Pacific Journal of
Mathematics

COMMON FIXED POINTS OF TWO MAPPINGS

CHI SONG WONG




PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 1, 1973

COMMON FIXED POINTS OF TWO MAPPINGS

CHI SONG WONG

Let S, T be functions on a nonempty complete metric
space (X, d). The main result of this paper is the following.
S or T has a fixed point if there exist decreasing functions
ay, az as, @z, as of (0, o) into [0, 1) such that (a) 3%, a: <1;
(b) d1=00s O Qg=0y, (c) limcjo(ll’1+a2)<1 and lnglo (as+a4)<1
and (d) for any distinet 2, ¥ in X,

d(S(@), T(y)) < ard(z, S(x)) + a:d(y, T(y)) + asd(w, T(y))

+ a4d<y9 S(x» + asd(x’ ?/) ’
where a; = «;(d(x, ¥)). A number of related results are ob-
tained.

1. Introduction. Let (X,d) be a nonempty complete metric
space and let S, T be mappings of X into itself which are not neces-
sarily continuous nor commuting. Suppose that there are nonnegative
real numbers a,, a,, a;, a,, a; such that

(a) e, +a+a+a+a,<1,
(b) a, = a, or a, = a, ,
and for any %, ¥ in X,

(e) d(S(x), T(y)) = a.d(x, S)) + ad(y, T(y)) + ad(z, T(y))
+ ad(y, S(x)) + ad(z, y) .

It is proved in this paper that each of S, T has a unique fixed point
and these two fixed points coincide. Among others, a generalization
is obtained by replacing a,, a,, @, a,, @; with nonnegative real-valued
functions on (0, ). This result generalizes the Banach contraction
mapping theorem and some results of G. Hardy and T. Rogers [5],
R. Kannan [7], E. Rakotch [8], S. Reich [9], P. Srivastava, and
V. K. Gupta [10]. It also gives a different proof for these special
cases. Note that even if X = [0,1] and if T,, T, are commuting
continuous functions of X into itself, 7, T, need not have a common
fixed point [1], [2], and [6].

2. Basic results.

THEOREM 1. Let S, T be mappings of a complete metric space
(X, d) into itself. Suppose that there exist nonnegative real numbers
a,, ds Ay Ay 5 which satisfy (@), (b), and (c¢). Then each of S, T
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has a unique fixed point and these two fixed points coincide.

Proof. Let x,€ X. Define

Pomrr = S{(Xs)s Topae = T{®opnrr) » n=20,1,2 ...
From (c¢),
d(xu xz) = d(S(xo), T(xl))
§ (a1 + as)d(xo, xl) + aZd(xu xz) + a3d(x0, xZ)
= (o, + as)d(xo, @) + a2d(961, %) + aa(d(xo; ») + d(xu %)) «

So
(1) Ao, o) < Dt BT Ggy 4)
1—a,— a
Similarly,
(2) Aoy, w) = LT B F Dy g
1 — 0 — Uy
Let
r=a1+a3+a5, S___a2+a4+a5.
1—a,— a 1—a —q

Repeating the above argument, we obtain, for each » =0,1,2, ---
(3) a1y Tante) = P41, Taa)

(4) Aonvsy Panss) = SA(Dansn, Tonts) -

By (3), (4), and induction, we have, for each n =0,1,2, «--,

(5) UBzns1y Tanss) = 7(r8)"d(Do, %)

(6) A(znvzy Tonie) = (r8)" (o, @)

Since rs < 1 and
S d(@,, wr) < (L + 1) 3 (5@, )

{z,} is Cauchy. By completeness of (X, d), {»,} converges to some
point ¢ in X. We shall now prove that = is a fixed point of S and
T. Let n be given. Then

d@, S(®@) = d(®@, Tznss) + A(S (@), Typss)

() = d(®, Tans2) + AS @), T (@204.)) -

By (c),
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(8) d(S(x), T (@enss) = a,d(®, S()) + oA (Bant1y Tanss) + a,d(x, Ts)

+ a4d(xzn+x, S(m)) + asd(x, Dont1) »
Combining (7) and (8) and letting » tend to infinity, we obtain
dz, S(@)) = (o, + a)d(x, S()) .

