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PSEUDO-COMPLETENESS AND THE PRODUCT
OF BAIRE SPACES

J. M. AARTS AND D. J. LUTZER

The class of pseudo-complete spaces defined by Oxtoby
is one of the largest known classes & with the property
that any member of & is a Baire space and & is closed
under arbitrary products. Furthermore, all of the classical
examples of Baire spaces belong to Z°. In this paper it is proved
that if Xc & and if Y is any (quasi-regular) Baire space, then
X x Y is a Baire space. The proof is based on the notion
of A-embedding which makes it possible to recognize whether
a dense subspace of a Baire space is a Baire space in its
relative topology. Finally, examples are presented which relate
pseudo-completeness to several other types of completeness.

1. Introduction. A space X is a Baire space if every nonempty
open subset is of second category [2] or, equivalently, if the intersection
of countably many dense open subsets of X is dense in X. Locally
compact Hausdorff spaces and completely metrizable spaces are the
classical examples of Baire spaces.

In [10] Oxtoby introduced the notion of a pseudo-complete space
(see §2 for precise definitions). Pseudo-complete spaces are Baire
spaces and the classical examples of Baire spaces are pseudo-complete.
Also, Cech-complete spaces (i.e., Gs-subsets of compact Hausdorff spaces
[3]) as well as subcompact spaces [6] belong to the class of pseudo-
complete spaces.

Pseudo-completeness has nice invariance properties. In particular,
the topological product of any family of pseudo-complete spaces is
pseudo-complete. Thus such a product is a Baire space.

In dealing with pseudo-completeness, assumptions about the usual
separation axioms are irrelevant. However, it is often convenient to
consider spaces which are quasi-regular, i.e., every nonempty open set
contains the closure of some nonempty open set (cf. [10]).

Oxtoby [10] has also given an example of a completely regular
Baire space whose square is not a Baire space, thus showing that a
product theorem for Baire spaces cannot be obtained without some
additional condition on (at least one of) the factors.

The main result of our paper is that the product of a quasi-regular
Baire space and a pseudo-complete space is a Baire space. The techni-
ques employed here, especially those in §4, are quite different from
the usual category type techniques.

This paper is organized as follows. In §2 we discuss some new
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2 J. M. AARTS AND D. J. LUTZER

results on pseudo-completeness and its relation to some other comple-
teness concepts. In §3 the notion of an A-embedded subset is intro-
duced. It is shown that the property of being an A-embedded subset
of a Baire space Z is in a sense complementary to that of being a
subset (of Z) which is a Baire space. Finally, in §4 the product
theorem is proved.

We adopt the following notational convention: given a sequence
S, Sz, <+« of subsets of a set X we write M) {S.} instead of N {S. |7 =
1,23, ..},

2. Pseudo-complete spaces. In this section all spaces are assumed
to be quasi-regular (see §1).

2.1. We begin with a brief review of results about pseudo-
completeness from [10].

DEFINITIONS. A pseudo-base for X is a collection & of nonempty
open sets such that each nonempty open UC X contains some member
of &# A space X is pseudo-complete if X has a sequence {F(n)} of
pseudo-bases such that if P,e Z(n) and cl P,,, C P, for each n, then

N {P,} # ¢.

THEOREM. (a) Any dense G;,-subset of a countably compact space
18 pseudo-complete.

(b) Any product of pseudo-complete spaces is pseudo-complete.

(¢) Any pseudo-complete space is a Baire space.

In view of (a) the classical examples of Baire spaces as well as
éech-complete spaces are pseudo-complete. The pseudo-completeness
of a subcompact space easily follows from the definitions (if X is
subcompact relative to the base 7, let & (n) = Z[6])).

2.2. We now mention without proofs some simple facts about
pseudo-completeness which are not in [10].

PROPOSITION. (a) Let X be a dense subspace of Y. If X is pseudo-
complete, then so is Y.

(b) Any topological sum (i.e., disjoint unmion) of pseudo-complete
spaces 1s pseudo-complete.

