If L is strongly positive,
L > (—d)1 with d < 0, and (i), (ii) hold with A = 0 and B = (—d)™
If L is positive, and d < 0 and (ii) holds for any B. (i) then requires
|| Kz || not to be small for those x¢ $ for which || Lz || is small. In
the approximation theorem we replace (i) by the stronger condition
(i)’ because it does not follow that if K, L satisfy (i), (ii) then the
_approximations K, = PyKP,, Ly = P,LP, satisfy (i), (ii) (with the
same constants A, B) as operators on D,; for (i), (ii) this is true.
Note that (i), (ii) (or (i)', (ii)) are stable conditions in the sense that
if K, L satisfy them, and K’, L’ are sufficiently close to K, L in
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norm, then K’, L' satisfy them (with constants A’, B’ arbitrarily close
to A, B). We may (and will) therefore suppose that the constants
A(z), B(z), which appear in (b2) (or (b2)’) are continuous in z.

The problem of determining conditions on self-adjoint operators
K, L which will ensure that K — zL has a bounded inverse for z in
some neighborhood of z=10, Imz+0, is closely related to the
problem of determining conditions which will ensure that the com-
mutator equation

[K, M] = iL

has no solution Me B(9). For in the first problem K may be sup-
posed not to have a bounded inverse (otherwise it is trivial). But
then for no z can K(2) = exp[—izM] K exp[+izM] be invertible;
for this K(z), K'(0) = ¢ [K, M]. The commutator equation is discus-
sed in Putnam [16] (§ 2.10).

Condition (¢) of Theorem 4 differs from the corresponding condition
in Theorem 1 in that the point 2z referred to in the condition is on
the real axis. This change is essential for the application in §5.
For the proof it is also essential since, the hypotheses of Theorem 4
do not imply that K,(z) is boundedly invertible for all ze U — I, but
only for ze V — I, where V is a smaller neighborhood of I.

The regularity conditions imposed on g{(x) in the complement to
Theorem 4 are dictated by our proof and may possibly be unnecessary.
In the proof of Theorem 4 it will be shown that if ze £, K(x) has
a positive nullity, so the exclusion of E, from the set on which
K(x)u = h(zx) is to have a unique solution, is essential; however,
in general, even if z¢ E, K(x) may have positive nullity. If K(x)
has positive nullity, then from (4.1) it follows that x is a point of
discontinuity for v(t); this set of points is at most countable (if
K(x) = K — «1, it is the point spectrum of K).

Proof of Theorem 4. The proof of Theorem 4 is parallel to that
of Theorem 1. First we prove Theorem 4 in the special case D(z) = 0.
In this case condition (¢) is redundant. Then we use the perturba-
tion result, Theorem 3, to pass to the general case. (For the approxi-
mation theorem it is necessary to generalize Theorem 3 by replacing
the vectors f, ¢ which appear in the second part of Theorem 3 by the
vector valued functions f(z), g(z) which appear in the statement of
Theorem 4; this is a trivial generalization and entails no change in
the proof of §3).

LEMMA 13. Theorem 4 is true if D(z) = 0.

Proof. Without loss of generality suppose 0 € I. Write K = K (0),
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L= -K'(0), A= A(0), B=B(0). If L =0, (i requires K to be
strongly positive. Then for J a sufficiently small neighborhood of
0 the conclusions of Theorem 4 hold trivially, since K(z) is boundedly
invertible for 2z in a neighborhood of 0. We therefore suppose
L1 = 0.

Choose d, > d so that ||L|| > d, > 0 and 2B*||L||d, <1 (if d>0
take d, = d; if d < 0 take d, sufficiently small and positive). Define
a continuous real valued function f(y) by

S =y ify=d
fy=d  ify<d

and set L, = f(L). L, is strongly positive so its positive square root
L\® is defined and boundedly invertible. From the factorization

K — zL, = L*(L"PKL'? — 21) Li?

follows the existence of S(z) = (K — 2zL,)™" as a bounded operator for
Im z = 0, and the representation

“.3) 80 = | LT
z J—

where v, is the spectral measure of the self-adjoint operator
LTPKLTE,
Let » > 0, and set

Be) = || an .

Condition (i) gives for any x¢

NLFE (]| < Al| LML PKLT P E (el + Bl LLTPE (M) ||
S ANLIEg el + Bl LIPE]e ] .

For any ¢ > 0 we may thus choose 7 sufficiently small that

LT EE L2 < [| Li'PE (1) [P (since E(7)* = E(7))
< BY|L]| +e.

Then (4.3) gives an estimate
(4.4) 1S:@ [ < (B*[[ L + 2¢) [Imz[™

for |[Rez| < 7/2, |Imz| < edn/2.
For |z| sufficiently small,

(4.5) | K() — (K —2L) || < [2](2d, +¢) .