Since a, + a, < 1, S(x) = 2. Similarly T(x) = x. Let y be a fixed
point of 7. Then from d(z,y) = d(S(x), T(y)) and (c), we obtain

d(x, Y) = (aa + a, + a_,,)d(ib', y) .

Since a; + a, + a; < 1, d(@, y) = 0. So T has a unique fixed point.
Similarly, S has a unque fixed point.

When a,=a,=a;=0, S=T and T is continuous (or even
x—d(z, T(x)) is lower semicontinuous) on X, Theorem 1 can be ob-
tained by an earlier result of the author [11, Theorem 1].

From the proof of Theorem 1, we know that S, T still have a
common fixed point if conditions (a), (b) are replaced by the following
conditions:

(9) (@ +a+a)a+a,+a)<l—0a—a)l—a —a),
(10) a +a, <1.

If in addition,

11) o +a+a, <1,

then the common fixed point of S, T is the unique fixed point of S
(and T). Note that conditions (a) and (b) imply (9), but (a) alone
does not. Indeed, for any a,, @, a; in [0, ) with a, # ¢, and
a, + a, + a; <1, we can always find @, @, in [0, ) such that (a)
holds but (9) does not. This can be seen by considering the affine
function f:
fE,)=01—-a—-2)1—a -y — (& + 2+ a)(a: + ¥y + a)
defined on the compact convex set
K={=1vel0,1] x[0,1]: a, + a, + &+ y + a; = 1} .

f takes its minimum value at one of the extreme points of K.
With some computation, we conclude that

min f(K) = — |a, — a,| (L — @, — @, — @) «

Since a, + a, + a; > 1, min f(K) < 0 if and only if a, # a,. Thus if
a, # a,, then by continuity of f, there exists a point (as, a,) in
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K\{@,9)eK: o, + a.+ 2+ y +a =1}
such that f(as;, a) < 0. ‘
CoroLLARY 1. R. Kannan [7, Theorem 1]. Let S be a mapping

of a complete metric space (X,d) into itself. Suppose that there
exists a number r in [0,1/2) such that

d(S(x), S(¥)) = r(dx + S@)) + dy, S¥)))
for all =, y in X. Then S has a unique fixed point.
COROLLARY 2. P. Srivastava and V. K. Gupta [10, Theorem 1}.

Let S, T be mappings of a complete metric space (X, d) into itself.
Suppose that there exists monnegative real numbers a,, a, such that

(2) a +a, <1
and
(b) dS @), T(y) = ad(x, Sx) + ad(y, T(y))

for all =, y in X.

Then S, T have a unique common fixed point.

Srivastava and Gupta stated the above result in a more general
form with S, T replaced by S?, T? for some positive integers p, q.
Since the unique fixed point of S? (similarly 7?9 is the unique fixed
point of S, this result is equivalent to Corollary 2.

For Corollaries 1 and 2, we have the following related result.

PROPOSITION. Let S, T be self-maps of a nonempty complete
metric space (X, d). Suppose that there exist monmegative real
numbers a,, a, such that a, + a, < 1 and

(*) d(S(x), T(y) = a.d(w, S(@) + a.d(y, T(¥), =, yeX.
Then either (*) is true when all of its S are replaced by T or (*) is

true when all of its T are replaced by S.

The following example proves that our result is actually more
general than that of Srivastava and Gupta.

ExaMpPLE. Let X ={1,2,8}. Let d be the metric for X deter-
mined by

d(1,2) = 1’ d(zy 3) = %’ ’ d(I, 3) = —"75" .
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Let S, T be the function on X such that
S(1) = 82 = S@) = 1;
TA) =T =1, TE@ =3.

