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ON THE SPECTRA OF MULTIPLIERS

MISHA ZAFRAN

In this note, some results concerning the spectral theory
and Banach algebra properties of multipliers on compact
Abelian groups are obtained. The study concentrates on
multipliers whose spectra are, in a sense, natural, and whose
transforms vanish at . The results are shown to be of
particular interest in the case of the measure algebra M(G).
Moreover, a necessary and sufficient condition is found for
the spectrum of a Riesz product to equal the closure of the
range of its Fourier-Stieltjes transform.

Let G be a locally compact Abelian group (or LCA group) with
dual group 7. For 1 £ p £ o, L,(G) will denote the usual L, space
with respect to the Haar measure of G. Let M(G) designate the
space of regular Borel measures on G, and let M(G) = {¢te M(G) | "
vanishes at «}, where ¢" denotes the Fourier-Stieltjes transform of p.

In this note, we will investigate some properties of those multi-
pliers on L,(G) whose spectra are, in a sense, natural. Our major
result is Theorem 3.1. We shall see that this theorem is of particular
interest for p = 1. In this case, we are able to obtain new results
concerning the spectral theory and Banach algebra properties of certain
subalgebras of M,(G)—see Theorems 3.2, 3.6, 3.12, 3.13, 8.14, and 3.15.
Moreover, using the techniques developed here, we are able to deter-
mine the spectra of certain measures in M(G). In particular, we
find a necessary and sufficient condition for the spectrum of a Riesz
product to equal the closure of the range of its Fourier-Stieltjes
transform—see Theorems 3.6, 3.9, and Remark 3.10.

We begin our discussion with some basic notations used throughout

this paper.

1. Notations and definitions. For any Banach space X, we let
O(X) denote the algebra of bounded linear operators on X; || T |lox)
will denote the norm of an operator T¢ O(X). If z is an element of
a Banach algebra A, we denote the spectrum of # in A by sp(z, 4),
and the spectral radius of x by r.(x). R(\, ) will denote the resolvent
of ». If f is a function analytic in a neighborhood of sp(z, 4), we

let f(x) be the element (1/27¢) Sc SO RO, x)dN, where C is an envelope

of sp (x, A) contained in the domain of f. If A is any commutative
Banach algebra, 4(4) will designate the maximal ideal space of 4. If
Te O(X), we denote by o,(T), 0.(T), and o,(T) the point, residual,
and continuous spectra of T, respectively. The symbol * will always
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denote convolution; the symbol " is the Fourier transform of f.

If A and B are any sets, A\B will designate the set theoretic
difference between A and B. A° will be the complement of A. Finally,
if E is any subset of a topological space, £ will denote the closure
of E,int E will denote the interior of E, and C(E) will denote all
continuous, complex-valued functions on E.

If G is an LCA group and 1 < p < «, M,(G) will denote the
subalgebra of O(L,(G)) consisting of those operators which commute
with all translations on L,(G). The following properties of M,(G)
are well known; see [6].

(1) If1<p < and Te M,(G), or if Te M..(G) and T is con-
tinuous with respect to the weak* topology of L.(G), then there
exists a unique function 7" € L.(I") such that T(f)" = T"f" a.e. on
I, for all integrable simple functions on G. T" will be called the
transform of 7.

We denote by CM,(G) those multipliers T e M,(G) for which T°
is continuouson I, 1 < p < . We write C,M,(G) = {Te CM,(G) | T"
vanishes at «}.

(2) If 1 £p < o, then M,(G) is a commutative Banach algebra
which is isometric and isomorphic to M(G) if p = 1, and to L.(I") if
» = 2. Also, C,M,(G) is a Banach algebra.

(3) Ifl=<p,g<coand|l/g—1/2|=|1/p —1/2], then M,(G) &
M,(G), and for all Te My(G), | T" |z = | Tlloczy = | THO(L,,) = Tllow,-
Also, if 1 <p < o and 1/p + 1/p’ = 1, then M,(G) and M, (G) are
isometric and isomorphic.

(4) Let1=<9p < . Then

(a) sp(T,O(L,) = sp(T, M,(G)), for all Te M(G).
(b) sp(T, O(L,) = sp (T, C.M,(G)), for all Te CM,(G).

We remark that 4(a) holds since if S is any bounded operator
commuting with translations, and if S™ exists, then S~ commutes
with translations. Moreover, 4(b) follows from 4(a) as may be seen
by adjoining an identity to C,M,(G), and noting that (S™)" = 1/S",
whenever S exists.

2. In this section, we prove a series of lemmas needed in the
proof of our basic result. Some of these are quite elementary; others
may have certain intrinsic interest.

