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In a metric space an arc which is isometric to a real
interval is called a segment. In this paper it is shown that,
for 1 < n < 3, n-dimensional Euclidean space (E») is topologi-
cally characterized, among locally compact, #n-dimensional
spaces, by admitting a metric with the following properties:
(1) every two points of the space are endpeints of a unique
segment, (2) if two segments have an endpoint and one other
point in common then one is contained in the other and (8)
every segment can be extended, at either end, to a larger
segment. This follows from the more general result that,
for 1 < n <38, a locally compact, n-dimensional space which
admits a metric with properties (1) and (2) is homeomorphic
to an 7n-manifold lying between the closed 7-ball and its
interior.

Property (1) suffices to characterize E*, for n =1 or 2,
among locally compact, locally homogeneous, 7-dimensional
spaces. For n > 3, properties (1), (2), and (3) characterize £,
among locally compact, n-dimensional spaces that contain a
homeomorph of an n-ball.

1. Introduction. A metric space (X,d) is said to be convex
provided that every pair of points of X has a midpoint—m is a
midpoint of & and y if d(z, m) = d(y, m) = 1/2d(z, y). (X, d) is strongly
convex if every pair of points has a unique midpoint and is without
ramifications provided that no midpoint of 2 and y is a midpoint of
z and y unless z = 2. Convex subsets of Euclidean spaces with
their inherited metrics are examples of metric spaces with these pro-
perties. Lelek and Nitka [8] and Rolfsen [11] have (topologically)
characterized the 2-cell and 3-cell, respectively, among compact 2 and
8 dimensional metric spaces by the last two properties. White [12]
has shown that a 2-complex is collapsible if and only if it can be
given a metric which is strongly convex. Numerous other results
have been obtained for metric spaces with the above properties when
the underlying space is compact or when the metric is also complete.

In the present paper a number of these results are shown to hold
when the underlying space is locally compact. Prinecipally, it is shown
that having a strongly convex metric without ramifications (topologi-
cally) characterizes n-manifolds that lie between the n-cell and its
interior among locally compact, n-dimensional spaces for » < 3. This
reduces to Lelek and Nitka’s or Rolfsen’s result when the space is

11



12 G. BERG

compact and yields a characterization of £™ under various homogeneity
conditions.

2. Existence of segments. In a metric space (X,d) a set S is
said to be a segment for the points z and y of X if x and y are
elements of S and S is isometric with the real interval [0, d(x, %)].
It is well known that in a convex, complete metric space every pair
of points has a segment between them. It is shown now that for
locally compact spaces the requirement of completeness can be relaxed.

THEOREM 2.1. Let (X, d) be a locally compact, convex metric space.
If, for each pair of points of X, the set of midpoints of the pair is
compact, then each pair of points is joined by a segment.

Proof. Let p,q be two points of X and let 4, = {p, ¢}. Order
A, by distance from p. In general, if A, has been defined and ordered
by distance from p, then for each x ¢ (4, — {¢}) let m, be a midpoint
for # and the next point of A,. Define A4,., = A, U {m,:xc A, — {g}}.
Let A = Uz A,,a = d(p,q) and f = d(p, —)|A. Clearly f maps A
isometrically onto the set of real numbers of the form 7-.-a where »
is a dyadic rational in [0, 1], and so f maps A isometrically into the
interval [0, a]. To show that A is a segment from p to ¢ it is sufficient
to show that f[A] = [0, a].

Since the dyadic rationals are dense in [0, 1], the image of A is
dense in [0, @]. Also, the image of A is open in (0, @). To verify this
observe that if xe (A — {p, ¢}) and D is a compact distance neighbor-
hood of # then D N A is compact and thus f[A N D] is closed. Since
flA N D] is dense in an interval containing f(x) in its interior, f(z)
is an interior point of f[A]. For the final step let ¢ be any point
of (0,a), and let T be a subinterval of (0, a), symmetric about ¢.
TN fIA] and U, the reflection of TN f[A] in ¢, are both open and
dense in T and hence their intersection is dense in T. Let {¢,}7., be
an increasing sequence of points of TN f[A] N U that converges to ¢,
so if, for each n, t, = 2t — t,, then t, < f[A] and ¢ is midway between
t, and ¢,. Let z, = f'(t.), =, = f'(¢t,) and M, = {y ¢ X: y is midpoint
for %, and «}}. If ye M,,, then y is between z, and =z, and also
A®n, Y) = Ad(®n, Tarr) + A(@0r, ¥) = (Y, v011) + (@01, %7) = d(y, @) so
ye M,. Since each M, is compact there is a point 2 in M-, M,. Now
d(x,, x) = 1/2d(z,, ;) = 1/2|t, — ¢,] and so lim,_. d(z,, ®) = 0. Thus
xe A and clearly f(r) =t. Evidently f[A] =[0,a] and so 4 is a
segment from » to q.

COROLLARY 2.2. If (X,d) is a locally compact, strongly convex
metric space, then the segment between two points is unique and contains
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all the points between them.

The proof for the case where (X, d) is also complete carries over
without change in light of 2.1.
When segments are unique the segment between p and ¢ is denoted

pq.
3. Strongly convex metrics.

