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Given a right Noetherian ring R and a prime ideal P of
R, the injective hull of the right R-module R/P is a finite
power of a uniquely determined indecomposable injective I».
One forms the ring of right quotients REr of R relative to
Ir and the right ideal M/ = PRy of Rr generated by P. The
M-adic and Ir-adic topologies are compared; they turn out to
coincide on every finitely generated Kr-module when R is a
classical quasi-local ring with maximal ideal M. This condi-
tion also implies that R satisfies the right Ore condition with
respect to the multiplicative set Z°(P) introduced by Goldie,
that the M-adic completion ﬁp of Rp is the bicommutator of
Ip, and that Rp is an n by » matrix ring over a complete
local ring.

Introduction. If Pis a prime ideal of the commutative Noetherian
ring R, then, by a theorem of Matlis [8], the completion R, of the ring
of quotients of R at P is the bicommutator of the injective hull of the
R-module R/P. Recently Kuzmanovich [5] proved an analogous result
for Noetherian Dedekind prime rings. Both these results are special
cases of Theorem 6 below: Let P be a two-sided prime ideal of the
right Noetherian ring R, and assume that the ring of right quotients
R, at P is a classical quasi-local ring with maximal ideal M = PR,,
that is, R,/M is a simple Artinian ring and, for every right ideal F
of Rp, Ny-. E + M = E. Then the bicommutator of the R-injective
hull of R/P is the M-adic completion of B,. The hypothesis of Theorem
6 is satisfied by the prime ideals of the enveloping algebra of a finitely
generated nilpotent Lie algebra, by the augmentation ideal of a group
ring of a finite group over a right Noetherian prime ring of charac-
teristic zero, and by the nonidempotent prime ideals of a right and
left Noetherian hereditary prime ring.

These results are consequences of Theorem 5, which states that
R, is a classical quasi-local ring with maximal ideal M if and only if
R,/M is a simple Artinian ring, and, on any finitely generated Rp-
module, the M-adic topology coincides with the I.-adic topology. Here
I, denotes the unique (up to isomorphism) P-torsionfree indecomposable
injective R-module with associated prime P. By [7], Theorem 3.9,
the injective hull I,(R/P) of the R-module R/P is isomorphic to a
direct sum of g copies of I, where g is the Goldie dimension of the

prime ring R/P. Thus the bicommutators of I, and I,(R/P) are
isomorphic.
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Concerning terminology, we refer to [6],[7], and [8]. All rings
are associative and have a unity element. Modules are right R-modules
and unitary. We put

& (P) ={ceR|V,cpcre P=—=1recP}.

We begin by comparing topologies, generalizing the known result
when R is commutative [6].

PROPOSITION 1. If R satisfies the right Ore condition with respect
to = (P), then on any finitely generated Rp-module the I,-adic topology
contains the M-adic topology, where M = PR.

Proof. Let G be any finitely generated Rp-module. Take any
fundamental open neighborhood GM™ of zero in the M-adic topology.
We claim that GM" is also open in the I.-adic topology, in fact,
G/GM" e &#, the class of all Ry-modules isomorphic to submodules of
finite powers of I,.

Since & is closed under module extensions, and since

GMrsGMcS---SGMES G,

it suffices to show that GM*/GM**'e . Put H= GM*, then H is
a finitely generated Rp-module. Now R,/M is a simple Artinian ring,
by [7], Theorem 5.6. Hence H/HM is isomorphic to a finite direct
sum of minimal right ideals of R,/M.

It remains to show that R,/Mec .. Indeed, in view of [7],

Lemma 5.4, the mapping R—h—+ R, — Rp/M has kernel P, and so
Ry/M may be regarded as an R-module extension of R/P. Actually,
it is an essential extension; for, if 0 == [¢q] € Rp/M, then ¢ ¢ M, but
qc € h(R), for some ¢ec & (P), and gc ¢ h(P), since otherwise ¢ = gec™* e
h(P)R, = PR, = M. Thus R,/M is isomorphic to an R-submodule of
I.(R/P) = Ii. By [7], Theorem 5.6, R,/M is torsionfree and divisible,
hence R,/M is also isomorphic to an R,-submodule of I%, and so
Ry/Me &,

This completes the proof. In the converse direction we have the
following result. We remark that condition (1) plays an important
role in [4], Theorem 5.3.

PROPOSITION 2. Suppose M = PR, is a two-sided ideal of Rp.
Then (1) = (2) = (3):

(1) For each right ideal E of R, there exists a natural number
n such that E N M < EM.