() Any open subspace of a pseudo-complete space is pseudo-
complete.

It is easily seen that closed subspaces of pseudo-complete spaces
need not be pseudo-complete. For example, Michael’s line—the set
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of real numbers topologized by taking sets of the form UUV to be
open, where U is open in the usual topology of the reals and V is any
set of irrationals—is pseudo-complete (in view of (a)) and yet contains
the usual space of rational numbers as a closed subspace.

Observe that the proposition above remains valid if “pseudo-complete
space” is replaced by “Baire space”. The following corollaries hold
for any property of topological spaces for which the corresponding
propositions (a), (b), and (c) hold.

COROLLARY 1. If a space X has an open almost-cover (i.e., a
collection of open sets whose union is dense in X, c¢f. [4]) by pseudo-
complete spaces, then X is pseudo-complete.

COROLLARY 2. A space is locally pseudo-complete (i.e., each point
has a meighborhood which is pseudo-complete) if and only if it is
pseudo-complete.

2.3. The following result is related to a theorem of McCoy about
Baire space extensions [9].

THEOREM. Any (quasi-regular) space X is a dense subspace of a
pseudo-complete space X.

Proof. The proof uses standard techniques; we present only an
outline. The main difference between our construction and the standard
ones is that we do not identify points of X with (open) ultrafilters
(since this would require separation axioms of X). Let .7~ denote
the topology of X. Let 4 denote the collection of all subfamilies of
.7~ which have the finite intersection property and are maximal with
respect to this property. Let 2 = {£{|ée 4 and N {cl; F'|Feé} = ¢},
the free elements of 4. Let X = XU 2 (observe that the union is
disjoint). For each Ue 7™ let U= UU{£|écQ and Uecg). X is
endowed with the topology for which {U|Ue 77} = 7 serves as a
base. It is easily verified that any collection of open sets of X having
the finite intersection property has nonempty adherence in X. From
cly(T) = T U el U it follows that X is quasi-regular (since X is assumed
to be quasi-regular).

By letting &P(n) =.9 for n =1, X is shown to be pseudo-com-
plete. In case X is Hausdorff, X is a Hausdorff-closed extension of
X (cf. [7]).

2.4. As is well-known, the open continuous image of a Baire
space is a Baire space. It is an open problem whether such mappings
also preserve pseudo-completeness. However, if the range space is
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assumed to be metrizable, there is the following result.

THEOREM. Suppose X is pseudo-complete and f: X —Y 1is con-
tinuous, onto and open. If Y is metrizable, then Y contains a dense,
completely metrizable, zero-dimensional subspace. In particular, Y is
pseudo-complete.

Proof. Let {<?(n)} be a sequence of pseudo-bases for X with
respect to which X is pseudo-complete. Inductively choose collections
F'(n) < F(n) such that for each n:

(a) If P and Q are distinct members of &7'(n), then f(P) = f(Q);

(b) The collection & (n) = {f(P)|Pe F”’ (n)} is a disjoint open
collection in Y which is an almost cover' of Y with mesh < 1/n;

(¢) ' (n + 1) refines F'(n);

d I P,,ezsn+1), P,ecs(n and f(P,.) f(P,), then
el P,,,.CP,.

Suppose G, € € (n) for n = 1 and G, D G,.,. Because the collection
& (n) is disjoint, it follows from (a) and (c) that there are unique
members P, and P,,, of &'(n) and Z'(n + 1) respectively having
fP,) = G,and f(P,.) = G,.,. According to (d) we have P, Dcly P,.,.
Therefore, N {P,} = 6. For any xc N {P.}, f(x) e N{G.}. In view of
(b) {f @)} = N {G,}. For each nlet W, = U £ (n),and let Z = N {W,}.
From the preceding observation it follows that Z is a dense subset
of Y. By virtue of (b), the collection <& = {GNZ|Ge & (n),n =1,
2, --+} is a base for Z consisting of relatively closed and open sets.
The completeness of Z is easily proved (cf. [1], [4], [6])-

COROLLARY. A metrizable space Y is pseudo-complete if and only
if Y contains a dense completely metrizable subspace (which may be
taken to be zero-dimensional).