DEFINITION 3.1. A topological space Y is said to be contractible
if there exists a mapping f:Y x I —Y such that f(—, 1) is the identity
map and f(—,0) is constant. Y is locally contractible if every neigh-
borhood, U, of any point containg a neighborhood, V, of the point and
a map f:V x I —U such that f(—,1) is the identity map and f(—,
0) is constant.

Throughout this section let (X, d) be a locally compact strongly
convex metric space. We aim first at showing that X is contractible
and locally contractible.

Fix pe X and define the map @: X x I — X as follows: for te I,
Qlp,t) = p for tel,xe X — {p}, Qfx, t) is the point z in px such that
d(p, 2) = t-d(p, 2).

@ is the contracting homotopy and in showing @ is continuous
the fact that the limit of a sequence of segments is again a segment
is used. This fact is the content of 3.3.

NotaTioN 3.2. Throughout the paper D(p, r) denotes the set
{xe X: d(p, x) < r} and S(p, r) denotes the set {x € X: d(p, x) < r} where
pe X and » is a positive real number.

ProposiTION 3.3. Let x,, &, %, +++ be points of X such that
lim,.. 2, = %, %+ ». Then if

(1) y,epx;,1=0,1,2 -+ and

(2) lim,.d(p, ;) = d(p, ¥,) then

(3) limi..v: = %

Proof. Let A = {y,e pz,: conditions (1) and (2) imply (3)}. Clearly
x,€ A because if lim,_. d(p, ¥;) = d(p, x,), then lim; ., d(z;, ¥;) = 0 since
d(z;, ) = d(p, x;) — d(p, y;). Let A’ be the component of A con-
taining 2, and assume that ¢ is a boundary point of A’ relative
to px,. Choose > 0 so that D(q, 5r) is compact. Let w,, v, ¥, ++*
be a sequence that satisfies conditions (1) and (2) but not (3) and chosen
such that d(y,, q) < r. Let q,.e AN D(q,r). Foreachi=1,2 «-- let
t; = min {d(p, 2,), d(p, q,)} and let ¢; be a point of pz; such that d(p, ¢;) =
t,1=1,2 ---. Since lim,_.¢; = d(p, q,) it follows that lim;_., ¢; = q..
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Since both of y;, and ¢; belong to pz;,7 =0, 1, 2, -- - we have d(qg;,
¥s) = |d(p, ¢)) — d(p, v;)| and so lim,..d(g;, ¥:) = d(q, ¥) = 2r. Now
d(g, ¥:) = d(q, q,) + d(q,, ¢;) + d(q;, ¥;) and so is eventually less than 5r.
Thus the sequence {y;}3, is eventually in the compact set D(q, 57).
If z is a limit point of the sequence {y;};2;, then it follows from the
continuity of the distance function d that d(p, 2) + d(z, =) = d(p, )
and so z¢€ px, Since z is the same distance from p as y, it follows
that z = y,. Thus lim; . ¥; = ¥, and this contradicts our choice of y,,
Y1, Y, +++ « It follows that A’ has no boundary point relative to »z,
so must be all of pz,.

ProPOSITION 3.4. @: X X I— X s continuous.

Proof. Follows from Proposition 3.3 and continuity of distance
function.

In contracting X to the point p the map, @, moves every point
closer to p so any distance neighborhood of p is contracted in itself.
The point p was chosen without restriction so X is also locally
contractible.

It follows trivially that X is also connected and locally connected
and these conditions for a locally compact metric space imply separa-
bility [1].

THEOREM 3.5. A locally compact, strongly comvexr metric space
18 contractible, locally contractible, connected, locally commected and
separable.

THEOREM 3.6. An n-dimensional, locally compact, strongly convex
metric space is an n-manifold if it is locally homogenecous and contains
an n-ball.

Proof. Since a locally compact space is second category this
follows immediately from a theorem of Bing and Borsuk [3].

THEOREM 3.7. For n =1 or 2, an n-dimensional, locally homo-
geneous, locally compact metrizable space can be given a strongly convex
metric if and only if it is homeomorphic to E*.

Proof. The usual metric for E* is strongly convex.

It follows from another theorem of Bing and Borsuk [3] that
such a space is an n-manifold. Since it is contractible as well it must
be E*, n being 1 or 2.
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4. Strongly convex metrics without ramifications. Prelimi-
naries. Throughout this section (X, d) will be a locally compact metric
space with d a strongly convex metric without ramifications, briefly
an SC-WR metric.

DEFINITION 4.1. For p and ¢ two points of X the set {xe X:xe
pg or qcpx} is called the ray from p through ¢ and is denoted pg).

ProrosiTION 4.2. If ye (px) — {p}), then py) = Dx).

Proof. Clearly x ¢ py) so it suffices to show that if ze px) then
z€ py>. We consider four cases:

(1) yepx and ze px. In this case it follows immediately from
the uniqueness of segments that either y € pz or z€ py so ze€ py).

(2) yepxr and € pz. The convexity of the metric yields ye
Pz and so z¢€ pyd.

(8) zepy and zepx. Same as (2).

