DIFFERENTIABLE OPEN MAPS OF \((p + 1)\)-MANIFOLD TO \(p\)-MANIFOLD

PHILIP THROOP CHURCH AND JAMES TIMOURIAN
DIFFERENTIABLE OPEN MAPS OF
(P + 1)-MANIFOLD TO p-MANIFOLD

P. T. CHURCH AND J. G. TIMOURIAN

Let \(f: M^{p+1} \to N^p \) be a \(C^3 \) open map with \(p \geq 1 \), let \(R_{p-1}(f) \) be the critical set of \(f \), and let

\[
\dim (R_{p-1}(f) \cap f^{-1}(y)) \leq 0
\]

for each \(y \in N^p \). Then (1.1) there is a closed set \(X \subseteq M^{p+1} \) such that \(\dim f(X) \leq p - 2 \) and, for every \(x \in M^{p+1} - X \), there is a natural number \(d(x) \) with \(f \) at \(x \) locally topologically equivalent to the map

\[
\phi_{d(x)}: C \times R^{p-1} \to R \times R^{p-1}
\]

defined by

\[
\phi_{d(x)}(z, t_1, \ldots, t_{p-1}) = (\Re(z^{d(x)}), t_1, \ldots, t_{p-1})
\]

(\(\Re(z^{d(x)}) \) is the real part of the complex number \(z^{d(x)} \)).

The hypothesis on the critical set is essential \([3, (4.11)]\), but in \([4]\) we show that any real analytic open map satisfies this hypothesis, and thus this conclusion.

Corollary 1.2. If \(f: M^{p+1} \to N^p \) is a \(C^{p+1} \) open map with \(\dim (R_{p-1}(f)) \leq 0 \), then at each \(x \in M^{p+1} \), \(f \) is locally topologically equivalent to one of the following maps:

(a) the projection map \(\rho: R^{p+1} \to R^p \),
(b) \(\tau: C \times C \to C \times R \) defined by

\[
\tau(z, w) = (2z \cdot \bar{w}, |w|^2 - |z|^2),
\]

where \(\bar{w} \) is the complex conjugate of \(w \).
(c) \(\psi: C \to R \) defined by \(\psi_d(z) = \Re(z^d) \).

In order to read the proofs in this paper, the reader will need to have \([3]\) at hand. In particular, the terms locally topologically equivalent, branch set \(B_f \), layer map, extended embedding, and 0-regular are defined in \([3; (1.3), (1.5), (2.1), (2.3), \) and (4.1), respectively].

2. Spoke sets. The definition and lemmas of this section are given in somewhat greater generality than needed in this paper (i.e., for open maps), for use in a subsequent paper.

Let \(I^n \) be any 2-manifold (without boundary).

Definition 2.1. Let \(\psi \times \iota: C \times R^{p-1} \to R \times R^{p-1} \) be defined by

\[
\psi \times \iota(z, t) = (|z|, t)
\]

and \(\psi \times \iota(z, t) = (\Re(z^w), t) (w = 1, 2, \ldots) \). Thus
$B(\psi_1 \times \epsilon) = \emptyset$ and $B(\psi_w \times \epsilon) = \{0\} \times R^{p-1}$ otherwise. For $w = 0$ let $L = D^2 \times D^{p-1}$ and let $J = [-1, 1]$; for $w \geq 1$ and $\eta > 0$ sufficiently small, let

$$L = (D^2 \times D^{p-1}) \cap (\psi_w \times \epsilon)^{-1}([\eta, \eta] \times D^{p-1})$$

and let $J = [-\eta, \eta]$. These examples motivate the following definition.

Let $f: \Gamma^2 \times R^{p-1} \rightarrow R \times R^{p-1}$ be a layer map, let $J = [b_0, b_1] \subset R$, and let $W \subset R^{p-1}$ be a closed q-cell ($q = 0, 1, \cdots, p - 1$). Let $\{\gamma_j\}$ be a (possibly empty) collection of $2w$ disjoint closed arcs in $S'(j = 1, 2, \cdots, 2w)$; let $A = \bigcup_j \gamma_j$, and let $\zeta: S^1 \times W \rightarrow \Gamma^2 \times W$ be a layer embedding such that $B_f \cap \text{imag } \zeta = \emptyset$, $f \circ \zeta: \gamma_j \times W \approx J \times W$, and for each component Φ of $\text{Cl}[S^1 - A]$, $f(\zeta(\Phi \times W)) = \{b_i\} \times W$ ($i = 0$ or 1). A spoke set of f over $J \times W$ is (i) a compact, connected subspace $L \subset f^{-1}(R \times W)$ such that (ii) $L \cap (\Gamma^2 \times \{t\})$ is a 2-cell for each $t \in W$ and (iii) for some ζ as above, the boundary Ω of L with respect to $f^{-1}(R \times W)$ is imag ζ. Thus if $A = \emptyset$, $f(\Omega) = \{b_i\} \times W$ ($i = 0$ or 1). (In case $A \neq \emptyset$ and $q = 1$, L is homeomorphic to the hub and spokes of a wagon wheel, where $\zeta(A \times W)$ corresponds to the ends of the spokes.) The index $\xi(L) = 1 - w$.