Before we begin, let us make the following observation. If
feL(G), and if we define

Ti(g) = f*g

for all ge L,(G), then T,;e C,M,G), and sp(T;, O(L,)) = (") U {0},
1 < p < . This is well known and is simple to prove.
However, if G is a nondiscrete LCA group, then M(G) is not
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a symmetric Banach algebra. This may be seen by combining Theorem
R of [9], Corollary 5.6.9(a) of [8], and the argument used in the
proof of Theorem 5.3.4 of [8]. It follows that there exists ¢t e M(G)
such that sp (¢, M(G)) # 1" (I") U {0}. Hence by (2) and (4) of the
previous section, sp (7T, O(L,) = ¢"(I") U {0}, where T.(g) =p*g for
all ge L,(G).

Corresponding results seem to be unknown for the Banach algebra
CM,(G), 1 <p<oo,p=*2. If p=2, it is a simple consequence of
the Plancherel theorem that sp (7T, O(L,) = T"(I") U {0}, for all
T e C,My(G).

We will study those elements T € C,M,(G) for which sp (T, O(L,)) =
() U {0}.

If ¢ is an essentially bounded, complex-valued function on a
measure space (2, 2, 1), we define the essential range of @ (or ess
range @) as the set of all complex numbers z such that

ploel||flw) —z] <& >0

for every € > 0.

LEMMA 2.1. Let G be an LCA group, let 1 < p < o, and let
Te M,(G). Then ess range T" < sp (T, O(L,)).

Proof. Suppose M¢ sp(T, O(L,)). Then since sp (T, O(L,) =
sp (T, M,(G)), we see S= R\, T)eM,(G). We then note I=
Soe(MI — T), and hence

(1) 1=8S—T") ae.on I,

where S” is the transform of S. But S" e L.(I"), and so by (1), A&
ess range T". This concludes the proof.

We remark that if TeC,M,(G), then ess range 7" = T"(I') =
() U {0}

LEMMA 2.2. Let 1< p < oo, and let Te CM,(G). If N\ is an
1solated point of sp (T, O(L,)), then xe T"(I"). Moreover, \ is a simple
pole of the vector-valued analytic function R(z, T).

Proof. Choose ¢ >0 such that if D= {z]||z—\| <¢}, then
Dnsp (T, O(L,)) = {\}. We expand R(z, T) in a Laurent series about \:

=—o0

Rz T)= S, Az—»N" for |z—2n|<e,

where A, = 2ni)™'| R(z, T)(z — \)"""'dz for all integers =, and @

denotes the curve ]zsg— A = e
Let f be a function analytic in a neighborhood of sp (7, O(L,)) for
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which f =1 on D and f = 0 on sp(T, O(L,)\{(\}. Then for n < —1,

4, = o= | @ =V RE, Tz,
2w Je
where C is an envelope of sp (T, O(L,)) contained in the domain of f.

Hence we see
(1) A, = f(T(T —NI)™* for n<—1.
By (4) of §1, it is evident that both A4, and f(T) are in CM,(G)
and
(2) fT) =foT" on I'.

Since R(z, T') is not analytic at A, there exists a positive integer
m for which A_,, # 0. Therefore, by (1), f(T) = 0. Hence by (2),
there exists v € I" such that

(3) AT (M) #0.

Recalling that ess range 7" < sp (T, O(L,)), an application of (3)
and the definition of f yield that 7"(v) = A». This implies the first
assertion of our theorem.

In order to obtain the second assertion, we suppose, to the con-
trary, that there exists a positive integer j = 2 for which A_; # 0.

Hence there exists v, € I for which (4_;)"(v) # 0. By (1) and (2),

(4) 0+ (A_)" () = AT ()T () — M)

Thus by (4), f(T" (7)) # 0 so again we see T"(v,) = ». But since
j = 2, this contradicts (4). This concludes the proof of Lemma 2.2.

The following theorem will not be needed in the sequel; however,
it may be of some interest.

THEOREM 2.3. Let 1 < p < o, and let Te CM,(G). If )\ is an
isolated point of sp (T, O(L,)), then \ € the point spectrum of T.

Proof. By Lemma 2.2, we see )\ is also an isolated point of
T™(I"). Let V be an open subset of I” such that V is compact and
T (V) = {7}, Let U be an open subset of I", with compact closure,
such that U< U< V. By [8], Theorem 2.6.2, there exists fe L,(G)
with f*=1on Uand f" =0 on V-

Since V is compact, " ¢ L,(I"). Hence by the inversion theorem,

f@) = | £ er@ar

for almost all v G. In particular, fe L.(G). Thus, since f is also
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in L(G), we see fe L,(G).

Finally we note (A — T)f)" = 0 on [I'. This equality follows
since 7°(V) = {\} and by the choice of f. Hence A\ I — T)(f) = 0, and
f# 0. Our assertion follows immediately.