Proof. The “only if” part follows from the preceding theorem
by taking X = Y. The “if” part follows from 2.1 Theorem (a) and
2.2 Proposition (a).

REMARK. F. G. Slaughter, Jr. pointed out to the authors that in
the proofs of the theorem and corollary above it suffices to assume
that Y is quasi-regular and developable (instead of metrizable). Thus
we have: a pseudo-complete Moore space contains a dense completely
metrizable subspace.

The corollary above may be applied to show that pseudo-complete-
ness and the property of being a Baire space are not equivalent, even

1 Cf. 2.2 Corollary 1.
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for metrizable spaces.

EXAMPLE. A space is said to be fotally imperfect if it containg
no uncountable compact subsets. According to a theorem of Bernstein,
any separable, metrizable, complete and dense-in-itself space X can
be decomposed into two mutually disjoint totally imperfect subsets
Y and Z. Both Y and Z are known to be Baire spaces, but neither
Y nor Z contains a dense completely metrizable subspace. See 2.6,
3.3 Example, and [8] for more details.

2.5. PROBLEM. It is an open problem whether dense G,-subsets
of pseudo-complete spaces are pseudo-complete. Observe that if dense
Gs-subsets of pseudo-complete spaces and open continuous images of
pseudo-complete spaces (see 2.4) are pseudo-complete, a less complicated
proof of the Product Theorem 4.2 can be given.

2.6. A part of the theory we are going to present in §§3 and 4
can be developed using other notions of “completeness” instead of
pseudo-completeness. For example, we can define a completely regular
space X to be almost Cech- complete if X contains a dense Cech- complete
subspace (cf. [5]). The results of §2.2 also hold for almost Cech-
complete spaces and in view of 2.1 Theorem (a) such spaces are
pseudo-complete, whence Baire spaces.

We next present an example which shows that the notion of
pseudo-completeness is much more general than that of being almost
Cech-complete.

ExAMPLE. There is a completely regular, pseudo-complete space
X such that each éech-complete subspace C of X is nowhere dense
(i.e., inty cly C = 9).

Let Z = R° = II{R,|Y€ '}, the continuous product of real lines.
Any nonempty G;-subset of Z has exp ¢ points® and there are exp ¢
nonempty G;-subsets of Z. We shall show that there is a subset X
of Z such that neither X nor Z\X contains any nonempty G,-subset
of Z and that X has the above mentioned properties.

The construction of the set X is very similar to that of a totally
imperfect subset of a separable, metrizable, and dense-in-itself space
as given in [8]. Well-order the collection of all nonempty G;-subsets
of Z as {H,|aa <7} where 7 is the first ordinal having cardinality
exp c¢. Using transfinite induction pick two distinet points z, and
Y. from each H,, taking care that at each step only points are picked

2 We write exp ¢ for 2¢.
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which have not been selected before. X is the set of all points %, so
obtained.

Now let .&Z denote the collection of the basic open sets N {77*(U;) |7 e
I'} where I'yC I' is finite and each U, is a bounded open interval in R,.
Let &(n) = {BN X|Be <} for each n = 1. Observe that for each
BeZ, el (BN X) =X Ncl; B, because X is dense in Z.

In order to prove that X is pseudo-complete, suppose P, € <& (so
P.NXeFPm)) and cly (P, NX)C P, NX. Then

N{X NP} =N{l(XNP)} =XN(N{clP}) .

Now, ) {cl; P,} is nonempty because of the boundedness condition
imposed on the basic open sets. Moreover, this intersection is a G-
subset of Z. Hence its intersection with X is nonempty. Thus X
is pseudo-complete.

If Dis a éech-complete space which is dense in some open set
U of X, then D is also dense in some open set V of Z. Then DN
V is a G;-subset of Z, so (DNV)N(Z\X) # ¢. Hence D is not con-
tained in X.

