PRODUCT INTEGRALS FOR AN ORDINARY DIFFERENTIAL EQUATION IN A BANACH SPACE

DAVID LOWELL LOVELADY
Let Y be a Banach space with norm $|||$, and let R^+ be the interval $[0, \infty)$. Let A be a function on R^+ having the properties that if t is in R^+ then $A(t)$ is a function from Y to Y and that the function from $R^+ \times Y$ to Y described by $(t, x) \mapsto A(t)[x]$ is continuous. Suppose there is a continuous real-valued function α on R^+ such that if t is in R^+ then $A(t) - \alpha(t)I$ is dissipative. Now it is known that if z is in Y, the differential equation $u'(t) = A(t)[u(t)]; \ u(0) = z$ has exactly one solution on R^+. It is shown in this paper that if t is in R^+ then $u(t) = \exp \left[\int_0^t A(s) \right][z] = \exp \left[\int_0^t (ds) A(s) \right][z]$, where the exponentials are defined by the solutions of the associated family of autonomous equations.

The dissipativity condition on A is simply that if (t, x, y) is in $R^+ \times Y \times Y$ and c is a positive number then

\begin{equation}
[I - cA(t)][x] - [I - cA(t)][y] \geq [1 - c\alpha(t)]|x - y| .
\end{equation}

The author and R. H. Martin, Jr. [5] have shown that if (1) holds, and z is in Y, then there is exactly one continuously differentiable function u from R^+ to Y such that

\begin{equation}
u(0) = z
\end{equation}

and

\begin{equation}
u'(t) = A(t)[u(t)]
\end{equation}

whenever t is in $(0, \infty)$. In the present article we shall show that u can be expressed as a product integral in each of two forms:

\begin{equation}
u(t) = \prod_0^t \exp \left[(ds) A(s) \right][z]
\end{equation}

and

\begin{equation}
u(t) = \prod_0^t \left[I - (ds) A(s) \right]^{-1}[z] .
\end{equation}

Our work is related to results of J. V. Herod [2, §6] and G. F. Webb [7], [8]. Herod showed that representation (5) is valid if the mapping $(t, x) \mapsto A(t)[x]$ is bounded on bounded subsets of $R^+ \times Y$. Webb obtained in [7] a representation similar to (4) under a set of hypotheses different from, and independent of, those used here. In
[8], Webb showed that (5) is valid if \(A \) is independent of \(t \). (Actually
Webb in [8] restricted his attention to the case \(\alpha = 0 \), but his proofs
adapt easily to the general time-independent case.)

II. Product integrals. We shall assume throughout that \(A \) and \(\alpha \) are as in our introduction, and that (1) is true whenever \((t, x, y)\)
is in \(\mathbb{R}^+ \times Y \times Y \) and \(c \) is a positive number. Now it follows from
either of [5] and [6] that if \((t, x)\) is in \(\mathbb{R}^+ \times Y \) then there is exactly
one solution \(v \) of the problem

\[
(6) \quad v'(s) = A(t)[v(s)]; \quad v(0) = x .
\]

Furthermore, this problem generates an operator semigroup, which
we shall denote \(\{\exp[sA(t)]; \, s \text{ is in } \mathbb{R}^+\} \), i.e., if \(s \) is in \(\mathbb{R}^+ \) then
\(\exp[sA(t)] \) is a function from \(Y \) to \(Y \) such that if \(x \) is in \(Y \) then
\(\exp[sA(t)][x] = v(s) \), where \(v \) solves (6).

It is clear from (1) that there is no loss in assuming \(\alpha \) to be
\(\mathbb{R}^+ \)-valued, and we shall. It follows from [6] that if \((c, t)\) is in
\(\mathbb{R}^+ \times \mathbb{R}^+ \) and \(c\alpha(t) < 1 \) then \(I - cA(t) \) is a bijection on \(Y \), and

\[
|\{I - cA(t)\}^{-1}[x] - \{I - cA(t)\}^{-1}[y]| \leq \{1 - c\alpha(t)\}^{-1}|x - y|
\]