(2) For each element i€ I, there exists a natural number n such

that 1M* = 0.
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(8) On any finitely generated Ro-module the I.-adic topology is
contained in the M-adic topology.

Proof. Assume (1). Let 0~ 4¢l,, and put F = {ge R,|ig = 0},
E={gecR,|qgM < F}. Note that EM S F < E. Pick n so that EN
M*< EM, then EN(M* + F) = (ENM") + F = F. Since I, is
indecomposable, F' is meet-irreducible, hence ' = F or M" + F = F.
We shall prove that F' == E, hence M* < F, and so (1) implies (2).

As P is the associated prime ideal of the R-module I,, P is the
right annihilator of some nonzero R-submodule U of I,. Putting V =
UR,, we see that VM =0 and V == 0. Now iR, = R,/F, hence 0 =
VNiR, = G/F, say, where F S GE E,F #+ G, hence F = E, as
remained to be shown.

Assume (2), and let G be a finitely generated R,-module. Take
any fundamental open neighborhood of zero in the I,-adic topology.
By definition, this has the form Ker f, where f:G— I7 for some
positive integer n. Let p,: I" — I, be the canonical projections, with
k=1,2 ..+, n, and put G, = p.(f(G)). Then G, is a finitely generated
Ry-submodule of I,.

By assumption, there is a natural number »(k) such that G, M** =
0. Let u = Max {u(l), -+, u(n)}, then f(G)M* = 0, hence Ker f contains
GM*, a fundamental open neighborhood of 0 in the M-adic topology.
It follows that every open set in the I.-adic topology is also open in
the M-adic topology. Thus (2) — (3), and the proof is complete.

We know from [7], Lemma 5.2, that for each element q € R, there
exists an element ¢ € &°(P) such that qc € h(R), where h: R — R canon-
ically. This does not imply that R, is the classical ring of quotients
of A(R) with denominators in k(% (P)), unless R satisfies the right Ore
condition with respect to &°(P). (See [7], Proposition 5.5.) However,
we have the following.

PRrROPOSITION 3. Let P be a two-sided prime ideal of the right
Noetherian ring R, and assume that M = PR, is a maxtmal two-sided
ideal of Ry such that Rp/M is Artinian. Then, for every integer n=1,
Rp/M™ is the classical ring of right quotients of h(R)/(M" N h(R)), and
its elements have the form [R(r)][R(c)]™*, with re R and ce & (P).

We could deduce this from [9], Theorem 2.4, by first proving
that the ideals A~ (M") are the nth symbolic powers P™ defined there
in a different fashion. However, it is a bit quicker to deduce this
directly from the following result by Small. (See [10], Theorem 1.)

Suppose P is the prime radical of the right Noetherian ring S,
and 2 is a multiplicatively closed subset of S consisting of elements
with zero right annihilators. Suppose the classical ring of right
quotients of S/P has elements of the form [s]{c]™, with seSand ce
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&. Then S satisfies the right Ore condition with respect to & and
has a classical ring of right quotients with elements of the form sc™'.

Proof. In [7], Theorem 5.6, in the proof of the implication (1) =
(2), it is shown that R,/M is the classical ring of right quotients of
R/P, and that its elements have the form [r][¢]™, where rc R, and
ce & (P). Since h'(M) = P, by [7], Lemma 5.4, the result holds for
n = 1.

To obtain the result for n = 2, we shall apply Small’s Theorem
to the ring S = W(R)/(M* N h(R)). To this purpose we must show that
the elements of (& (P)) modulo M* have zero right annihilators. In
fact, we shall see that they have left inverse in R,/M>.

Take any ce & (P). In view of the case n =1, we have R, =
Ryc + M. Hence M= MR, = Mc-+ M? and s0o Ry = Rpc-- Mc+ M*=
Ryc + M*. By Small’s Theorem, R,/M* is the classical ring of right
quotients of h(R)/(M* N h{R)), and denominators may be taken in Z"(P)
modulo M2

Repeating the same argument, we see that R, = Rpc-+ M? and that
Rp/M? is the classical ring of right quotients of A(R)/(M* N k(R)), with
denominators in &’ (P) modulo M* Ete, etc.

In accordance with [7], we call the ring S a classical quasi-local
ring if it is right Noetherian, it has a maximal ideal M such that
S/M is Artinian, and every right ideal of S is closed in the M-adic
topology. In view of the following lemma, this implies that M is the
Jacobson radical of S.

LeMMA 4. Suppose M is a primitive ideal of the ring S, and
every finitely generated right ideal of S is closed in the M-adic topology.
Then M is the Jacobson radical of S.