If ¢ is chosen sufficiently small that
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(2d, +¢e) (B*||L|| + 28) < 1
(and this is possible by condition (ii)), (4.4) and (4.5) imply
I[K(z) — K —2L)] Si(2) || <1
for z in some sector R(0), with vertex 0, of the form
RO)={z| |[Imz| <7, |Rez| < n|Imz]}
with x> 0, ¢ > 0. Then
S(z) = 8i(z) 1 + [K(2) — (K — 2L)] Si(2)™

exists and is holomorphic in R(0), and is the inverse of K (z).

As noted in the remarks following the statement of Theorem 4
the constants A(z), B(z) appearing in b2 can be supposed continuous
in z. The preceding argument then shows that for any z,e I, S(z)
exists and is holomorphic in a sector R(z,) with vertex z, whose
parameters M2, 7(2,) vary continuously with 2, For J an open
interval with closure contained in I, we define N, to be the union of
the sectors R(z,) for z,e.J.

To obtain the representation (4.1) of S(z), ze N, — J, we proceed
as in the proof of Theorem 2. Let D = UD, be a domain dense in
9, the finite dimensional subspaces D, forming an increasing sequence
(the superscript is introduced to distinguish these subspaces, which
we are free to choose, from the subspaces D, given in the second
half of the statement of Theorem 4). We seek to construct approxi-
mations Ky(z) to K(z) such that

(@) K,(2) is reduced by D, and is zero on the orthogonal com-
plement of D,

(8) Ky(2) — K(z) strongly as N— o for ze N,

(v) Ku(z) is invertible as an operator on D, for all ze N, but a
finite set of points on the real axis. Ty(z) the extension to § of the
inverse of K,(z) is meromorphic in N,, with simple poles on .J having
positive residues.

(6) for some integer k, |Imz|* Ty(2) — |Im z|* S(2) strongly as
N~ co, uniformly on compacts contained in N,. Indeed, for f(z),
g(2) holomorphic vector valued functions in N,

Imz | (f(2), Tw(2)9(z) — [Imz|* (f(2), S(2)9(2)) as N— oo,

uniformly on compacts contained in N,.

The representation of S(z) is then obtained from the representa-
tion of the approximations 7y(z) with the help of Lemma 9.

If K(z) satisfies (b2)’ we can simply take K,(z) = PyK(2)Py, for
then K,(z) satisfies (b2)’ with the same constants A(z), B(z), as K(z).
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If K(z) only satisfies the weaker condition (b2) this choice is not
possible; in the next paragraphs we show how by replacing N, by a
smaller neighborhood of J and making a different choice of K,(z)
this difficulty can be circumvented.

Let {D,} be an increasing sequence of finite dimensional sub-
spaces of §, whose union is dense in §. Denote by P, the orthogonal
projection onto D, and write Ky(z) = PyK(2)Py. For fixed N and
xe D, with ||z|| =1 we have

AR || Kx(2)w]| + B@) || Ky(@)w || — A(2) [ K()2 || + B(2)[| K'(z)x |
as M — co, uniformly in « and in z, for z in J. Choose
B(z) = B(z) + 7,
with 7 > 0 sufficiently small that for z in J
2B.(2)* || K'(2) || d(z) < 1

(where d(z) is the upper bound of the numerical range of K'(2)).
Then for M = M(N) sufficiently large

(4.6) el < (A(R) + D [| Ky(z)2 || + B.(2) || Ky(z)w ]
for all xe D,, zeJ. Now define Dy = D, and
X\(z) = Kyw(® + 1 + H) (Pyy — Py)

where H = sup || K(2)|], z€J. We claim that for suitable A4’(z), B'(2)
(independent of N) K,(z) satisfies (b2) (as a family of operators on D,).
Let ¢ > 0. If we D, is such that ||x — Py < ¢l =], (4.6) gives

ol < @ — o7 || Pyl
<1 =97 (AR + || Ky(@)Pyri] + 1 — &)7Bi(2) || Kx(z) Pyo ||
<A -9 (AR + DI K@z + 1~ 87 BR[| Ki(=ell

+ el {(AR) + D 2+ H) + B(2) [| K'(2) [} (1 — &) .

Choose B’(z) = B,(z) + d, with 0 > 0 sufficiently small that for zeJ
2B'(z)°|| K'(2) || d(z) < 1.

Then for ¢ > 0 sufficiently small (4.7) gives

(4.8) loll < (AR + 2 [| Kx@e]] + B'() || Kx@)e]] .

If xe Dy is such that ||a — Pyx|| > ¢l|a]]

(4.9) ol < |l — Pyall < || By@a |

since K,(2) > 1 on the orthogonal complement of Dy in D,. Thus
if we set A’(z) = max[e™!, A(z) + 2], (4.8), (4.9) imply that b2 (i)
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holds for K,(z) on D, with constants A’(z), B’(z), and zeJ. Condition
b2 (ii) holds by virtue of the choice of B’(2) and the fact that the
numerical range of K(z) is contained in that of K’(z).

