LIMITS FOR MARTINGALE-LIKE SEQUENCES

ANTHONY G. MUCCI
LIMITS FOR MARTINGALE-LIKE SEQUENCES

ANTHONY G. MUCCI

The concept of a martingale is generalized in two ways. The first generalization is shown to be equivalent to convergence in probability under certain uniform integrability restrictions. The second generalization yields a martingale convergence theorem.

1. Introduction. In what follows \(\{X_n, \mathcal{B}_n\} \) is a sequence of integrable random variables and sub-sigma fields on the probability space \((\Omega, \mathcal{B}, P)\) such that

\[
X_n \text{ is } \mathcal{B}_n\text{-measurable}
\]

\[
\mathcal{B}_n \subseteq \mathcal{B}_{n+1}
\]

\[
\mathcal{B} = \sigma\left(\bigcup_1 \mathcal{B}_n\right).
\]

We call the sequence \(\{X_n, \mathcal{B}_n\} \) an adapted sequence. In [2] Blake defines \(\{X_n, \mathcal{B}_n\} \) as a game which becomes fairer with time provided

\[
E(X_n | \mathcal{B}_m) - X_m \xrightarrow{P} 0 \quad \text{as } n \geq m \to \infty,
\]

i.e., provided, for all \(\varepsilon > 0 \):

\[
\lim_{m \to \infty} P(\{E(X_n | \mathcal{B}_m) - X_m\} > \varepsilon) = 0
\]

It is proven in [1] that if \(\{X_n, \mathcal{B}_n\} \) becomes fairer with time, and if there exists \(Z \in L_1 \) with \(|X_n| \leq Z \) for all \(n \), then \(X_n \xrightarrow{\mathcal{C}} X \), some \(X \in \mathcal{L}_1 \).

In the present paper we will show that \(X_n \xrightarrow{\mathcal{C}} X \) under the less restrictive assumption that \(\{X_n\} \) is uniformly integrable. We will further show that in the presence of uniform integrability \(\{X_n, \mathcal{B}_n\} \) becomes fairer with time if and only if \(\{X_n\} \) converges in probability, i.e.,

\[
E(X_n | \mathcal{B}_m) - X_m \xrightarrow{P} 0 \iff X_n - X_m \xrightarrow{P} 0.
\]

Finally, by using the more restrictive concept that \(\{X_n, \mathcal{B}_n\} \) is a martingale in the limit, namely,

\[
\lim_{m \to \infty} (E(X_n | \mathcal{B}_m) - X_m) = 0 \quad \text{a.e.,}
\]

we will prove (Theorem (2)) a generalization of a standard martingale convergence theorem.
2. PROPOSITION 1. Let the sequence \(\{X_n\} \) be uniformly integrable and assume
\[
\lim_{n \to \infty} \int_A X_n \text{ exists, all } A \in \bigcup_i ^\infty \mathcal{B}_n .
\]
Then there exists \(X \in L_1 \) such that
\[
\lim_{n \to \infty} \int_A X_n = \int_A X , \text{ all } A \in \mathfrak{B} .
\]

Proof. Let \(A \in \mathfrak{B}, \delta > 0 \). There exists \(A_\delta \in \bigcup_i ^\infty \mathcal{B}_n \) with \(P(A \Delta A_\delta) \leq \delta \). This, together with the argument in Neveu [3] (page 117) proves the desired result.

REMARKS. Let \(\Omega = [0,1) \) with Lebesgue measure. Let \(\mathcal{B}_n \) be the \(\sigma \)-field generated by the subintervals \(A_{k,n} = [k/2^n, (k+1)/2^n), k = 0,1, \ldots, 2^n - 1 \). Set \(X_n = \sum_{k=0}^{2^n-1} (-1)^k I_{A_{k,n}} \), where \(I_A \) is the indicator function of \(A \). Then for any \(A \in \bigcup \mathcal{B}_n \) we have \(\lim_{n \to \infty} \int_A X_n = 0 \). Further, \(\{X_n\} \) is uniformly integrable. However, \(\{X_n\} \) does not converge in the \(L^\infty \)-norm.