Let ,=0, @, =0, 0, =0, a, = 5/7, a; = 0. Then the conditions of
Theorem 1 are satisfied. However, no nonnegative real numbers
a,, Gy 0G5 a5 can be chosen such that a, + a, + a; + a; < 1 and for
z,ye X,

d(S(@), T(y)) < ad(x, S&) + a.d(y, T(y)) + ad(x, T(y)) + ad(=, ) .
For if there exist such a,, a,, a;, a; then

d(S(3), T(2)) = a,d(3, S(3)) + a.d(2, T(2) + a,d(3, T(2)) + a,d(3, 2) .
So

+—,;1‘§—,?'(a1+az+a5)<'g‘,

S5a, | 4a,
7+7

5
7
a contradiction.

COROLLARY 3. G. Hardy and T. Rogers [5, Theorem 1]. Let S be
a mapping of a nonempty complete metric space (X, d) into itself.
Suppose that there exist nonmnegative real numbers a,, a, a,; a, a;
such that

(a) : a1+a2+a3+a4+a5<1.
and
(b) d(S(), S(y)) < ad(x, Six) + a.d(y, S¥)) + ad(x, S(y))

+ a4d(y, S(x)) + a5d(x, y)
for all ©, y in X.

Then S has a unique fixed point.

Note that in the above case, we may without loss of generality
assume that a, = a,, a; = a, (replace a,, a,, a;, a,, a; respectively by

at+a a,+a at+a 0+ aq
2 ' 2 7 2 7 2

y Qs

if necessary). So the above result follows from Theorem 1. The
above example shows that there is no such symmetry (a, = a,, a;, = a,)
for the general case. Indeed, we cannot even assume @, = a,. For
if a; = a,, then for the above example, we have
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2 - asE), TO) S S a + S o+ at o
~$asdusdosdar e

<%(a1+a2+a3+a4+a5)<-,?—,
a contradiction.

2. Extensions and some ralated results. The following result
generalizes Theorem 1. Its proof is different from the one we gave
for Theorem 1.

THEOREM 2. Let S, T be functions on a monempty complete
metric space (X, d). Suppose that there exist decreasing functions
@, @, @, a, &5 of (0, ) into [0, 1) such that

(a) Sha; <1

(b) a = &, OF O =

(e) lim,o(e + a;) <1 and lim, (o, + a) <15

(d) for any distinect =, y in X,

d(S@), T(y) = ad(=, S@) + a.d(y, T(y) + ad(z, T(y))
+ ad(y, S(@) + ad(z, y) ,

where a; = o;(d(x, ).

Then at least one of S, T has a fized point. If both S and T
have fized points, then each of S, T has a unique fixed point and
these two fixed points coincide.

Proof. Let z,e X. Define for each n =0,1,2, ---,
Tongr = S(@2n) 5 Tonie = T @pnss) , b = A(Xy Tyss)

We may assume that b, > 0 for each =, for otherwise some 2, is a
fixed point of S or 7. Let

_au(t) + as(t) + ast)
O T —att) >0
S(t) — az(t) + a’4(t) + aﬁ(t) , t > 0 .

1—a() — au)
Then 7, s are decreasing. From (a) and (c), the limits
r,=limr®), s, =lims()
tlo tlo

are nonnegative real numbers. Let
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f@) =r®s® , t>0.

Then f is decreasing and f(f) <1 for each £ > 0. As in the proof
of Theorem 1, we have for each n =0,1,2, ...,

(12) bZn+1 g ’r(bZ'n)b‘a’n ’
(13) bonie = S(b2ns1)banss «

Let n be given. Then

(14) benrs = 7(bza+2) 8(bznr)Donss 5
(15) bzniz = 8(Bensd) 7(020)bs
Since 7, s are decreasing,

(16) binss = f(IN {Brns2, b2nsi}) b2ns
17 bonse = f(Min {Bons1, Don})bzn

Since f(t) <1 for each ¢ >0, {b.,+:}, {b..} are decreasing sequences.
So {b:,..}, {b:.} converge respectively to some points ¢, ¢,, We shall
prove that ¢, = 0, ¢, = 0. From (12) and (13),

€ = Ty » C; < 80y«

So either both ¢, ¢, are zero or both ¢, ¢, are not zero. Suppose to
the contrary that ¢, # 0, ¢, # 0. Then from (16) and (17),

(18) bur: = f(min {c,, c.})b, , n=20,1,2 .-,
By induction,
(19) b < (f(min {e,, ¢)"b, n=01,2 .

