ERGODICITY IN VON NEUMANN ALGEBRAS

CHARLES RADIN
ERGODICITY IN VON NEUMANN ALGEBRAS

CHARLES RADIN

We investigate the ergodicity of elements of a von Neumann algebra \(\mathcal{A} \) under the action of an arbitrary cyclic group of inner *-automorphisms of \(\mathcal{A} \). A simple corollary of our results is the following characterization: A von Neumann algebra \(\mathcal{A} \) is finite if and only if for each \(A \in \mathcal{A} \) and inner *-automorphism \(\alpha \) of \(\mathcal{A} \), there exists \(\tilde{A} \in \mathcal{A} \) such that

\[
\frac{1}{N} \sum_{n=0}^{N-1} \alpha^n(A) \rightarrow \tilde{A}
\]

in the weak operator topology.

1. Introduction. Our purpose is to explore in a new direction the ergodic theory of von Neumann algebras presented by Kovács and Szűcs [2]. In [2] the essential contribution was the introduction of a certain restriction (called G-finiteness) on a group of *-automorphisms of a von Neumann algebra, fashioned so that all elements of the algebra behave ergodically with respect to the group. Instead we consider the action of a natural class of (cyclic) groups of *-automorphisms, namely the inner ones, and investigate which elements of the algebra behave ergodically with respect to all such groups.

2. Behavior of infinite projections. From the ergodic theory developed in [2], we note the following simple consequence.

Theorem 0. (Kovács and Szűcs). Let \(\mathcal{A} \) be a finite von Neumann algebra. For each \(A \in \mathcal{A} \) and each inner *-automorphism \(\alpha \) of \(\mathcal{A} \), there exists \(\tilde{A} \in \mathcal{A} \) such that

\[
\frac{1}{N} \sum_{n=0}^{N-1} \alpha^n(A) \rightarrow \tilde{A}
\]

in the strong operator topology.

Our first result is a complement to this and provides a new characterization of finiteness for von Neumann algebras.

Theorem 1. Let \(\mathcal{A} \) be a von Neumann algebra. For each nonzero infinite projection \(P \in \mathcal{A} \) there exists an infinite projection \(\theta \in \mathcal{A} \), \(\theta \leq P \), and a unitary \(U \in \mathcal{A} \), such that

\[
\frac{1}{N} \sum_{n=0}^{N-1} U^n\theta U^{-n}
\]

does not converge in the weak operator topology.

First we need the following lemma.

Lemma. There exists a nonzero properly infinite projection \(P' \leq P \).

Proof. Let \(S \) be the set of all central projections \(E \) of \(\mathcal{A} \) such
that EP is finite. 0 $\in S$ so S is not empty. Let $\{E_a\}$ be an orthogonal family of elements of S. If $\sum_a E_a P \sim Q \leq \sum_a E_a P$ (where \sim is the usual equivalence relation for projections in \mathfrak{A}), then $E_a P \sim E_a Q \leq E_a P$ so that $E_a Q = E_a P$ and therefore $Q \leq \sum_a E_a Q = \sum_a E_a P$. Therefore, $Q = \sum_a E_a P$ and so $\sum_a E_a P$ is finite. It follows easily that there exists a (unique) maximal element F in S. From [1, III.2.3.5] it follows that $(I-F)P$ is nonzero and infinite. Assume it is not properly infinite. Then from [1, III.2.5.9] there exists a central projection G such that $0 \neq G(I-F)P$ is finite. But then from [1, III.2.3.5] $F < F + G(I-F)P \in S$, which contradiction proves our lemma with $P' = (I-F)P$.

Proof of Theorem 1. From [1, III.8.6.2] there exists a set $\{P_n \mid n \in \mathbb{Z}\}$ of nonzero projections $P_n \in \mathfrak{A}$ such that $P_n P_m = \delta_{n,m} P_n$ and $P_n \sim P_m$ for all $m, n \in \mathbb{Z}$, and such that $\sum_{|n| \leq m} P_n \longrightarrow P'$ in the strong operator topology. Therefore, there exist $V_n \in \mathfrak{A}$ such that $V_n^* V_n = P_n$ and $V_n V_n^* = P_{n+1}$ for all $n \in \mathbb{Z}$, so that $P_{n+1} V_n = V_n P_n$ and $P_n V_n^* = V_{n+1}^* P_{n+1}$ for all $n \in \mathbb{Z}$. Define for each $f \in \mathcal{H}$ (the Hilbert space of definition of \mathfrak{A}),

$$Uf = (\text{norm lim}_{m \rightarrow \infty} \sum_{|n| \leq m} V_n P_n f) + (I - P') f,$$

where the limit exists since $\|V_n P_n f\| = \|P_n f\|$ and $V_n P_n f = P_{n+1} V_n f$ so that $\{V_n P_n f \mid n \in \mathbb{Z}\}$ are pairwise orthogonal and

$$\sum_{|n| \leq m} \|V_n P_n f\|^2 = \sum_{|n| \leq m} \|P_n f\|^2 \leq \|P' f\|^2.$$