It remains to check that the K,(z) satisfy the desired conditions
a, B, 7, and 6. «, B are clear from the definition of K,(z). 7 is proved
by the argument used to show that S(z) = [K(2)]™* exists and is
holomorphic in N,; it is only necessary to replace K(z), § by K.(2),
D,. The statements regarding the behavior of T,(2) = [K(2)]™ on
J follow from the spectral theorem in a finite dimensional space.
Finally 6 is proved following the pattern of the proofs of Lemmas 1, 2.

For the approximation theorem (the second part of Theorem 4)
we ingist on the stronger condition (b2)’. Then in the above argu-
ment we can simply take K,(z) = K,(2), and the approximation con-
ditions «, 8, 7, and d hold as before. The proof of the approximation
theorem is then completed by an application of Lemma 6 (compare
the corresponding argument in the proof of Theorem 2, which follows
Lemma 8).

Proof of Theorem 4 (continued). Let z, be the point of I such
that K(z, has nullity zero, whose existence is guaranteed by con-
dition (c). In view of the stability of conditions (i), (ii) noted in the
Remark following the statement of Theorem 4, we may choose F, G
symmetric operators of finite rank so that

Ki(2) + (D(z) — [G — 2F]) = Ky\(2)

satisfles b2 for z in a sufficiently small neighborhood of =z, U(z)
(say). Denote by V a finite dimensional subspace of & containing
the ranges of F, G and by W the image under K(z,)™" (the possibly
unbounded inverse of K(z,)) of the intersection of ¥V and the range
of K(z,). Denote by X the vector space of pairs of symmetric oper-
ators ¢ = (0,, ;) with ranges contained in V. For oe X write

K,(2) = Ky(2) + (0, — 203) ,
and define Pc X by

P = {0 | Theorem 4 holds for K,(z) in U(z,) with an exceptional
set E, not containing z}.

By Lemma 13 (0, 0) € P; we will prove (G, F') ¢ P.
For o ¢ X denote by »(o) the sum of the ranks of g, 0..

LEMMA 14. If e P and 7€ X with r(z) = 1 then
(I) o0+ aceP for at most one real )
(II) 4f 0 + At = 0’ &€ P then K,(z,) has a nonzero null vector.
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Conclusion of proof of Theorem 4 (granting Lemma 14). Let
(G, F) =>m 7, be a decomposition of (G, F) with »(z;) = 1 for all 1.
By induction from Lemma 14 (I) there exist real numbers A; which
may be chosen arbitrarily small such that >, Q1+ n)z; e P. If
(G, F)e¢ P, Lemma 14 (1I) then implies that for some integer £,
1< k< m Sk, + 3" (L+0)7; = o is such that K,.(z,) has a non-
zero null vector. By choice of the \;, ¢’ may be made arbitrarily close
to (G, F'). Let v be a null vector for K,.(z,) of unit length. Then

Kz = [(G — 2F) — (01 — 20| v' eV,

so v'e W. Moreover, || K(z)v'|| may be made arbitrarily small by
choice of ¢’. Since the unit ball of W (which is finite dimensional)
is compact, we may construct a sequence of unit vectors v, e W con-
vergent to some vector v, and such that lim,_. || K(z)v,| = 0. But
then v is a nonzero null vector of K(z). This contradiction shows
(G, F)e P, i.e., that Theorem 4 holds for K(z) in Uf(z).

It remains only to make the extension to the whole of I.

Let I(z,) be a maximal open interval containing z, and contained
in I such that the conclusions of Theorem 4 are valid for I(z). If
I(z,) = I then I(z) has an end point 2 (say) in I. Choose G,, F,
symmetric operators of finite rank so that

K.(2) + (D(z) — [G, — 2F]) = Ky(?)

satisfies b2 for z in a sufficiently small neighborhood of z, I(z)
(say). Lemma 13 shows that K,(z) is boundedly invertible for
Imz +# 0 in a complex neighborhood of I(z,). This neighborhood will
contain a point 2z, for which K (z) is boundedly invertible (since K(z)
is boundedly invertible in a complex neighborhood of I(z,) minus a
discrete set). It is therefore possible to use Theorem 3 as in the
proof of Theorem 1 (cf. the argument following the statement of
Theorem 3) to obtain the conclusions of Theorem 4 for I(z). But
this contradicts the maximality of I(z). Hence I(z,) = I.

Proof of Lemwma 14. Since 7(z) =1 one of 7,, 7, is of rank 1
and the other of rank 0. Suppose for definiteness that =, = 0 (the
proof in case 7, = 0 is essentially the same). Without loss of generality
we may suppose 7, positive so that 7, = kX k& for some ke §. Since
e P we have for some open interval J of 2z, a representation of
S,(2) = [K,(2)]™

S,(z) = SJ@% + R(2)

valid for Imz = 0 in a complex neighborhood of J. Then Theorem 3
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shows that ¢/ = ¢ + At e P unless

(4.10) 1— ,\zo{ g %i&ﬂ + (&, R(zo)k)} ~ 0
and
(4.11) 2] { S Q%z_df__(izfz—) — (&, R’(zo)k)} < sgna.

