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Results are presented that characterize subdirect products
of reals (respectively, integers) functorially.

By defining a quasi-order on the lattice-homomorphisms (hence-
forth: Z-homomorphisms) of one abelian lattice-ordered group (hence-
forth: Z-group) to another, one can set up a co-compatible system of
partially ordered groups (henceforth: p. o. groups). Their co-limit
L(A, B), where A and B are the Z-groups in question, is a directed,
semi-closed p. o. group. If A is a totally ordered group (henceforth:
o-group) then L(A, B) is simply the subgroup of Horn (A, B) generated
by the o-homomorphisms. On the other hand, if B = R, the additive
group of real numbers with the usual order, then L(A, B) is a cardi-
nal sum of copies of R, one for each maximal Z-ideal of A. In general
the co-compatible system mentioned above is far from being directed.

L( , B) is a contra variant functor; not much happens functorially
in the second variable. It transforms Z-epimorphisms (onto maps) into
o-embeddings. The functor also preserves finite cardinal sums.

If the sequence 0-+A—>B—> C —»0 is exact, i.e., C~B\A, then
0 —• L(C, X) —• L(B, X) —> L(A, X) is exact for any o-group X, provided
B —> C is a retraction. This happens in all of the following nontrivial
cases: (1) C is a protective Z-group relative to all Z-epimorphisms; (2)
B is divisible and A is a prime subgroup of B; (3) B is a direct,
lexicographic extension of A by C.

1* Preliminaries. Suppose {Gi \ i 6 /} is a family of p. o. groups.
If G is the direct sum of the Gi we call G the cardinal sum of the
Gi if we define 0 ^ g e G if and only if 0 ^ gt e Gi for all iel; nota-
tion: G = EB {Gi I i e I}. If each G{ is an Z-group and G is the cardinal
sum, then G is also an i-group. Z (resp. R) denotes the additive
group of integers (resp. real numbers), with the usual ordering. We
observe that an Archimedean o-group is o-isomorphic to a subgroup
of R in its usual order; (Holder's theorem, [3]). A prime subgroup
N of the Z-group G is a convex ϊ-subgroup such that G/N is an o-
group. A p. o. group G is semi-closed if given g e G and ng ;> 0,
with n a positive integer, it follows that g ^ 0.

We use (c) £ for (proper) containment of sets; the symbol \ for
complementation in sets.

All groups in this discussion shall be abelian. If A and B are
^-groups «Sf (A, B) will denote the set of Z-homomorphisms of A into
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B. We would like to construct a group L(A, B) which "comes close"
to behaving like a group of homomorphisms; the problem is of course
that the sum of two Z-homomorphisms need not be an Z-homomorphism.
Conrad and Diem have come up with a rather large set of Z-endo-
morphisms of an Z-group, which does turn out to be a semigroup
under the usual addition of homomorphisms; they are the so-called
p-endomorphisms, or polar-preserving endomorphisms (see [2]). We
shall mention them in the sequel.

Suppose A and B are Z-groups and Θy φe £f(A, B). We say that
φ dominates θ if aφ A b = 0 implies aθ A b — 0, for all 0 ^ a e A and
0 ^ b e B; our notation for this is θ < φ. I t is immediate that •< is
a quasi-ordering of £f{A9 B). In fact, if θ < φ and also φ < θ we
write φ ~ θ and call φ and θ polar equivalent) ~ is indeed an equiva-
lence relation. Moreover, it induces a partial order on the equivalence
classes, which we shall index {~£^(A, B)\iel): £fi(A, B) ^ £fj(A, B)
if and only if some φ e £f,{A, B) dominates a θ e J*fi(A, B). Now for
each ie I l e t L ^ A , £ ) + = {θe£?(A,B) \θ<φ, with φe£f<(A,B)} =
\J3<;i *2fi{A, B). (We think of / as being partially ordered so as to
be compatible with the order induced on the equivalence classes.)

We are almost ready to state our first lemma; Horn (A, B) is of
course the full homomorphism group, &{A, B) the subgroup of
Horn {A, B) generated by £?{A, B). Thus &{A, B) = {θx - θ2 \ θu β2

are sums of Z-homomorphisms of A into B).

LEMMA 1.1. ( a ) For each ie I L^A, B)+ is a subsemigroup of
Horn (A, B); that is, if θlf Θ2<φ then θ1 + 02 e £f(A, B) and θ1 + θ2 < φ.

( b ) For each ie I £fi{A, B) is a subsemigroup of L^A, JS)+.