whenever \((x, y)\) is in \(Y \times Y \). If \(\{B_1, \cdots, B_s\} \) is a set of functions
from \(Y \) to \(Y \), and \(x \) is in \(Y \), then \(\prod_{j=1}^{k} B_j[x] = x \) and \(\prod_{j=1}^{k} B_j[x] = B_k[\prod_{j=1}^{k} B_j[x]] \)
even when \(k \) is an integer in \([1, n]\). If \((t, x, y)\) is in
\(\mathbb{R}^+ \times Y \times Y \) then the statement

\[
y = \prod_{0}^{t} \{I - (ds)A(s)\}^{-1}[x]\]

means that if \(\varepsilon \) is a positive number then there is a chain \(\{r_j\}_{j=0}^{n} \) from \(0 \)
to \(t \) such that if \(\{s_{j}\}_{j=0}^{n} \) is a refinement of \(\{r_{j}\}_{j=0}^{n} \), and \(\{\tilde{s}_{k}\}_{k=1}^{n} \) is a
\([0, t]\)-valued sequence such that if \(k \) is an integer in \([1, n]\) then \(\tilde{s}_{k} \)
is in \([s_{k-1}, s_{k}]\), then

\[
|y - \prod_{k=1}^{n} \{I - (s_{k} - s_{k-1})A(\tilde{s}_{k})\}^{-1}[x]| < \varepsilon .
\]

The statement

\[
y = \prod_{0}^{t} \exp[(ds)A(s)][x]
\]
is defined analogously.

Theorem. Let \(z \) be in \(Y \), and let \(u \) solve (2) and (3). Then
each of (4) and (5) is true whenever \(t \) is in \(\mathbb{R}^+ \).
Let \(m_- \) be that function from \(Y \times Y \) to the real numbers given by

\[
m_-[x, y] = \lim_{\delta \to 0^+} \frac{1}{\delta} (|x + \delta y| - |x|).
\]

Now (1) is equivalent to requiring that

\[
m_-[x - y, A(t)[x] - A(t)[y]] \leq \alpha(t) |x - y|
\]

whenever \((t, x, y)\) is in \(R^+ \times Y \times Y \) (compare [1, p. 3]). Also, if \(f \) is a function from a subset of \(R^+ \) to \(Y \), if \(c \) is in the domain of \(f \), if \(f_-'(c) \) (the left derivative of \(f \) at \(c \)) exists, and if \(P \) is given on the domain of \(f \) by \(P(t) = |f(t)| \), then \(P_-'(c) \) exists and \(P_-'(c) = m_-[f(c), f_-'(c)] \) (compare [1, p. 3]). If \((x, y, z)\) is in \(Y \times Y \times Y \) then \(m_-[x, y + z] \leq m_-[x, y] + |z| \) (see [4, Lemma 6]). We are now prepared to prove our theorem.

Proof of the theorem. Let \(b \) be a positive number, and let \(\beta \) be a positive upper bound for the set \(\{a(t): t \text{ is in } [0, b]\} \). Let \(\epsilon \) be a positive number, and let \(\delta \) be a positive number such that \((\delta/\beta)(e^{\delta b} - 1) < \epsilon\). Now \(\{u(t): t \text{ is in } [0, b]\} \) is a compact subset of \(Y \), so the function described by \((t, x) \to A(t)[x]\) is uniformly continuous on \([0, b] \times \{u(t): t \text{ is in } [0, b]\}\). In particular, there is a positive number \(\gamma \) such that if \((r, s, t)\) is in \([0, b] \times [0, b] \times [0, b]\) and \(|r - s| < \gamma \) then \(|A(r)[u(t)] - A(s)[u(t)]| < \delta \). Let \(\{t_k\}_{k=0}^n \) be a chain from 0 to \(b \) such that \(t_k - t_{k-1} < \gamma \) whenever \(k \) is an integer in \([1, n]\), and let \(\{\tilde{t}_k\}_{k=1}^n \) be a \([0, b]\)-valued sequence such that if \(k \) is an integer in \([1, n]\) then \(\tilde{t}_k \) is in \([t_{k-1}, t_k]\). Let \(v \) be that function from \([0, b]\) to \(Y \) having the property that if \(k \) is an integer in \([1, n]\) and \(t \) is in \([t_{k-1}, t_k]\) then

\[
v(t) = \exp \left[(t - t_{k-1})A(\tilde{t}_{k-1}) \right] \prod_{j=1}^{k-1} \exp \left[(t_j - t_{j-1})A(\tilde{t}_j) \right] [x].
\]