Lemma 2.2. Let $f: \Gamma^2 \times R^{p-1} \rightarrow R \times R^{p-1}$ be a layer map with $\dim (B_f \cap (\Gamma^2 \times \{t\})) = \dim (f(B_f) \cap (R \times \{t\})) \leq 0$ for each $t \in R^{p-1}$, let $E \subset B_f$ be compact, let $a \in R^{p-1}$, and let $\varepsilon > 0$. Then there are a closed $(p - 1)$-cell neighborhood W of a, closed intervals $J_j(j = 1, 2, \cdots, m)$, and spoke sets L_j over $J_j \times W$ such that

1. $E \cap L_j \neq \emptyset$ and $E \cap (\Gamma^2 \times W) \subset \bigcup_j (L_j - \Omega_j)$,
2. the $L_j - \Omega_j$ are mutually disjoint, and
3. each diam $L_j < \varepsilon$.

Proof. Let F be a compact neighborhood of E in $\Gamma^2 \times R^{p-1}$, let $\{(U_a)\}$ be a cover of Γ^2 by interiors of closed 2-cells, and let δ be the Lebesgue number of $\{(U_a \times R^{p-1})\}$ as a cover of F. We may suppose that $\varepsilon < \min(\delta, d(E, \text{bdy } F))$. Thus

1. for each $\Psi \subset F$ with diam $\Psi < \varepsilon$, there is a closed 2-cell U with $\Psi \subset (\text{int } U) \times R^{p-1}$.

Given $y \in R$ with $(y, a) \in f(E)$ and $X = E \cap f^{-1}(y, a)$, let Q be the finite set and $\nu: Q \times D \rightarrow \Gamma^2 \times R^{p-1}$ be the extended embedding with imag $\nu \cap B_f = \emptyset$ given by [3, (2.5)] for X and ε. According to that lemma each component K of $f^{-1}(\text{int } D)$-imag ν meeting X has diam $K < \varepsilon$, and each is open. Since $X = E \cap f^{-1}(y, a)$ and E is compact, one may prove (by contradiction) that it is possible to
select the p-cell neighborhood D of (y,a) in $\mathbb{R} \times \mathbb{R}^{p-1}$ sufficiently small that each component K of $f^{-1}(\text{int } D) - \text{imag } \nu$ meeting E has diam $K < \varepsilon$. Summarizing,

(2) each component K of $f^{-1}(\text{int } D) - \text{imag } \nu$ with $K \cap E \neq \emptyset$ has diam $K < \varepsilon$, so that $K \subset \text{int } F$.

Choose a closed interval $J(y) \subset R$ with $y \in \text{int } J(y)$,

$$J(y) \times \{a\} \subset \text{int } D,$$

and end points $b_0(y), b_1(y)$ with $(b_0(y), a), (b_1(y), a) \in f(B_j)$. Since $f(F \cap B_j)$ is closed, there is a closed $(p - 1)$-cell neighborhood $W(y)$ of a in \mathbb{R}^{p-1} such that $(\partial J(y) \times W(y)) \cap f(F \cap B_j) = \emptyset$ and

$$J(y) \times W(y) \subset D.$$

Let $\nu(y)$ be the corresponding extended embedding (restricted) over $J \times W$.

There are $y_1, y_2, \cdots, y_u \in R$ with $(y_i, a) \in f(E)$ and

$$f(E) \cap (R \times \{a\}) \subset \bigcup_i \text{int } (J(y_i)) \times \{a\}.$$

The points $\{b_i(y_j): i = 0, 1; j = 1, 2, \cdots, u\}$ are the end points of a finite set of closed intervals with mutually disjoint interiors; let $J_h(h = 1, 2, \cdots, r)$ be those intervals with $(J_h \times \{a\}) \cap f(E) \neq \emptyset$.

Let W be a closed $(p - 1)$-cell neighborhood of $a \in \mathbb{R}^{p-1}$ with $W \subset \bigcap_i W(y_i)$. Then $(\partial J_h \times W) \cap f(F \cap B_j) = \emptyset$ and

$$f(E) \cap (R \times W) \subset \bigcup_h ((\text{int } J_h) \times W) \quad (h = 1, 2, \cdots, r).$$

Since each J_h is contained in some $J(y_j)$, restriction of $\nu(y_j)$ yields an extended embedding ν_h over $J_h \times W$.

Let $J = [b_0, b_1]$ be one of these intervals J_h, let

$$\nu: (Q \times J) \times W \longrightarrow I^2 \times R^{p-1}$$

be the layer embedding ν_h, and let $P \subset F$ be a component of

$$f^{-1}([b_i] \times W) - \text{imag } \nu.$$

Since $([b_i] \times W) \cap f(F \cap B_j) = \emptyset$, $f^{-1}([b_i] \times W) \cap \text{int } F$ is a p-manifold, \bar{P} is a compact connected p-manifold with boundary, and $[3, (1.9)]$

$$f|\bar{P}: \bar{P} \rightarrow [b_i] \times W$$

is a bundle map. Thus $[11; p. 53, (11.4)]$ it is a product bundle map, and since f is a layer map

(3) there is a layer embedding $\lambda: A^1 \times W \rightarrow I^2 \times W$, where $\lambda(A^1 \times W) = \bar{P}$ and $A^1 \approx S^1$ or $[0, 1]$.