PROPOSITION 2. Let \(\{X_n\} \) be uniformly integrable and assume \(\{X_n\} \) becomes fairer with time:
\[
(*) \quad \lim_{n \to \infty} P(\{|E(X_n | \mathcal{B}_m) - X_m| > \varepsilon\}) = 0 .
\]
Then there exists \(X \in L_1 \) such that \(X_n \overset{d}{\to} X \).

Proof. Let \(A \in \mathcal{B}_m, p \geq q \geq m \). Then
\[
\left| \int_A X_p - \int_A X_q \right| = \left| \int_A E(X_p | \mathcal{B}_q) - X_q \right|
\leq \int_A \int_{A(E(X_p | \mathcal{B}_q) - X_q > \varepsilon)} |E(X_p | \mathcal{B}_q) - X_q| + \varepsilon
\leq 2 \sup_k \int_A \int_{A(E(X_p | \mathcal{B}_q) - X_q > \varepsilon)} |X_k| + \varepsilon .
\]
By uniform integrability and the assumption (*) we see that
\[
\lim_{n \to \infty} \int_A X_n \text{ converges, all } A \in \bigcup_i ^\infty \mathcal{B}_n .
\]
By Proposition 1, there exists \(X \in L_1 \) with
\[
\lim_{n \to \infty} \int_A X_n = \int_A X , \text{ all } A \in \mathfrak{B} .
\]
Note that \(\{E(X|\mathcal{B}_n), \mathcal{B}_n\} \) is a martingale and \(E(X|\mathcal{B}_n) \to X \) both in the \(L_1 \) and the almost sure sense (Levy’s Theorem). Since
\[
\int |X_n - X| \leq \int |X_n - E(X|\mathcal{B}_n)| + \int |E(X|\mathcal{B}_n) - X|,
\]

it will be enough to show \(\int |X_n - E(X|\mathcal{B}_n)| \to 0 \). Now
\[
\int |X_n - E(X|\mathcal{B}_n)| = \int_{\{X_n \geq E(X|\mathcal{B}_n)\}} (X_n - E(X|\mathcal{B}_n)) + \int_{\{X_n < E(X|\mathcal{B}_n)\}} (E(X|\mathcal{B}_n) - X_n).
\]

Letting \(n' \geq n \) and setting \(A = \{ |E(X_{n'}|\mathcal{B}_n) - X_n| > \varepsilon \} \), we have
\[
\int_{\{X_n \geq E(X|\mathcal{B}_n)\}} (X_n - E(X|\mathcal{B}_n)) \leq \int_A |X_n| + \int_A |X_n'|
+ \int_{\{X_n \geq E(X|\mathcal{B}_n)\}} (X_n' - X) + \varepsilon
\leq 2 \sup_k \int_A |X_k|
+ \int_{\{X_n \geq E(X|\mathcal{B}_n)\}} (X_n' - X) + \varepsilon.
\]

By uniform integrability and condition (*) the first integral is small. Letting \(n' \to \infty \), the difference in the remaining integral tends to zero. An identical analysis shows
\[
\int_{\{X_n < E(X|\mathcal{B}_n)\}} (E(X|\mathcal{B}_n) - X_n) \to 0.
\]

REMARKS. Suppose \(X_n \overset{d}{\to} X \). Then since
\[
\int_A |X_n| \leq \int |X_n - X| + \int_A |X|,
\]

we see that \(\{X_n\} \) is uniformly integrable. Further
\[
P(|E(X_n|\mathcal{B}_m) - X_m| > \varepsilon) \leq \frac{1}{\varepsilon} \int |E(X_n|\mathcal{B}_m) - X_m|
\leq \frac{1}{\varepsilon} \int |X_n - X_m|,
\]

so \(\{X_n, \mathcal{B}_n\} \) becomes fairer with time. It is shown (Neveu [3], page 52):
\(\{X_n\} \) is Cauchy in the \(L_1 \) norm \(\iff \{X_n\} \) is uniformly integrable and \(\{X_n\} \) is Cauchy in probability.