So ¢, = 0, a contradiction. Therefore, ¢, = ¢, = 0. This proves that
{b,} converges to 0.

Now we shall prove that {x,} is Cauchy. Suppose not. Then
there exist ee (0, <) and sequences {p(n)}, {g(n)} such that for each
n = 0,

(20) p(n) > q(n) > n,
(1) A@pim)y Tam) Z €
and (by the well-ordering principle),

(22) A pny—1, Tyem) < €

Let n = 0 be given, ¢, = d(xyn), T,m). Then



306 CHI SONG WONG

ese,

@ =
= @ pinyy Toim—s) + C@pimr—1y Tom) < bpim—s + €

From ¢, = ¢, = 0, we conclude that {c,} converges to ¢ from the right.
Let

I, = {n: p(n), ¢(n) are odd},

I, = {n: p(n) is odd, q(n) is even} .

I, = {n: p(n) is even, q(n) is odd},

I, = {n: p(n), g(n) are even} .

Then at least one of I, I,, I, I, is infinite. Suppose first that I, is
infinite. Let

dn = d(xp(m—l, xq(n)) ’ n = 0: 1: 2’ et .

Since {c,} converges to ¢ and {b,} converges to 0, we conclude from
(22) that {d,} converges to ¢ from the left. Thus

Jio={nel: @y # Tym}
is infinite. Let ned,, %, = d(Tpny_1, Tymy+). Then

Co = A@pnyy Tyiny) = A @pimyy Tym+s) F B@gima1y Toimy)

24

( ) é d(S(xp(m-l)’ T(xq('n))) + bq(n) d
From (d),

(25) d(S(xP('n)-l)’ T(xq(n))) é al(dn)bp(n)—l + az(dn)bq(n) + as(dn)un

+ a(d.)e. + ad.)d, .
From (24) and (25),

C,,,, _S_ al(dn)bp(n)~1 + az(d'n)bq(n) + as(dn)un + aA(dn)cn

26
( ) + aﬁ(dn)dﬂ. + bq(n) .

Without loss of generality, we may assume that each «; is continuous
from the left, for we can replace the «;’s by
Bi(t) = {iglai(s) , t>0, 1=1,2,3,4,5
and conditions (a), (b), (¢), and (d) still hold. Thus
’1‘1311 a;(d,) = ae) , 1=1,2,8,4,5.
So from (26),
€ < (a5(8) + aule) + agle)e < ¢,
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a contradiction. Now suppose that I, is infinite. By a similar argu-
ment, J, = {n € L} Ty, # Lgm—) 18 infinite. Let neJd,

Vo = @ piny—1y Toim—1) » Wy = A(pinyy Tornr—s)
Then

Cn = d(S(xp(n)——l), T(wq(n)~1))

27
BT )by + )by + Oy + Eu(B s + A02)0s -

Since {v,} converges to & (not necessarily from the left or right), we
obtain the same contradiction from (27). The other two cases are
similar to the above two except the roles of S, T interchange. Hence
{x,} is Cauchy. By completeness, {x,} converges to a point x in X.
Since b, >0 for each n, J = {n: ¢ # %,,,,} or K= {n: & +# x,,} is
infinite. Suppose that K is infinite. Let ne K,

ln = d(xy xzn) s h'n = d(xy w2n+l) .
Then
d(xy T((XF)) é d(x; x2n+1) + d(x2n+l’ T(x))
= by + d(S(®:.), T(x))
< ha + au(la)ben + (L)d(@, T(x) + aa(l,)d(%en, T(2))
+ a4(ln)h'n + a!)(ln)ln
< ko + (L)l + a(la)d(@, T(x) + eyl + d(@, T(@))]
+ al:(ln)hn + aﬁ(l’lb)ln .
So

1 + a4(l”) aa(ln) + ab(ln)
d(, Tw) = 1— a,(l,) — ay(l,) ho + 1 — a(ly) — ag(ls)
(28) a,(l,)
T wt) —aln

From (a) and (c), the sequences

1+ a(l,) a,(l,) + ai(l,) a,(l,)
1-— C(g(ln) bt Ofs(ln) ’ 1~ a2(l'n) - aa(ln) ’ 1-— az(ln) - a3(l'/b)

are bounded. So from (28), T(x) = x. Similarly, S@) =« if J is
infinite. Hence S or T has a fixed point.