In particular, $P \cap (I^2 \times \{s\})$ is a component of $f^{-1}(b_i, s) - \text{imag } \nu$ ($s \in W; i = 0, 1$), and $\text{Cl } [P \cap (I^2 \times \{s\})] \approx A^1$. From the compactness of F and the finiteness of Q, the number of such components P is finite.
Let K be a component of $f^{-1}(J \times W)$-imag ν meeting E (thus by (2) diam $K < \varepsilon$ and $K \subset \text{int } F$) and let T be a component of the boundary of K (i.e., relative to) $I^2 \times W$. Then

$$T \subset f^{-1}([b_0, b_1] \times W) \cup \text{imag } \nu.$$

Moreover, from (3) there are a finite union (possibly empty) A of disjoint arcs in S^1 and a layer embedding $\zeta: S^1 \times W \to I^2 \times W$ with imag $\zeta = T$, $\zeta(A \times W) = T \cap \text{imag } \nu$, and

$$\zeta(\text{Cl } [S^1 - A] \times W) = T \cap f^{-1}([b_0, b_1] \times W).$$

For each $s \in W$ and component (arc) γ of A, $f \circ \zeta: \gamma \times s \simeq J \times s$, and for each component Δ of Cl $[S^1 - A]$, $f(\zeta(\Delta \times \{s\})) = (b_i, s)$ ($i = 0$ or 1). Thus if $A \neq \emptyset$, there are an even number of such components (arcs) Δ, and they alternate in value. Hence there are an even number (possibly zero) of components (arcs) of A.

The union of such embeddings ζ over all $J \in \{J_h: h = 1, 2, \cdots, r\}$ and components K of $f^{-1}(J \times W)$ - imag ν is finite: call them $\zeta_j (j = 1, 2, \cdots, k)$. Let $\Omega_j = \text{imag } \zeta_j$ and let K_j be the corresponding component K_j by (1) there is a closed 2-cell $U_j \subset I^2$ with $K_j \subset \text{int } U_j \times W$, and thus each $K_j \cap (I^2 \times \{s\})$ is a 2-cell-with-holes contained in int U_j. Each Ω_j separates $U_j \times W$ into two components; let L_j be the closure of the component disjoint from $\partial U_j \times W$. Each $L_j \cap (I^2 \times \{s\})$ is a 2-cell, and since the K_j are mutually disjoint, for $i \neq j$ exactly one of the following is true: $(L_i - \Omega_i) \cap (L_j - \Omega_j) = \emptyset$, $L_i \subseteq L_j$, or $L_i \subseteq L_j$. The desired spoke sets are those L_j with $E \cap L_j \neq \emptyset$ and $L_j \not\subset L_i$, for any $i \neq j$. Since each diam $K_j < \varepsilon$, each diam $\Omega_j < \varepsilon$, so that diam $L_j < \varepsilon$. Since $E \cap (I^2 \times W) \subset \bigcup_j K_j \subset \bigcup_j L_j$, $E \subset B_f$, and $B_f \cap \Omega_j = \emptyset$, $E \cap (I^2 \times W) \subset \bigcup_j (L_j - \Omega_j)$.

Lemma 2.3. Let $f: I^2 \times R^{p-1} \to R \times R^{p-1}$ be a layer map, let L_0 (resp., $L_j, j = 1, 2, \cdots, q$) be a spoke set over $J \times W$(resp., $J_j \times W'$), and let $s \in W \cap W'$. Suppose that $L_i \cap (I^2 \times \{s\}) \subset L_0$,

$$B_f \cap L_0 \cap (I^2 \times \{s\}) \subset \bigcup_{j>0} (L_j - \Omega_j),$$

and the $L_j - \Omega_j$ are mutually disjoint ($j > 0$). Then

$$\zeta(L_0) = \sum_{j>0} \zeta(L_j).$$

Proof. Since $B(f_s) \subset B_f \cap (I^2 \times \{s\})$ and $\zeta(L_j) = \zeta(L_j \cap (I^2 \times \{s\}))$, it suffices to prove the lemma for $f = f_s: I^2 \to R$. Thus $L_i \subset L_0$ and $B_f \cap L_0 \subset \bigcup_{j>0} L_j - \Omega_j$. If A_j (see (2.1)) has 2 $w(j)$ components
DIFFERENTIABLE OPEN MAPS OF $(p+1)$-MANIFOLD TO p-MANIFOLD

$\omega(j) = 0, 1, \cdots$, define $g_j: L_j \to R$ to agree with f on $\partial L_j = \Omega_j$ and to be topologically equivalent to $\psi_{\omega(j)}$. Let $h: L_0 \to R$ agree with f on $L_0 \cup \bigcup_{j>0} (L_j - \Omega_j)$ and with g_j on L_j $(j = 1, 2, \cdots, q)$. Then $B(h) = \bigcup_{j>0} B(g_j)$, and so is discrete.