(Recall that in the proof of Theorem 3 given at the end of §3, the
exceptional set E appears as the set F (w, g) of Lemma 10 for @ the
positive measure trace (| k|v(t)) and g the holomorphic function g(z) =
trace (| K| R(z)) — 2" (sgn K). Here K = Nt Q k.)

(1) follows from the linearity of (4.9) in \.

To prove (II) we must construct a nonzero null vector v for K,.(z,)
assuming (4.10), (4.11) hold.

Consider the antilinear functional on § defined by

v = | L2080 o, R .

(4.10) implies V (k) # 0 so V is not identically zero. Since
(y, k) |* (k, dv(®)k)
H p— <{S (zo_t)z}{g(y,dv(t)y)}
< Mllyl?

(using the positivity of the operator valued measure v, and (4.11)) V
is everywhere defined and bounded, and so, by the Riesz represen-
tation theorem, can be written in the form V(y) = (y,v), for a
uniquely determined ve . v == 0 since V is not identically zero.

To prove K, (z,)v = 0, we must show that, for any we 9,

V(K (z)w) = 0

(K, (z,) is hermitian). Now

VE, @) = | ELL0DOD 4 (1, @0, REh

= lim { S (K,,,(zzm—, ‘ti”(t)’“) + (K, (2)w, R(2)k)

(with z = 2z, + 7¢)
= lim ([K,(2) — M2k ® k] w, S,(2)k)

e—0+

= Hrﬁ (w, k) 1 — N2k, S,(2)k))
=0 by (4.10) .
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Proof of the complement to Theorem 4. By Theorem 4 K(z) has
a bounded inverse S(z) for points z with Imz = 0 in some complex
neighborhood N, of J, and S(z) has a representation (4.1). For
ze N, — J define g¢g(z) = S(2)h(z). ¢(z) is now defined for zc N,,
and holomorphic for ze N; — J. To prove g(z) is holomorphic in Ny,
we will use the edge of the wedge theorem ([19], Theorem 2.16).
According to that theorem it suffices to show that, for any C*= func-
tion ®(x) with support contained in ./, and any vector we $

(4.12) lim | p(@)w, 960 + ie)dr = | p@)w, @) o .

Now
[ 2@ (0, g + ie) — (w, g} de

(4.13) = g P() {(w, S@ + i@ + i€) — (w, S + ©)K (@ + ie)g()ds
= | 2@ (w, S@ + i¢) 1z, ) do

where

(4.14) 1(z, &) = (h(x + 1) — h(x)) — (K (v + 1) — K(x)g(®) .

In (4.13) we substitute the representation (4.1) of S(x + 4¢). The
term containing R (x + 4¢) converges to zero as ¢ — 0 since the inte-
gral over J of || 1(x, ¢) || converges to zero. It ramains to consider

(4.15) g P(x) { S (w, dv(®) 1 (x, 5))} da .
T+ 1€ —t
Suppose, for the moment, that g(x) satisfies a Lipschitz condition
lg@@) — 9@ | < M|m —wlc,  a>L.

We expand 1 (x,¢) in a Fourier series on the interval J

(4.16) 1@,e) = 3 L(e.@)

with 1,(¢) €  and {e,(x)} the appropriate complex exponentials. By a
theorem of Bernstein ([2], p. 154) the Lipschitz condition on g(x) im-

plies that its Fourier series converges absolutely; more precisely, for
some v > 0, the Fourier coefficients ¢, of g(x) satisfy

S lell(nr+ 1 < e

Since i(x) and K (x) are holomorphic in x, (4.14) then shows that (4.16)



598 M. J. WESTWATER

converges absolutely and, for some B > 0,

(¢.17) S ILEI(nr+ 1 < Be.

Substituting (4.16) into (4.15) we obtain a series whose nth term is
(4.18) S P() { S W—@%ﬁ—i“?} en(x)dx .

Now if +r(x) is a sufficiently smooth function of compact support we
have the estimate

(4.19) sup } S _V@ds

< K
| < K@) 11w,

where
11l = sup | (@) | + sup| R 17 [ 4(@ + B) = ()|

([6] p. 2419). We interchange the order of integrations in (4.18) and
make use of (4.19) with +r,(x) = @(®)e,(x) to obtain for (4.18) the
bound

K [l w1 v | < Al L@ [ (] + 1)

(4.17) then gives a bound ABe¢ for (4.15), and this completes the
proof that (4.13) converges to zero as & — 0.