The following result follows easily from Theorem 2.

THEOREM 3. With the conditions of Theorem 2, if further,
dS (@), T(x)) = ald(, S@) + d, T@)], zeX
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for some acl0,1), then each of S, T has a unique fized point and
these two fixed points coincide.

We remark that the conditions of Theorem 1 imply the conditions
of Theorem 3. Also, G. Hardy and T. Rogers [5, Theorem 2] gave
a different proof for the case S = T. Their proof cannot be modified
for the general case. To see that the conclusion of Theorem 2 is
best possible, we note that if X = {0, 1} with the usual distance and
if S, T are two distinct functions of X onto X, then S, T satisfy
the conditions of Theorem 2 (and Theorem 3 with a = 1), but one
has two fixed points and the other has none.

THEOREM 4. Let (X,d) be a monempty compact metric space.
Let S, T be functions of X into itself. Suppose that S or T is
continuous. Suppose further that there exist nommnegative real-valued
decreasing functions a,, a,, &, a,, & on (0, ) such that

(a) a,+a,+0;+a,+a, =1,

(b)) a, = a, and o, = a,,

(e¢) for any distinct x, y in X,

d(S(x), T(y)) < ad(z, S@) + ad(y, T(¥) + ad(x, T(y)) +
ad(y, S@)) + ad(z, y) ,

where a; = a;(d(x, ¥)).

Then S or T has a fized point. If both S and T have fixed points,
then each of S and T has a unique fized point and these two fixed
points coincide.

Proof. By symmetry, we may assume that S is continuous.
Let f be the function on X such that
f@) =d@, S@), weX.

Then f is continuous (we merely need the fact that f is lower semi-
continuous) on X. So f takes its minimum value at some =z, in X.
We claim that @, is a fixed point of S or S(z,) is a fixed point of T.
Suppose not. Let

w, =8y, x=7T), x=>~3),

b, = d(x,, ), b, = d(x;, %), b = d(@s, x) «
Then b, > 0, b, > 0. From (c), we can prove that
(29) (1 — a(by) — ay(b))b, < (ar,(by) + s(by) + a5(by))b, -
Let
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p(d) =1 —a(®) —a®), qt) =a(®) + at) + a®), t>0.

From (a) and (b), p(b) > 0. So

30 b, < 20 g
( ) p(bo)
Similarly,

o(b)
(31) b, < wb)
where

w(t) =1 — a,(t) — at), v(t) = a(t) + a,(f) +ast), t>0.
From (30) and (31),

2(b) g(b) 4
(®2) b < ) 20

It suffices to prove that (v(b,)q(b)/u(b)p(b)) < 1, for then, b, < b,, a
contradiction to the minimality of b, Let b = min {b,, b,}. Then

v(b)q(by) — u(b)p(by) = v(b)q(b) — u(b)p(b) <0

if o, =a, and a; = a,. S0 S or T has a fixed point. Now suppose
that « is a fixed point of S and y is a fixed point of 7. Then
x = y, otherwise, from (c¢),

d(z,y) = d(S), T(y)) < d(x,y) ,

a contradiction.
The following result is stated without proof.

THEOREM 5. Let (X, d) be complete metric space. Let {S,}, {T.,}
be sequence of functions of X into X which converge pointwise to
S, T respectively. Suppose that the pairs (S,, T,) satisfy the con-
ditions of Theorem 3 with the same a,, a,, a;, &, &, Then S, T have a
unique common fived point x and x is the limit of the sequence {x,}
of the fized points x, of S,.