In fact U is clearly a linear and norm preserving surjection, and therefore unitary. Now since

$$\left(\sum_{|n| \leq l} V_n P_n\right) \text{ norm lim } \sum_{m \rightarrow \infty} P_m f = \sum_{|n| \leq l} V_n P_n f$$

it follows that $U_l = I - P' + \sum_{|n| \leq l} V_n P_n$ has U as a strong operator limit as $l \rightarrow \infty$. Therefore, $U \in \mathfrak{A}$. It also follows that $U P_n U^{-1} = P_{n+1}$ for all $n \in \mathbb{Z}$, and so by induction $U^m P_n U^{-m} = P_{n+m}$ for all $m, n \in \mathbb{Z}$.

Now define $g: \mathbb{N} \rightarrow [0, 1]$ by

$$g(n) = \begin{cases} 1 & \text{if } 3^m \leq n < 3^{m+1} \text{ for some } m \in \mathbb{N} \\ 0 & \text{if } 3^{m+1} \leq n < 3^{m+2} \text{ for some } m \in \mathbb{N}. \end{cases}$$

Then define θ as the strong operator limit as

$$K \rightarrow - \infty \text{ of } \sum_{m=0}^0 g(-m) P_m,$$

and let ψ be a unit vector in $P_0 \mathcal{H}$. Now consider
\[\langle \psi, \frac{1}{N} \sum_{n=0}^{N-1} U^n \theta U^{-n} \psi \rangle = \frac{1}{N} \sum_{n=0}^{N-1} \langle \psi, U^n \theta U^{-n} P_0 \psi \rangle \]
\[= \frac{1}{N} \sum_{n=0}^{N-1} \sum_{m=-\infty}^{0} g(-m) \langle \psi, P_{n+m} P_0 \psi \rangle \]
\[= \frac{1}{N} \sum_{n=0}^{N-1} g(n) . \]

It is easy to see that for all \(M \in N, \frac{1}{3^{2M+1}} \sum_{n=0}^{2^{M+1}-1} g(n) \geq \frac{2}{3} \) yet \(\frac{1}{3^{2M+2}} \sum_{n=0}^{2^{M+1}-1} g(n) \leq \frac{1}{3} \), and the theorem is proven.

Using Theorem 0, we have immediately,

COROLLARY 1 (resp.2). A von Neumann algebra \(\mathfrak{A} \) is finite if and only if for each \(A \in \mathfrak{A} \) and inner *-automorphism \(\alpha \) of \(\mathfrak{A} \), there exists \(\bar{A} \in \mathfrak{A} \) such that \(\frac{1}{N} \sum_{n=0}^{N-1} \alpha^n(A) \xrightarrow{N \to \infty} \bar{A} \) in the weak (resp. strong) operator topology.

3. Finite elements. Theorem 1 raises the question of the ergodic behavior, under arbitrary inner *-automorphisms, of "finite elements" of infinite von Neumann algebras. The following theorem gives some information in this direction.

THEOREM 2. Let \(\mathfrak{A} \) be a von Neumann algebra and \(\tau \) a faithful normal semi-finite trace on \(\mathfrak{A}^+ \) invariant under the *-automorphism \(\alpha \) of \(\mathfrak{A} \). Then for each \(A \in \mathfrak{A} \) such that \(\tau(A^*A) < \infty \), there exists \(\bar{A} \in \mathfrak{A} \) such that \(\frac{1}{N} \sum_{n=0}^{N-1} \alpha^n(A) \xrightarrow{N \to \infty} \bar{A} \) in the strong operator topology.

Proof. First we define the following (standard) objects: see e.g. [1, 1.6.2.2]

\[||| \|_2 : A \in \mathfrak{A} \longrightarrow [\tau(A^*A)]^{1/2} \]
\[\mathcal{N}^- = \{ A \in \mathfrak{A} \mid \| A \|_2 < \infty \} . \]

Let \(L_2 \) be the abstract completion of \(\mathcal{N}^- \) in the norm \(|| \|_2 \), and extend \(|| \|_2 \) to \(L_2 \) in the usual way. Let \(i \) be the isometric embedding of \(\mathcal{N}^- \) into \(L_2 \). \(L_2 \) is a Hilbert space with the obvious addition and scalar multiplication, and inner product \(\langle, \rangle \) defined as the extension to \(L_2 \times L_2 \) of

\[\tau : A \times B \in \mathcal{N}^- \times \mathcal{N} \longrightarrow \tau(A^*B) . \]