Let $D(L_j)$ be the identification space obtained from $(L_j \times \{0\}) \cup (L_j \times \{1\})$ by identifying $(x, 0)$ with $(x, 1)$ for each $x \in A = A(L_j)$, let $D(g_j): D(L_j) \to R$ be defined by $D(g_j) (x, 0) = D(g_j) (x, 1) = g_j(x)$, and let $D(h)$ be defined analogously. Define a vector field \mathbf{u}_j (resp., \mathbf{v}) on $D(L_j)$ (resp., $D(L_0)$) which is 0 precisely on the (discrete) branch set $B(D(g_j))$ (resp., $B(D(h))$) and elsewhere is transverse to the level curves of $D(g_j)$ (resp., $D(h)$), i.e., a “gradient vector field” $(j = 0, 1, \cdots, q)$. For any vector field α with isolated zeros, let the sum of the indices of α at its zeros [7, p. 32] be denoted by $\iota(\alpha)$.

Since $L_j \approx D^2$, the Euler characteristic

$$
\chi(D(L_j)) = 2 - 2\omega(j) = 2\xi(L_j).
$$

According to the Poincaré-Hopf Theorem [7, p. 35] (differentiability is not really needed in our case) $\chi(D(L_j)) = \iota(\mathbf{u}_j)$, so that $2\xi(L_j) = \iota(\mathbf{u}_j)$ and $2\xi(L_0) = \iota(\mathbf{u}_0) = \iota(\mathbf{v})$. Thus $2\xi(L_0) = \iota(\mathbf{v}) = 2\sum_{j>0} \iota(\mathbf{v} | L_j)$ (by definition of $\iota = \sum_{j>0} \iota(\mathbf{u}_j) = 2\sum_{j>0} \xi(L_j)$, so that $\xi(L_0) = \sum_{j>0} \xi(L_j)$ (where $j = 1, 2, \cdots, q$).

Alternatively, we could have used [5, p. 370] or [10, p. 35, (4.3.6)]; in this case we would have removed an open 2-cell with boundary a level circle about each local maximum or minimum point of g_j and h, in order to have open maps. Or, we could have used a counting argument based on the Euler characteristics of L_j, L_0, and $L_0 - \bigcup_{j} \text{int } L_j$; the first two spaces are 2-cells, and the last one is disjoint from B_j, so that information about it can be obtained from [3, (1.9)].

3. Spoke sets of open maps.

Lemma 3.1. Let $f: I^2 \times R^{p-1} \to R \times R^{p-1}$ be an open layer map, and let L_0 be a spoke set over $J \times W$, where W is a closed $(p - 1)$-cell. Then

(a) $f^{-1}(y, t) \cap L_0$ does not contain a homeomorph of S^1

$((y, t) \in R \times R^{p-1})$

(b) $\xi(L_0) \leq 0$;

(c) $f(L_0) = J \times W$;
(d) \(\xi(L_0) \neq 0 \) implies that \(B_f \cap (L_0 - \Omega_0) \cap (I^\infty \times \{t\}) \neq \emptyset \) for every \(t \in R^{p-1} \);

(e) if \(\dim (f(B_f) \cap (R \times \{t\})) \leq 0 \) for every \(t \in R^{p-1} \),

\[
\dim (B_f \cap f^{-1}(y, t)) \leq 0 \quad \text{for every} \quad (y, t) \in R \times R^{p-1},
\]

and \(\xi(L_0) = 0 \), then \(B_f \cap \text{int} \ L_0 = \emptyset \).

Proof. Suppose (a) is false, where \(A \) is the homeomorph of \(S^1 \). Then \(A \) bounds an open 2-cell \(A \) in \(L_0 \cap (I^\infty \times \{t\}) \approx D^2 \). Since \(f_t : I^2 \to R \) is open, \(f_t(A) \) is an open interval, while \(f_t(\Delta) \) is a closed interval with \(f_t(\partial \Delta) \) a single point, and a contradiction results.

If \(\xi(L_0) > 0 \), then \(\Omega_0 \cap (I^\infty \times \{t\}) \) is a component of \(f^{-1}(y, t) \) for some \(y \in R \), and a contradiction of (a) results. Thus (b) is true.

From the definition of \(L_0 \), \(f(L_0) \subset J \times W \), and from that definition and (b), \(f(\Omega_0) = J \times W \), so that (c) \(J \times W = f(L_0) \).

If \(B_f \cap (L_0 - \Omega_0) \cap (I^\infty \times \{t\}) \neq \emptyset \) for some \(t \in W \), then \(\xi(L_0) = 0 \). Conclusion (d) results.