(4) zeDy and € pz. Unless py C pz or pzC py there would
be a ramification point in pz N py. Thus z€ py).

PROPOSITION 4.3. pz) is isometric to a real imterval of ome of
the following forms: [0, «), [0, a), or [0, a].

Proof. This is evident from the previous proposition and the fact
that rays are arc connected.

If pxz) is isometric to the closed interval [0, @], then we say px)
is a ray with endpoint or a compact ray and the point of px) a distance
a from p is the endpoint.

DEFINITION 4.4. A metric space (Y, o) is said to be externally
conver if given p and ¢ in Y there is a point y € Y such that o(p, y) =
o(p, @) + 0(g, ¥)-

Note that (X, d) is externally convex if and only if no ray has an
endpoint.

For rays a result analogous to Proposition 3.3 holds and the proof
carries over as well.

PROPOSITION 4.5. Let p, %, &, Xz, =+« be points of X such that
lim, .. z; = 2, # p. Then if

(1) yepz),i=0,1,2 -+ and

(2) lim;...d(p,y) = d(p, ¥o), then

(3) lim;..y; = ..



16 G. BERG

We now define a map which moves points along rays similar to
Q in §3. Fix p in X and let

{x} x [0, o) if pz) is isometric to [0, oo)

@} x [0,

) if pz) is isometric to [0, a)

_*
D = da(p, «)

0, —2 | if &) is isometric to [0, a] .
{x} % [ 3, x)] if px) is isometric to [0, a]

Now let D = U,ex_nD* be the domain of P and define P: D — X
by the following rule:

P(p,t) = p
P(x, t) = the point z of pz) such that d(p, 2) = ¢-d(p, ) for x = p.

PROPOSITION 4.6. P 1is continuous.
Proof. Follows from 4.5 and continuity of distance funection.

REMARK 4.7. Since the function P depends on the choice of the
basepoint p, P will be denoted P, any time confusion might arise.
Likewise D is denoted D,.

Our next goal is to show that every open subset of X contains a
homeomorphic copy of X. The first step is to show that if a sequence
of rays converges to a ray with endpoint, then all but finitely many
of the sequence of rays have endpoints.

LeMMA 4.8. Let p, x,, &, @, =+« be points of X such that px,y =
%, and lim,. . x; = %, Then, for © sufficiently large there is a point
2, € px;> such that pz;, = px;y and lim,_. 2, = x,.

Proof. Clearly lim, . diam (pz;>) = d(p, #;). On the other hand, if
lim diam (pz;)) = d(p, ) + & > d(p, @)

then there is an infinite set of integers, M, such that for ¢ € M there
is a ;€ px;> such that d(p, v;) = d(p, %) + min {6, r} where » > 0 is
chosen to make D(x,, 2r) compact. The set {y;: 1€ M} has a limit point,
9, in D(x,, 2r). Since y satisfies d(p, y) = d(p, ©,) + d(x,, ¥) we have
Y € px,» = px,. This is a contradiction because d(p, y) > d(p, z,). Thus
lim; ... diam (p;)) = d(p, ).

Now choose 7, to be an integer such that x;€ D(z,, ) and

|diam px;> — d(p, 2,}| < r
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whenever ¢ = n,. Then the set (px;>) — px;) U {*;}) is in D(p, 2r) when
1 = n, and since each of the sets is closed it must be compact. Each
of the rays px; with 7 = n, is then compact and letting z; be the
endpoint the lemma is proved.

THEOREM 4.9. Let p be a point of X and f be a map from X —
{p} into (0,1]. Then the function G: X — X, defined by the formula

9(p) = p
g(x) = P,(x, f(x)) for « # p

is a homeomorphism if it is ome-to-ome.

Proof. On X — {p}, g is the composition of continuous functions
so is continuous. It is continuous at p as well because

a(p, Py(@, f(@)) = f(@)-d(p, ©) = d(p, @) .

Assume that g is one-to-one. It remains only to show that g~
is continuous. Note that g™ is continuous at p because if D(p, r) is a
compact neighborhood of » and a = inf {f(2): z € D(p, 1)}, then g[D(p, 7)]
contains D(p, a-r) which is a neighborhood of p.

The map g restricted to any segment px is a homeomorphism of
px into itself with p remaining fixed so if points are ordered by
distance from p, g preserves that order. Let =, «,, ., -+ be points
of g[X] such that lim, ., ; =2, Lety,=g¢"() fori=0,1,2, ...,
Consider first the case where d(p, ¥;) = d(p, y,) + 6 for some 6 > 0,
and all ©=1,2/3,.--. In view of Lemma 4.8, y, cannot be the
endpoint of Py, so we may choose a point w, in (py,y — Py, and
within 6/2 of y,. Let w; be a point of pz;> such that d(p, w;) = d(p, w,)
for ©=1,2,8, --+, and note that lim,., w; = w,. Since w, is farther
than y, from p, g(w,) is farther than g(y,) = x, from p. On the other
hand, for ¢ =1,2,8, «+-, w; is closer than ¥; to p and so g(w;) is closer
than #; = g(y;). From the continuity of g, g(w,) is at least as close
to p» as x,. This case is ruled out and if no sequence can belong
to this case, no infinite subsequence of a sequence can either,
so the remaining possibility is that d(p, v;) < d(p, y,) for all 7 = n,,
for some integer n,. But then Uz, py; is compact and g~ is continuous
on g[U:, p¥:] = Uz, px; and so lim,.. g7'(x;) = g7'(x,).