Before proceeding, we make the following observations: If
1=Zp=<2, and if Te M,(G), then the point spectrum of T is con-
tained in 7"(I"). Secondly, we remark that for 1 < p < « and for
compact G, we actually obtain T"(I") = 0,(T), since for all

yel', (T"WI — T)(7) = 0.

LEMMA 2.4. Let G be a compact LCA group. Let 1 < p < oo,
and let Te M, (G). Then o(T) = &.

Proof. Let nesp (T, O(L,)), with A& 0,(T). It is then simple to
verify that range (I — T) contains the class .7 of all trigonometric
polynomials on G. Since G is compact, & is dense in L,(G). Hence
range (A — T') is dense in L,G), and so rec(T). Our conclusion
is immediate.

Combining Lemma 2.4 and the comments preceding it, we obtain:

LEMMA 2.5. Let G be a compact LCA group, and let 1 < p < co.
Let TeC,M,(G). Then o (T) contains a nonzero point if and only
of sp (T, O(L,)) = T°(I") U {0}.

We note that if G is compact, I is discrete. Hence if
Te CM,(G), T"(I") is countable. We will need the following lemma.

LeMMA 2.6. Let G be a compact LCA group, and let 1 < p < oo,
Let Te C,M,(G). Suppose sp (T, O(L,)) = T"(I") U {0}. Then o, (T)\[0}
is a nonempty perfect set; in particular, o,(T)\{0} is uncountable.

Proof. By Lemma 2.5, ,(T)\{0} is nonempty. Let ze g (T)\{0}.
By the remarks preceding Lemma 2.4, and the lemma itself,
sp (T, O(L,)) is the union of the digjoint sets T"(I") U {0} and o.(T)\{0}.
Thus z¢ T" (") U {0}.

By Lemma 2.2, z is not an isolated point of sp (T, O(L,)). Hence
there exists a sequence {z,} of distinct points in sp (T, O(L,)) such
that z,—z as n— oo,

Since T°(I") U {0} is compact and z¢ T"(I") U {0}, we see that at
most finitely many of the points z, can be in 7°(/") U {0}. We may
thus assume z, € 0,(T)\{0} for all =.

We have shown that every point of the nonempty set o.(T)\{0} is
a limit point of the set o, (T)\{0}. Thus ¢, (7)\{0} is a perfect set.
From this, it follows easily that o¢.(T)\{0} is uncountable, since
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sp (T, O(L,)) is the union of ¢,(T)\{0} and the countable set 7" (7") U {0}.
The proof of the lemma is complete.
We will also require the following two lemmas.

Lemma 2.7. Let G be a compact LCA group, and let 1 < p < oo,
Let S, Te CM/(G), and suppose sp (S, O(L,) = S (I")U {0} and
sp (T, O(L,)) =T"(I") U{0}. Then sp(S+ T, O(L,)=(S+T) () U {0}.

Proof. By 4(b) of §1, we note sp(S+ T, O0(L,))=sp (S+ T, C.M(G)).
Hence, by the Gelfand theory,

sp(S+ T, O0(L,)) = {k(S + T) | he AC,M,(G)} U {0}
(1) S [A(S) [ ke dC,M,(G)} UA{0}] + [{R(T) | ke 4CM,(G)} U {0}]
= sp (S, O(L,)) + sp (T, O(L,)) ,

where for any subsets A and B of the complex numbers, A + B =
{a+blac A, be B}

However, by hypothesis, both sp (S, O(L,)) and sp (T, O(L,)) are
countable sets. Thus by (1), sp(S + T, O(L,)) is countable. By
Lemma 2.6, sp(S+ T, O(L,) = (S+ T)"(I") U {0}. This completes
the proof.

LeMMA 2.8. Let G be a compact LCA group, and let 1 < p < oo.
Let m,(G) denote the closure of {T,|fec L/(G)} in the norm of O(L,)
(see the beginning of §2 for notations). Let &7 be any closed sub-
algebra of C,M,(G) containing m,(G). Suppose he d\I". Then
r(T) = 0 for all Tem,(G).

Proof. Assume, to the contrary, that A(T) 0. Then &< 4m,(G).
However, it is easy to see that 4m,(G) = I'. Thus there exists vye I"
such that

(1) WU) = U'(7)

for all Ue m,(G).

We show that (1) is actually valid for all Ue.&”. Let f be
a trigonometric polynomial on G with f"(v) = 1. Then for all Ue.&”,
we have by (1) that

KU) = KUY (V) = KU)MT,)
= WU-T) = UsT, (") = U (V)

But he 49°\I". This contradiction proves the lemma.