Proof. ( a ) Suppose x Λ y = 0 in A; then xφ Λ yφ = 0 for φ e
£f{A, B). If θu Θ2<φwe get xθ1 A yφ = 0, and in turn xθλ A yθ2 = 0.
Likewise xθ2 A yθγ — 0, and of course xθ{ A yθi = 0 for i — 1, 2, so
that (xθ1 + xθ2) A {yθx + yθ2) = 0, and so θx + θ2 is an Z-homomorphism.
If aφ A b = 0 then α0< Λ 6 = 0 for both i = 1, 2, so α ^ + aθ2 A b = 0,
which means that θ1 + Θ2< φ.

( b ) We check that if 0X and #2 are polar equivalent to φ then
so is θi + θ2. We already know that φ dominates θx + ^2 Yet if
aθx + aθ2 A b = 0 then since 0 <^ aθ^ aθγ + aθ2 it follows that aθγ A
h = o, whence α^ Λ 6 — 0. The conclusion is that φ <θι + θ2, and
hence ^ + θ2 ~ φ.

For each ie I let L^A, JB) be the subgroup of &{A, B) generated
by Li(A, B)+. If we declare an element φ e L^A, B) positive when it
is an Z-homomorphism, one easily sees that Li(A, B) becomes a (directed)
p. o. group whose cone is L^A, B)+. If i ^ j , let/^ stand for the
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inclusion map of Li(A, B) into L3(A, B). We define L(A, B) to be the
co-limit in the category of abelian groups of the system {L{(A, B) \ {fi3)}.
(It is easily verifiable that fiS is the identity on L t (A, B), and that if
i^j^k then fidfjk = fik.)

PROPOSITION 1.2. L(A, B) is obtained as a quotient group of the
direct sum of the L^A, B) by factoring out the subgroup generated by
all elements of the form

( , 0, , 0, φ, 0, , 0, — φ, 0, •) (with the two nonzero entries
in the ί th and jth position respectively, and φ e L^A, B) while i ^ j).

Proof. The statement of the proposition merely sets out in detail
the definition of a co-limit in the category of abelian groups.

Thus a typical element of L(Ay B) is a vector (•••, Φi, •••) which
is finitely nonzero, while addition and equality of vectors is subject
to the identification imposed by Proposition 1.2; the entry φi e L^A, B).
The direct sum of the Li(A, B) may be ordered cardinally using the
partial orders on the L{(A, B); it is clear also that the subgroup being
factored out is trivially ordered in this partial order. We therefore
have a partial order on L(A, B) defined by 0 S Φ 6 L(A, B) if φ has
a representation (•••,&, •••) where each φi is an Z-homomorphism.

A representation φ = ( , φ{, •) is said to be in reduced form
if (1) for all iφj in the support of (•• ,^ ί , •••) i and j have no
common upper bound in /, and (2) the cardinality of the support is
minimal with respect to satisfying (1). The following lemma is
obvious.

LEMMA 1.3. ( a ) Each φeL(A,B) can be put in reduced form.
V (9*'fΦij •••) and (' *>0t> *•") a τ e Tβduced forms of φ, then their
supports have the same cardinality, and there is a bisection π of the
supports such that φi = θrΛi).

( b ) 0 5j φ e L(A, B) if and only if it has a reduced form
(•••,&, . . . ) SV/Ch that φiGJ*f(A9B) for each iel. If so then any
reduced representation is by l-homomorphisms.

PROPOSITION 1.4. L(A9 B) is a directed, semi-closed p. o. group.

Proof. L(A, B) is obviously directed, so we need only verify it is
semi-closed. Let φeL(A, B) and suppose (•••,&,•••) is a reduced
form of φ. Suppose nφ ̂  0 for a positive integer n; the representa-
tion (•••, nφiy •) of nφ is clearly again in reduced form. Hence by
Lemma 1.3 each nφ£ is an Z-homomorphism; one can easily check that
each φi is in fact an i-homomorphism.
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PROPOSITION 1.5. If B is an Archimedean l-group then L(A, B)
is an Archimedean p. o. group, in the sense that if 0 ^ <j> e L(A, B)
and nθ ^ φ for each positive integer n, then θ <; 0.

Proof. Suppose nθ <L φ, φ ^ 0 and θ = ( , θi9 •) and φ =
(.. .9 φ.y . . . ) are both given in reduced form. After reducing φ — nθ
we have three possibilities for an index i of the support of φ — nθ:

(φ - nθ), =

'φj for some j e 1

— nθk for some k e I

a sum of the above .

