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BOREL SETS OF PROBABILITY MEASURES

KENNETH LANGE

Let M(X) be the collection of probability measures on the
Borel sets of a Polish space X. The Borel structure of M(X)
generated by the weak* topology is investigated. Various
collections of probability measures arising in nonparametric
statistics are shown to Borel sets of JM(X). Attention is
particularly focused on collections arising from restrictions
on distribution functions, density functions, and supports of
the underlying probability measures.

1. Introduction. Baynesian statisticians assume prior distri-
butions on certain families of probability measures. This amounts
to putting a probability measure on a family of probability measures.
Now families of probability measures typically arising in statis-
tics are parametrized by some Borel set of Euclidean n-space. In
such cases, one has a natural Borel structure or c-algebra of subsets
with which to deal. In nonparametric situations the natural Borel
structure is not so obvious. Ideally, one might desire each commonly
occurring family of probability measures to be a Borel set of some
properly chosen complete separable metric space. Then a prior distri-
bution could be viewed as a probability measure on the entire space
which is concentrated on the given Borel set. Our aim is to show
that many, if not most, nonparametric families of probability measures
are indeed Borel sets of complete separable metric spaces. This
advances slightly the cause of nonparametric Baynesian statistics, but
does not overcome the more difficult barrier of finding reasonable prior
distributions in nonparametric situations.

In our probabilistic model we suppose X to be a complete separable
metric space. Let C(X) be the bounded real-valued continuous functions
on X under the sup norm topology. Then the collection of probability
measures M(X) on the Borel sets of X can be viewed as a subset of
the dual of C(X) under the weak* topology. It is well known that
M(X) is metrizable as a complete separable metric space with this
topology [16]. Our investigations will center on the Borel structure
of M(X).

Dubins and Freedman have done the spadework for the subsequent
discussion in their basic paper [8]. Section 3 generalizes their analysis
of the relationship of distribution and density functions to probability
measures. Section 4 explores the connection between a probability
measure and its support when the underlying space is no longer
compact. Section 5 collects some further examples not considered in
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[8], and §6 adds to the fund of counterexamples.

Finally, before moving on to some preliminary definitions, let us
cite two other areas where the Borel structure of collections of mea-
sures can be fruitfully pursued. Much work has been done on so
called ergodic decompositions of invariant measures. The original
stimulus for this research came from classical statistical mechanics.
The reader may consult [20] for a detailed theoretical discussion and
further references. Another area of potential applications is the analysis
of Poisson and point processes. See [14] for steps in this direction.

2. Preliminary definitions.

2.1. Borel spaces. First, let us give a compressed account of
Borel spaces. The reader is advised to consult §§1-3 of Chap. 1 of
[2] for a fuller treatment. A Borel space (X, ) consists of a set
X together with a distinguished c-algebra of subsets & Quite often
X itself is said to be the Borel space and .o~ is tacitly understood.
For example, if X is a topological space, then .o~ is always taken to
be the smallest o-algebra containing the open sets. A function f: X -—
Y between two Borel spaces (X, .o”) and (Y, %) is called Borel if
f(B)e .o whenever Be 7.

The sets in the g-algebra .o of a Borel space (X, .o”) are also
termed Borel sets. Every subset Z of X inherits a relative Borel
structure {ZNA:Ae v}, If (X, %) and (Y, &) are two Borel
spaces, the product Borel structure .o X £ is defined to be the
smallest o-algebra of subsets of X x Y containing the Borel rectangles
AXB,Ae .7, and Be <Z. Suppose ~ is an equivalence relation on
a Borel space (X, o) and 7: X — X/~ is the projection taking each
point into its equivalence class. The quotient Borel structure on X/~
is the largest c-algebra making 7 a Borel map.

Certain Hausdorff topological spaces have very well behaved Borel
structures. Among these are Polish spaces. A Polish space is a
topological space which is metrizable by a complete separable metric.
It is well known that any locally compact space with a countable
neighborhood hbasis is Polish. Such spaces will be referred to as
locally compact and separable.

One property of Polish spaces will be particularly useful later on:
Suppose X and Y are Polish spaces. Let B be a Borel set of X
equipped with the relative Borel structure. Also let f: B—Y be a
one-to-one Borel map. Then f(B) is a Borel set of Y. (See Cor. 3.3 of
Chap. 1 of [16].) This fact will be applied to show that certain Borel
maps are Borel isomorphisms. A map f: X —Y between two Borel
spaces (X, %) and (Y, &) is said to be a Borel isomorphism if it
is one-to-one, onto, Borel and its inverse is Borel.
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Yet another class of Borel spaces appearing in the sequel is the
class of analytic Borel spaces. To define this notion it is necessary
to mention a second notion. A Borel space (X, .%7) is called countably
separated if there exists a countable collection of Borel sets {4,}3,
such that for any two points u, ve X there is some A, with either
ued,, véA, or u¢A, veA, A Borel space (X, . %) is analytic if
it is countably separated and the image of a Polish space under a Borel
map. A subset of a Borel space is called analytic if it is an analytic
Borel space with its relative Borel structure; it is called complementary
analytic if its complement is analytic. Every Borel set of an analytic
Borel space is analytic, but not every analytic set is Borel. If f: X—
Y is a Borel map between two analytic Borel spaces, then the image
and inverse image of every analytic set under f is analytic.

2.2. Notation for topological spaces. Suppose T is a topological
space and Y is a subset of 7. Y~ will denote the closure of Y, Y°
the interior, and Y’ the complement. For two subsets ¥ and Z put
YAZ = (Y\Z) U (Z\Y), the symmetric difference of ¥ and Z. R" will
mean FEuclidean n-space and C* the space of n-tuples of complex
numbers. If w = (u, ---,u%,) and v= (v, ---, v,) are in R*, then
{u, vy = S\, uw; will denote the usual inner product and ||u|| =
e, ul*? the usual norm.