Clearly now \(v \) is continuous. Also, \(v \) is left differentiable on \((0, b]\): if \(k \) is an integer in \([1, n]\) and \(t \) is in \((t_{k-1}, t_k]\) then

\[
v_-'(t) = A(\tilde{t}_{k-1})[v(t)].
\]

Let \(P \) be given on \([0, b]\) by \(P(t) = |v(t) - u(t)| \). Now \(P(0) = 0 \). Suppose that \(t \) is in \((0, b]\) and \(k \) is an integer in \([1, n]\) and \(t \) is in \((t_{k-1}, t_k]\). Now

\[
P_-'(t) = m_-[v(t) - u(t), A(\tilde{t}_{k-1})[v(t)] - A(t)[u(t)]]
\]

\[
= m_-[v(t) - u(t), A(\tilde{t}_{k-1})[v(t)] - A(\tilde{t}_{k-1})[u(t)] + A(\tilde{t}_{k-1})[u(t)] - A(t)[u(t)]]
\]
Hence [3, Theorem 1.4.1, p. 15],

\[P(t) \leq \int_0^t \delta e^{\beta t-s} ds = (\delta/\beta)(e^{\beta t} - 1) \]

whenever \(t \) is in \([0, b] \). In particular,

\[
\left| u(b) - \prod_{k=1}^n \exp \left((t_k - t_{k-1}) A(\bar{t}_k) \right) [z] \right|
\]

\[
= \left| u(b) - v(b) \right|
\]

\[
= P(b)
\]

\[
\leq (\delta/\beta)(e^{\beta b} - 1) < \varepsilon.
\]

Thus we have proved that representation (4) is valid.

Now let \(b \) and \(\beta \) be as before. Let \(c \) be a positive number such that \(c\beta < 1/2 \). Now if \(t \) is in \([0, b] \) and \(r \) is in \([0, c] \) then

\[
\left| [I - rA(t)]^{-1} [x] - [I - rA(t)]^{-1} [y] \right|
\]

\[
\leq (1 - r\beta)^{-1} |x - y|
\]

\[
\leq (1 + 2r\beta) |x - y|
\]

\[
\leq e^{r\beta} |x - y|
\]

whenever \((x, y)\) is in \(Y \times Y \).

Now let \(K = \{ u(t) : t \) is in \([0, b]\) \}, and recall that \(K \) is compact. Let \(\varepsilon \) be a positive number. By the aforementioned uniform continuity, there is a positive number \(\gamma_1 \) such that if \((s, t, x, y)\) is in \([0, b] \times [0, b] \times K \times K \) and \(|s - t| < \gamma_1 \) and \(|x - y| < \gamma_1 \) then \(|A(s)[x] - A(t)[y]| < (\varepsilon/b)e^{-2\beta} \).

Let \(\gamma_2 \) be a positive number such that if \((s, t)\) is in \([0, b] \times [0, b] \) and \(|s - t| < \gamma_2 \) then \(|u(s) - u(t)| < \gamma_2 \). Let \(\delta = \min \{ \gamma_1, \gamma_2, c \} \). Suppose that \(0 \leq r \leq s \leq t \leq b \) and \(t - r < \delta \). Let \(\{ \xi_k \}^n_{k=1} \) be a \([r, t]\)-valued sequence such that if \(k \) is an integer in \([1, n]\) then \(\xi_k \) is in \([\xi_{k-1}, \xi_k]\). Now

\[
\sum_{k=1}^n (\xi_k - \xi_{k-1}) A(\bar{\xi}_k)[u(\bar{\xi}_k)] - (t - r)A(s)[u(t)]
\]

\[
\leq \sum_{k=1}^n (\xi_k - \xi_{k-1}) |A(\bar{\xi}_k)[u(\bar{\xi}_k)] - A(s)[u(t)]|
\]

\[
\leq \sum_{k=1}^n (\xi_k - \xi_{k-1})(\varepsilon/b)e^{-2\beta} = (t - r)(\varepsilon/b)e^{-2\beta}.
\]
It is now clear that
\[
\int A(\xi)[u(\xi)]d\xi - (t - r)A(s)[u(t)] \leq (t - r)(\varepsilon/b)e^{-2\varepsilon b}.
\]

Let \(\{t_k\}_k\) be a chain from 0 to \(b\), and suppose that \(t_k - t_{k-1} < \delta\) whenever \(k\) is an integer in \([1, n]\). Let \(\{\tilde{t}_k\}_{k=1}^n\) be a \([0, b]\)-valued sequence such that if \(k\) is an integer in \([1, n]\) then \(\tilde{t}_k\) is in \([t_{k-1}, t_k]\).