Again invoking Lemma 1.3 it follows that — nθk is an Miomomorphism>
and φό — nθk ^ 0 for all n — 1, 2, whenever the third choice occurs.
In either case, (in the latter using the archimedeaneity of B) it fol-
lows that θk <; 0. This shows θ <L 0, and we are done.

For some information concerning the structure of L(A, B) we look
in the remainder of this section at some special cases.

A is an o-group 1.6. In this situation the Z-homomorphisms of
A into B are simply the o-homomorphisms. The index set / is then
directed, since the sum of two o-homomorphisms is an o-homomor-
phism. &{A, B) then reduces to {φί — φ2\Φi are o-homomorphisms
of A into B}. Since each Li(A, B) is a subgroup of &{A, B) we may
take their union over I; it is easily seen that this union is precisely
&(A, B). Moreover, L(A, B) is now the direct limit of the L{{A, B);
it is well known that the direct limit of subgroups of an abelian group
is the union of the subgroups. Hence &(A, B) a L(A, B).

We have a converse of sorts:

PROPOSITION 1.6(a). Suppose A is not an o-group; then there
is an o-group B so that the index set I in the construction of L(A, B)
is not directed.

Proof. Suppose A is not an o-group, and select 0 < x,yeA such
that x A y = 0. Let M (resp. N) be a prime subgroup that fails to
contain x (resp. y); then yeM and xeN. Note that A/M and A/N
are o-groups; we form B, the direct lexicographic extension of AjM
by A/N. We consider two ί-homomorphisms φ and θ from A into
B: φ is the canonical map from A onto A/Mf followed by the (convex)
inclusion of A/M in B; θ is the canonical map from A onto A/N fol-
lowed by the inclusion of that in B. Now observe that
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(φ + θ){x - j / ) V O = [ ( # + θ)x - (φ + θ)y] V 0

= (M + a, N - y) V 0 = 0

whereas

(» - 2/) V 0] = (0 + 0)α? = (M + xy 0) > 0

We conclude therefore that φ + θ is not an Z-homomorphism. The index
set / that arises in the construction of L(A, B) is then not directed.

B is an o-group 1.7. One can verify with little trouble that
Φ G £f(A, B) dominates θ e &{A, B) if and only if Ker (φ) £ Ker (θ).
Hence φ and θ are polar equivalent if and only if they have the same
kernel. The kernels are all prime subgroups of A, and so I is anti-
isomorphic to a subset of the root system of primes (see [1], Theorem
1.7, the Z-ideals containing a prime subgroup lie on a chain). I is
therefore a tree-system: no two incomparable elements of / have a
common upper bound; plainly, I is far from being directed.

Now if φ e L(A, B) then any vector representing φ is "almost" in
reduced form; that is, it satisfies the first defining condition, except
the support may be too large.

B = R 1.8. From the discussion in 1.7 it is clear that the index
set I is trivially ordered. We will show there is in fact an index
i e I for each maximal Z-ideal of A, and that L{A, B) is a cardinal
sum of copies of R, one for each maximal Z-ideal of A.

If φ: A —* B is an Z-homomorphism, then M = Ker (φ) is a maximal
Z-ideal. Using the fundamental theorem of Z-homomorphisms there is
an o-isomorphism φ: A/M-+B, which, by a well known corollary to
Holder's theorem, is a left multiplication by a positive real number.
Thus the Z-homomorphisms of A into B with kernel M form a semi-
group which is o-isomorphic to the additive semigroup of positive real
numbers. This proves that each Li(A, B) is a copy of R. It is clear
that one such copy appears for each maximal ϋ-ideal of A, since the
corresponding quotient groups are all o-isomorphic to subgroups of R.

Finally, the subgroup one factors out of the direct sum of these
copies of R to get L(A, B) is trivial here, and we conclude that
L(A, B) is a cardinal sum of copies of R.

A similar argument can be made for B = Z; one then obtains
that L(A, B) is a cardinal sum of copies of Z, one for each maximal
Z-ideal of A with cyclic factor in A.

A polar preserving endomorphism of an Z-group A is an Z-endomor-
phism φ with the property that x A y = 0 in A implies that xφ Λ y = 0.
(For an in-depth discussion of these endomorphisms the reader is
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referred to [2].) In our notation the semigroup of polar preserving
endomorphisms is precisely the set of Z-endomorphisms which are
dominated by the identity on A. The subgroup they generate is one
of the L^A, A).