If ¢(x) is merely measurable with | g(x)|| integrable on J, we
choose 7 > 0 and make a decomposition

g9(®) = 9,(x) + gu()

with g¢,(x) e Lipa (@ > 1/2), and the L' norm of ||g.(x)|| less than 7.
(To obtain such a decomposition take g, = g = d, with ¢ a smooth and
sufficiently good approximation to the ¢ function.) The contribution
of g, in (4.15) is bounded by

| 2@ L 1wl | K@+ i) = K@) ][l 0:5) || 90) || d < €

(for some C independent of ¢ and 7). The contribution of g, has limit
0 as ¢ — 0 by the preceding argument so we conclude that the lim sup
as ¢ — 0 of the absolute value of (4.15) is < C7n, 7 was arbitrary so
the convergence to zero of (4.15), and hence of (4.13), as ¢—0 is
proved.

REMARK. The argument used to handle the g,(x) term in the
above proof is unnecessarily refined, for we can arrange to have
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g.(x) as smooth as we wish. However, the appearance of the Lip «
a > 1/2 condition is interesting. The limiting values as ¢ — 0 of
integrals of the type (4.15) have been studied by Brownell [3], [4];
the same Lipschitz condition appears in Lemma 3b of [4]. It seems
likely then that the Fourier approximation used here could be used
to give an alternative proof of Brownell’s results.

5. The Kohn variational method. Let v(r) be a real valued
function defined on [0, ), E a real number > 0. The differential
equation with boundary condition

2
(5.1) (:‘i + o(r) — E) w=0, w0 =0
dar?
has, for wv(r) satisfying suitable regularity conditions (in particular
decreasing sufficiently rapidly as r— o), a unique complex valued
solution of the form

5.2 w,(r) = exp (tkr) — N exp (—tkr) + P(r) .

In (5.2) k =1VE, )\ is a complex number and @ec L?[0, «). Since
the complex conjugate of w,(r) also satisfies (5.1) and has the form
(5.2), it follows from the uniqueness that » has modulus 1.

(5.1) appears in quantum mechanics as a reduced form of the
Schroedinger equation for a particle moving with energy E and zero
angular momentum in a central field of force characterized by a
reduced potential v(r) ([8], p. 246). The solution (5.2) describes the
scattering of the particle by the potential; A determines the s-wave
phase shift §, » = exp (—2¢9).

Note that @(r) will not satisfy the boundary condition at » =0. It
is convenient to rewrite (5.2) in a form in which all the functions which
appear satisfy the boundary condition at » = 0. Choose a > 0 and set

wy(r) = exp (tkr) (1 — exp (—ar))
w_(r) = exp (—tkr) (1 — exp (—ar)) .
Then

(5.3) wy(r) = w.(r) — Mw_(r) + §(r)

and again M€ C and € L?[0, ) are uniquely determined by the re-
quirement that w,.(r) satisfy (5.1).

Nuttall [14] has shown how to formulate the problem of deter-
mining M and + in the language of Hilbert space. Substitution of
(5.3) into (5.1) gives the equation

5.4 (= &+ 00 = B) v @) = u0) = 2y )
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where
P (r) = v(r)w.(r) + [2iak — o] exp [i(k — ia)r]
PY_(r) = v(r)w_(r) + [—2iak — a*] exp [—i(k + ia)r] .

If v(r)eL?]0, ), +r,(r) and «_(+) are in the Hilbert space $ =
L?[0, ). The differential operator with the boundary condition may
be reexpressed as a self-adjoint operator on . In this way (5.4) gives

(5.5) (Hy+ V= E)or =y — Mp_

where H, is the self-adjoint operator defined by D(H, = {w | w(0) = 0,
w is continuously differentiable, (dw/dr) is absolutely continuous and
(d*w/dr?) € L* [0, o)}, Hw = — (d*w/dr~?) if w e D(H,) and V the operator
of multiplication by w»(r). Under suitable conditions on v(r), Hy+ V
is self-adjoint with D(H, + V) = D(H,) ([9]). A second Hilbert space
equation may be obtained from (5.4) by multiplying (5.4) by @_(r)
and integrating over [0, ). The term on the left of the resulting
equation is finite and equal to (y_, 4») provided that

(5.6) im [@_(r)y'(r) — @)y (r)] = 0

and the terms on the right are finite if v(r) € L' [0, «); the equation is
(6.7) (Y ¥) =D — M

where

p= | @ 9.dr

¢ =\ v mar.

Note that (5.7) is not a consequence of (5.5), but is to be regarded
as a Hilbert space formulation of the boundary condition (5.6) at
infinity.

By choosing « sufficiently large, we can arrange to have ¢ # 0.
Then (5.7) can be solved for n, and substitution for ) in (5.5) gives

(5.8) H,+ V- FE~q v _Qv_]v =4, — pg 7y .