Proof. The first assumption assures that M contains the radical.
We claim the second assumption implies the converse. We shall prove
that if E is any right ideal of S and M + E = S then £ = S.

Suppose M + E = S. Without loss in generality, we may take ¥
to be finitely generated. Now M = SM = M* + EM, hence M* + E =
M*+EM+FE=M+ E=S. Similarly M* + E = S, and soon. Hence
the M-adic closure -, (E + M™) of E is also S. By assumption,
E is closed, hence K = S.

THEOREM 5. Let P bea two-sided prime ideal of the right Noctherian
ring R, and put M = PR,, where R, is the ring of right quotients
of R at P. Then the following conditions are equivalent:

( * ) R satisfies the right Ore condition with respect to & (P)
and, for each right ideal E of Ry, there exists a natural number n
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such that EN M" < EM.

( **) Ry is a classical quasi-local ring with maximal ideal M.

(***) M is a two-sided ideal of Rp, Rp/M is a simple Artinian
ring, and on any finitely generated right Rp-module the I,-adic and
M-adic topologies coincide.

(****) M s a two-sided ideal of Rp, Rp/M is simple Artinian,
and for each finitely generated right ideal E of Rp there exists a
natural number n such that E N M" < EM.

Proof. We shall show that (*) = (**) = (***) = (****) = (*).

Assume (*). In view of [7], Theorem 5.6, (**) will follow if we
show that every right ideal ¥ of R, is closed in the M-adic topology.
Now its closure is given by E = 3=, (F + M®). Pick n so that EN
M" < EM, then

Ec(F+MYNE=F+ (M'NE)SF+ EM.

Take any ec E, then e = f + 3k e;m;, where feF,e e E, and m; ¢
M. Then [e] = 3k, [e;]m;, modulo F, hence E/F < (E/F)M.

It was pointed out in the discussion preceding [7], Theorem 5.6,
that R, is right Noetherian. Thus E and E/F are finitely generated
Rpy-modules. We may therefore invoke Nakayama’s Lemma and deduce
that E/F = 0. Thus F = E, and so (**) holds.

Assume (**). By Lemma 4, M is the Jacobson radical of R,. By
[7], Theorem 5.6, R satisfies the right Ore condition with respect to
& (P). Let G be any finitely generated right Rr,-module. Then, by
Proposition 1, the I,-adic topology on G contains the M-adic topology.
By Proposition 2 and [4] Theorem 5.3, the converse is true. Thus
(***) holds.

Assume (***). Suppse E is any finitely generated right ideal of
R,. Then EM is an open subset of E in the M-adic, hence in the
Ip,-adic topology. Now the I.-adic topology on any module induces the
Ir-adic topology on any submodule. Therefore, EM = E NV, where V
is an open subset of R, in the I.-adic topology. Since R, is a finitely
generated R,-module, V is an open set in the M-adic topology, hence
M=V for some n, and so ENM"S ENV = EM. Thus (****) holds.

Assume (****). It remains to prove the right Ore condition. Given
a€ R and ce & (P), we see from Proposition 3 that, for each positive
integer n, there exist a,e R and ¢, € € (P) such that hA(ac, — ca,) =
h(u,) € M* N h(R).

Let F be the right ideal generated by the wu,, then F' = u,R +
«os + U, R, since R is right Noetherian. Taking E = FR, in the above,
we see that FR, N M*< F M, for some n. Hence h(u,) = um, + -+ +
u, M, where the m; e M.
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Pick de &(P) so that all m,d e h(R), then mde M N W(R) = W(P),
and we may write m,d = h(p;), where p, e P.

Put ¢’ =¢c,d — Xk, e0; and o = a,d — DF, a;p;;, then an easy
calculation shows that h(ac’) = hica’). Moreover C' € & (P), since ¢, d e
& (P) and X ¢;p; e P. Since ac¢’ — ca’ e Ker h, we can find d' e & (P)
so that (a¢’ — ca’)’ = 0, hence a(¢’d’) = ¢(¢’d’). This establishes the
right Ore condition for R, and our proof is complete.

THEOREM 6. Let P be a two-sided prime ideal of the right Noetherian
ring R such that Ry is a classical quasi-local ring with maximal
ideal M = PR,. Then

(a) the M-adic completion 1%1, of Rp is the bicommutator of the
P-torsionfree indecomposable injective R-module I, with associated
prime P,

() R, is a ring of n X m matrices over a complete local ring D
whose Jacobson radical J is finitely generated.