2.8. Multi-index mnotation. A multi-index j = (5, ---, 7,) is a
finite sequence of nonnegative integers. |j| denotes the sum >, 7.
If 2 =(, .-+, 2,)eR" put 2 = zitxi». For a function f:R"—C
continuouslty differentiable of order |j|, set D, = d/ox; and D’f =
DD

2.4. Comments on probability measures. Suppose X is a Polish
space. The support of a probability measure ¢ e M(X) can be charac-
terized as the complement of the largest open set on which ¢ vanishes.
If v is a o-finite measure on the Borel sets of X and g is absolutely
continuous with respect to y, then the density of p¢ will mean the
Radon-Nikodym derivative dg¢t/dy. On R"™ densities will always refer
to Radon-Nikodym derivatives with respect to Lebesgue measure.
The distribution function F,: R*— [0, 1] of ¢e M(R") is defined by
Fua, <+, 2,) = p((— oo, @] X +o0 X (= o0, 1,]).

Finally, for X Polish we should mention an alternate description
of the Borel structure of the collection of probability measures M(X).
Varadrajan proved that the Borel structure on M(X) generated by
the weak* topology is precisely the smallest Borel structure making
each of the maps ¢ — p(A) Borel, where pe M(X) and A is a Borel set
of X. (See Lemma 2.3 of [20].)
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3. Borel properties of M(R®) in terms of distribution and
density functions. Let us treat the case of distribution functions first.
Our opening lemma is a generalization of a well known result in the
theory of stochastic processes. (See Thm. T 47 of Chap. 4 of [12].)

LeMMa 3.1. Suppose M, is a Borel space and M, a metric space.
Consider a function f(x, +--, ®,, y) from R" x M, into M,. If f s
Borel in y for x, -+-, %, fivred and right continuous in each x; for all
other variables fixed, then f is Borel im all variables jointly. The
same conclusion holds if R"™ is replaced by a product of intervals.

Proof. The general case follows from the one dimensional case
since one can replace M, by (I[x=!U;) x M,, where the U;’s are inter-
vals. So consider f:U x M, — M, satisfying the condition of the
lemma, where U is an interval. Foreach k = 1, 2, ---, choose pairwise
disjoint intervals Fi(n = 1, +++, n,, n, finite or <) which are closed
on the right, have union U and satisfy length {F}) < 1/k. For each
k and n let 27 be the right endpoint of F7. Now define f.(z, ¥) =
f(xy, y) whenever xe F7. Since f is continuous on the right in its
first variable, f, — f pointwise on U X M,. Since f is Borel in its
second variable, each f, is Borel on U x M,. Finally, because M, is
a metric space, the limit f of the Borel functions f, is Borel.

DEFINITIONS. For 0 £ k < « let CHR"™ be the topological vector
space of all complex-valued functions on R" having continuous deriva-
tives of order %k under the topology of uniform convergence on compact
sets. Note that f,, — f in C*{R") means whenever j is a multi-index
with {j| £k, Dif, — Df uniformly on each compact set of R". C*R")
is a separable Frechet space since the polynomials with rational coeffi-
cients form a countable dense subset [19]. Lip (R") will denote the
collection of complex-valued functions f on R" satisfying |f(x) —
f@)| £ esllz —yll for all # and y and some constant ¢, depending
only on f. Finally, let H(C*) be the topological vector space of
holomorphie functions in % complex variables equipped with the topology
of uniform convergence on compact sets. H(C") is also a separable
Frechet space.

LEMMA 3.2. FEach of the spaces C*(R"),1 < k < «, and Lip (R")
48 @ Borel subset of C°(R™). If H(R") denotes the holomorphic functions
i 1 real variables, then H(R") is o Borel set of C°(R™) too.

Proof. The natural injection of C¥R"),1 <k < o, into CYR")
is continuous. Hence its image in C°(R") is a Borel set. Lip(R") is
a Borel set of C°(R") because the map
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£ —gup LL®) = SW)

= [|o— vl

is lower semicontinuous in the classical sense (not to be confused with
the notion of lower semicontinuity for set valued maps discussed in
the next section), hence Borel. Last of all, the map H(C") — C°(R")
given by restricting a holomorphic function on C*» to R" is certainly
continuous. It is one-to-one because a holomorphic function on C* is
completely determined by its values on R". (See 9.4.4 of [6].)

THEOREM 3.3. For each probability measure ¢t on R™ let F, be
the distribution function of p. Then the set of probability measure
u with F, satisfying any of the conditions below forms a Borel set
of M(R"):

1. F, is continuous.

2. F, is Lipschitz, i.e., |F.(x) — F,(y)| < clle — y|| for some
constant ¢ and all z and y.

3. F, is continuously differentiable of order k,1 <k < oo.

4. F, is holomorphic.

Proof. Let us prove the assertion in part 1. first. Designate by
{r.}y-, the points in R" having all components rational. Since ¢t — ¢(A4)
is Borel from M(R™) to R for every Borel set A in R", the function

p—inf sup |Fy(r) — Fu(r)| = g(tt)
Zig lrg—rgh<tin

is Borel. Our claim is that {z: g(¢) = 0} is the collection of all prob-
ability measures with continuous distribution functions. In faect, if
x = (x, -+-,2,) and ¥y = (y, ---, ¥,) are two points in R, the expansion

w, if k<7

Filw) = Fuy) = 2, (FuE) = P&, 28 =1 0

leads immediately to the conclusion that g(#) = 0 implies F', is con-
tinuous. On the other hand, if F', is continuous, it is actually uniformly
continuous. This follows from the fact that for every & > 0 there is
a compact set K with p#(K) > 1 — ¢. The uniform continuity of F,
then clearly entails g(¢) = 0.