If φ is an Z-homomorphism of A onto B and θ is a polar preserv-
ing endomorphism (p-endomorphism) of B, then φθ < φ, for if xφ Λ y = 0
then xφθ Λ y — 0. Conversely, if φ' e ^ ( A , B) and φ' < φ one easily
sees that Ker (φ) £ Ker {φ'). This implies the existence of an endomor-
phism θ of B satisfying bθ = aφ' if b = aφ. θ is certainly well defined,
and it is a p-endomorphism since φ dominates φ'. It follows then
that if i is the index in I determined by φ, L^A, B) is o-isomorphie
to the group generated by the ^-endomorphisms of B.

We close this section with a rather general comment: for arbitrary
Z-groups A and B the groups L^A, B) are subgroups of &{A, B);
the inclusion mappings are compatible with the fij9 so by the defini-
tion of co-limits we have a "natural" homomorphism of L(A, B) into
^ ( A , B). It assigns to φ = ( , φi9 .) the sum of the φi in ^ ( A , B).
About all that is on the surface concerning this mapping is that it is
onto and an o-homomorphism. As a major unanswered question we
might pose the following: when is this mapping an o-isomorphism?
In most of the examples one can dream up it is, but as the Z-groups
get more complex, our knowledge of the structure of L(A, B) decreases
rapidly.

2* The functor L(*,B). We will show that L(*,B) is a con-
travariant functor from the category of abelian Z-groups and Z-homo-
morphisms into the category of directed, semi-closed p. o. groups with
o-homomorphisms. (L(A9 •) does not seem to be a functor at all.)

Suppose φ: A —> A' is an Z-homomorphism; if θl9 Θ2\ Ar —• B are
Z-homomorphisms and dγ < θ2 then φθ1 -< φθ2. Thus φ induces an o-
homomorphism φι of each Li(A\ B) into some Lφ(i)(A, B); the map
i-*φ(ϊ) is an order preserving map of I{A\ B) into I(A, B). We have
canonical embeddings μ{\ L{(A, B) —> L{A, B){i e I{A, B)) and

μό: Ls(A'f B) > L(A', B)(j e I(A', B)) .

We also have the connecting embeddings {/o }, for i ^ j e I{A, B), and
{fa}, for ί^je /(A', B). Consider now for each ί e I(A', B) the map
φ%w: Li(A', B) — L{A, B). We show that if i ^ j in I(A\ B) then

for if 0 £ aίy a2 e L^A', B)
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(a, - aύfutfμφM = (φoii - φa2)μΦ(ji = (φax - φa2)fφ(i)ΦU)μΦU)

= ( ^ - φa2)μφ{i)

By the definition of the co-limit there is a unique homomorphism
L(φ, B): L{A\ B) —> L(A, B) such that βiL(φf J5) = ^ ( i ) , for each
i6l(A',B). Thus if

α = ( , α<, •) e L(A ' f B) , α L f o £ ) = (•• , ( ί * < U ), •)

it is clear then that L(φ, B) is order preserving.
The next two lemmas are easy to prove; consequently we shall

not bore the reader with their proofs.

LEMMA 2.1. L{ ,B) is a contravarίant functor; that is if
φ: Aλ —> A2 and θ: A2 —> A3 are l-homomorphisms then

B) = L(θ,B)-L(φ,B),

and L(1A, B) — lLUfB). (1G denotes the identity mapping on G.)

LEMMA 2.2. If φ, φf:A~+Af are l-homomorphisms and φ + φ' is
too, then L(φ + φ\ B) = L(φ, B) + L(φ', B).

In a category ^ with zero the co-kernel of a morphism /: A —> B
is a morphism 7: B—+C such that fy = 0, and having the property
that if δ: B-+D is any morphism with fδ — 0, then there is a unique
morphism δ':C—*D such that yδ' = δ. In the category of abelian
Z-groups the co-kernel of an ϊ-homomorphism φ: A —> B is the canonical
mapping η: B —* B/J where J is the convex hull of the image of φ.
All epimorphisms of this category have zero co-kernel, but not con-
versely. For instance, the embedding j : Z—>Zffl Z onto the diagonal
has zero co-kernel, but if φ denotes the i-automorphism of Z EB Z
given by (a, b)φ = (6, a) then jφ = jΊzmz = j , so j is not epic.

THEOREM 2.3. If a: A—+ B is an l-homomorphism with zero co-
kernel then L{ay X) has a trivially ordered kernel. This holds in
particular if a is epic. If a is onto B then L(a, X) is one-to-one.

Proof. Suppose φ — ( , φif •) 6 L(B, X) with each φt ;> 0, and
assume φL{a, X) = 0. Thus (•••, (cxφi)a(i), •••) = 0; this means that
the vector ( , (ctφi)a(i), •) of EB {Li(A, X) \ie I(A, X)} is in a trivial-
ly ordered subgroup. Thus each aφi = 0, and since a has zero co-
kernel, each φi = 0.