Note that if f(x) is a nondecreasing function of d(p, ), then g
is a homeomorphism.

COROLLARY 4.10. Let p be a point of X and U a neighborhood
of p. Then there is a homeomorphism, g, of X into U leaving p fixed
and for x€ X, g(x) € pzx.
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Proof. Let 0 <7 <1 be chosen so that S(p,r) C U, and define
the map %: (0, ) — (0, r) by the formula () = 2r/w tan™'t. Observe
that % is one-to-one and A(f) < t. Define f: X — {p} —(0,1] by the
rule f(x) = h(d(p, x))/d(p, x). Let g be defined as in Theorem 4.9 in
terms of f and P,. The map ¢ could fail to be one-to-one only by
mapping two points of some ray, px), to the same point. But d(p,
9(y)) = d(p, v)- f(y) = k(d(p, ¥)), so this cannot happen. Moreover, the
last expression must be less than » so g[X] < S(p, r) C U.

5. Endpoints of rays are sparse. Next we develop some con-
tractibility conditions for X and certain subsets, then show that in
an SC-WR metric space of finite dimension the endpoints of rays are
contained in a nowhere dense set.

Throughout this section let (X, d) be an SC-WR metric space.

PROPOSITION 5.1. Let p be a point of X and r be a positive real.
Then there is a map h: X x [0, 1] — X with the following properties:

(1) h(—,0) is the identity on X;

(2) M-, HIX]c D(p, r);

(8) for tel0,1] h(—, t)|D(p, r) is the identity on D(p,r) and

(4) for (z,t)e (X — D(p, r)) x [0, 1] h(z, t) & S(p, 7).

Proof. Difine the function m: X — [0, 1] by the formulas

{1 ifx=09p
m(x) = . { r .
min 1,——} mnx+#op

d(p, x)
and g: X x [0,1] — [0, 1] by g(z,t) = AL — ) + t-m(x). Let P be the
function defined in § 4 with p as its base point. Define h: X x [0, 1] —
X by h(z,t) = P(x, g(x, t)) and it is routine to verify & satisfies con-
ditions (1) through (4).

REMARK 5.2. By virtue of % satisfying conditions (1), (2), and (3),
D(p, r) is said to be a strong deformation retract of X. A subset A
of X is a retract if there is a map from X — A which is the identity
on A.

ProrPOSITION 5.3. Let pe X and r a positive real. Then for ye
S(p, ), X — {y} is contractible (in itself) if and only if (D(p, r) — {y})
18 comtractible (in itself).

Proof. Let ye S(p, r) be given and take 2 to be the deformation
map defined in the previous proposition relative to D(p, r). From
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properties (8) and (4) of % it is clear that A[(X — {y}) x [0, 1]]c X —
{y}. Thus h retracts X — {y} onto (D(p,r) — {y}). A retract of a
contractible space is contractible [4, p. 26], so D(p, r) — {y} is con-
tractible if X-(y) is. The converse is obvious.

ProposiTION 5.4. Let pe X and r > 0. Then D(p, r) is contrac-
teble and locally contractible.

Proof. In §3 it was shown that D(p, r) is contractible.

Fix ye D = D(p,r) and 6 > 0. Letting %2 be the deformation
map from 5.1 and setting f = h(—, 1) gives us that f is a retraction
of X onto D. Define the map g: D x I— D by the formula g(z, t) =
f(P,(x,1 — t)). Clearly, g is continuous, g(—, 0) is the identity and
9(—, 1) is constantly y. Choose » > 0 so that D(y, r) is compact and
it follows that C, = D N D(y, r/n) is compact for each n = 1,2, 3, ««-.
The nested sequence of sets C, x I converge to {y} x I and since g
is continuous there exists m, such that ¢[C, X I]cS(y,0) N D. It
follows that g|C,, x I contracts C,, to y inside S(y, 6) and thus D is
locally contractible.

DEFINITION 5.5. For a set A in a topological space Y the space
A x I/A x {0}, i.e., the upper-semi-continuous decomposition of 4 x I
whose only nondegenerate element is A x {0}, is called the cone over A.

PROPOSITION 5.6. Let (X, d) be a locally compact SC-WR metric
space. If AcC X is compact and pe (X — A) such that, for xec A,
px N A = {x}, then the set B = U,., D% s homeomorphic to the come
over A.

Proof. The proof of this proposition appears in [8, 6.2] for X
compact. The proof carries over for X locally compact in light of the
properties shown in the preceding propositions.

The following theorem generalizes a result of D. Rolfsen [11] which
was for compact spaces. The proof is identical except that it relies
on earlier propositions in this paper for properties of locally compact
spaces with SC-WR metrics.