To prove the assertion of the theorem for parts 2.—4. it is sufficient
by Lemma 3.2 to prove that the map g — F, is Borel from the collec-
tion of probability measures having continuous distribution functions
into C°(R"). To do this it is enough according to Thm. 2 of the
appendix of [13] to show g — I(F',) Borel whenever [ is a continuous
linear functional on C°(R"). Since the dual space of C°(R") consists
of the complex measures y with compact support (18.19.8 of [7]), the
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problem reduces to showing ¢ — SF;,dv Borel for every complex measure

y with compact support. But this follows from Fubini’s Theorem once
one notes Lemma 3.1 says F.(z) is jointly Borel in g and z.

COROLLARY 3.4. For |7] £k the map (z, ) — DF (x) is jointly
Borel in x and ¢ on the Cartesian product of R" and the set of all
re M(R®) with distridbution functions tn C*(R").

Proof. Since the natural injection of C*(R") into C°(R™) is Borel,
its inverse is also. Hence the map p¢— F,. is Borel from {pe M(R"):
F,c CR")} into C*R"). Also the map f — D’f of C*(R") into C*(R™)
is continuous, and the map (z, g) — g{x) of B*x C°(R") into the com-
plex plane is Borel by Lemma 3.1. Now combine these facts and the
statement of the corollary follows.

Our next aim is to prove analogues of the preceding for probability
measures having densities. Some of the asserticns for densities follow
by noting that the density of a probability measure on R can be
recovered by differentiating the distribution function a sufficient number
of times. For the sake of completeness though, it seems preferable
to proceed directly.

THEOREM 3.5. Let S be a Polish space and pt o o-finite meas-
ure on the Borel sets of S. The collection of probability measures
absolutely continuous with respect to tt and the collection of probability
measures equivalent to p both form Borel sets of M(S). Furthermore,
the map taking a probability measure y absolutely continuous with
respect to tt into its demsity f,€ L'(¢t) is a Borel isomorphism.

Proof. Consider the separable Banach space L'(z) of p-integrable
functions. Take a countable collection of Borel sets {A4,}s-, in S which
are dense in the measure algebra derived from p. The set

B= ({feLiw: (frde = ofn{rew: (rap =1}

is a Borel set of L'(¢#). We claim that B consists of the function in
L'(¢) which are nonnegative p-almost everywhere and have integral

1. Suppose fe B. Then it is necessary to show S fdp = 0 for every
A
Borel set 4. But
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By taking p(A4,4A) small enough, we can make the second and third
contributions on the right of * as small as desired.

Now map f in B into the measure f,(4) = S fdp. This map is
one-to-one and continuous for the weak* topologonn the set of pro-
bability measures. The image of B under the map is a Borel set and
reduces simply to the probability measures absolutely continuous with
respect to p. Furthermore, the inverse of f — , is also a Borel map.

To prove the assertion about probability measures equivalent to
p it suffices to prove that the set of fe B with f > 0 p-almost every-
where forms a Borel subset of B. Now this set is

(ﬁ@ n {fe L‘(ﬂ):gfxd,cd/«e > —71-2—}) n {fe L) gfd)u — 1} _c.

B(Ap)>1m

For, if fe B\C, then there is an m and a sequence {4, )z, with

#A,) > L and g fdp—0.
m Ak

Assuming f > 0 p-almost everywhere, this contradicts the absolute
continuity of g with respect to g,. On the other hand, if fe C and
(A) > 0, then take A, so that p(A4,4A4) is small and p(4,) > 1/m for

some m. Then our earlier representation * of | fdy shows that
A
L fdp>0.

DEeFINITIONS. D(R") will denote the space of infinitely differen-
tiable functions with compact support. It is well known that D(R")
is a countable union of separable Frechet spaces. [19] S(R") will
denote the space of infinitely differentiable functions rapidly decreasing
at infinity together with all derivatives. With its usual topology
S(R") is a separable Frechet space. Finally, for 1 < p < =, L?(R")
means the Banach space of equivalence classes of Borel functions
whose pth powers are integrable.

LEMMA 38.6. For 1 < p < o each of the following spaces is a
Borel set of L*(R™):

C*R™ N L*(R*) k=0,1,2 -+, 0
Lip (B") N L*(R")

H(R" n L*(R"

S(R™)

D(R™).

M
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Proof. Since each of the spaces C*(R*),1 < k < «, Lip (R"), H(R"),
S(R™, and D(R") reside in C°(R") as Borel sets, it suffices to show
that C°(R™) N L?(R") is a Borel set of C°(R") and that the injection
C(R*) n L*(R") — L*(R™) is Borel. The first ingredient of the proof
follows from the fact that

f—swl _|f@pds=|if@prd

lzll<n

is a Borel map of C°(R") into the extended real line. As for the
second, note that

f—lim|  fegeds = [ r@g@ds
is Borel from C°(R™) N L*(R") into C for every ge LY R"), where 1/p -+
1/¢g = 1 and L%R™ is identified with the dual of L*(R"). According
to the criterion already cited in Theorem 3.3, this implies that the
injection C°(R™) N L*(R") — L*?(R™ is Borel.

THEOREM 3.7. The collection of probability measures on R™ whose
densities lie in any of the spaces C*(R"™), Lip (R™), H(R"), S(R™) or D(R")
form a Borel set of M(R™).

Proof. The map taking a probability measure to its density with
respect to Lebesgue measure is Borel into L'(R™). Now apply the last
lemma.