Now suppose a is onto and θ e L(B, X). If θ — ( , θi9 •) is in
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reduced form then we seek to show ( , (##<)«(•>» •) is too. Clearly
ieI(B,X) is in the support of ( ••, θi9 •) if and only if a{i) is in
the support of (•••, {aθ^a{i)9 •••) since a is onto. Suppose now that
&(i), oc(j) are both in the support of ( , ((xθi)a(i), •) and k e I(A, X)
exceeds both of them. Then whenever 0 ̂  7< e L{(B9 X) and 0 ̂  yd e
Lj(B, X), a% + ajj = a(yt + 7, ) is an ϊ-homomorphism of A into X.
Again using the fact that a is onto one can then readily show that
Ίi + Ύj is an Z-homomorphism. But then some index of I(B, X) ex-
ceeds i and jf contradicting the hypothesis that ( , θiy •) is reduc-
ed. A similar argument shows that the size of the support of
(•••, (0Lθi)aχU •••) is minimal; it now follows that (•••, (aθ^a[i), •••) is
reduced.

Thus if 0 = ΘL(a, X) = (•••, (aθi)aίi), •••) then each aθt = 0 and
so θ€ — 0 for all i e I(B, X); hence θ = 0 and so L(a, X) is one-to-one.
(We shall see later that L(a, X) is in fact an o-embedding.)

The natural question here is: what does L( , X) do to short exact

sequences of i-groups ? (We call a sequence 0—>A—+ B —> C —>0 of
ϊ-homomorphisms short exact if a is one to one, β is onto and
Ker (β) — Im (a).) We will show presently that L(β, X) is an o-
monomorphism. Certainly L(β, X) L{a, X) = L(aβ,) — 0, but do we
get exactness at L(Bf X)? We shall give some partial answers, and
then make some (hopefully) educated guesses.

a
PROPOSITION 2.4. If 0—>A—>B-^C—>0 isa short exact sequence

of l-groups, and if 0 ̂  φ e Ker (L(a, X)) then ψ e (L(C, X)+)L(/3, X).
In particular L(β9 X) is an o-embedding.

Proof. If φ = ( , φi9 .) ^ 0 and φL(a, X) = 0 then

This means that in ffl {^(A, X) | i e I(A, X){( . , (#&)««„ •) is a
vector whose components add to zero. But each entry aφi is 0 or an
i-homomorphism; if the sum of i-homomorphisms is zero each of them
is zero. Thus aφ{ = 0 for each ieI(B9 X); since β is the co-kernel
of a, there is an ϊ-homomorphism 7*: C - ^ X such that βT = φ{. This
determines a 7 e L(C, X) whose image under L(β, X) is p; clearly
0 ^ 7 and our proposition is proved.

PROPOSITION 2.5. If 0-+A-^B^C-+0 splits cardinally, i.e.
B^AmC, then L(B, X) s L(C, X) ffl L(A, X).

Proof. If B ^ i f f l C we have i-homomorphisms ρ:C—+B and
σ: B —> A such that ασ = l4 > pβ = iσ> pσ = 0 and l s == σα + βp. For
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each Z-group X we have

L{σ, X)L(a, X) = lLU,X) , L(β, X)L(p, X) = lLWtX),

L(σ, X)L(p, X) = 0, L(β, X)L(a, X) = 0 ,

and finally by Lemma 2.2

L(a9 X)L(σ, X) + L(p, X)L(β, X) = lL[B,x) .

This proves L(B, X) s L(C, X) E L(A, X).

PROPOSITION 2.6. Let j : G—+G be the natural embedding of the
l-group G in its divisible hull. For each l-group X L(j, X) is an
o-embedding. If X is divisible L(j, X) is onto.

Proof. If φx and φ2 are any two homomorphisms of G into the
Z-group X which agree on G, then since each x e G is of the form
x = (l/ri)g, for a suitable positive integer n, we have

n(xφ,) = n((l/n)g)φi = gφι = gφ2 = n((l/n)g)φ2 = ̂ (α;^2) ,

which implies that && = α;̂ 2, since X is torsion free. Clearly then
L(i, X) is one-to-one. Moreover, if φ: G -• X is a homomorphism whose
restriction to G is an Z-homomorphism then φ is an Z-homomorphism;
for if x = (l/n)ff e G with gr G G then

n(a? V 0)^ - n((l/n)g V 0)^ = (fVθ)ί = ί ^ V O = h(l/»)^] V 0
= n[(l/n)gφ V 0] = ?φ0 V 0).