We conclude this section with some comments concerning the
algebra m,(G), defined in the statement of 2.8. Let G be any LCA
group, and let 1 <p < . We define m,(G) as the closure of
{T;|feL(G)} in O(L,). Then m,G) becomes a Banach algebra with
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maximal ideal space I". (See [5], Theorem 1.17.) Figa-Talamanca
and Gaudry [3] have shown that if G is the n-torus or Euclidean
n-space, then m,(G) is a proper subalgebra of C,M,(G) for 1 < p < co,
p # 2. In faect, more is true. We have the following:

PrROPOSITION 2.9. Let 1 < p < oo with p = 2. Then, tn general,
m,(G) 18 a proper subset of “ = {TeCMIG)|sp (T, OL,) =
T (I U {0}}.

Proof. We note first that m,(G) & & by Lemma 2.8, 1 < p < co.
If p =1, we let G be any nondiscrete LCA group. In [4], Theorem
5.6, an example is given of a singular measure pe M,(G) such that
pxp = e Li(G). Using an argument as in 2.8, it is simple to verify
that sp (¢, M(G)) = p#"(I") U {0}. Defining the operator T, by T.(f) =
pxf for all fe L(G), we see T,.4¢ m(G), but T, e &.

Now let 1 < p < 2. Let G be the circle group. We choose T as
the multiplier of Figa-Talamanca and Gaudry corresponding to p, as
defined in [3]. Then T¢ m,(G). Moreover, if r = 2p/2 — p, T"(m) =
+1/2", for 2" <m <2"* —1,n=0,1,2.-.,and 7" (m) = 0 for m < 0.
Hence T?" is of uniformly bounded variation on all dyadic “intervals”
of integers. By the classical Marcinkiewicz multiplier theorem (see
[11], Chapter 15, Theorem 4.14), T%e C,M,(G),1 < q¢ < e. Thus by
16.6.2 of [2], TPem,(G),1 < ¢ < . By Lemma 2.8, sp(T, O(L,)) =
T°(I") U {0}, where I" = the integers.

Finally if 2 < p < o, we let 1/p + 1/p’ = 1. Again we let G =
the circle group. Let T be the multiplier of Figa-Talamanca cor-
responding to p’. The above result, combined with a simple duality
argument, shows 7'¢ m,(G) and sp (T, O(L,)) = T°(I") U {0}. The proof
of the proposition is complete.

Of course, if p = 2, it is clear that & = m,(G), for any LCA
group G.

3. In this section we prove our principal theorems, and give
some applications. We also give some examples showing that our
results cannot be significantly improved. The following theorem is
our principal result.

THEOREM 3.1. Let G be a compact LCA group, and let 1 < p < oo,
Define = = {T'e C,M,(G) | sp (T, O(L,)) = T"(I") U {0}

(a) If he AC. M (G)\I", then W(T) = 0 for all Te %

(b) & is a closed ideal in C,M,(G).

(¢) 4 =T.

Proof. We first prove (a). Let Te %, and let he AC, M (G)\I".
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Choose ¢ > 0. Then there exists a compact set K = I" such that
| T(v)| < & for v& K. Let f be a trigonometric polynomial such that
S"=1lon K,and 0=<f" <1. Define T, = T-T; and T, = T — T-T,.
It is clear that T = T, + T.. By Lemma 2.8,

(1) o(T,) =0 for all @e4C,M,(G)\I".
In particular, sp (7, O(L,)) = T.(I") U {0}. By Lemma 2.7,
sp (T, O(L,)) = T;(I") U {0} .
We now show
(2) AT | <e.

Note W(T,) e sp (T,, O(L,)) = T,(I") U {0}. If w(T,) = 0, there is nothing
to prove. Otherwise, there exists ve€ 7" such that i(T,) = T,(v). If
ve K, the definition of T, implies T, (v) = 0. If 7¢ K,

IWIT) | =1T:M | =1T" ML =F" (M| <e.

Hence (2) obtains.
Combining (1) and (2) we see

(3) MT)| <e.

Since ¢ > 0 was arbitrarily chosen, part (a) follows by (3).
Part (b) follows immediately by (a). We now show (¢). We begin
by noting

(4) sp (T, &) = sp(T, CM,(G))

for all Te . To see this, we adjoin the identity I to the Banach
algebras & and C,M,(G), and denote the corresponding algebras by
&, and C_.M,(G) respectively. Then if Te &, and M & sp (T, C,M,(G)),
S = (I - T)* exists and is in C,.M,(G). Moreover, S" has limit 1/x
at c. It is now a simple consequence of the spectral mapping theorem
that sp(S— /N OWL,)) = (S— AN D7) U {0}, and so S— A/\) I e &
Thus S is in the Banach algebra %,. Therefore, A ésp (T, ). We
have shown

sp (T, ) < sp(T, CM,(G)) -

The reverse inclusion is elementary. Hence (4) is valid.