THEOREM 5.7. Let (X, d) be a locally compact SC-WR metric space
with dim X =n and 0 < n < . Then the set U= {x: X — {a} fails
to be contractible in ttself} contains a demse, open subset of X.

COROLLARY 5.8. If (X, d) and U are as in Theorem 5.7, then no
point of U is the endpoint of a ray.
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Proof. Let xe X and p # « such that pz) = px. The map P,:
X X I— X defined earlier when restricted to (X — {x}) x I clearly
contracts X — {x} to » missing & so X — {x} is contractible (in itself).
By Theorem 5.7 x ¢ U.

6. Retract properties.

DEFINITION 6.1. Let Y be a topological space and A a subset of
Y. A is said to be a meighborhood retract of Y provided there exists
an open set, O, of Y such that AcC O and A is a retract of O.

DEFINITION 6.2. A metric space Y is said to be an absolute retract
for metrizable spaces, or an AR (M)-space, if for any metric space Z
and a closed subset 4 of Z with A homeomorphic to Y, A is a retract
of Z. Y is said to be an absolute neighborhood retract for metrizable
spaces, or an ANR (M)-space, if for any metric space Z and closed
subset A of Z, with A homeomorphic to Y, A is a neighborhood retract
of Z.

DEFINITION 6.3. A metric space Y is said to be an absolute retract
or AR-space if Y is an AR (M)-space and Y is compact, Y is said to be
an absolute neighborhood retract, or ANR-space, if Y is an ANR (M)-
space and Y is compact.

PRrROPOSITION 6.4. Let (X, d) be a locally compact SC-WR metric
space of finite dimension. If D(p,r)C X is compact, then it is an
absolute retract and if no ray from p ends inside D(p, r), then the set
Sk (p, r) = {xe X: d(x, p) = 7} is an absolute neighborhood retract.

Proof. As is evident from Proposition 5.4, D(p, r) is contractible
in itself and locally contractible and since it is compact and finite
dimensional it is an absolute retract [4, 10.5, p. 122].

To show that Sh (p, r) is an ANR it is sufficient to show that it
is a neighborhood retract of the absolute retract D(p, ») [4, 2.4, p. 101].
Since no rays end inside D(p,r) we can retract D(p, r) — {p} onto
Sh (p, r) by pushing outward along rays from p.

THEOREM 6.5. If (X, d) is a locally compact SC-WR metric space
of finite dimension, then X e AR (M).

Proof. For a point p of X there is a positive number r, so that
D(p, r,) is compact and by Proposition 6.3, D(p, r,) € AR (M). As
noted in Theorem 8.5, X is separable and since each point of X has
a neighborhood which is an ANR (M)-space, Xe ANR (M) [4, 10.4,
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p. 99]. However, since X is contractible, X< AR (M) [4, 9.1, p. 96].
7. Existence of cells in low dimension spaces.

LeMMA 7.1. Let (X, d) be a locally compact, SC-WR metric space.
Then if p, %, and Yy are three non-colinear points of X, then .. P?
is a 2-cell and ..z p2) is 2-dimensional and closed.

Proof. Let A = U..5 vz and A= U..5 02)-

In light of Proposition 5.6 Lelek and Nitka’s proof [8] that A is
a 2-cell carries over from compact to locally compact spaces.

To establish the second part of the lemma, let » = inf {d(p, ?): z €
xy}. Clearly, » > 0, and by Corollary 4.10 there is a homeomorphism
of X into S(p, r) that moves points along rays. Under this map, A
is carried into A and so is 2-dimensional. Moreover, if ¢ is a point
of the closure of A, then the image of ¢ is in the compact set A, so

Dq)y meets Ty at a point z,. It follows that pg) = pz,y C Aand qe A.

THEOREM 7.2. Let (X, d) be a locally compact SC-WR metric space
of dimension n with 1 £ n < 3. Then there is a dense, open set V
of X such that points of V have closed distamce meighborhoods homeo-
morphic to I™.

Proof. For the case n = 1 the theorem follows directly from the
lemma. Since dimension X = 1, X has two points » and ¢. Since X
cannot contain 3 noncolinear points (lemma), X = pg> U gp>. Letting
V = X — {endpoints of pg) and g¢p), if any} the proof is complete.

The case n = 2 or n = 3. The argument that Rolfsen [11] gives
for a similar theorem with X compact and dim X = 8 carries over to
locally compact spaces and, with a small addition, works for dim X =
2 as well. That argument is outlined below with references to results
of this paper needed to carry through various of the steps.

Let U= {xe X: X — {x} fails to be contractible in itself} and let
V = intU. Fix pe V and choose € > 0 so that N = D(p, ¢) is compact
and contained in V. Let S = {xe X: d(p, ) = ¢}.

(1) V is open and dense in X (Proposition 5.7).

(2) S is compact, (n — 1)-dimensional and N is homeomorphic
to the (abstract) cone over S [11, (4), p. 218], (Proposition 6.4).

(3) S is an ANR-space [11, (6), p. 218], (Corollary 4.10).

(4) S does not have the fixed point property [11, (8), p. 218].

(5) For seS, S — {s} is contractible in itself [11, (7), p. 218].