Proof. (a) By Theorem 5, R satisfies the right Ore condition with
respect to °(P). By [7], Theorem 5.6, every torsionfree R-module is
P-divisible. In view of [6], Proposition 2, R, is therefore a dense
subring of the bicommutator S of I, with respect to the finite topology,
as the P-torsion theory coincides with that determined by I, by [7],
Corollary 3.10. By [6], Corollary 1, the finite topology coincides with
the I,-adic topology on R,, and S is the completion of B,. By Theorem
5, the I[,-adic topology on R, coincides with the M-adic one. Therefore
S is the M-adic completion of R,.

(b) follows immediately from (a) and [9], Corollary 2.7.

REMARK 7. By [9], Remark 3, there exists a right Noetherian
ring R with a two-sided prime ideal P such that R satisfies the right
Ore condition with respect to & (P), even though R, is not a classical
quasi-local ring with maximal ideal M. In that example R, is not
Hausdorff with respect to the M-adic topology, hence the bicommutator
of I, is not the M-adic completion of Rj.

Thus the right Ore condition does not imply the second part of
(*) in Theorem 5. Conversely, Example 5.9 of [7] shows that the
second part of (*) does not imply the right Ore condition.

We conclude by giving some classes of examples satisfying the
condition of Theorem 5. But first we note that, in view of Theorem
3.3 of [9], each of these is also equivalent to the following, which
involves only the ring R itself:

(+) For every right ideal F of R there exists a positive integer
n such that F N P™ < cl,(FP), where P™ is the nth right symbolic
power of P.
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For notation see [9].

COROLLARY 8. Let R be the enveloping algebra of a finitely
generated nilpotent Lie algebra, and assume that P is a nonzero prime
ideal of R. Then the conclusions (a) and (b) of Theorem 6 hold.

Proof. In Theorem 2.6 of [9], it is shown that, if R is right and
left Noetherian, P™ coincides with the symbolic nth power defined
by Goldie in [4]. To deduce (+), we therefore refer to [2], namely
to Theorem 6, Corollary 7 and Remark I.

COROLLARY 9. Let R = AG be the group ring of a finite group
G over a right Noetherian prime ring A of characteristic zero, and let
P be the augmentation ideal of R. Then the conclusions (a) and (b) of
Theorem 6 hold.

Proof. Condition (4) holds by Corollary 3.7 of [9].

Actually, in this example R, is the classical ring of right quotients
of R, and M = PR, = 0, because P is the P-torsion ideal of R.

COROLLARY 10. Let R be a right and left Noetherian hereditary
prime ring, and assume that P is not idempotent. Then the conclusions
(@) and (b) of Theorem 6 hold. Furthermore, D is a complete discrete
rank one valuation ring.

Proof. By [11], R/P is a simple Artinian ring. It is known that
P is an invertible ideal. By Lemma 1.1 of [3], it then follows that
P has the Artin-Rees property. Now, by Corollary 2.8 of [9], P" =
P, hence condition (+) holds.

It remains to show that D is a rank one valuation ring. By the
remark preceding Theorem 5.6 in [7], R, is hereditary Noetherian and
guasi-local. As is well-known, this implies that R, is hereditary
Noetherian. By Morita equivalence, D is hereditary Noetherian. But
it is local, hence a discrete rank one valuation ring.

For the sake of completeness, we shall show that P is invertible.
Let @ be the maximal ring of right and left quotients of R and put
R.-P={geQ|qP< R}. It is known [3] that R & P(R.-P) provided
P is finitely generated and projective as a right R-module and “dense”
in a technical sense, which means that P has zero left annihilator in
R when P is a two-sided ideal. Since R is right Noetherian, right
hereditary, and prime, P satisfies all three conditions.

Now P& (R.-P)P < R, and P is maximal. Therefore (R.-P)P =
P or R. Suppose the former, then P < P(R.-P)P = P? which would
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lead to the contradiction that P is idempotent. Therefore, (R.- P)P = R.
Finally, consider P-.R = {ge Q|Pgq = R}. Then

P-.R = (R.-P)P(P-.R) < R.-P.

By symmetry we obtain P(P-.R) = R and R.-P< P'.R, and so P is
invertible in Q.

For the sake of completeness, we shall also include the argument
of [1] to show that P has the Artin-Rees property. Let E be any right
ideal of R and put E, = (KN P*)P~* Since R is right Noetherian,
there exists a positive integer k such that £, S E, + -+ + E,_,. Then
ENP:= EP S S, (ENP)P< EP, and this is the Artin-Rees
property.
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