In order to complete the proof of (¢c), we assume there exists
he4z\I". Let € > 0, choose Te &, and decompose T into the sum
T, + T, as in part (a). As before, we have T, T,€%. By Lemma
2.8 (with .&¥ = &), i(T) = 0. By (4), k(T,) esp (T, C;M,(G)). Hence
there exists ve " such that #(T., = T,(Y). The argument of (a)
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implies |A(T)| < e. Since this holds for all ¢ > 0, R(T) = 0. Since
Te % was arbitrarily chosen, » = 0 on <, and this contradiction
completes the proof of (¢). Our theorem is completely proved.

In the case p =1, C,M,(G) = M,(G), and % is then a proper
subalgebra of the asymmetric Banach algebra M, (G). In case p = 2,
& = C,M,(G), and our theorem becomes trivial. If 1 <p < o, p+#2,it
appears to be unknown whether or not & is a proper subset of C,M,(G).

In the remainder of this note, we restrict our attention primarily
to the case p = 1, that is, to M,(G) and M(G). Applied to measures,
Theorem 3.1 becomes:

THEOREM 3.2. Let G be a compact LCA group. Let
& = {rre M\(G)|sp (1, M(G)) = 1" (I") U {0}} .

(a) If he AM(G\I", then h{t) = 0 for all pez.
(b) & is a closed ideal in M(G).
(¢) 4% =T.

We now give some examples to show that 3.2 cannot be signifi-
cantly strengthened.

ExAMPLE 3.3. We show assertion (a) of 3.2 becomes false if we
no longer assume that the measures involved vanish at oo.

Let xe G, and let 6, be the unit mass measure at z. Then
sp (6., M(@)) = {z||z] =1}, if the order of =« is infinite, and
sp (6,, M(@)) = the wmth roots of unity, if the order of x is ». This is
known, and is not difficult to prove. Thus if he AM(G)\I", 1(d,) €
{z]|z| = 1}. Hence (a) of Theorem 3.2 fails.

ExampLe 3.4. Let G be an I-group (see p. 46 of [8]). We show
that there exist measures ¢ and v in M(G) such that

(1) sp (s, M(&) = (D)

(2) sp, M(G)) =" (I

(3) sp(e+ v, M(G)) vproperly containg (¢ + v)"(I") .
(Here, neither #" nor v* vanish at - on 7.) By Theorem 5.2.2 of
[8], there exists a Cantor set P = G which is also a Kronecker set.
Let ¢ be a positive continuous measure of total variation 1 concen-
trated on P. Then by Theorem 5.5.2 of [8],

p() ={zlz| =1} .

Since /¢ has norm 1, we obtain sp (¢, M(G)) = ¢"(I"). We now define
Y(E) = u(—E), where —FE = {—z|x<c E}, for all Borel sets £ = G.
The preceding argument also shows sp (v, M(G)) = v (I).
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However, an examination of the proof of Theorem 5.3.4 of [8]
shows that (¢ + v)"(I") is a subset of the real numbers, whereas
sp (¢ + v, M(G)) contains an imaginary number. Thus sp (¢ + v, M(G))
properly contains (£ + v)" ().

We will now obtain some consequences of Theorem 3.2. The fol-
lowing result is an immediate corollary of 3.2(c).

COROLLARY 3.5. Let G be a compact LCA group. Let & =
{rre My(G) |sp (¢, M(G)) = 1" (") U {0}}. Then the quotient algebra
& |L,(G) has empty maximal ideal space.

This corollary enables us to obtain a new method for showing that
a measure in M,(G) does not have a “natural” spectrum. Let p' = p
and p* = p sy for n = 2. We have the following result.

THEOREM 3.6. Let G be a compact LCA group, and let
re My(G)\{0}. Suppose that for all positive integers m, 1" is singular
with respect to the Haar measure of G. Then sp (¢, M(G)) # 1" (I") U {0}.

Proof. Suppose, to the contrary, that sp (¢, M(G)) = p"(I") U {0}.
Then pte &. By the above corollary and the spectral radius formula
we obtain

lim (| #* + Li(@) || w10,0)"" = 0

Using the definition of the quotient norm we see

(1) lim (nf {] 2 + fI] [fe L(@)" = 0,

where for any measure v, ||v|| denotes the total variation norm of v.
Since p* is a singular measure, we see || " + f|| = || ¢"|| + ||f]| =
|| ™| for all fe L,(G), and for all » = 1.
By (1) we thus obtain

lim || ¢ | = 0 .