We note the simple inequalities
\[|| AB ||_2 \leq || A || || B ||_2 \quad \text{for all} \ B \in \mathcal{N}, \ A \in \mathfrak{A} \]
\[|| AB ||_2 \leq || A ||_2 || B || \quad \text{for all} \ B \in \mathcal{N}, \ A \in \mathfrak{A} . \]
We then define the C^*-representation π of \mathcal{A} on L_2 by
\[
\pi(A)i(B) = i(AB)
\]
and noting that $\|\pi(A)i(B)\|_2 = \|AB\|_2 \leq \|A\| \|B\|_2$, so that $\pi(A)$ extends uniquely to L_2 by continuity. It is easy to see that π is faithful and normal and that
\[
U: i(B) \longrightarrow i(\alpha[B]) \quad \text{for } B \in \mathcal{N}
\]
extends to a unitary operator on L_2. Defining, for $B \in \mathcal{A}$,
\[
B_N = \frac{1}{N} \sum_{n=0}^{N-1} \alpha^n(B),
\]
we know by von Neumann's mean ergodic theorem that for each $A \in \mathcal{N}$, $i(A_N)$ is $\|\cdot\|_2$-Cauchy. Define for each $B \in \mathcal{N}$,
\[
D_A: i(B) \longrightarrow \text{norm lim}_{N \to \infty} \pi(A_N)i(B)
\]
which limit exists since
\[
\|\pi(A_N - A_M)i(B)\|_2 \leq \|A_N - A_M\|_2 \|B\|.
\]
D_A is obviously linear. Furthermore,
\[
\|D_A i(B)\|_2 = \lim_{N \to \infty} \|\pi(A_N)i(B)\|_2 \leq \|A\| \|B\|_2
\]
so D_A extends uniquely to a bounded operator on L_2 by continuity. It is easy to see that $\pi(A_N)$ converges to D_A in the strong operator topology. Since π is normal, $\pi(\mathcal{A})$ is strong operator closed [1, I.4.3.2] so there exists $\tilde{A} \in \mathcal{A}$ such that $D_A = \pi(\tilde{A})$. Since π is faithful, $A_N \to \tilde{A}$ in the strong operator topology [1, I.4.3.1].

COROLLARY 1. Let \mathcal{A} be a countably decomposable von Neumann algebra. For each finite projection $P \in \mathcal{A}$ and inner *-automorphism α of \mathcal{A}, there exists $\tilde{P} \in \mathcal{A}$ such that
\[
\frac{1}{N} \sum_{n=0}^{N-1} \alpha^n(P) \overset{N \to \infty}{\longrightarrow} \tilde{P} \quad \text{in the strong operator topology}.
\]

Proof. Let
\[
A \in \mathcal{A} \longrightarrow A_1 \oplus A_2 \in \mathcal{A}_1 \oplus \mathcal{A}_2
\]
be the canonical decomposition of \mathcal{A} into its countably decomposable semi-finite and purely infinite components. From [1, I.6.7.9] we know that any finite countably decomposable von Neumann algebra has a faithful, normal, tracial state. Inserting this fact into the proof of
[3, 2.5.3], we see that there exists a countable faithful family \(\{\tau_n \mid n \in \mathbb{N}\} \) of normal semi-finite traces on \(\mathfrak{A}^+ \) with pairwise orthogonal supports such that \(\tau_n(P_i) < \infty \) for all \(n \in \mathbb{N} \). Define

\[
\tau' = \sum_{n=0}^{\infty} \tau_n/[\tau_n(P_i) + 2]^a
\]

on \(\mathfrak{A}^+ \); it is faithful, normal and semi-finite. Since \(\alpha \) is also inner for \(\mathfrak{A} \) and therefore leaves \(\tau' \) invariant, we may apply Theorem 2 to \(\mathfrak{A} \). Since \(P_i = 0 \) from [1, III.2.4.8], we are finished.

In the countably decomposable case, Theorem 2 gives us an essentially different proof of Theorem 0, namely

Corollary 2. Let \(\mathfrak{A} \) be a finite countably decomposable von Neumann algebra. For each \(A \in \mathfrak{A} \) and inner \(* \)-automorphism \(\alpha \) of \(\mathfrak{A} \), there exists \(\overline{A} \in \mathfrak{A} \) such that

\[
\frac{1}{N} \sum_{\pi=0}^{N-1} \alpha^n(A) \xrightarrow{N \to \infty} \overline{A} \text{ in the strong operator topology}.
\]

Proof. Just combine the existence of a faithful finite normal trace on \(\mathfrak{A}^+ \) [1, I.6.7.9] with Theorem 2.