For a spoke set \(L \) over \(I \times U \), let \(*L = L \cap f^{-1}(\text{int}(I \times U)) \); thus \(*L - \Omega = \text{int} \ L \) (interior relative to \(I^\infty \times R^{p-1} \)). Since the restriction map \(\alpha : f^{-1}(\text{int}(J \times W)) \to \text{int}(J \times W) \) is open, \(*L_0 - \Omega_0 \) is open in \(f^{-1}(\text{int}(J \times W)) \), and \(B(f_j | L_0) \cap \Omega_0 = \emptyset \), the restriction map \(\beta_0 : *L_0 \to \text{int}(J \times W) \) is open. Suppose that \(f \) satisfies the hypotheses of (e), i.e., \(\xi(L_0) = 0 \), while \((x, s) \in B_f \cap \text{int} \ L_0 \). Given \(\varepsilon > 0 \), which we may assume is less than \(d(B_f, \Omega_0) \), let \(W \) and the spoke sets \(L_j(j = 1, 2, \ldots, q) \) be as given by (2.2) for \(f, \varepsilon, a = s \), and \(E = (B_f \cap L_0) \), where \((x, s) \in \text{int} \ L_i \). From (b) each \(\xi(L_i) \leq 0 \) and from (2.3) \(\xi(L_i) = \sum_{j \geq 0} \xi(L_j) \); thus \(\xi(L_i) = 0 \) for every \(j \), so in particular \(\xi(L_0) = 0 \). Let \(\beta_i : *L_i \to f(*L_i) \) be restriction of \(f \).

For each \((z, t) \in f(L_i) - f(B_i), (i = 0, 1), (\beta_i)^{-1}(z, t) \) is a 1-manifold with boundary; by (a) each of its components is homeomorphic to \([0, 1] \), and since \(\xi(L_0) = 0 \), \((\beta_i)^{-1}(z, t) \approx [0, 1] \). By [3, (4.3)(a)] \((\beta_i)^{-1}(y, u) \) is arcwise connected for each \((y, u) \in \text{imag} \beta_0 \). Choose \(\delta > 0 \) such that \(S((x, s), \delta) \subset \text{int} \ L_i \). Then

\[
f^{-1}(y, u) \cap S(x, \delta) \subset (\beta_i)^{-1}(y, u) \subset f^{-1}(y, u) \cap S((x, s), \varepsilon),
\]

so that \(f \) is 0-regular at \((x, s) [3, (4.1)] \). Since \((x, s) \in B_f \cap L_0 \) is arbitrary, by [3, (4.2)] \(f \) is 0-regular at each point of \(L_0 \). Thus \(\beta_0 \) is
a bundle map [3, (4.3) (b)], so that $B_f \cap \text{int } L_0 = \emptyset$.

Lemma 3.2. Let $g: I^a \times R^{p-1} \to R \times R^{p-1}$ be an open layer map, let L be a spoke set over $J \times W$ where W is a $(p - 1)$-cell and let $\alpha; W \approx B_s \cap L$ with $\pi \circ \alpha$ the identity map. Then $g \mid \text{int } L$ is topologically equivalent to $\varphi_w \times \iota$ ($w = 2, 3, \ldots$; see (2.1)).

Proof. We may as well replace g by its restriction to $g\mid \text{int } J \times \text{int } W$, and L by $L \cap g^{-1}(\text{int } J \times \text{int } W)$, i.e., we may as well suppose that $\text{int } J = R$ and $\text{int } W = R^{p-1}$. Let $h: R \times R^{p-1} \to R \times R^{p-1}$ be the layer homeomorphism defined by $h(y, t) = (y, t) - g(\alpha(t))$, and let $\lambda = h \circ g \mid L$. Then $B_f = B_s \cap L$ and $\lambda(B_f) = [0] \times R^{p-1}$.

Let J_i be $(-\infty, 0]$ or $[0, \infty)$ according as i is odd or even. (1) Let K be a component of $\lambda^{-1}((\text{int } J_i) \times R^{p-1})$, and let $\beta: K \to \text{int } J_i \times R^{p-1}$ and $\gamma: K \to J_i \times R^{p-1}$ be the restriction of λ. Since $B_s = \emptyset$, β is a bundle map with fiber a 1-manifold F [3, (1.9)], and so $K \approx F \times \text{int } J_i \times R^{p-1}$ [11, p. 53, (11.4)]. Since K is connected, F is also, and by (3.1(a)) $F \approx [0, 1]$. By [3, (4.3)(a)], $\gamma^{-1}(0, t)$ is arcwise connected for each $t \in R^{p-1}$.

Given $(x, s) \in B_s \cap \gamma^{-1}([0] \times R^{p-1})$ and $\varepsilon > 0$ with $S((x, s), \varepsilon) \subseteq \text{int } L$, let L' be a spoke set over $J' \times W'$ given by (2.2) for λ, $E = \{(x, s), \}$, $a = s$, and ε. Then L' satisfies the original hypotheses, so that $(\gamma')^{-1}(y, t)$ is arcwise connected for every (y, t). Choose $\delta > 0$ with $S((x, s), \delta) \subseteq \text{int } L'$. Then

$$S((x, s), \delta) \cap \gamma^{-1}(y, t) \subset (\gamma')^{-1}(y, t) \subset S((x, s), \varepsilon) \cap \gamma^{-1}(y, t)$$

for each $(y, t) \in J' \times W'$, so that γ' is 0-regular at (x, s). By [3, (4.2)] γ is 0-regular, and (by [3, (4.3)(b)]) (2) γ is a (product) bundle map with fiber $[0, 1]$.