4. Supports of probability measures. In order to analyze the
relation of a probability measure to its support, we find it convenient
to introduce the Fell topology [10]. Let X be a locally compact
separable space. Denote the collection of closed subsets of X by & (X).
The Fell topology on & (X) can be given by specifying a basis of open
sets of the form U(C, {V, -, V,}). C is compactin X and {V, ---,
V.,} is a finite, but possibly empty, family of open sets. U(C;{V, +--,
V) ={YezX):YNC=¢and YNV, % ¢,2=1, ---, n}. Fell dem-
onstrates that & (X) is a compact Hausdorff space with this topology.
Furthermore, as Fell observes, Z°(X) is separable and thus a compact
metric space if X is separable. Indeed, if £Z is a basis for the topology
of X and each element of <Z has compact closure, then the sets U(C;
% ), where C is the closure of the union of a finite subset of <Z
and & C <7 is finite, form a countable basis for & (X).

Next we wish to define notions of semicontinuity for maps into
% (X). Since our definitions differ slightly from Kuratowski’s [11]
and Berge’s [3], we feel it prudent to give a detailed discussion.
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(Especially with reference to the next lemma see Chap. 6, Sec. 2 of

[3])

DEFINITION. Let f: T— & (X) be a map from a topological space
T into &(X). f is said to be lower semicontinuous if {te T: f(¥) N
V = ¢} is open whenever V is open in X. [ is upper semicontinuous
if {teT: f(®) N C = ¢} is open whenever C is compact in X. Obviously,
a map f: T— & (X) will be continuous if and only if it is both lower
and upper semicontinuous.

LEMMA 4.1. Suppose {fi: T — % (X)}ics s a nonempty collection
of maps from a topological space T into & (X).

1. If each f; is lower semicontinuous, then t— (U;cs fi(D)™ s
lower semicontinuous.

2. If each f;is upper semicontinuous, then t — [Nies fi(f) is upper
semicontinuous.

3. If the index set A is finite and each f; is upper semicon-
tinwous, then t— U;es fi(f) is upper semicontinuous.

Proof. 1. Take Vopenin X. Then {te T: (Ui, f:(t)" NV = ¢} =
{te T: (Uiea fs)) NV # ¢} = Useu{te Tt fi()) NV + ¢} is open in T.

2. Take C compact in X and suppose f,e T satisfies ;e f:(t) N
C = ¢. It is enough to show the existence of some neighborhood of
t, where ;.. fi(t) N C = ¢ continues to hold. To this end select one
function g from the collection {f;: T — " (X)};., and reduce the collec-
tion to {f;: T — & (X)}ic: by eliminating g. If g(t) N C = ¢, then our
choice for the neighborhood of ¢, is obvious. Otherwise, put K =
9(t) N C. For each xe K there is at least one index ie Y with z¢
fi(t). Choose a neighborhood V, of x with compact closure and
satisfying fi(t) N V; = ¢. Since f; is upper semicontinuous, it is
possible to select a neighborhood W, of ¢, such that f;({) N V; = ¢ for
all te W,. LetV,,-..-, V, cover K. Applying the upper semicon-
tinuity of g there also exists a neighborhood W of ¢, where g(¢) N
(C\(Ur-1V.,)) = ¢. It now follows that on WN (M7=, W.,), (Nics f:(H) N
C=¢.

3. For C compact in X, {teT: (Uses fi(®)) N C = ¢} = Niea{teT:
fit)ynC = ¢}

The next lemma shows that upper and lower semicontinuous
mappings are Borel. (Compare Lemma 9.4 of [17].)

LEMMA 4.2. The following are necessary and sufficient conditions
for a map f: T— & (X) from a Borel space T into & (X) to be Borel.
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1. {teT: f(&) NV = ¢} is a Borel set for each open set V.
2. {teT:ft) NC = ¢} ts a Borel set for each compact set C.

Proof. Both conditions are clearly necessary for f to be Borel.
To prove their sufficiency consider a basic open set U(C; {V,, +--, V.,})
in (X). UC;{Vy, -+, V.h=UC;d NU(g{V.YN---NU@{V.}.
Let d be a metric for X and define W,, by {x e X: d(z, C) = inf,., d(z,
Y) < 1/m}. Then U(C; ¢) = Un=,U(g; {W,})’. On the other hand, if
{K;}=, is a sequence of compact sets whose union is some V;, then
U(g; {Vi}) = U . U(K;; )’ Thus any basic open set can be expressed
in terms of a countable number of open sets of type U(K; ¢) or U(s;

{V.

LeEMMA 4.3. The map pt— support (1) ts lower semicontinuous
Jrom M(X) into & (X).

Proof. For V open in X, {¢: support () NV = ¢} = {p: (V') > 0}
is open in M(X). In fact, {¢: (V) = 0} is closed because p(V) <
lim, inf p,(V') holds for every converging sequence g, — ¢ in M(X).
(See Thm. 6.1 of Chap. 2 of [16]).

LeMMA 4.4. Each of the following maps is Borel:

1. F: 7.5 (X) - &(X) given by F(QI2.Y,) = (U= Y)™.
TIz., &(X) has the product topology.

2. GII- g X)—ZF(X) given by G(II7-.Y,) = N7- Y.

3. H:&(X)— & (X) given by H(Y) = (Y.

4, J:Z#X)— & X) given by J(Y) = (Y9~

Proof. 1. The projection F: [I7., €(X) — & (X) taking 13,7,
into Y, is continuous. Hence F(IT;-.Y,) = (Ui, Fi(Il3-.Y,))" is lower
semicontinuous.

2. @G is upper semicontinuous.

3. It suffices to show that the set of Y ¢ & (X) satisfying (Y%’ N
V = ¢ is Borel for each open set V. Now (Y)Y NV=g¢ iff Y°'OV
iTYoOVIT YoV iff YNV~ =V~. The collection of Y satisfying Y N
V= =V~ is a Borel set because it is precisely the set where the Borel
maps Y—Y NV~ and Y —V~ agree.