Now
\[
\left| \prod_{k=1}^n [I - (t_k - t_{k-1})A(\tilde{t}_k)]^{-1}[\varepsilon] - u(b) \right|
\leq \sum_{k=1}^n \left| \prod_{j=k+1}^n [I - (t_j - t_{j-1})A(\tilde{t}_j)]^{-1}[u(t_k)]
- \prod_{j=k}^n [I - (t_j - t_{j-1})A(\tilde{t}_j)]^{-1}[u(t_{k-1})] \right|
\leq e^{2\beta(b-t_k)} |u(t_k) - [I - (t_k - t_{k-1})A(\tilde{t}_k)]^{-1}[u(t_{k-1})]|
\leq e^{2\beta b} \sum_{k=1}^n |u(t_k) - u(t_{k-1}) - (t_k - t_{k-1})A(\tilde{t}_k)[u(t_k)]|
= e^{2\beta b} \sum_{k=1}^n \left| \int_{t_{k-1}}^{t_k} u'(\xi)d\xi - (t_k - t_{k-1})A(\tilde{t}_k)[u(t_k)] \right|
\leq e^{2\beta b} \sum_{k=1}^n (t_k - t_{k-1})(\varepsilon/b)e^{-2\varepsilon b} = \varepsilon.
\]

The proof of the theorem is complete.

REFERENCE

Received June 7, 1972.

Florida State University
Jan Aarts and David John Lutzer, *Pseudo-completeness and the product of Baire spaces* .. 1
Gordon Owen Berg, *Metric characterizations of Euclidean spaces* 11
Ajit Kaur Chilana, *The space of bounded sequences with the mixed topology* ... 29
Philip Throop Church and James Timourian, *Differentiable open maps of*
(p + 1)-manifold to p-manifold .. 35
P. D. T. A. Elliott, *On additive functions whose limiting distributions possess a finite mean and variance* 47
M. Solveig Espelie, *Multiplicative and extreme positive operators* 57
Jacques A. Ferland, *Domains of negativity and application to generalized convexity on a real topological vector space* 67
Michael Benton Freeman and Reese Harvey, *A compact set that is locally holomorphically convex but not holomorphically convex* 77
Roe William Goodman, *Positive-definite distributions and intertwining operators* ... 83
Elliot Charles Gootman, *The type of some C*- and W*-algebras associated with transformation groups* 93
David Charles Haddad, *Angular limits of locally finitely valent holomorphic functions* .. 107
William Buhmann Johnson, *On quasi-complements* 113
William M. Kantor, *On 2-transitive collineation groups of finite projective spaces* ... 119
Joachim Lambek and Gerhard O. Michler, *Completions and classical localizations of right Noetherian rings* 133
Kenneth Lamar Lange, *Borel sets of probability measures* 141
David Lowell Lovelady, *Product integrals for an ordinary differential equation in a Banach space* ... 163
Jorge Martinez, *A hom-functor for lattice-ordered groups* 169
W. K. Mason, *Weakly almost periodic homeomorphisms of the two sphere* 185
Anthony G. Mucci, *Limits for martingale-like sequences* 197
Eugene Michael Norris, *Relationally induced semigroups* 203
Arthur E. Olson, *A comparison of c-density and k-density* 209
Donald Steven Passman, *On the semisimplicity of group rings of linear groups* II ... 215
Charles Radin, *Ergodicity in von Neumann algebras* 235
P. Rosenthal, *On the singularities of the function generated by the Bergman operator of the second kind* 241
Arthur Argyle Sagle and J. R. Schumi, *Multiplications on homogeneous spaces, nonassociative algebras and connections* 247
Leo Sario and Cecilia Wang, *Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball* 267
Ramachandran Subramanian, *On a generalization of martingales due to Blake* ... 275
Bui An Ton, *On strongly nonlinear elliptic variational inequalities* 279
Seth Warner, *A topological characterization of complete, discretely valued fields* ... 293
Chi Song Wong, *Common fixed points of two mappings* 299