For each $t \in R^{p-1}$ and component K (see (1)), $\gamma \mid (\bar{K} \cap (I^a \times \{t\}))$ is a product bundle map over $J_i \times \{t\}$ with fiber $[0, 1]$, so that $\lambda^{-1}(0, t)$ is a deformation retract of $L \cap (I^a \times \{t\}) \approx D^1$. Thus $\lambda^{-1}(0, t)$ is connected. Since $\lambda^{-1}(0, t)$ contains no homeomorph of S^1 (3.1(a)), and $\lambda^{-1}(0, t) - \{\alpha(t)\}$ is a 1-manifold with boundary points the $2w$ ($\xi(L) = 1 - w$) points of $\lambda^{-1}(0, t) \cap \emptyset$ (2.1), it follows that $\lambda^{-1}(0, t)$ is homeomorphic to the union of $2w$ arcs disjoint except for their common endpoint $\alpha(t)$. As a result $\alpha(t) \in \bar{K} \cap (I^a \times \{t\})$, so that each \bar{K} contains imag α, i.e., B_s.

Let K_i ($i = 1, 2, \ldots, 2w$) be the components K enumerated so that for any $t \in R^{p-1}$, $(\text{int } K_i) \cap (I^a \times \{t\})$ are the components of

$$(\text{int } L) \cap ((I^a \times \{t\}) - \lambda^{-1}(0, t))$$

in counterclockwise order around $\alpha(t)$ with $\lambda(\bar{K}_i) = J_i \times R^{p-1}$. Let
$A_i = \bar{K}_i \cap \text{int } L$, let $\psi = \psi_w \times \iota$ (see (2.1)), and let A_i be the closures of the components of $\psi^{-1} (\text{int } J_i \times R^{p-1})$ enumerated in analogous fashion.

By (2) there is an orientation-preserving homeomorphism μ_i of A_i onto $R \times J_i \times R^{p-1}$ with $\pi \circ \mu_i = \lambda | A_i$. Let ν_i be the homeomorphism of $R \times J_i \times R^{p-1}$ onto itself defined by

$$\nu_i(x, y, t) = (x, y, t) - \mu_i(\alpha(t)) + (0, 0, t),$$

and let $\zeta_i = \nu_i \circ \mu_i$. Then $\zeta_i(\alpha(t)) = (0, 0, t)$, so that

$$\zeta_i(B_i) = \{0\} \times \{0\} \times R^{p-1}.$$

There is an analogous orientation-preserving homeomorphism ξ_i of A_i onto $R \times J_i \times R^{p-1}$ with $\pi \circ \xi_i = \lambda | A_i$ and $\xi_i(B_i) = \{0\} \times \{0\} \times R^{p-1}$.

Let $\Phi = (\text{int } L) \cap \lambda^{-1} (\{0\} \times R^{p-1})$, and let Y_i (resp., Ψ_i) be the closure in Φ (resp., $\psi^{-1}(\{0\} \times R^{p-1})$) of the component in $\Phi - B_i$ (resp., $\psi^{-1}(\{0\} \times R^{p-1}) - B_i$) meeting both A_i and A_{i+1} (resp., A_i and A_{i+1}), where i and $i + 1$ are interpreted mod $2w$. In case $w = 1$ there are two such components, and Y_i is so chosen that, for each $t \in R^{p-1}$, a counter-clockwise path around $\alpha(t)$ from A_i to A_{i+1} passes through Y_i. Then $(\xi_i)^{-1} \circ \zeta_i$ (also $(\xi_{i+1})^{-1} \circ \xi_i$) defines a homeomorphism of Y_i onto ψ_i with $(\xi_i)^{-1} \circ \zeta_i(B_i) = B_i$. Let $\rho: \Phi \approx \psi^{-1}(\{0\} \times R^{p-1})$ agree with $(\xi_i)^{-1} \circ \zeta_i$ on Y_i.

Let σ_i be the layer homeomorphism of $R \times \{0\} \times R^{p-1}$ onto itself which is the restriction of $\xi_i \circ \rho \circ \zeta_i^{-1}$, (on $\sigma_i(\gamma_{i-1})$, σ_i agrees with the identity map) and let τ_i be its first coordinate map. Let ϕ_i be the homeomorphism of $R \times J_i \times R^{p-1}$ onto itself defined by $\phi_i(x, y, t) = (\tau_i(x, t), y, t)$, and let $\chi_i = (\xi_i)^{-1} \circ \phi_i \circ \zeta_i$. Then $\chi_i: A_i \approx A_i$, they agree with ρ, and they thus define χ: int $L \approx C \times R^{p-1}$; since $\pi \circ \zeta_i = \lambda | A_i$ and $\pi \circ \zeta_i = \psi | A_i$, where $\pi: R \times J_i \times R^{p-1} \to J_i \times R^{p-1}$ is projection, $\psi \circ \chi = \lambda | \text{int } L$. This is the desired conclusion.

4. The Proof of the theorem.

Remark 4.1. According to the Rank Theorem [3, (1.6)] $B_f \subset R_{p-1}(f)$, and we prove (1.1) under the weaker hypothesis that $\dim (B_f \cap f^{-1}(y)) \leq 0$ for each $y \in N^p$.

Proof. Let X be the complement of the set on which f has the desired structure; then $X \subset B_f$ is closed. We suppose that

$$\dim f(X) \geq p - 1,$$

and will obtain a contradiction.