The Kohn variational method ([8], p. 313 et. seq.) is an approxi-
mation procedure for the determination of A, 4». A sequence of linearly
independent functions {+,} is chosen from D(H,) (the trial functions).
This determines an increasing sequence of finite dimensional subspaces
D, = span {y,, -+, ¥,} of §. Denote by P, the orthogonal projector
onto D,. Then (5.8) is approximated by

(5.9) P.[Ho+ V—-E—qw_ Q] Pupu=Poly. — pgv] .



HILBERT TRANSFORMS AND A PROBLEM IN SCATTERING THEORY 601

If the operator on the left of (5.9) is invertible on D,, so that (5.9)
has a unique solution +,, the corresponding approximation \, to \ is
given by

(5.10) (Yey V) = D — Nuf -

For a given energy E there is little hope of proving that x,—\
as m — co, since one cannot even be sure that the ), are defined.
However, Nuttall [14] was able to show (under suitable conditions
on #»(r), and on the trial functions) that, on any finite interval
Ic (0, ), A\, (E)— \E) in measure as n— . Nuttall pointed out
that this result was not entirely satisfactory since it does not provide
a justification for the use of the Kohn method to calculate the phase
shift at a particular value of the energy. In that case the standard
procedure is to vary the trial functions, thereby introducing a para-
meter z which enters only into the approximations, not the physical
quantity to be calculated. The resulting Kohn approximations may
be expected to converge in measure in z. The problem of justify-
ing this expectation was attacked by McCartor [13], who obtained
some partial results. He obtained essentially Theorem 2, under an
additional condition on the trial functions. The present work is a
development of [13], [14], and gives a convergence theorem of the
desired kind (Theorem 5 below).

It is convenient to rewrite (5.8) in a form in which unbounded
operators do not appear. Let ¢ > 0. Then Ryc)'* = (H, + ¢)™* is a
positive bounded operator. (5.8) gives

(5.11) {1 — (B + ¢o)Ry(e) + Ri(0)'"VE(0)"* — ¢ Ro(¢)"™yr— & Ro(e)'*yr_} &
= Ry(c)"*p — pg~ Ry(c)' Py
where & = (H, + ¢)'*. \ is given in terms of & by
(5.12) (v, Bo(0)"* &) = p — N\ .
The trial functions ~, are transformed at the same time into
&n = (Hy + 0"y,

From now on D, will denote the span of {&, ---, &,}, P, the projector
onto D,.

Following McCartor [13] we suppose that the parameter z is in-
troduced into the trial functions in such a way that

(5.13) P,(z) = U@)"P,U(2)

where U(z) is, for z real, a unitary operator. Then the problem can
be transformed into one in which the trial functions are kept fixed
and z appears in the operator — namely
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(5.14) U@ {-}UE™ () = U {R) — pg~Ruf)™y )
(5.15) (UGB ™, =) = p — \q .

In order that Theorem 4 should give a convergence theorem for the
Kohn approximations A, for A corresponding to (5.14), (5.15) and the
sequence of trial functions &,, it is necessary that the operators and
vectors which appear in (5.14), (5.15) should admit holomorphic ex-
tensions for z in some complex neighborhood of an interval of the
real axis.

A simple choice for the U(z) are the unitary operators induced
by dilatations of [0, ). Define

(5.15) (U@@)w)(r) = 2"*w(zr)

for z real and positive, and we . Then U(z) is unitary. Using
these transformations to vary the trial functions we obtain

THEOREM 5. Consider the s-wave scattering of a particle in a
central potential. With the notations introduced above suppose

(i) that the span D of the trial functions &, is demse in 9

(ii) that the trial fumctions are varied in accordance with (5.13),
the transformations U(z) being given by (5.16)

(iii) that the reduced potential v(r) is im L'[0, ), and of short
range, i.e., for some C > 0, v(r) exp(Cr) € L*[0, )

(iv) that v(r) is dilatation analytic in the sense that the operator
U@)Ry(¢)'*VR(c)'*U(z)™ admits a holomorphic extension to some
complex neitghborhood of z =1

(v) that at the emergy E > 0 under consideration the equation
(5.11), which determines the s-wave phase shift, has a wunique solu-
tion.

Then the Kohn approximations \,(2) to N converge in measure to \
on any bounded subinterval of (0, o).

REMARK. Condition (i) can also be expressed by saying that the
4, = (Hy, + ¢)™** &, should have a span which is a core for H, as a
quadratic form (cf. [17]). Note that the Kohn approximations which
we study in Theorem 5 after replacing (5.8) by (5.11) are not the
same as those which are obtained from (5.10). The conclusion of
Theorem 5 holds also for the approximations given by (5.10). To
prove this one must consider in Theorem 4 nonorthogonal projectors
P,, Ty(z) now being defined as the inverse of PiK(z)Py on D,.
Approximations constructed using nonorthogonal projectors are con-
sidered also in [7]. For the use of condition (iv) cf. also [1].