This says that L(j, X) is an o-embedding. Finally, if X is divisible
then each Z-homomorphism of G —• X extends (uniquely) to an Z-homo-
morphism of G —* X; in other words, L(j, X) is onto.

We shall for the remainder of the section study the question of
exactness of L( , X) for o-groups X; according to 1.7 the picture we
get of L(A, X) is somewhat less cluttered. The preceding result tells
us that if X is divisible we might as well assume that A is So we
ask: given an o-group X, which exact sequences 0—•A—>2?—>C—>0
go to exact sequences

0 — L(C, X) -> L(B, X) — L(A, X) ?

Prior to going into these questions more deeply we record some inter-
esting properties of L( ,X).

PROPOSITION 2,7. Let φ: A-+B be an l-homomorphism onto B.
If L(φ, X) is an o-isomorphism for each o-group X then φ itself is
an isomorphism.
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REMARK. An analogous statement holds for o-groups X with a
minimal nonzero convex subgroup.

Proof. If φ is not one-to-one pick 0 < x e Ker (φ) and let N be
a prime subgroup that fails to contain x. Set X = A/N and 17: A —• X
to be the canonical Z-homomorphism. Then ( , 0, , τj9 , 0, •) e
L(A, X) is not an image under L(φ, X).

THEOREM 2.8. Let A be an l-group; A is a subdirect product of
reals if and only if whenever φ: A—+ B is an l-homomorphism onto
B then L(φ, R): L(B, R)—* L(A, R) is an l-isomorphism if and only
if φ is an l-isomorphism.

Proof. Suppose φ: A —• B is an ϊ-homomorphism onto B. Let us
examine what L{φ, R) does. There is a one-to-one correspondence
between the maximal Z-ideals of B and the maximal ϊ-ideals of A that
contain K — Ker (φ). Now L(B, R) and L(A, R) are both cardinal
sums of copies of JB, one for each maximal Z-ideal of B and A re-
spectively. So L(φ, R) is nothing more than the injection of L(B, R)
onto that portion of L(A, R) corresponding to maximal ϊ-ideals of A
that contain K.

If L(φ, R) is then onto for some φ with nonzero kernel, then every
maximal Mdeal of A contains K and so A is not a subdirect product
of reals. Conversely, if A is not a subdirect product of reals let D
be the intersection of all the maximal Z-ideals of A; D Φ 0. Let
B = A/D and φ be the canonical mapping of A onto B. By our argu-
ments in the previous paragraph L(φ, R) is an ϊ-isomorphism.

REMARK. A similar theorem holds for subdirect products of
integers.

a
THEOREM 2.9. Let 0 —> A —>B-^C—*0 be a short exact sequence

of l-groups. If X is any Archimedean o-group then the induced
sequence

0 — (C, X) -> L(B, X) — L(A, X) is exact.

If X — R then L((x, X) is onto if and only if every maximal l-ideal
of A is the meet of a maximal l-ideal of B with A. If this is the
case L(B, X) s L(C, X) ffl L(A, X). If X = Z then L(a, X) is onto
if and only if every maximal l-ideal of A with cyclic factor is the
meet with A of a maximal l-ideal of B with cyclic factor.

Proof. As in 1.8 we have that if φ: B —• X is an Z-homomorphism
its kernel M is a maximal ϊ-ideal and φ determines an o-isomorphism
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from B/M-+X which is a right multiplication by a suitable positive
real number. The difference here is that not all maximal Z-ideals
appear as indices for L^B, X)y and the L{(B9 X) themselves need not
be full copies of R. Still L(B, X) is a cardinal sum of subgroups of
R one for each "admissible" maximal Z-ideal. Now L(β, X) acts as
in the proof of 2.8: there still is a one-to-one correspondence between
maximal Z-ideals of C that appear as kernels of Z-homomorphisms into
X and the same type of maximal Z-ideals of B that contain A. So
L(β, X) is the injection of L(C, X) onto that portion of L(B, X) cor-
responding to those maximal Z-ideals of B that contain A.

As for L(a, X) we have the following: if φ: B —> X is once again
an Z-homomorphism, and M = Ker (φ) ̂  A then M Π A is a maximal
Z-ideal of A and it is the kernel of aφ. Thus L(a9 X) has the effect
of annihilating all the components of L(B, X) corresponding to maxi-
mal Z-ideals of B that contain A, and being the identity on the re-
maining components.