Since f is C^1, $\dim (f(R_{p-1}(f))) \leq p - 2$ [2, p. 1037]. If, for every
$\alpha \in M^{p+1} - f^{-1}(f(R_{p-2}(f)))$, there is an open neighborhood

$$U_\alpha \subset M^{p+1} - f^{-1}(f(R_{p-2}(f)))$$

of x with \bar{U}_x compact and $\dim(f(U_\alpha \cap X)) \leq p - 2$, it follows from the fact that $\{U_\alpha\}$ has a countable subcover that $\dim(f(X)) \leq p - 2$. Thus, there is an $\bar{x} \in M^{p+1} - f^{-1}(f(R_{p-2}(f)))$ such that, (1) for every open neighborhood $U \subset M^{p+1} - f^{-1}(f(R_{p-2}(f)))$ of \bar{x}, $\dim(f(U \cap X)) \geq p - 1$.

By [1, p. 87, (1.1)] there are open neighborhoods U of \bar{x} and V of $f(\bar{x})$ and C^r diffeomorphisms $\sigma: \mathbb{R}^2 \times \mathbb{R}^{p-1} \approx U$ and $\rho: V \approx R \times \mathbb{R}^{p-1}$ such that $\rho \circ f \circ \sigma = g$ is a C^r layer map and $\sigma(0, 0) = \bar{x}$. By hypothesis $\dim(B_g \cap \Lambda^t) \leq 0$ for each $(y, t) \in R \times \mathbb{R}^{p-1}$.

Since $\sigma^{-1}(X) \subset B_g$, $B_\alpha \subset R_{p-1}(g)$ (by the Rank Theorem [3, (1.6)]), $R_{p-1}(g) \cap (R^2 \times \{t\}) = R_{p-1}(g)$, and $\dim(g_i(R_{p-1}(g))) \leq 0$ by Sard's Theorem (e.g. [2, p. 1037]), (2) $\dim(g(B_\alpha) \cap (R^2 \times \{t\})) \leq 0$ and

$$\dim(g(\sigma^{-1}(X)) \cap (R \times \{t\})) \leq 0.$$ On the other hand, by (1) $\dim(g(\sigma^{-1}(X))) \geq p - 1$, so there is an $r > 0$ such that

$$A = (C \cap [S(0, r)] \times \mathbb{R}^{p-1}) \cap \sigma^{-1}(X)$$

has $\dim(g(A)) \geq p - 1$. If $\pi: R \times \mathbb{R}^{p-1} \rightarrow \mathbb{R}^{p-1}$ is projection, then $\dim(\pi(g(A))) \geq p - 1$ (by (2) and [6, p. 91]), and there is an open $(p - 1)$-cell $T \subset \pi(g(A))$ [6, p. 44] with \bar{T} compact. Thus (3)

$$A \cap (R^2 \times \{t\}) \neq \emptyset$$

for each $t \in T$.

Let $W \subset T$ and the spoke sets $L_j (j = 1, 2, \ldots, q)$ be as given by (2.2) for g, any $a \in T$, $E = A \cap (R^2 \times \bar{T})$, and (say) $\varepsilon = 1$. If (4) (i) the cardinality $\varrho(t) \geq 1$ of $B_\varepsilon \cap (R^2 \times \{t\}) \cap (\bigcup_j L_j)$ ($t \in \text{int } W$) is bounded above by $|\sum_j \xi(L_j)|$, choose $s \in \text{int } W$ such that $\varrho(s)$ is maximal and let (x_i, s) ($i = 1, 2, \ldots, \varrho(s)$) be these points. Otherwise, (4) (ii) there are $s \in \text{int } W$ and distinct points (x_i, s) ($i = 1, 2, \ldots, |\sum_j \xi(L_j)| + 1$) of $B_\varepsilon \cap (R^2 \times \{t\}) \cap (\bigcup_j L_j)$. Let ϱ' be $\varrho(s)$ in case (4) (i) and $|\sum_j \xi(L_j)| + 1$ in case (4) (ii). Then $\varepsilon > 0$ be less than $d(x_i, x_k)$ for $h \neq i$ and $d(B_\varepsilon, \bigcup_j \Omega_j)$, and let $W' \subset \text{int } W$ and $\{L'_k\}$ be as given by (2.2) for g, $a = s$, $E = \bigcup_j L_j \cap B_\varepsilon$, and this ε. Thus (5) the (x_i, s), are in distinct spoke sets L'_k.

By hypothesis and by (2), the hypothesis of (3.1) (e) is satisfied, so that by (3.1) (d) and (e) $\xi(L_j) = 0$ if and only if $L_j \cap B_\varepsilon = \emptyset$. We may thus omit those L_j and L'_k with $\xi(L_j) = 0 = \xi(L'_k)$. From (3.1) (b) each $\xi(L_j) < 0$ and $\xi(L'_k) < 0$, and from (5) and (3.1) (d) the cardinality c of $\{L'_k\}$ satisfies $w' \leq c \leq |\sum_k \xi(L'_k)|$. Since each L'_k is
contained in some \(L_j \), \(\sum_j \xi(L_j) = \sum_h \xi(L_h) \) by (2.3), and so \(w' \leq \sum_j \xi(L_j) \); this contradicts (4) (ii), and hence (4) (i) must be true.