(6) S is connected and if #» = 3, then no finite set separates S
[11, (9), p. 218], (Lemma 7.1).
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(7) If n =3, then S is a 2-sphere [11, (10), p. 219].

(8) If m =2, then S is a 1-sphere.

Since S does not have the fixed point property, it follows from a
theorem of Lefschetz [5] that for some k& = 0 the (reduced) singular
homology group (integral coefficients), H,(S) is nontrivial. S is con-
nected so Hy(S) =0 and dim (S) =1 so H,(S) =0 for k£ = 2, hence
H,(S)= 0. Because of (5), H,(S — {s}) =0 for all £ = 0. It follows
from a theorem of McCord’s [9] that S is a 1l-sphere.

Part (2) along with (7) and (8) yield that N is homeomorphic to I”.

8. Topological characterizations.

DEFINITION 8.1. A point % in a topological space Y has a Fuclidean
netghborhood if for some neighborhood V of y and some natural number,
n, V is homeomorphic to E™.

Throughout this section let (X, d) be a locally compact SC-WR
metric space.

PROPOSITION 8.2. If some point of X has a Euclidean neighbor-
hood, then the set, M = {x e X: x is the endpoint of some ray}, is closed
in X and every point of (X — M) has a Euclidean meighborhood.

Proof. Let p be a point of X with a Euclidean neighborhood V,
V homeomorphic to E™. There is a homeomorphism of X into V so
we may consider X, as a topological space, to be imbedded in E”.
Let int X and Bd X denote the interior and boundary of X as a subset
of E™.

For any subset, Y, of E* if yeintY, then ¥ — {y} is not con-
tractible (in itself). It follows from proof of Corollary 5.8 that for
xe M, X — {x} is contractible (in itself), so M < Bd X.

Consider a point, xe (X — M). Since 2 is not the endpoint of the
ray pzy there is a point ¢ in px) — px. Set t = d(p, x)/d(p, ¢) and
since 0 < t < 1, the map P,(—, t) is a homeomorphism of X into itself
(Theorem 4.9) that carries p to x. By the invariance of domain the
image of ¥V under this map is open in E”, hence zcint X. It follows
that Mc (X N Bd X).

Now M = (X N Bd X) and so M is closed in X, and since (X — M) =
int X every point of (X — M) has a Euclidean neighborhood.

REMARK 8.3. Note that the set, M, = {xe X: px = px)}, where
p is a point with Euclidean neighborhood, is contained in M. However,
in the last part of the above proof it was shown that, in fact, (X N
BdX)c M, so M, = M.
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ProPOSITION 8.4. Let pe X with M, closed. The function r,: X —
{p} — E* U {+ o}, defined by r,(x) = diam px), is lower-semi-continuous.

Proof. Let x, x,, %, --- be points of X — {p} with lim,_.. 2, = x,
and let ¢ be a number less than »,(x,). We may as well assume
lim,_., 7,(x,) exists, and call it s. To complete the proof it remains
only to rule out the possibility that s < &.

If s < t, then there is a point z,€ pzx,» such that d(p, z,) =s. We
can also assume r,(x,) < « for » > 0, so if we choose z, € pz,) such
that d(p, 2,) = (diam px,> — 1/n) then, by Proposition 4.5, lim 2z, = z,.
Let D(z,, ) be a compact neighborhood of z, and, clearly, T, < D(z,, )
for n sufficiently large where 7T, = pz,> — pz,. Thus T,, and conse-
quently, pz,> are compact for n large. Let y, be the endpoint of the
compact pz,> and observe that limy, = z,. Since y,¢ M, and M, is
closed z,¢ M,, hence px,p = Pz, contradicting the choice of z,.

THEOREM 8.5. Let pe(X — M) have a Euclidean neighborhood.
If » >0 and D(p, 4r) is compact and contained in (X — M), then
there is a subset T of D(p, r) such that S(p,r)< T and T is homeo-
morphic to X.

Proof. The method of the proof will be to use a sequence of
continuous functions approximating #, to partition X into countably
many subsets. These subsets will be mapped homeomorphically onto
S(p, r/2) and countably many annuli between S(p, 7/2) and S(p, r) along
with a subset of D(p, r) — S(p, 7).

The map 7, is lower-semi-continuous and has range contained in
[4r, + =] since no ray ends in D(p, 4r). Let S = {x e X: D(p, x) = 7}
and r,|S is lower-semi-continuous. A lower-semi-continuous function
on a separable, finite dimensional metric space which is bounded below
can be pointwise approximated by a (strictly) increasing sequence of
continuous functions [2]. Let f'l, fz, Fs, ¢+ be such a sequence approxi-
mating 7,|S and we can assume range of f,, all n, is contained in
[2r, «=). Extend each f, to all of X — {p} by letting f.(x) = f.(¥)
where y is the unique point of S in the ray px). Clearly the extended
functions are continuous on X — {p}.

Define

A, = {re X — {p}:d(p, 2) = f1(x)}
A, ={zeX — {p}: fa(x) = d(p, 2) S fan(@)} for 0<n <
A, ={rxe X — {p}): f.(x) < d(p, x) all n}.