4. Again it is enough to prove that the collection of Ye & (X)
satisfying (Y°) " NV = ¢ is Borel for each open set V. Let W = (V)"
Then (YY) NV=¢iff VVO(Y)" iff VO Y°iff WO Y°iff W (Y
if W n (YY) = W’'. But the collection of Y satisfying W' N (Y°)' =W’
is precisely where the Borel maps Y—W’' N H(Y) and Y — W’ agree.

THEOREM 4.5. Each of the following collection of sets in & (X)
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ts Borel:
1. For every positive integer k, the collection of Z e & (X) having
k or fewer points.

2. The collection of compact sets Ze & (X).

3. The collection of compact connected sets Z e & (X).

4. The single closed set Y e & (X).

5. The collection of Ze &(X) contained within a given closed
set Y.

6. The collection of Ze & (X) containing a given closed set Y.

7. The collection of Ze & (X) with empty interior.

8. The collection on Zec & (X) with no isolated points.

9. The collection of Ze & (X) which are open as well as closed.

Proof. 1. <=* is the collection of Ze & (X) having k or fewer
points. According to Fell [10], &* is closed and therefore compact
in & (X). Since the union map [It., #(X) — & (X) is both lower
and upper semicontinuous, the image of T[%., &', which is &% is
compact in &(X).

2. Let {C,}3-, be an increasing sequence of compact sets having
U, C. = X. The collection of compact sets Ze & (X) is the countable
union of closed sets U=, U(g; {C.}).

3. The compact disconnected sets coincide with the intersection
of the collection of compact sets with the union of the basic open sets
U(V,UVY;{V, V.})), where V,NV,= ¢ and (V,U V)’ is compact.

5. Ze & (X) is contained within Y iff Z¢ U(g; {Y'}).

6. Ze#(X) contains Y iff ZNY =Y. Hence the collection of
Ze & (X) containing Y is where the Borel maps Z—2Z2NY and Z—

Y agree.
7. Let H be the map of last lemma. Then Z has empty interior
iff H(Z) = X.

8. Let J be the map of the last lemmma. Then Z has no isolated
points iff J(Z) = Z.
9. Ze®(X) is open iff HZ)NZ = ¢.

COROLLARY 4.6. The collection of probability measures in M(X)
having support in any one of the families 1.—9. listed above is Borel.

We now wish to introduce notions of congruence and symmetry
for the space of closed sets 2°(X). To be specific, suppose G is a locally
compact separable topological group which acts on the right of X. If
for each fixed ge G, the map x — xg is continuous, then G also acts
on Z(X). For Ye & (X) and ge G define Yg to be {yg:ye Y}.

LEMMA 4.7. If the action X X G — X 1is jointly continuous, then
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s0 s the action & (X) x G — & (X). (Compare Prop. 2.2 of Chap. 2
of [2].)

Proof. For Ye % (X) and ge G let UC;{V,, ---, V,}) be a basic
neighborhood of Yg. Since Yg NV, = ¢, there exists ;¢ Y, a neigh-
borhood W, of x;, and a neighborhood U; of g with W, U, cV,. Let
V = N.U; and reduce V if necessary so that V'~ is compact. Also
define K ={&h™":2ecC, he V-}. K is compact, and by a further
reduction of V it is possible to assume YN K = ¢. Now the neighbor-
hood U(K;{W,, +-+, W,}) XV of (Y, g) maps into U(C;{V,, «--, V.}).

The next theorem provides some more instances of Borel sets of
probability measures.

THEOREM 4.8. If G is a locally compact separable topological
group, then the collection of closed subgroups is closed in & (G). The
collection of closed mormal subgroups is also closed in & (G). If G acts
continuwously on a locally compact separable space X, the fixed points
of € (X) under the action of G form a closed set of € (X). Finally,
the orbit of any Ye & (X) under the action of G is a Borel set o
& (X).

Proof. The first statement is just Fell’s observation. Indeed,
the collection of closed subgroups is the complement of the union of
U({e}; ) with the basic open neighborhoods of the form U(V (V;)™;
{V,, V.}), e being the identity of G and Vi and V; being compact.
The second statement is a special case of the third statement. Simply
note that G acts on itself by (x, g) —¢'xg and hence on & (&) by
(Y,9) =Yg ={9'xg:xc Y}. The fixed points of this action form a
closed subset of & (G). Intersecting the collection of fixed points with
the collection of closed subgroups gives the closed normal subgroups.
Finally, the third statement is obvious, and the fourth statement
follows because an orbit in & (X), {Yg:9e G}, can be written as a
countable union of compact sets, Up-. {Yg:9¢e K.}, if {K,}J7., is a
sequence of compact subsets of G whose union is G.

ExampLES. The sets in & (R") spherically symmetric about the
origin are just the fixed points of & (R") under the action of the
orthogonal group. Furthermore, under the action of the orthogonal
group, the orbit of a subspace of dimension m, m < n, is the collection
of all subspaces of dimension m. The collection of all sets in & (R")
geometrically congruent to a given closed set Y lies on the orbit of
Y under the affine orthogonal group, i.e., the group generated by all
orthogonal transformations and translations. As a consequence, the
collection of all affine subspaces of a given dimension m forms a Borel
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set of & (R"). Similarly, considering the group of dilations (resp.
homothetic transformation with the origin as center), it is clear that
the collection of closed spheres (resp. closed spheres centered at the
origin) forms a Borel set of & (R"). (Consult [4] for the geometric
terminology.)

The remainder of this section deals with convexity and subspaces
and is inspired by [18]. Since the present proofs are different from
those in [18] where results overlap, and require perhaps less background
of the reader, we have furnished complete arguments.