Hence sp (¢, M(G)) = {0}, so by Lemma 2.1, 1"(I") = {0}. It follows
¢ = 0, and this contradiction implies the desired result.

ExAMPLE 3.7. Let G be an I-group. We show that there exists
a continuous measure f# € M(G) such that p¢* is singular with respect
to the Haar measure of G for all » = 1, but such that sp (¢, M(G)) =
¢™ (). As in Example 3.4, we let P = G be a Cantor set which is
also a Kronecker set, and let g be a positive continuous measure
concentrated on P. By 3.4, sp(y, M(G)) =" (I'). Let P,=P and P, =
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P, .+ P for n = 2. Let m denote the Haar measure of G. By [8],
Theorem 5.8.6, m(P,) = 0 for n=1. But ¢#" is concentrated on P,, so
£ is singular with respect to m, for all » = 1. We note that "
does not vanish at oo.

Comment. The above example can be simplified if we no longer
require that ¢ be a continuous measure. In this case, we let v be
any discrete measure on G. Then clearly v* is singular with respect
to the Haar measure of G for all # = 1. But it is known that
sp (v, M(®)) = v™(I).

REMARK 3.8. Let G be any LCA group. We note that for
re M\(G), sp(T,, O(L,)) = p (') U{0}, where T.(f)= pxf for all
feL,(G),1 < p < . This follows by Theorem 1.16 of [5]. (That
theorem is stated for G = R". The proof for arbitrary LCA groups
requires no new ideas.)

We will now use Theorem 3.6 to determine the spectrum of a
certain class of measures on the circle group.

Let {a,} be a sequence with a, # 0, and —1 < a, <1 for all %.
Let {n,} be a sequence of positive integers such that n,.,/n, = ¢ for
all k, where ¢ is a fixed real number greater than 3. It is shown
in [11}, Chapter 5, § 7, that the infinite product

ﬁ 1 + a, cos n,x)
k=1

represents a positive continuous measure (£ on the circle group called
a Riesz product. By the assumption n,../%, = ¢ > 3, it is not difficult

to show that
ke k 5 lsj\
e (Zem) = 1(%)
where ¢; = 0,1 or —1 for all 7, and
[JA(?’}’L) =0,

for all m not of the form > em;. (See [11], Chapter 5, § 7, and
[10], §2.)

We thus obtain

(a) If a,— 0 as k— oo, then p" vanishes at co.

(b) p is represented by the Riesz product

oo g_k— n
k11<1 + 2(2> cos n,pc) ,

for all n = 1.
In the following theorem only, G will denote the circle group,
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and I” will denote the integers.

THEOREM 3.9 Let {a,} be a sequence of real numbers such that for
all k, 0,0, —1<a,=<1, and a,—0 as k— . Let {n,} be a
sequence of positive inmtegers with m,./n, = q, where q s a fixed
real mumber greater than 3. Let tt be represented by the Riesz product
IIr- @ + a, cos nx). Then sp (¢, M(G)) = p"(I") U {0} of and only if
there exists a positive imteger m such that S, |a,|” < .

Proof. We first prove the sufficiency. Choose a positive integer
n such that

(1) ’g‘llakln<°@-

By (b) of the preceding paragraph, the measure p" is represented by
the Riesz product

co a/k n

kI=I1 (1 + 2(7) cos n,,x) .
It is evident by (1) that >, [2(a:/2)" P < e, so by [11], Chapter
5, Exercise 20, we see u" is absolutely continuous with respect to
Lebesgue measure, that is p"e L,(G). It follows easily by Lemma
2.8 that sp (¢, M(G)) = p#"(I") U {0}, as desired.

We now prove the necessity of our condition. Suppose for all

positive integers m we have

o

(2) @ |" =

k=1

Since a,— 0 as k— o, (a) of the preceding paragraph implies that
p e M(G). Let n be any positive integer. By (b) of the preceding para-
graph, p" is represented by the Riesz product [T;-, (1 + 2(a,/2)" cos n,x).
Moreover, by (2), we see

oo -% n
% [2%)
Hence by [11], Chapter 5, Theorem 7.6, " is singular with respect

to Lebesgue measure. By Theorem 3.6, sp (¢, M(G)) = ¢#"(I") U {0}.
This concludes the proof.

2
= oo ,

Comment. A special case of the necessity part of this theorem,
with more restrictive assumptions on the sequences {a,} and {n,} is
implicit in [10], § 2. However, it is not explicitly stated. Our proof
is completely different, and much more simple.