References

Received June 6, 1972. Research supported by AFOSR under Contract F44620-71-C-0108.

PRINCETON UNIVERSITY
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI*
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *

AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan Aarts and David John Lutzer</td>
<td>Pseudo-completeness and the product of Baire spaces</td>
<td>1</td>
</tr>
<tr>
<td>Gordon Owen Berg</td>
<td>Metric characterizations of Euclidean spaces</td>
<td>11</td>
</tr>
<tr>
<td>Ajit Kaur Chilana</td>
<td>The space of bounded sequences with the mixed topology</td>
<td>29</td>
</tr>
<tr>
<td>Philip Throop Church and James Timourian</td>
<td>Differentiable open maps of $(p + 1)$-manifold to p-manifold</td>
<td>35</td>
</tr>
<tr>
<td>P. D. T. A. Elliott</td>
<td>On additive functions whose limiting distributions possess a finite mean and variance</td>
<td>47</td>
</tr>
<tr>
<td>M. Solveig Espelie</td>
<td>Multiplicative and extreme positive operators</td>
<td>57</td>
</tr>
<tr>
<td>Jacques A. Ferland</td>
<td>Domains of negativity and application to generalized convexity on a real topological vector space</td>
<td>67</td>
</tr>
<tr>
<td>Michael Benton Freeman and Reese Harvey</td>
<td>A compact set that is locally holomorphically convex but not holomorphically convex</td>
<td>77</td>
</tr>
<tr>
<td>Roe William Goodman</td>
<td>Positive-definite distributions and intertwining operators</td>
<td>83</td>
</tr>
<tr>
<td>Elliot Charles Gootman</td>
<td>The type of some $C^$ and $W^$-algebras associated with transformation groups</td>
<td>93</td>
</tr>
<tr>
<td>David Charles Haddad</td>
<td>Angular limits of locally finitely valent holomorphic functions</td>
<td>107</td>
</tr>
<tr>
<td>William Buhmann Johnson</td>
<td>On quasi-complements</td>
<td>113</td>
</tr>
<tr>
<td>William M. Kantor</td>
<td>On 2-transitive collineation groups of finite projective spaces</td>
<td>119</td>
</tr>
<tr>
<td>Joachim Lambek and Gerhard O. Michler</td>
<td>Completions and classical localizations of right Noetherian rings</td>
<td>133</td>
</tr>
<tr>
<td>Kenneth Lamar Lange</td>
<td>Borel sets of probability measures</td>
<td>141</td>
</tr>
<tr>
<td>David Lowell Lovelady</td>
<td>Product integrals for an ordinary differential equation in a Banach space</td>
<td>163</td>
</tr>
<tr>
<td>Jorge Martinez</td>
<td>A hom-functor for lattice-ordered groups</td>
<td>169</td>
</tr>
<tr>
<td>W. K. Mason</td>
<td>Weakly almost periodic homeomorphisms of the two sphere</td>
<td>185</td>
</tr>
<tr>
<td>Anthony G. Mucci</td>
<td>Limits for martingale-like sequences</td>
<td>197</td>
</tr>
<tr>
<td>Eugene Michael Norris</td>
<td>Relationally induced semigroups</td>
<td>203</td>
</tr>
<tr>
<td>Arthur E. Olson</td>
<td>A comparison of c-density and k-density</td>
<td>209</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>On the semisimplicity of group rings of linear groups.</td>
<td>215</td>
</tr>
<tr>
<td>Charles Radin</td>
<td>Ergodicity in von Neumann algebras</td>
<td>235</td>
</tr>
<tr>
<td>P. Rosenthal</td>
<td>On the singularities of the function generated by the Bergman operator of the second kind</td>
<td>241</td>
</tr>
<tr>
<td>Arthur Argyle Sagle and J. R. Schumi</td>
<td>Multiplications on homogeneous spaces, nonassociative algebras and connections</td>
<td>247</td>
</tr>
<tr>
<td>Leo Sario and Cecilia Wang</td>
<td>Existence of Dirichlet finite biharmonic functions on the Poincaré 3-ball</td>
<td>267</td>
</tr>
<tr>
<td>Ramachandran Subramanian</td>
<td>On a generalization of martingales due to Blake</td>
<td>275</td>
</tr>
<tr>
<td>Bui An Ton</td>
<td>On strongly nonlinear elliptic variational inequalities</td>
<td>279</td>
</tr>
<tr>
<td>Seth Warner</td>
<td>A topological characterization of complete, discretely valued fields</td>
<td>293</td>
</tr>
<tr>
<td>Chi Song Wong</td>
<td>Common fixed points of two mappings</td>
<td>299</td>
</tr>
</tbody>
</table>