It is now clear that 0 -+ L(C, X) -> L(B, X) -— L(A, X) is exact,
and also that the last part of the theorem holds, in the special cases
when X = R or X = Z.

In fact, after we record the following definition we have a better
theorem.

Let X be an o-group and G be any Z-group; a prime subgroup N
of G is an X-entry of G if it appears as the kernel of some Z-homo-
morphism of G into X. Thus:

THEOREM 2.9a. If O ^ i ^ ΰ ^ C ^ O is exact then L{B,X) ^
L(C, X) EB L(A, X) for an Archimedean o-group X if and only if
every X-entry of A is the meet of an X-entry of B with A.

We have the following sufficient condition for the exactness of
0 —> L(C, X) —• L(B, X) —• L{A, X), when X is an arbitrary o-group.

a
THEOREM 2.10. If 0 -* A — B -^ C -» 0 is exact, then 0 -> L(C, X) ->

L(B, X) —• L(A, X) is exact if A + N = B for every X-entry of B
which does not contain A.

The proof of this theorem depends upon the following lemma,
which is known and quite easy to prove. (See [1], Theorem 1.14.)

LEMMA 2.11. Let G be an l-group, A be a nonzero l-ideal of G.
There is an o-isomorphism between the set of prime subgroups of G
that do not contain A and the proper prime subgroups of A via the
mapping N\-+ Nf) A.
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Proof of 2.10. Since the index sets Z( ,X) are inversely o-iso-
morphic to a subset of prime subgroups we shall use the prime sub-
groups themselves to index the groups that make up the L( ,X)'s.

Suppose then that φ — ( , φN, •) is in reduced form and
φL(a, X) = 0, that is ( , (aφN)NC]A, •) = 0. If N 2 A then aφN is
identically zero; to see this write φN = φ^ — φ^, with φ%9 φΰ e ^f(B, X);
the kernels of φ% and φ# contain N and hence A. In this case we
need not worry about φN; pick θ, ψe L(C, X) such that βθ = φ% and
βψ = ΦN; then β(θ - ψ) = φN.

We are therefore left to consider those prime subgroups NoίB which
do not contain A. By Lemma 2.11 the support of (•••, (ocφN)NΓιA, •••)
is determined by precisely those prime subgroups; the lemma also guar-
antees that the representation is reduced. We have then that ocφN — 0
for each prime subgroup N ^ A. Once again, writing φN = φ^ — ΦN
as a difference of ί-homomorphisms (whose kernels contain N but not
A, for otherwise they would also vanish when restricted to A) we
have aφ^ = aφ^.

Our assumption is though that A + N = B for each such prime
subgroup N, and this implies that Φ% — φ#. The conclusion here is
that the support of φ = ( , φN, •) consists of those X-entries which
contain A. Our first paragraph in this proof then makes it clear
that φ is the image of some element of L{C, X) under L(β, X). This
completes the proof of the theorem.

COROLLARY 2.10.1. Suppose A is a maximal l-ideal of B, let
C = B/A and 0 —* A —> B —> C —> 0 be the induced exact sequence. If
A is also a minimal prime subgroup then 0 —> L(C, X) —* L(B, X) —»
L(A, X) is exact for all o-groups X.

An ί-group G is hyper-archimedean if it is -Archimedean and every
ί-homomorphic image of G is Archimedean. It is well known (see for
instance [1], Theorem 2.4) that G is hyper-archimedean if and only if
every prime subgroup is maximal (and hence minimal).

COROLLARY 2.10.2. If B is a hyper-archimedean l-group and
0->A->β->C->0 is exact then 0 -> L{C, X) -> L{B, X) — L(A, X)
is exact for every o-group X.

Proof. Every prime subgroup of B is both maximal and minimal;
consequently, if N is an X-entry of B that does not contain A we
have B = A + N. Theorem 2.10 now applies.

Another sufficient condition for the exactness of 0 —> L{C, X) —•
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L(B, X) —>L(A, X) is obtained by requiring that 0—>A ^+B—• C —* 0
be "right splitting", i.e., that β be a retract.

THEOREM 2.11. Let 0—•A-^I?-->C—»0 be an exact sequence of
l-groups, and suppose ρ:C~+B is an l-homomorphism such that
pβ = lc. Then for each o-group 1 0 ^ L(C, X) -+ L(B, X) -> L(A, X)
is exact.