REMARK 38.10. The analogue of Theorem 3.9 is valid for more



ON THE SPECTRA OF MULTIPLIERS 621

general Riesz products on a wider class of compact LCA groups.
Explicitly, we let G be one of the three types of groups considered
in Theorem 4.4 of [4], and let {v,} be a dissociate set of characters
of G as considered in this theorem (for definitions, see [4]). Let {b,}
be a sequence of nonzero complex numbers such that | b, | <1/2, if the
order of v, > 2, and such that b, is real with |b,| <1, if the order of
Y. = 2. Let pte M(G) satisfy

k

/“A(gl 5ﬂ:’> = 116, ,

j=1
where ¢, = 0,1 or —1 for all j, and
© =0,

for all v not of the form >V &;7;,. (See [4], Theorem 3.2.) (Here
b9 =bif e=1,09=0bif e= —1, and b =1 if ¢ = 0, for all com-
plex numbers b.) This may be considered as a generalization of the
previously considered Riesz product on the circle group. Suppose
also b,—0 as k-— c. We then have sp (¢, M(G)) = 1" (") U {0} if
and only if there exists a positive integer »n such that >, | b, |" < co.
The proof is identical to the one given in 3.9. We need only replace
the results of [11], Chapter 5 used in the proof of 3.9 by Theorem
4.4 of [4].

We now give some further applications of Theorem 3.2. We will
adhere to the following notation. If pe M(G) and fe L,(¢), we define
vy = fp¢r as the unique regular Borel measure satisfying dv = fdg. If
o, §e M(G) with 2 = 0, and if ¢ is absolutely continuous with respect
to #, we write & € g Finally, if pe M(G), we let |¢| denote the
total variation of £, and denote by || #£|| the total variation norm of f.

We provide a proof of the following lemma for the convenience
of the reader.

LeMMA 3.11. Let G be a compact LCA group, and let tt e M(G).
If ve M(G), and if v < ||, then v e M(G).

Proof. Since v is absolutely continuous with respect to | g,
there exists a function fe L,(#) such that v = fu. We show u*
vanishes at c. Let ¢ > 0. Then there is a function g e C(G) such
that

(1) | IF—gldini<es.

Since G is compact, we can choose a trigonometric polynomial
P=>7 a7, where 7,1, 1 < k < n, for which
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£
4(l 211+

Combining (1) and (2) we obtain

(2) I|P—gll. <

(3) Sglf—PIdl#!<8/2-

Let v, = Pp. Then v,"(v) = S apt” (v — v,) for all ye I". Since
" vanishes at oo, there exists a compact set K & I” such that

(4) [vp (M ] < e/2

for all v ¢ K.
Hence by (3) and (4), we see that for v ¢ K,

[V )= [V () — 2" )|+ [vp"(7)]
=|{, 7@ — Paydue)| + (v @1
<g2+¢l2=c¢.
Thus v" vanishes at <, and our proof is complete.

THEOREM 3.12. Let G be a compact LCA group, and let & =
{re M(G) |sp (1, M(G) = " (1) U (0)). Let pez. If ve M(G), and
of v lp¢l, then ve &

Proof. By Lemma 38.11, ve M(G). We need only show

sp (v, M(G)) = v"(I") U {0} .

Let veI'. Then since v is a character of G, a simple computa-
tion shows that

(1) (V) * (Ytte) = V(o x 1)

for all p, pt, € M(G). In fact, the mapping » — v for n € M(G) defines
an isometric algebra isomorphism of M(G) onto itself.

Define p, = vy, and let R.(\) = vR(\, tr), for » ¢ sp (¢, M(G)).
By (1), it follows that if \ ¢ sp (¢, M(G)), R(\, ;) exists and equals
R.(\). Thus » ¢ sp (¢, M(G)) and so sp (¢,, M(G)) < sp (¢, M(G)). Since
M = 7y, an analogous argument yields sp (¢, M(G)) < sp (¢,, M(G)).

We thus obtain sp (¢,, M(G)) = sp (¢, M(G)) = p"(I") U {0}. Since
W (0 = p* (), it follows

sp (¢, M(G)) = ¢, (I") U {0}

Hence ¢, e & for all ver.
Now let P = > a,7, be a trigonometric polynomial on G, and
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let v, = Pt =37 a,, . Then since vp is a linear combination of
elements of &, and since, by Theorem 3.2(b), & is a linear space,
we obtain

(2) sp (e, M(G)) = v¢"(I') U {0} .

Since {Py|P is a trigonometric polynomial on G} is dense in
{fee| fe L)}, (2) shows that

(3) sp (f¢, M(G)) = frr"(I") U {0} ,
for all fe L,(¢). The theorem now follows by (3), and the fact that
vzl

By combining Theorems 3.6 and 3.12, we can obtain an extension
of 3.6. For notational convenience, we write ¢ 1 v if the measures
¢ and v are mutually singular. If & is any family of measures, we
write ¢ L & if ¢ L vy, for all vy in &Z.