We tie these results together with Proposition 2 to get
THEOREM 1. Let \(\{X_n, \mathcal{F}_n\} \) be an adapted sequence. Then the following three statements are equivalent:

(a) There exists \(X \in \mathcal{L}_1 \) and \(X_n \xrightarrow{L_1} X \).

(b) \(\{X_n\} \) is uniformly integrable and \(E(X_n|\mathcal{F}_m) - X_m \xrightarrow{P} 0 \).

(c) \(\{X_n\} \) is uniformly integrable and \(X_n - X_m \xrightarrow{P} 0 \).

COROLLARY 1. Let the adapted sequence \(\{X_n, \mathcal{F}_n\} \) be uniformly integrable. Then

\[
E(X_n|\mathcal{F}_m) - X_m \xrightarrow{P} 0 \iff X_n - X_m \xrightarrow{P} 0 .
\]

REMARKS. In the absence of uniform integrability we have neither implication. Consider the following two examples:

1. Set \(X_n = \sum_{k=1}^{n} y_k \) where \(\{y_k\} \) is a sequence of independent identically distributed random variables with zero means. Set \(\mathcal{F}_n = \sigma(y_1, y_2, \cdots, y_n) \). Clearly \(\{X_n, \mathcal{F}_n\} \) is a martingale, so \(E(X_n|\mathcal{F}_m) - X_m \xrightarrow{P} 0 \). But, if, for instance

\[
y_k = \begin{cases}
1 & \text{with probability } \frac{1}{2} \\
-1 & \text{with probability } \frac{1}{2} \end{cases}
\]

then

\[
P(|X_n - X_m| \geq 1) = P \left(\left| \sum_{k=1}^{n-m} y_k \right| \geq 1 \right)
\]

\[
= 1 - P \left(\sum_{k=1}^{n-m} y_k = 0 \right) \sim 1 - \frac{c}{\sqrt{n-m}} \xrightarrow{} 0 ,
\]

so \(X_n - X_m \xrightarrow{P} 0 \).

2. Let \(\{y_k\} \) independent where \(P(y_k = k^2) = 1/k^2 \) and \(P(y_k = 0) = 1 - 1/k^2 \). Then, setting \(X_n = \sum_{k=1}^{n} y_k \) we have

\[
|E(X_n|\mathcal{F}_m) - X_m| = E \sum_{n-m}^{n} y_k \geq 1
\]

while

\[
P(|X_n - X_m| \geq \varepsilon) = P \left(\sum_{n-m}^{n} y_k \geq \varepsilon \right) = P \left(\bigcup_{n-m}^{n} (y_k \geq \varepsilon) \right)
\]

\[
\leq \sum_{n-m}^{n} P(y_k \geq \varepsilon) = \sum_{n-m}^{n} \frac{1}{k^2} \xrightarrow{} 0 ,
\]

so in this case \(X_n - X_m \xrightarrow{P} 0 \) while \(E(X_n|\mathcal{F}_m) - X_m \xrightarrow{P} 0 \).
Recall now the definition that \(\{X_n, \mathcal{B}_n\} \) be a martingale in the limit, namely:

\[
(\star) \quad E(X_n | \mathcal{B}_n) - X \to 0 \text{ almost everywhere.}
\]

Theorem 2. Let the adapted sequence \(\{X_n, \mathcal{B}_n\} \) be uniformly integrable and a martingale in the limit. Then there exists \(X \in \mathcal{L}_1 \) such that

\[
X_n \to X \text{ almost everywhere and in the } \mathcal{L}_1\text{-norm.}
\]

Proof. Clearly, \(\{X_n, \mathcal{B}_n\} \) becomes fairer with time, so from Theorem 1 there exists \(X \in \mathcal{L}_1 \) with \(X_n \xrightarrow{\mathcal{L}_1} X \). Now, for an arbitrary subsequence \(\{n'\} \),

\[
|X_m - X| \leq |X_m - E(X_{n'} | \mathcal{B}_m)| + |E(X_{n'} - X | \mathcal{B}_m)| + |E(X | \mathcal{B}_m) - X|.
\]