For \(t \in W' \), \(w(t) \geq c \) by (3.1) (d), while \(c \geq w(s) \) by (4) (i), so that \(w(t) = w(s) \). Thus (by (3.1) (d)) each \(B_x \cap (R^t \times \{t\}) \cap L_x \) is a single point for \(t \in W' \), and since \(B_x \) is closed, there is a homeomorphism \(\alpha_x : W' \approx L'_x \cap B_x \) with \(\pi \circ \alpha \) the identity map on \(W' \). By (3.2) \(\bigcup_k (\sigma^{-1}(X) \cap L'_x) = \emptyset \). But this set contains \(A \cap (R^s \times W') \), contradicting (3).

Remark 4.2. In case \(p = 1 \), \(C^2 \) may be replaced by \(C^1 \) and the argument can be shortened considerably. In that case (4.1) results from [12, p. 103, Theorem 1] (cf. [18, pp. 7–8]), and (4.1) in case \(B_f \) is discrete is [10, p. 28, (4.3.1)] and [9]. Considerable information relating to open maps \(f : M^2 \to N^1 \) is given in [5], [8], and [10].

4.3. Proof of (1.2). The hypotheses of (1.1) are satisfied (with \(C^2 \) if \(p = 1 \)). In case \(p = 1 \), \(X = \emptyset \), so that at each \(x \in M^{p+1}, f \) at \(x \) is locally topologically equivalent to \(\psi_{d(x)} \). In case \(p \geq 2 \), for each \(x \in M^{p+1} - X \) with \(d(x) \neq 1 \) (i.e., \(x \in B_f \)), \(\dim B_f = p - 1 \geq 1 \) in a neighborhood of \(x \); the assumption that \(\dim R_{p-1}(f) \leq 0 \) contradicts the Rank Theorem [3, (1.6)]. Thus \(B_f \subset X \), so that

\[
\dim f(B_f) \leq p - 2.
\]

That \(f \) is locally topological equivalent to \(\rho \) or to \(\tau \) is now a consequence of [3, (4.7)].

References

Received June 21, 1972. Work of the first author supported in part by NSF Grant GP-6871, and that of the second author by NSF Grant GP-8888 and NRC Grant A7357.

SYRACUSE UNIVERSITY
UNIVERSITY OF TENNESSEE
AND
UNIVERSITY OF ALBERTA
Jan Aarts and David John Lutzer, *Pseudo-completeness and the product of Baire spaces* .. 1
Gordon Owen Berg, *Metric characterizations of Euclidean spaces* ... 11
Ajit Kaur Chilana, *The space of bounded sequences with the mixed topology* ... 29
Philip Throop Church and James Timourian, *Differentiable open maps of \((p+1)\)-manifold to \(p\)-manifold* ... 35
P. D. T. A. Elliott, *On additive functions whose limiting distributions possess a finite mean and variance* ... 47
M. Solveig Espelie, *Multiplicative and extreme positive operators* ... 57
Jacques A. Ferland, *Domains of negativity and application to generalized convexity on a real topological vector space* ... 67
Michael Benton Freeman and Reese Harvey, *A compact set that is locally holomorphically convex but not holomorphically convex* ... 77
Roe William Goodman, *Positive-definite distributions and intertwining operators* ... 83
Elliot Charles Gootman, *The type of some \(C^*\) and \(W^*\)-algebras associated with transformation groups* ... 93
David Charles Haddad, *Angular limits of locally finitely valent holomorphic functions* ... 107
William Buhmann Johnson, *On quasi-complements* ... 113
William M. Kantor, *On 2-transitive collineation groups of finite projective spaces* ... 119
Joachim Lambek and Gerhard O. Michler, *Completions and classical localizations of right Noetherian rings* ... 133
Kenneth Lamar Lange, *Borel sets of probability measures* ... 141
David Lowell Lovelady, *Product integrals for an ordinary differential equation in a Banach space* ... 163
Jorge Martinez, *A hom-functor for lattice-ordered groups* ... 169
W. K. Mason, *Weakly almost periodic homeomorphisms of the two sphere* ... 185
Anthony G. Mucci, *Limits for martingale-like sequences* ... 197
Eugene Michael Norris, *Relationally induced semigroups* ... 203
Arthur E. Olson, *A comparison of \(c\)-density and \(k\)-density* ... 209
Donald Steven Passman, *On the semisimplicity of group rings of linear groups. II* ... 215
Charles Radin, *Ergodicity in von Neumann algebras* ... 235
P. Rosenthal, *On the singularities of the function generated by the Bergman operator of the second kind* ... 241
Arthur Argyle Sagle and J. R. Schumi, *Multiplications on homogeneous spaces, nonassociative algebras and connections* ... 247
Leo Sario and Cecilia Wang, *Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball* ... 267
Ramachandran Subramanian, *On a generalization of martingales due to Blake* ... 275
Bui An Ton, *On strongly nonlinear elliptic variational inequalities* ... 279
Seth Warner, *A topological characterization of complete, discretely valued fields* ... 293
Chi Song Wong, *Common fixed points of two mappings* ... 299