The desired homeomorphism h: X — D(p, r) is defined by the formulas
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Mp) = p
h(x) = P,(x, m(zx)) for x == p

where m: X — {p} — (0, 1] is defined as follows:
r <_2_1_‘__1_> if ze A,
fi(x) 2!
14 dpa) = @) (A2 YL 221 ey,

m(x) = [ Farc@) — ful@) \2* — 1/ 1 q(p,0) 2"
0<n< oo
r .
m, if xeA, .

If e A, NA,. for 0 £n < o, then m(x) has two definitions but
since d(p, ) = f...(x) in that case it is routiné¢ to verify that

r . 2v—1
Fonl@) 2"+
from both definitions. It is also evident that m is continuous on each

A, 07 =« and on U,<. 4, as well.
Observe that for xe¢ A4,, 0 < n < , then

m(x) =

T San(@) — fu@)

which yields

ool e) = e s (Tt

Thus if ,, x,, %;, --+ is a sequence of points in U,<. A, with limit
z,€ A.., then
m(w,) .

: 7

ER ) = e
Thus m is continuous on X and the above bounds on m shows that
m has range [1/4, 1/2] (0, 1].

In order to show that % is a homeomorphism it only remains to
show that % is one-to-one, and because # moves points along rays from
p, it is sufficient to consider one such ray. Fix z,¢ X — {p} and let
b, b;, bs, -+ be points of px,» chosen so d(p, b,) = f.(x) = f.(b,). Let
a, = h(b,) and note

2 —1

Ap, a,) = m(b,)-d(p, b,) = r-=—
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The function m is constant on b, — {p} so & is one-to-one on pb,.
In general, b,b,,, = A, N DT>, SO on b,b,4,

+ B, where " T.<2” > 1)[1 "7 M(—xo)fffx}) (@) 2”1/_2 1]

a.
(@, 2) B = T<2“ > 1>(fn+1(xo) 1— fn(xo)><2”1/“2 1> '

m(z) =

Thus d(p, k(x)) = a, + B.d(p, x) and since B, > 0, is one-to-one on
b.0,.., carrying b, wOns ONtO @0, A, N px,y consists of at most one
point whose image lies a distance » from p. It follows that & is one-
to-one on x> and also that the image of px,> under A contains (px,» N
S(p, 7).

Let T = n[X] and the theorem is proved.

COROLLARY 8.6. For 1l < n £ 3 an n-dimensional, locally compact
metrizable space, X, admits an SC-WR metric if and only if X is an
n-manifold (with boundary) and is homeomorphic to a subset of closed
unit n-ball and which contains the interior of the n-ball.

Proof. The necessity is obvious because the usual metric for E»
restricted to such a subset is SC-WR.

To show the sufficiency let d be an SC-WR metric for X. By
Theorem 7.2 there exists a point » of X and a positive number ¢ such
that D(p, t) is homeomorphic to I*. X is homeomorphic to a set T
with S(p, r) © Tc D(p, r) where r = t/4. D(p,r) is homeomorphic to
I* and thus to B, the unit ball in E*. Let 7' C B be the image of
T under the last homeomorphism. Since T D S(p,r), T Dint B and
T’ being locally compact yields that 7" contains a relatively open subset
of Bd B. T" is a n-manifold and consequently X is as well.

ProposITION 8.7. Let (X, d) be a locally compact SC-WR space.
If X is of finite dimension, the following are equivalent:

(@) (X, d) is externally convex

(b) mo ray has an endpoint

(¢) X vs homogeneous

(d) X s locally homogeneous.

Proof. The pattern of the proof is (a) — (b) — (¢) — (d) — (b).

(@) < (b). This equivalence was noted in §4.

(b) — (c). Assume (b) holds. We first establish that if D(p, r)
is compact and qe S(p, r), then for we pg — {p} there is a homeo-
morphism of X onto itself that carries ¢ to w.

Let a = d(p, q) and b = d(p, w). Define A, = D(p, a) — {p}, 4. =
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D(p,r) — S(p,a) and 4; = X — S(p,r) and define the map f:X —
{p} — (0, 1} by the formula:

5 if we A,
a

F@ =10 (1-2)Am0) —a 5 e g,
a a Y —a
1 if xeA,.

Since f is continuous on each of the three closed sets A4,, 4., and A4,
and uniquely defined on their intersections, it is continuous. Let
hz) = P,(x, f(x)) for x = p and f(p) = p. P, moves points along rays
and since f(x) is a nondecreasing function of d(p, x), h is one-to-one
and therefore a homeomorphism (4.9). Note also that d(p, h(g)) =
d(p, @)+ f(@) = a-b/a = b = d(p, w), so0 h(g) = w.

On A, U {p}, b is the identity and if xe X — (4, U {»}), then the
ray pxz)y is not contained in D(p, r) so there is a point y in pz) a
distance r from p. The segment Py maps into itself under & and
both y and p are fixed so « is the image under % of some point.
Thus 2[X] = X.

Moreover, there is a homeomorphism carrying g to p because there
is a point o’ in gp) — gp and close to p which has a compact distance
neighborhood contained in D(p, ) and containing ¢ in its interior.