Proof of Theorem 5. We claim that Theorem 5 follows from
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Theorem 4, and the complement to Theorem 4. First we list the
identifications to be made, and then show that the conditions of
Theorem 4 are satisfied

Ki(2) = U(@) {1 — (E + o)R(c)} U()™

D(z) = U(2) {R(c)'*VR(0)'* — g RBo(0)"*y_ @ Ro(0)! ™} U(2)™
h(z) = U(z) {Ro(0)'"¥s — g~ Ry(c) "y}

9(2) = &(2)

f(®) = UR)ER(c)"y- .

The existence of an extension of K,(z) to complex z follows from

URH,U()™ = 27"H,
80
K(z) =1 — (E + ¢)Z*R,(7%) .

Conditions (iii) and (iv) of Theorem 5 give holomorphic extensions
of D(z), h(z), and f(2) to a complex neighborhood of the real axis.
Ry(c)'*VR,(c)'* is compact under the conditions imposed on w»(r); this
is well-known (cf. [17], Theorem I1.22). That D(z) is compact valued
follows.

Condition (¢) of Theorem 4 is guaranteed by condition (v) of
Theorem 5, as also is the uniqueness of g(z) required for the com-
plement to Theorem 4. The regularity conditions imposed on ¢g(x)
there are trivially satisfied, since g(x) = U@)EéU(w)™, with U(®)
unitary and strongly continuous in .

This completes the verification of the conditions of Theorem 4
and its complement. (4.2) now gives the convergence of \,(2) to A
as n — oo in measure on any bounded interval of (0, o).

REMARK. The conditions on the potential in Theorem 5 are quite
strong, and it would be desirable to relax them. Possibly one could
obtain a better result simply by a different choice of U(z). However,
it seems more likely that it would be necessary to prove a version
of the approximation theorem (the second part of Theorem 4) requir-
ing only smoothness but not analyticity of the family of operators
{K(x)}. In our proofs the approximation theorem is linked closely to
the representation theorem (4.1), which requires analyticity for its
formulation. The lemma proved in Appendix A represents a step in
this direction.

Perhaps more serious is the absence in Theorem 5 of any discus-
sion of the rate of convergence of the approximations, and of the
dependence of the convergence rate on the choice of trial functions.

A similar discussion could be given using Theorem 4 of the con-
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vergence of the Kohn approximations for the phase shifts for higher
order partial waves. If the potential is no longer assumed central,
the analogs of Nuttall’s equations (5.5), (5.7) can still be set up, but
it is not clear whether they would fall within the scope of Theorem 4.

APPENDIX A. In this appendix we present a lemma (A3) which
may be used in place of Lemma 11 in the proof of the approximation
part of Theorem 3; the argument is a refinement of that used by
Nuttall [14] in his proof of his convergence theorem for Kohn ap-
proximations (see §5). It is of interest because it may be of use in
proving a version of approximation theorem not requiring analyticity
for K(x) (cf. final remark of § 5).

As a consequence of the continuity properties of the Hilbert

A~
transform T(o)y we obtain

LemmA Al. The restriction of T(o)y to a compact set J is con-
tinuous in o and in y.

LEMMA A2. Let vy be a finite sum of positive masses, 4 and F
t-measurable subsets of R, with compact closures. Then

(A.1) piwed| 5@ eF) = g dp(o) [T(o)] (4) .
F
Proof. It suffices to prove (A. 1) for the case in which F and
4 are intervals. Let P(x) = X (¢;/# — ;). On each interval (a;, a;.,),
P(z) is strictly decreasing, and so has an inverse 0;(0)
~ __ ’ dloz
t{oed|d@eF} = —\ duo) 3 -+
F i do
(the prime indicating that the summation is over 4 such that o;(o) € 4).
But
_dos _ _ (dv\™
do <dw>

= residue of (o — £(z))™" at z = p;(0)

z=0;(0)

SO
—v _‘flpi i = [T(0)] (4) .
@ g

Note that the estimate given in [20] (Theorem 8) for the dis-
tribution function of the Hilbert transform of the restriction of
Lebesgue measure £t to a set of finite ¢t measure, shows that (A.1)
is not true for all positive measures y.

LevmmA A3. Let {vy} be a bounded sequence of positive masses on



HILBERT TRANSFORMS AND A PROBLEM IN SCATTERING THEORY 605

R, each a finite sum of point masses. Suppose that, for each N, the
support of vy is contained in a finite interval I (independent of N).
Let g(x) be a real-ralued pt measurable function on R, J a pt meas-
urable subset of R with compact closure. Then, either some sub-
sequence of {vy} converges to a positive measure y, such that, on some
subset of J of positive p measure, both (a) and (b) hold

(a) P(x) + g(x) =0
(b) (dy/d)(x) = 0

or the sequence @ (x) = (Ty(x) + g(®))™" is bounded in measure (L) on
J.