Proof. We use the notation of the proof of Theorem 2.10. Let
φ = ( . . . ? φNy . . . ) be an element of L{B, X) in reduced form and con-
sider φL(a, X) = (•••, (aφN)NΠA, •*•); as shown in 2.10 this is once
again reduced. So if φL(ay X) — 0 we have aφN — 0 for all X-entries
N of B. As before, write φN — ΦN — ΦJ as the difference of Z-homo-
morphisms of B into X. For each X-entry define Θ^,Θ^\C-+X by
θ% = ρφ+ and 6χ = pφ-^. We claim that ΘL(β, X) = φ, where θ =

Note that ^ induces a group direct sum 5 = i 0 C ; more precisely,
each δ e B can be expressed uniquely as δ = aa + c/?, where c = δ/2.
Thus δ/3#£ = bβpφi and δ/3^ = bβpφ^, while δ^J = αα^J + cpφ% =
α^^J + bβpφ% = αα^J + δ/3̂ vJ likewise δ ^ = α α ^ + δ/3#ί, which im-
plies that bφN = δ/S^, for all δ € J5.

This suffices to prove that ΘL(β, X) = ^, and our theorem is
proved.

Cί β

COROLLARY 2.11.1. Let Q—+A—>B-->C—+0 be an exact sequence;
in all of the cases below 0 —> -L(C, X) —»I/(β, X) —* L(Af X) is exact
for each o-group X.

( a ) C is a protective l-group.
( b ) B is divisible and A is a prime subgroup of B.
( c ) B is a direct lexicographic extension of A by C.

Proof. In each of the above cases β is a retract and the theorem
applies.

COROLLARY 2.11.2. // 0—*A-^B—>C-+0 is exact where A is
a prime subgroup of B then 0 —> L(C, X) —> L(B, X) —• L(A, X) is
exact for each divisible o-group X.

Proof. Apply Proposition 2.6 and Corollary 2.11.1 (b).

The following example may serve to illustrate a bit the difficulty

in deciding which conjectures ought to be made in connection with

this functor. Let X — Z x Z with the lexicographic order: that is,
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(m, n) ^ 0 if m > 0 or m = 0 and then n ;> 0. We will show that if
0—*,4—>B—*C—> 0 is a short exact sequence then 0 —• L(C, X) —*
L(JB, X) —> L(A, X) is exact. So consider an exact sequence 0 —> A —*
J? —* C —>0, suppose φ = (.. 9φN9 ...) is in reduced form and
φL(a, X) = 0 (φeL(Bf X)). As in the proof of 2.10 it suffices to con-
sider those X-entries N such that iV g3 A. As before write φN =
#& - #ϊ as a difference of ϊ-homomorphisms whose kernels do not
contain A. By our assumption aφ% = α ^ ; ^ and φ# have a common
kernel, and after factoring out this kernel we have two o-embeddings
of X into itself, say θ1 and θ2, which agree on the nonzero proper
convex subgroup of X. The o-homomorphisms of X into itself are
given by triangular integral matrices

m p\
I with m > 0, w ^ 0 or m = n — 0 and p ^ 0 .

If ^ = (Ψ* ^Λ (i = 1, 2) and ^ agrees with θ2 as specified, then

nι — n2, so clearly θ1 — θ2 is either order preserving or order inverting.
Lifting back to B φ% — φ# is either an ϊ-homomorphism or the

additive inverse of one. Since a{φ% — φΰ) = 0 there is a unique i-
homomorphism ψ: C—+ X such that /5ψ == ί(^+ — ̂ -). This suffices to
prove the exactness of the sequence.

The reader will appreciate the special nature of the above
example.

3* Comments and questions* It appears that our functor will
be of little use as the classical Hom-functor is in extension theory of
abelian groups and modules. One might try to define an Ext-like
functor using protective resolutions; in that case the question of in-
dependence of the resolution used appears to be an impossible problem.
Or one could choose some "standard" free resolution; here it is obvious
that computations could become nightmarish.

In view of some of our results, particularly Theorems 2.8 and
2.9, one can expect L( ,X) to be useful in characterizing certain
lattice-group theoretical concepts. In any case, one large disadvantage
of our construction is that there is no functoriality in the second
variable.

Another possibility is that L( ,J?) might serve as a "duality"
functor between Z-groups and abelian groups. Then one practically
has to restrict oneself to subdirect products of reals, (L(A, R) = 0 if
A has no maximal Z-ideals), and then two such subdirect products of
reals might very well have the same dual, (if they have the same
number of maximal Mdeals.) A true duality can be realized, at least
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for subdirect products of reals, if one computes L(A, X) for every
Archimedean o-group, and then associates for each A the whole
"spectrum" {L(A, X) \ X is a subgroup of R}. Such a duality is
evidently too cumbersome.
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