For  and y two points of X there is a finite, simple chain of
open distance neighborhoods with the first centered at x and the last
at y. The above homeomorphisms and their inverses allow us to push
2 into the second distance neighborhood and then into center of it.
Continuing this process a finite number of sets pushes z to v.

(¢) — (d). Obvious.

(d) — (b). Assume that (d) holds and there is a point ¢ &€ X such
that ¢ is the endpoint of a ray. Since X has finite dimension, there
is a point pe X such that X — {p} is not contractible (5.7). Let
U and V be neighborhoods of ¢ and p, respectively, and % be a
homeomorphism of U onto V carrying ¢ to p. The point ¢ has
arbitrarily small deleted distance neighborhoods that are contractible,
so let D be one contained in U. F[D] is a neighborhood of p, so there
exists an » such that D(p, r) C f[D], and D(p, ) compact. D(p, r) —
{p} is a retract of X — {p}, so is a retract of f[D] — {p} = fI[D — {qg}].
Since f[D — {qg}] is contractible and since a retract of a contractible
space is contractible [4, p. 26, 13.2], it follows that D(p, r) — {p} is
contractible. This is a contradiction because X — {p} is then contrac-
tible (5.8).

THEOREM 8.8. Let (X, d) be a locolly compact SC-WR metric space
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of dimension n and let M = {xe X: x is the endpoint of a ray}. Then
i 1< n <3 or some point of X has an E"like meighborhood, then
(X — M) s homeomorphic to E™.

Proof. If m <3, then some points of X have an E"-like neighbor-
hood, so we may, in any case, choose pe X with an E"like neighbor-
hood. There exist » > 0 and a set T such that S(p, r)c T'c D(p, r)
and T homeomorphic to X. Under this homeomorphism, if « is not
the endpoint of the px), then & maps into S(p,r), and if % is the
endpoint, it maps into D(p, ) — S(p, r). Thus (X — M) is homeomorphic
to S(p, r). By Proposition 5.6, D(p, r) is the cone over S = {x ¢ X: d(p,
z) = r}. M. Brown has shown [5] that if the cone over a set A is
Elike at the vertex, then the (cone over A) — A is homeomorphic
to E~. Thus, S(p,r) = D(p,r) — S is homeomorphic to E™ and the
theorem follows.

COROLLARY 8.9. Let (X, d) be a locally compact SC-WR metric
space of dimension n. X is homeomorphic to E" if and only if
(1) any condition of Proposition 8.7 holds, and (2) 1 < n < 3 or some
point of X has an KE™like neighborhood.

Note that if any condition of 8.7 holds, then X is locally homo-
geneous and by Theorem 3.6, X is an wn-manifold if it contains an
n-ball. We can change 8.9 slightly as follows:

COROLLARY 8.10. A locally compact space of dimension % is
homeomorphic to E™ if and only if it admits an SC-WR, externally
convex metric and, for n = 4, contains an n-ball.

9. Compact spaces. Rolfsen [10] proved that a compact n-mani-
fold (with boundary) which admits an SC-WR metric is homeomorphic
to I* when # = 6. In this section it is shown that the result holds
for n = 4 or 5 whenever there is a terminal point in the space.

DEFINITION 9.1. In a metric space (X, d), a point p is said to be
a terminal point if for x, ye X, d(x, ¥) = d(z, p) + d(p, y¥) implies p =
x or p=4.

THEOREM 9.2. Let (X, d) be a compact SC-WR metric space. If
X is an n-manifold and has a terminal point, then X s homeomorphic
to I,

Proof. Let p be a point of (X — 0X) (06X is the boundary of
X), and let M = {xe X: px) = px}. As is evident from the proof of
Proposition 8.2, M is the boundary of X in an embedding of X in
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E*, so M = o0X. First, note that if xe M then the segment, pw,
meets M only at z.

Take ¢ to be a terminal point of X and since ge M, q¢ has a
neighborhood, V, relative to M which is homeomorphic to E*'. Let
Dy, Doy D3, +++ be a sequence of points of pg — {q} which converges to
g. For each i =1, 2, 3, -.. define the function h;: M — M by the rule:
hi(x) is the endpoint of the ray zp;>. If y = h;(x), then z¢ yp;> and
by our earlier observation, %;(y) = ®. Thus A; is one-to-one and onto
for each ¢, and the continuity of %; is easily established, so h; is a
homeomorphism of M onto itself.

Suppose that for each integer, ¢, there is a point x;e M — (VU
h[V]). M is compact, so there is a point x,€ M which is a limit of
some subsequence of x, %, +-+. We may assume that lim,..z; = x,.
Let z be a limit point of {h;(x;):4= 1,2, ---} and note z¢ V hence
z #+ q. But since lim p; = g, d(x,, 2) = d{(w,, ¢) + d(g, ) contradicting
the choice of ¢g. For some ¢ then, M = VU &]V].

The compact Hausdorff space M being the union of two open
(n — 1)-cells is an (n — 1)-sphere. The set (J.., P& is homeomorphic
to I" and is all of X, so the theorem is proved.
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