THEOREM 4.9. On R" the map Y — clconv (Y) which takes a closed
set into its closed convex hull is Borel from & (R™) into & (R™). Hence
the collection of closed convex sets forms a Borel set of © (R"), and the
collection of probability measures with convex support forms a Borel set

of M(R"™).

Proof. Let {l;};c. be the collection of linear functionals on R".
For each positive integer k¥ and e 4 define L} & (R") — < (R") as
follows: Li(Y) = {we R": l;(x) = SUDuerns, l(w)}, where S, is the sphere
{we R ||w|| £ k} and Li(Y) is taken to be ¢ if Y NS, = ¢. Let us
check that L! is upper semicontinuous. For C compact {Y e & (R"):
LA(Y)NC = ¢} ={Ye(R"):YNS.N{te R () = inf,.; li(s)} = ¢}, s0
L! is upper semicontinuous because S, N {t€ R":[,(t) = inf, . li(s)} is
compact. Now note that ¥ — N;., L(Y) is upper semicontinuous and
Nics LXY) is the closed convex hull of YN S,. It follows that Y —
Ui Nies LEY) is a Borel map taking Y into its closed convex hull.

The second claim of the theorem is true because the closed convex
sets Y of & (R"™) are simply where the Borel maps Y — Ui MNies LE(Y)
and Y —Y agree.

DEFINITION. Suppose Y is a nonempty closed convex set of R".
For any point 2 € R", prox (x, Y) is defined to be the unique point of ¥
closest to . In other words, if d is the metric on R™ derived from
the Euclidean norm, then prox (z, Y) is the unique point of ¥ where
d(z, Y) = inf,, .y d(z, w) is attained.

LeMMA 4.10. Suppose f: T — & (R") is a Borel map with f(t) a
nonempty closed convex set for every te T. Then for every xe R", t —
prox (z, f(t)) is a Borel map of T into R™.

Proof. First, let us show that ¢ —d(z, f(¢)) is a Borel map of T
into R* = {ze R: 2z = 0}. It suffices to show that {te T: d(z, f(¢)) < €}
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is a Borel set of T for each ¢ > 0. But {te T:d(x, f(t) < &} = {te T:
{ye R*:d(x,y) < e} N f(t) + ¢}. Next the map s —{ye BR": d(z, y) < s}
is Borel from R* into Z°(R") because for K compact

¢ if zeK

+ o Ne = =
{se R*:{ye R d(@,9) < s} N K = g} 0<s<d@,K).

Finally, note that prox (x, f(¢)) = f(®) N {ye R": d(x, y) =< d(z, f(1)}.
Since t — prox (x, f(t)) is a Borel map into & (R"), it follows at once
that it is a Borel map into R".

LeEMMA 4.11. Suppose f: T — & (R™) has the same properties as
in the last lemma. Then the map t — f(t)* = {ye R":vae f(t)<z, y) =0}
is also Borel from T into & (R™).

Proof. Let {z,}:-. be a dense collection of points in R". Since
f () equals the closure of Us-, prox (z,, f(t), {ye R*: vz e f(t){z, ) =
0} = Nio. {y € B™ {prox (®,, f(t), ¥> = 0}. Now t— {ye R": {prox (x,,
f@®), y> < 0} is a Borel map into & (R") because s —{ye R": (s, y) =
0} is Borel from R" into &’(R"). In fact, for a compact set K, s—
inf,.x (s, ) is Borel and {se R": {ye B*:<{s,y) < 0} N K # ¢} = {se B™
inf,.x (s, > = 0}. Similarly, t —{ye R": vz e f(t)<z, y) = 0} is Borel.
To finish the lemma observe that t—{ye R": xe f(t)<z, y> = 0} is the
intersection of two Borel maps.

THEOREM 4.12. The map % (R")\{¢} — & (R") taking a closed set
Y into the smallest subspace containing Y is Borel. Likewise, the map
& (R)\{¢} — & (R") taking Y into the smallest affine subspace containing
Y s Borel.

Proof. The smallest subspace containing Y is [eleconv (Y)]**. The
smallest affine subspace containing Y is

[eleonv (Y) — prox (0, cleonv (Y))]*+ + prox (0, cleonv (Y)) .

The second map is Borel because the action & (R") x R — & (R")
defined by translation is jointly continuous.

COROLLARY 4.13. For each m < m, the collection of probability

measures on R™ whose supports lie within a subspace (affine subspace)
of dimension m forms a Borel set of M(R").

5. Further examples of Borel sets of probability measures.

EXAMPLE 5.1. Let G be a metric group acting continuously on
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a Polish space X. Then G acts by translation on the set of probability
measures M(X). Indeed, define for e M(X) and ge G pg to be the
probability measure assigning measure p{Ag™) to each Borel set A
of X.

THEOREM 5.2. G acts continuously on M(X).

Proof. Suppose ¢, — ¢ in M(X) and g,— ¢ in G as n— . It
is sufficient to prove that

| #eod, ) — | reode)

for every bounded continuous real-valued function f. For ¢ > 0 let
K be a compact subset of X with g, (K)=1— ¢ for all n. Now
estimate as follows:

|[rGondms) - (reodue| = | 1760 ~ r60)ide.e
+ | 17600 — £e0lame + |[Fendm - [fenaue) .

The last term in ** can be made small since f, — #. The middle term
on the right of ** is bounded by 2 sup,.x|f(s)|e. The first term on
the right can be made small because sg, — sg uniformly on K, as we
prove momentarily, and because f is uniformly continuous on the
compact set {kh:ke K, he{g.});-, or h = g}. To show that sg,— sg
uniformly on K let d be the metric on X and suppose d(s,9.,, S.9) >
o for some subsequence {g, } of {g.}, a sequence {s,} of K and some
0 > 0. Since K is compact we may assume s, —s€ K. Then s,g,, —
sg and s,g—sg by the joint continuity of the action of G on S.
This contradicts the assumption that d(s,.g. , s.g9) > 0 for all m. Hence
sg, — sg uniformly and this completes the proof of the theorem.