THEOREM 3.13. Let G be a compact LCA group with Haar measure
m. Define € = {ve M,(G) |sp (v, M(@)) = v"(I") U {0}}. Let pre M(G)
be a positive measure such that pu™ L m for all positive integers n.
Then 1 1 <&

Proof. Suppose, to the contrary, that there exists ve & which is
not singular with respect to #£. By Theorem 3.12, |v| € &, and it is
evident that |v| is not singular with respect to ¢. We write

(1) [”I:’Jl""”zy
where v, and v, are positive measures, and
(2) y<p and p, L pe.

By the choice of v, we see vy, = 0. Moreover, by (1) and Theorem
3.12, vy, e €. Now (2) implies that vr € ¢ for » = 1, and so since
u L m, we see

vrLm,

for n = 1. But then 3.6 asserts that sp (v, M(G)) = v, (I") U {0}, and
this contradiction proves the theorem.

We conclude this paper with some results concerning & as a
Banach algebra. Our discussion shows that the behavior of & is
more closely related to that of L,(G) than to that of My(G).

Let G be a compact, infinite, LCA group, and denote by B(I") the
set {¢"|reM(G)}. Let A be a closed subalgebra of M(G). S will
signify a subset of the complex plane. A complex function F with
domain S is said to operate on A if and only if for all £zec A with
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© ()< S, we have F (¢")e B(I). Let &" = {¢" | te &)

A theorem of Katznelson [8], Chapter 6, asserts that if F' operates
on L,(G), then F is analytic in a neighborhood of the origin., A
theorem of Varopoulos [10] asserts that for G compact, only entir
functions operate on By([).

We obtain:

THEOREM 3.14. Let G be a compact LCA group.

(a) If F operates on &, then F is analytic in a neighborhood
of the origin.

(b) If F is analytic in a neighborhood of 0, then F operates on
&. Moreover, if F(0) =0, then F(u")e&" for all pe® with
p©™ () & domain F.

This theorem follows by the aforementioned result of Katznelson,
Theorem 3.2(c), and the elementary operational calculus of Banach
algebras. The details are left to the reader.

Finally, we characterize the homomorphisms of & into M(G).
For all notations used in the following theorem, see [8], Chapter 4.

THEOREM 3.15. Let G be a compact LCA group, and let ¥ be
a homomorphism from & into M(G). Then ¥'(1)" = p"oax, where ¢ is
a piecewise affine map of Y into I'y and Y is in the coset ring of I.
Conversely, if Y belongs to the coset ring of I'y and if a is a piece-
wise affine map of Y into I'y then p"oaxe B(I) for all pte &

Stated more simply, ¥ is a nontrivial homomorphism of & into
M(G) if and only if ¥ is a nontrivial homomorphism from L,(G) into
M(G). This is in sharp contrast to the case of homomorphisms from
My(G) into M(G); there is an example of a nonzero homomorphism =
from M,(G) into M(G) for which 7|, = 0 (see [8], p. 78).

The proof of Theorem 38.15 follows immediately by Theorem 4.1.3
of [8], Theorem 8.2(c), and the argument on p. 77 of [8].

We now have the following corollary.

COROLLARY 3.16. Assume the notations of Theorem 8.15. More-
over, suppose that for every finite set K = I', a™(K) s also finite.
Then U maps & into itself.

Proof. We show first that if pre M(G), then ¥(1) ¢ M(G). Let
€> 0. Then there exists a finite set K & I" such that [¢# " (V)| < e
wherever v¢ K. Let J = a*(K). Then J is finite and | " (a(v))| < ¢
whenever v¢J. It follows that |Z(®)"(v)| <e for v¢J, and so
(1) € My(G).
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It now suffices to prove
(1) sp (T (1), M(G) = ¥(y)" (L) U {0},

for all pe & Let he 4M(G). Then ho¥ is a complex homomorphism
on %. By Theorem 3.2(c), we see that either

ho =0 on %,
or there exists a ve /" such that
he¥ () = p*(7)

for all e & In either case, W(¥(¥) e (I) U {0}, and so by the
Gelfand theory we obtain

(2) sp T (1), M(G)) & " (1) U {0},

for all e &. Since p#"(I") U {0} is a countable set, (2) and Lemma
2.6 imply (1). This concludes the proof.

We note that our corollary is analogous to Theorem 4.6.2 of [8].
Moreover, if a~'(F') is infinite for some finite set F < I”, it is not
difficult to see that ¥ does not even map % into M(G) (see the
proof of Theorem 4.6.2 of [8]). Thus the condition of our corollary
is both necessary and sufficient to insure that ¥ maps & into itself.
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