Proof. As in Lemma 11, a compactness argument shows that it
suffices to consider the case in which the sequence y, is convergent
to v (say). If vy is the zero measure, (b) holds for all = and, since
lvy|| =0 as N-— co, Lemma 5 implies Jy(x) — 0 in measure ().
But then it is clear that {®,(x)} is bounded in measure on J unless
g(x) = 0 on a subset of J of positive measure, which is the assertion
of the lemma. Suppose then that vy is not the zero measure.

Suppose (a), (b) do not hold on a subset of J of positive measure.
To prove that {®y(x)} is bounded in measure on J, we must show
that for every » > 0 we have, for sufficiently small ¢ and large N,

pleed| [Py + 9@ | < <7.

By Lusin’s theorem we may find a continuous function ¢,(x) and a
compact subset J, of J such that

g —J) <72 and  g@) = g,(x) ved,
and it then suffices to show (for sufficiently large N, and small ¢)
tlzed,| |Dy@) + g:(@) | < e} <7/2.
Thus we may suppose g(x) continuous, and J compact. By supposition
| (9(x) + g(x)) + im(dv/dp)(@) | = 0 a.e. () on J

so (again by deleting a set of arbitrarily small ¢ measure) we can
suppose

(A.2) | (B(x) + g(x)) + in{dy/de)(x)| = ¢ >0 on J.

Consider the measures T'(o)y defined following Lemma 12. Denote
by S the union of the singular supports of T'(s)y (o rational). Then
S is of p¢ measure zero, and if B is any relatively compact Borel
subset of R of pt measure zero, such that BN S = @&, and ¢ a real
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number, we may choose a sequence ¢; of rationals converging to o,
and obtain

[T(o)v](B) = lim;_.. [T (0;)v] (B) by Lemma Al
=0 by the definition of S.

Thus S contains the singular support of T(o)y for any real . By
a theorem proved in [15] (p. 189), (2) has a.e. () the nontangential
boundary value

P(x) + im(dy/dpe)(x)

(from the upper half-plane). We add to S the points at which the
boundary value does not exist. Then for x ¢S (dT(0)y/dp)(x) exists,
and (—9(2) + o) has the nontangential boundary value

(A.3) {(—=5(@) + 0) + ix(dv/dp) (@)} .

Consider the restriction @ of T(o)y to a compact neighborhood of
®. According to the definition of T(o)y the Hilbert transform @(2)
differs from (—9(2) + 0)~* by a function holomorphic in the neigh-
borhood of «; this function will take real values on the real axis.
The nontangential boundary value of @(z) at a therefore exists, and
its imaginary part is equal to the imaginary part of (A.3). Since
(dw/dp)(z) = (AT (0)y/dp)(x) exists, it follows by another theorem in
[15] (p. 34) that

(A.4) djffl’;i)u(x):g%(x) <—g(x)+o)—1+m_%(x) -,

By deleting from J a set of arbitrarily small # measure we can sup-
pose J NS = Q.

Given ¢ > 0, we can partition J into a finite number of g-measur-
able sets 4; on each of which g has oscillation <e. Let g; be a
value of g on 4;. Then

(A.5) plwed| [Dx@) + gl@) | <& < S p{ved] [5y@) + g1 < 2 .

By Lemma A2 the right side of (A.5) may be written

—g;+

“ dp(0) [T(o)vy] (4) -

—g;—2¢

(A.6) ZS
Lemma Al shows that, as N— <. (A.6) has the limit
(A7) ZS

(The convergence of [T(0)vy] (4;) to [T(o)v] (4;) can be shown to be
bounded in ¢.) Since 4, NS =©

g+

" (@) [T(op] (4) -
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dT (o)v(s)
d

For se4; and |0 + ¢;] < 2¢, |0 + g(s)| < 3¢ so, if we choose ¢ < ¢/6,
(A.2) gives

(4.8) [T@p1 () = | dpts

[(=5(s) + 0) + in(dv/d)(s) | > e/2 > 0
and from (A.4) and (A.8) we obtain
[T(o)] (4) < de7w(4y) -
This gives for (A.7) the bound
(A.9) Z de.dc™(4;) = 167w/ )e .

This bound — 0 as ¢ — 0.

Lemma A3 implies, in particular, that if dy/dg = 0 a.e. (¢) on J,
then no subsequence of ¥Uy(x) converges on any subset of J of positive
ot measure. Convergence to + oo or — oo on a subset of J of positive
[t measure is also excluded since {Jy(x)} is bounded in measure by
Lemma 5. This negative result is to be contrasted with the positive
result proved in [20] that norm convergence of a sequence {v,} of
measures implies convergence in measure for the sequence {V,(x)]}.

An alternative proof of Lemma 11 (not relying on Lemma 10) may
be obtained by combining Lemma A3 with the theorem of Lusin and
Privalov [15] (p. 212) according to which a holomorphic function in
Imz > 0 (here $(2) + g(2)), which has nontangential boundary value
zero on a set of positive ¢t measure, vanishes identically.
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