COROLLARY 5.3. The invariant measures form a closed subset of
M(X) since they are the fixzed poinits for the action of G on M(X).
If G is a Polish group, then the orbit of awny probability measure
under G is Borel in M(X).

Proof. For the second assertion see Lemma 3.4 of [9].

Applications. On R", the orbit of any nondegenerate normal
distribution under the group of invertible affine transformations is the
whole collection of nondegenerate normal distributions. Also the
collection of translates of any probability measure is Borel in M(R").
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Other commonly occurring groups acting on R™ are the orthogonal
group and the group permuting the coordinates of any point. The
latter group arises in the theory of order statistics.

REMARK. A Borel set B of a space X is called invariant under
a group action if Bg = B for every group element g. If ¢ is a pro-
bability measure on X and p(B) = 0 or 1 for every invariant Borel
set B, then p is said to be ergodic. Varadarajan has shown that the
collection of invariant ergodic probability measures is Borel in M(X)
if X is a Polish space and the underlying group is locally compact
and separable. (See Thm. 4.2 of [20].)

ExAMPLE 5.4. Suppose {X,}7., is a sequence of separable metric
spaces. Consider the probability measures M(JI5-. X,) on the product
space [I3-, X,. We claim that the set P = {tte M(TI5-. Xo): ¢ = TToitles
t.e M(X,)} is closed in M(JIz-, X,). Our reasoning goes as follows:
The map M([I3-. X.) — 1o, M(X,) taking a probability measure into
its sequence of marginal probability measures is continuous. Also
the map I3, M(X,) — M(IIz-, X,) taking a sequence of probability
measures into their product is continuous. (Modify slightly the proof
of Lemma 1.1 of Chap. 3 of [16].) P is the set where the composi-
tion of these two maps agrees with the identity map on M(J];-. X.).

If each X, is the same, then the set of probability measures on
II:-. X, having all marginals the same is certainly closed too. Hence
the set of probability measures on J]:_, X, which are product measures
with equal components is closed.

ExXAMPLE 5.5. Suppose X is locally compact and separable. Ac-
cording to Corollary 4.6, the collection of probability measures concen-
trated at &k or fewer points is Borel in M(X). A stronger assertion
is possible.

LEMMA 5.6. Let X be a Polish space. For each 1 =0 > 0 the
collection of probability measures having k or fewer atoms with total
mass = 0 ts closed in M(X).

Proof. An easy induction using Prohorov’s Theorem. (See Thm.
6.7 of Chap. 2 of [16].)

For another application of Lemma 5.6 put 4,,, = {¢e M(X): ¢ has
kE or less atoms with total mass =1 — 1/»}. Then the Borel set
Ni-. Ui, 4,,. consists of those probability measures concentrated on
a finite or countable set of points.
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EXAMPLE 5.7. If one is more interested in the number or geometry
of the atoms rather their total weight, one can proceed as follows in
the locally the compact case: For each pte M(X) and ¢ > 0 let d.(¢) be
the set of atoms of g having individual mass of at least e. Since
{re M(X):d.() N C = ¢} is closed in M(X) for each compact set C of
X, d.: M(X)— Z(X) is upper semicontinuous. (See Prop. I. 2. 8 of [1].)
Apply part 1. of Lemma 4.4 to conclude that ¢ — (U, dy.(10)” is a
Borel map into &(X). p¢— (U;=. dy.(1))” can be used to keep track
of the cardinality of the atoms and their positions.

ExAmPLE 5.8. The collection of probability measures on R™ with
some moment (all moments) existing is a Borel set of M(R"). To
prove this let {g;: R"— [0, 1]};i=, be a collection of continuous functions
satisfying

1 if o] <4

0:() = 10 if [lollzi+1.

Now note that
r— sup {|*] 0.(@)dpe@) = EEZE)

is lower semicontinuous in the classical sense for each multi-index k.
Hence the collection of probability measures having finite kth moment
is a countable union of closed sets. In general, this collection is
neither open nor closed. For instance, on R it is possible to show that
the collection of probability measures having finite first moment is
neither open nor closed. Furthermore, the collection of probability
measures lacking a first moment is dense in M(R).

ExAMPLE 5.9. Occasionally it is convenient to deal only with those
probability measures on R"™ having continuous, strictly increasing
distribution functions. To characterize this family of probability
measures consider for each pair of positive integers n and m the map
G.n: C(R") — R defined by

Ganlg) = inf g(z) — g(w),
llz—wi|>1/n
Jlzl|<m
Hw|lsm
z2W

where 2 = w means z; — w; = 0 for each component of z — w. It is
easy to check that G,,, is upper semicontinuous in the classical sence.
Hence ¢t — @G, (F,) is a Borel map into R from the collection of pro-
bability measures having continuous distribution functions. g has
strictly increasing distribution function iff G, .(F.) > 0 for every =
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and m. Similar arguments can be used to show that {(¢,v): F,, F,
continuous, F.(x) > F.(x) Va} is Borel in M(R") x M(R"). However,
removing the continuity assumptions makes both problems much more
difficult.

EXAMPLE 5.10. A probability measure ¢ on R is said to be sym-
metric if the Fourier transform fi(6) of ¢ can be written as e”'r(d),
where r(6) is a real-valued function of ¢ and ¢ is some real constant.
Now for each positive integer m, {¢?'r(0): te [— m, m] r real-valued
and in C°(R)} is closed in C°(R). Since y,— ¢ in M(R) iff g, — [t
in C°(R), the collection of symmetric probability measures on R is a
countable union of closed sets of M(R).