THEOREM 6. Let (X,d) be a monempty compact metric space.
Let {S,}, {T,} be sequences of functions of X into itself which converge
pointwise to the functions S, T on X respectively. Suppose that for
each n, there exist decreasing functions of, ay, af, ay, af of (0, =)
into [0, ) such that
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(a) ar+ar+ar+ar+arsl,
(b) ar =a? and af = az,
(¢) for any distinct x, y in X,

d(Sa(@), Tu(y) < atd(x, S.(@)) + aid(y, Tu()) + aid(x, Tu(y))
+ ad(y, S.()) + a3d(@, y) »

where
a? = ai(d,y)) .

Then S or T has a fixed point. Indeed, every cluster point of a
sequence {x,} of fixzed points x, of S, or T, is a fized point of S or
T.

Proof. By Theorem 4, for each =, either S, or T, has a fixed
point. By symmetry, we may assume that S, has a fixed point for
infinitely many of n’s. So there is a subsequence {S,} of {S,} such
that each S, has a fixed point, say z,. By compactness, we may
(by taking a subsequence) assume that {x,} converges to some z in
X. We shall prove that z is a fixed point of S or T. If z, = 2 for
only finitely many of k’s, then

S(z) = iim S (%)
= EE} Sar (@)
= lim z,
k—oo

=2 .

So we may assume that z, = « for infinitely many of k’s. By taking
a subsequence, we may assume that x, # = for each k. Let k=1
and b, = d(z, x;). Then

d(, T(x)) = dx, ) + d@, Taw(®) + A(Tou (@), T())

33 = A5, 5 + U@, Toa(@) + UTun(@), T@) -
From (c),
(34) ASnin@i), Tun®@) < ai(dyd(@, Town®) + az(d)d@,, Tuuwn(@))

+ ai(byd(@, x) + a5 (by)b; .
Combining (83) and (34) and letting %k tend to the infinity, we have
d(w, T(x)) = lim sup (@(b,) + es(bu)d(@, T(x))

(85)
< lim sup ljf? (af(t) + a5 (D)d(z, T(x)) .

From (b), ak(t) + af) < 1/2 for each t >0, £ =1,2,:++. So
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(36) lim sup lim (@(t) + at(®) < % .
koo [ZN]

From (35) and (36), we conclude that T(z) = «.
From the proof, we know that the same conclusion holds if in
Theorem 6, we replace (b) by the following weaker conditions:

ar = oy or oy =af,
lim sup lim (af(t) + ak(t)) < 1,
k—o0 tio

and

lim sup lt'lm (ar(®) + ar(t) < 1.
k—oo 0
We note that, unlike Theorem 5, S, T in Theorem 6 need not
satisfy the condition required for the pairs (S,, T.).

THEOREM 7. Let (X,d) be a mnonempty compact metric space.
Let {S,} be a sequence of functions of X into itself which converges
pointwise to some function S on X. Suppose that for each n, there
exist decreasing functions ap, ay, ay, ar, ar of (0, ) into [0, o)
such that

(a) at+ap+ay +ar+ap =1,

(b) for any distinct z, y in X,

d(S.(x), S.(¥) < ad(®, S.(2) + a.d(y, S.(¥)) + ad(x, S.(y))
+ a/4d(?/, Sn(w)) + a5d($, y) ’

where
a; = a;(d(x, y)) .

Then S has a fized point. Indeed, every cluster point of the sequence
of fized points of S, is a fixed point of S.

The above result follows from Theorem 6 by averaging two ap-
plications of condition (b).

We shall now give a simple example to show that the conclusion
of Theorem 7 is best possible. Let X be a star-shaped [4] compact
subset of a normed linear space B. Then there exists a point z in
X such that for any y in X, the line segment

{tz + 1 — t)yy: te[0,1]}
is contained in X. For each n, let

Sn(x)z—}%-z—f—(l-—;li—)x, ceX.
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Then {S,} is a sequence of mappings of X into X which satisfy the
conditions of Theorem 7. {S,} converges pointwise to the identity
function S on X. Every point of X is a fixed point of S. So unlike
Theorem 5, it is too much to ask that S in Theorem 7 has a unique
fixed point.
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