By Levy's theorem, the third term is less than \(\varepsilon/3 \) for large enough \(m \). The first term is also bounded by \(\varepsilon/3 \) for large \(m, n' \) since \(\{X_n, \mathcal{B}_n\} \) is a martingale in the limit. We must now show that the second term is small. Note first that for an arbitrary \(\sigma \)-field \(\mathcal{X} \) we have

\[
E(X_n | \mathcal{X}) \xrightarrow{\mathcal{X}} E(X | \mathcal{X}).
\]

Now start with the \(\sigma \)-field \(\mathcal{B}_i \) and note that the convergence \(E(X_n | \mathcal{B}_i) \xrightarrow{\mathcal{B}_i} E(X | \mathcal{B}_i) \) implies the existence of subsequence \(\{n_i\} \subset \{n\} \) with \(E(X_{n_i} | \mathcal{B}_i) \to E(X | \mathcal{B}_i) \) almost everywhere. Continuing, we have \(E(X_{n_i} | \mathcal{B}_i) \xrightarrow{\mathcal{B}_i} E(X | \mathcal{B}_i) \), and we can extract \(\{n_i\} \subset \{n_i\} \) with \(E(X_{n_i} | \mathcal{B}_i) \to E(X | \mathcal{B}_i) \) almost everywhere. Thus, there exists a subsequence \(\{\tilde{n}\} \subset \{n\} \) with \(E(X_{\tilde{n}} | \mathcal{B}_{\tilde{n}}) \to E(X | \mathcal{B}_{\tilde{n}}) \) a.e. for all \(m \), namely the diagonal subsequence. Now choose \(\{n'\} \) as a subsequence of \(\{\tilde{n}\} \), and we can bound the second term above by \(\varepsilon/3 \).

Applications. 1. Let \(\{y_k\} \) be a sequence of independent random variables such that

\[
\lim_{m \to \infty} \left| \sum_{n=m}^{\infty} y_k \right| = 0.
\]

Then \(\sum_{n} y_k \) exists a.e. and in the \(\mathcal{L}_1 \)-norm.

Proof. Set \(S_n = \sum_{i=0}^{n} y_k \). Then

\[
\int_{\mathcal{A}} |S_n| \leq \int_{\mathcal{A}} |S_m| + \int_{m+1}^{\infty} |y_k|,
\]

LIMITS FOR MARTINGALE-LIKE SEQUENCES 201
so it is clear that \(\{S_n\} \) is uniformly integrable. Further, setting \(\mathcal{B}_n = \sigma(y_1, y_2, \ldots, y_n) \), we have

\[
|E(S_n | \mathcal{B}_m) - S_m| = \left| \sum_{k=m+1}^{n} y_k \right| \leq \sum_{k=m+1}^{n} y_k,
\]

so \(\{S_n, \mathcal{B}_n\} \) is uniformly integrable martingale in the limit.

2. Let \(\{X_n, \mathcal{B}_n\} \) be an adapted uniformly integrable sequence with \(|E(X_{n+1} | \mathcal{B}_n) - X_n| \leq c_n \) where \(\{c_n\} \) is a sequence of constants with \(\sum_{n}^{\infty} c_n < \infty \). Then there exists \(x \in L_1 \) with \(X_n \to X \) almost everywhere and in the \(L_1 \)-norm.

Proof. We have

\[
E(X_n | \mathcal{B}_m) - X_m = \sum_{k=m}^{n-1} E(X_{k+1} - X_k | \mathcal{B}_m)
\]

\[
= \sum_{k=m}^{n-1} E(E_{k+1} - X_k | \mathcal{B}_k | \mathcal{B}_m).
\]

Thus

\[
|E(X_n | \mathcal{B}_m) - X_m| \leq \sum_{m}^{n-1} c_k.
\]

REFERENCES

1. L. Blake, A note concerning a class of games which become fairer with time, to appear, Glasgow Math. J.

Received June 23, 1972 and in revised form October 2, 1972. This research was supported by a University of Maryland General Research Board Grant, Summer 1972.