3. A-embedded subsets. We shall now define the concept of
an A-embedded subset, which plays a vital role in the proof of the
Product Theorem.

3.1. DEFINITION. Let X be a subset of a space Z. Then X is said
to be A-embedded in Z if each Gy;-subset H of Z which is contained
in X is nowhere dense in X (i.e., intycly H = ¢).

ExAMPLE 1. The set @ of the rational numbers is A-embedded
in the real line R.

To prove this we first observe that in a countable T;-space which
is a Baire space, each open set has isolated points (since the comple-
ment of a non-isolated point is a dense open set). Now, let H be a
G;-subset of R. If HC @, then H is countable, so that H cannot be
dense in any interval. It follows that H is nowhere dense in Q.

EXAMPLE 2. Let the subspace S of R be defined by S = {0} U
{1/njn =1,2,---}. The set {0} is not A-embedded in S.

Using the concept of A-embedded subsets, we are able to re-
cognize subsets of Baire spaces which, in their relative topology, are
Baire spaces.

3.2. THEOREM. Let X be a dense subspace of a Baire space Z.
(a) If Z\X is A-embedded in Z, then X is a Baire space.
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(b) If Z\X is dense in Z, then X is a Baire space if and only
if Z\X is A-embedded in Z.

Proof. To prove (a), observe that if X is not a Baire space, then
there is a sequence HDOG, D G, D+« of open subsets of X such that
each G, is dense in H and yet [} {G.} = ¢. Then there is a sequence
UoV,oV,D.-- of open subsets of Z such that H= UN X and
G,=V,NX. Each V, is dense in U and U is a Baire space. Hence
D =N {V,} is dense in U and therefore in UN (Z\X). Since Dc Z\X,
Z\X is not A-embedded in Z.

To prove the “only if” part of (b), we assume that Z\X is not
A-embedded in Z. Let H be a G;-subset of Z which is contained in
Z\X and which is dense in some relatively open set U of Z\X. Let
V be an open subset of Z with V' N (Z\X) = U.

Then FF= VN H is a G,subset of Z which is dense in V and
which is contained in U. Let F = () {F,} where each F, is open in
Z and F,cV. The sets F, N X are open and dense subsetsof VN X
and yet M {F,N X} = ¢. It follows that V' N X is not a Baire space.
Consequently, X is not a Baire space.

REMARK. As is clear from 3.1 Example 2, the hypothesis that
Z\X is dense in Z cannot be omitted from part (b) above.

3.3. In connection with Theorem 3.2 we have the following pro-
positions which will be used in the next section.

LEMMA 1. In every quasi-regular space X there are open subspaces
X, and X, such that

(a) X, and X, are disjoint and X, U X, is dense in X;

(b) X, is pseudo-complete;

(¢) any pseudo-complete subspace of X, s nowhere dense in X,.

Proof. Let X, be the union of all open subsets of X which are
pseudo-complete in their relative topology.

Let X, = X\cl;X;. The lemma follows from 2.2 Proposition and
2.2 Corollary 1. (Observe that X, and X, may be empty.)

LEMMA 2. Let X, X, and X, be as in Lemma 1. Then X is a
Baire space if and only if X, i1s a Baire space.

Proof. Qbvious.

PROPOSITION. Let X be a quasi-regular space such that any pseudo-
complete subspace of X 1s nowhere dense in X. The following properties
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are equivalent:

(a) X is a Baire space;

(b) For every pseudo-complete space Y such that X is dense in
Y, the subset Y\X is A-embedded in Y;

(¢) For some pseudo-complete space Y such that X is dense in Y,
the set Y\X is A-embedded in Y.

Proof. For any pseudo-complete space Y such that X is dense in
Y, the set Y\X is dense in Y, because X contains no pseudo-complete
open subspaces. That (a) implies (b) now follows from 3.2 Theorem
(b). Obviously (c) follows from (b). Finally, 3.2 Theorem (a) shows
that (a) follows from (c).