ExampPLE 5.11. For p a probability measure on R and pe (0, 1),
te R is called a pth percentile of g if p(—co,t) <p and p(— o=, {]= p.
When p = 1/2 the term median is used instead of percentile. It is
easy to show that the set of pth percentiles for ¢ is a compact interval
whose right endpoint is {*(p, ¢#) = sup {re Q: pt(— =, r) £ p} and whose
left endpoint is {7(p, ) = inf {re Q: u(— o, r] = p}, where Q is the
set of rationals. Moreover, {*(p, p)(resp. {7(p, &) is right (resp. left)
continuous in p for fixed g and Borel in ¢ for fixed p. Hence Lemma
3.1 implies {*(p, #) and {~(p, ) are jointly Borel in » and g. Using
this fact one can show various hypotheses in nonparametric statistics
involving the set of pth percentiles to be Borel. Perhaps it is worth
pointing out that (p, 1) — [{~(p, 1), {*(p, 1)] is a Borel map into & (E).

ExaMPLE 5.12. Let us indicate briefly now the Borel structure
on M(X) furnishes a natural framework for the description of several
ideas in probability and statistics. For instance, in the theory of
Markov processes one can define transition functions as Borel maps
from X into M(X). If ¢ is a probability measure on a Polish space
X and « is a Borel map onto another Polish space Y, define # on Y
by #(A) = u(w~*(A)) for every Borel set A of Y. Then g has a regular
conditional probability distribution given z. From our perspective
this means a Borel map y— g, from Y into M(X) such that fi-almost

all 1, are concentrated on 77'(y) and p(B) = S#,,(B)dﬁ(y) for each Borel

set B of X. Finally, we should cite empirical distribution functions.
Let {fi: S— R}z, be a sequence of independent and identically distri-
buted random variables on a Borel space S with probability measure
p. For each positive integer n define a Borel map g,: S— M(R) by
taking p,(s) to be the probability measure giving equal weight to
Fu(s), <+, fa(s). ., is Borel because for every Borel set

ACE, @A) = 2 5076
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where x, is the indicator function of A.

6. Counterexamples. Obviously not all subsets of M(X) are
Borel. Here are some counter-examples.

ExXAMPLE 6.1. For X a Polish space it is well known that X is
homeomorphic to the collection of unit point masses, {6, € M(X): d,({w}) =
1, we X} [16]. If X is uncountable, then there exists Y < X which
is not Borel. But then {§,e M(X): we Y} cannot be Borel in M(X)
either.

EXAMPLE 6.2. Our second counterexample involves the notion of
equivalence between probability measures. It is transparent that
mutual absolute continuity, denoted ~, is an equivalence relation on
M(X). By the axiom of choice it is possible to choose one repre-
sentative probability measure from each equivalence class. The next
theorem shows when this “transversal” can also be taken to be a
Borel set of X.

THEOREM 6.3. Suppose X is a Polish space. Then o Borel trans-
versal exists for ~ on M(X) ¢ff X is countable or finite.

Proof. Suppose X is the set of positive integers. Give Z, = {0, 1}
the discrete topology and consider the product space ]2, Z,. Subtract
off from [[y-, Z, the countable number of sequences in which 1 appears
only finitely often and call the remainder Z. Map Z into M(X) by
taking the sequence {w,};., into the probability measure giving mass
w,(1/2)*1+*+*s to the integer n. This map is one-to-one, Borel, and
provides the desired Borel transversal. The case of X finite is even
simpler. ‘

Now assume X is uncountable. Since any two uncountable Polish
spaces X and Y are Borel isomorphic, (Thm. 2.12 of Chap. 1 of [16]),
it is easy to see that M(X) and M(Y) will be Borel isomorphic too.
Hence it is enough to establish the necessary part of the theorem for
the space [[7, Z, above. But this is the content of Lemma 5.1 of
[15]. Here it is proved that M([I:-, Z.)/~ is not countably separated.
If a Borel (even analytic) transversal existed in this case, then Prop.
2.12 of Chap. 1 of [2] would be contradicted, since M(I[3-. Z,)/~
cannot be analytic if it fails to be countably separated. Note that
~ is Borel as a subset of M([I:.. Z,) X M(II:-. Z,) because of 2.11
of [8].

ExaAMPLE 6.4. Our next two counterexamples partially justify
sticking to locally compact spaces when discussing the relation of a
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probability measure to its support. Suppose X is a Polish space.
Define a Borel structure on the space & (X) of closed subsets of X
by requiring every collection, {4 ¢ & (X): A C B} to be Borel whenever
Be z(X). Christensen shows in Thm. 1 of [5] that this Borel structure
is analytic and on the subspace of nonempty closed sets coincides with
the Borel structure generated by the Hausdorff metric associated with
any precompact metric on X. Furthermore, if X is locally compact,
this is the Borel structure generated by the Fell topology.

Now it is evident that g — support (#) is Borel from M(X) into
& (X). If X is a real infinite dimensional separable Hilbert space,
Christensen proves that the collection W of Z¢ & (X) contained in the
open unit sphere is complementary analytic but not analytic. (See
Thm. 8 of [5].) Since every Zc W is the support of some e M(X),
the inverse image of W under u — support (z) fails to be Borel or
even analytic.

This counterexample also illustrates that the intersection map
(X)) x Z(X)— Zz(X) need not be Borel when X is not locally
compact. Indeed, let Y be the complement of the open unit sphere.
Then W={Zc&(X):ZNY = ¢}.

ExAMPLE 6.5. The same phenomenon of Example 6.4 occurs if
X is a countable Cartesian product of the positive integers. Then
the collection of Ze & (X) which are open as well as closed is comple-
mentary analytic but not analytic. (See Thm. 5 of [5].)
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