UNIVERSITY OF MARYLAND
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

J. DUGUNDJI*
Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan Aarts and David John Lutzer, Pseudo-completeness and the product of Baire spaces</td>
<td>1</td>
</tr>
<tr>
<td>Gordon Owen Berg, Metric characterizations of Euclidean spaces</td>
<td>11</td>
</tr>
<tr>
<td>Ajit Kaur Chilana, The space of bounded sequences with the mixed topology</td>
<td>29</td>
</tr>
<tr>
<td>Philip Throop Church and James Timourian, Differentiable open maps of $(p + 1)$-manifold to p-manifold</td>
<td>35</td>
</tr>
<tr>
<td>P. D. T. A. Elliott, On additive functions whose limiting distributions possess a finite mean and variance</td>
<td>47</td>
</tr>
<tr>
<td>M. Solveig Espelie, Multiplicative and extreme positive operators</td>
<td>57</td>
</tr>
<tr>
<td>Jacques A. Ferland, Domains of negativity and application to generalized convexity on a real topological vector space</td>
<td>67</td>
</tr>
<tr>
<td>Michael Benton Freeman and Reese Harvey, A compact set that is locally holomorphically convex but not holomorphically convex</td>
<td>77</td>
</tr>
<tr>
<td>Roe William Goodman, Positive-definite distributions and intertwining operators</td>
<td>83</td>
</tr>
<tr>
<td>Elliot Charles Gootman, The type of some $C^$ and $W^$-algebras associated with transformation groups</td>
<td>93</td>
</tr>
<tr>
<td>David Charles Haddad, Angular limits of locally finitely valent holomorphic functions</td>
<td>107</td>
</tr>
<tr>
<td>William Buhmann Johnson, On quasi-complements</td>
<td>113</td>
</tr>
<tr>
<td>William M. Kantor, On 2-transitive collineation groups of finite projective spaces</td>
<td>119</td>
</tr>
<tr>
<td>Joachim Lambek and Gerhard O. Michler, Completions and classical localizations of right Noetherian rings</td>
<td>133</td>
</tr>
<tr>
<td>Kenneth Lamar Lange, Borel sets of probability measures</td>
<td>141</td>
</tr>
<tr>
<td>David Lowell Lovelady, Product integrals for an ordinary differential equation in a Banach space</td>
<td>163</td>
</tr>
<tr>
<td>Jorge Martinez, A hom-functor for lattice-ordered groups</td>
<td>169</td>
</tr>
<tr>
<td>W. K. Mason, Weakly almost periodic homeomorphisms of the two sphere</td>
<td>185</td>
</tr>
<tr>
<td>Anthony G. Mucci, Limits for martingale-like sequences</td>
<td>197</td>
</tr>
<tr>
<td>Eugene Michael Norris, Relationally induced semigroups</td>
<td>203</td>
</tr>
<tr>
<td>Arthur E. Olson, A comparison of c-density and k-density</td>
<td>209</td>
</tr>
<tr>
<td>Donald Steven Passman, On the semisimplicity of group rings of linear groups</td>
<td>215</td>
</tr>
<tr>
<td>Charles Radin, Ergodicity in von Neumann algebras</td>
<td>235</td>
</tr>
<tr>
<td>P. Rosenthal, On the singularities of the function generated by the Bergman operator of the second kind</td>
<td>241</td>
</tr>
<tr>
<td>Arthur Argyle Sagle and J. R. Schumi, Multiplications on homogeneous spaces, nonassociative algebras and connections</td>
<td>247</td>
</tr>
<tr>
<td>Leo Sario and Cecilia Wang, Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball</td>
<td>267</td>
</tr>
<tr>
<td>Ramachandran Subramanian, On a generalization of martingales due to Blake</td>
<td>275</td>
</tr>
<tr>
<td>Bui An Ton, On strongly nonlinear elliptic variational inequalities</td>
<td>279</td>
</tr>
<tr>
<td>Seth Warner, A topological characterization of complete, discretely valued fields</td>
<td>293</td>
</tr>
<tr>
<td>Chi Song Wong, Common fixed points of two mappings</td>
<td>299</td>
</tr>
</tbody>
</table>