ExAMPLE. According to the above proposition, the totally imper-
fect subspaces Y and Z of a separable, complete, dense-in-itself
metric space X in 2.4 Example are Baire spaces. The proposition can
also be applied to spaces which are not totally imperfect. In the
special case where X is the Euclidean plane, construct Y and Z as in
2.4 Example and let Y'Y = YU L where L is a straight line in X.
Then Y’ and X\Y’ are each A-embedded subspaces of X (so that each
is a Baire space) even though Y’ is not totally imperfect.

REMARK. It follows directly from Lemma 2 above that a o-locally
compact space X is a Baire space if and only if X is pseudo-complete:
one shows that the o-locally compact Baire space X, must be empty.

4. The product theorem.

4.1. PROJECTION LEMMA. Suppose X is a Baire space and Y 1is
pseudo-complete. If D 1is a dense Gs-subset of X XY, then 7y (D)
contains a dense Gs;-subset of X (where w5 denotes the natural projection
of X X Y onto X).

Proof. Write D = N {G,} where G,DG,D +-- are open subsets
of X xY. Let {<&(n)} be a sequence of pseudo-bases for ¥ with respect
to which Y is pseudo-complete.

Let Z2(1) = {U|¢ == U is open in X and U X PC @G, for some Pe
Z1)}. Let 7°(1) be a maximal disjoint subcollection of Z7(1). Since
D is dense in X X Y, the set W, = | 7°(1) is dense in X. For each
Ve (1) choose P(V,1) e (1) such that V x P(V,1)CG,.

Inductively define collections 7°(n) such that

(a) each 7°(n) is a disjoint collection of nonempty open subsets
of X and W, = U 7 (n) is dense in X;

(b) 7°(n + 1) refines 7" (n);
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(¢) for each Ve 7 (n) there is a member P(V, n) € & (n) having
V x P(V,n)c G,;

d) if V,,e7(n+ 1) and if V, is the unique member of 7" (n)
containing V,,,, then cly (P(V,., n + 1)) P(V,, n).

Let E =N {W,}. Since X is a Baire space, £ is dense in X. To
show that EC 7my(D), let e E. Then there is a (unique) sequence
{V.} such that V,e?7 (n) and xe V,. Necessarily V,,,CV, so that
cly (P(Vyy, » + 1)) € P(V,, n). Therefore, N {P(V,, n)} # ¢ and for any
yeN{P(V,, n)}, (x,y) € G, for each n so that (z,y)eD. Hence x¢
wx(D).

4.2. THE PropucT THEOREM. If X s a quasi-regular Baire
space and Y is pseudo-complete, then X X Y is a Bawre space.

Proof. As in 8.3 Lemma 1, choose open subsets X, and X, of
X. Then (X, xY)U (X, XY) is a dense subspace of X xY. Since
Y, xY and X, x Y are open subsets of X XY and since X, x Yis a
Baire space in view of 2.1 Theorem (b) and (c), it is enough to show
that X, x Y is a Baire space. By 8.3 Lemma 2, X, is a (quasi-regular)
Baire space. Thus we need only consider the special case where X =
X,.

In view of 2.3 Theorem, there is a pseudo-complete quasi-regular
space X which contains X as a dense subspace. Let X' = X\X.
Then X’ is A-embedded in X by virtue of 3.3 Proposition. Since X x
Y is a dense subset of the pseudo-complete space Xx Y, it will be
sufficient to show that X’ x Y = (X x Y)\(X xY) is an A-embedded
subset of X x Y (by virtue of 3.2 Theorem).

To this end, suppose D X’ x Y is a G,-subset of X x Y which
is dense in some relatively open subset of X’ X Y. Then there is a
relatively open subset G of X’ and an open subset V of Y such that
DN(G xV) is dense in G x V. The set G may be written as G =
UN X’ where U is open in X. Then D N (U x V) is a dense G;-subset
of U x V, the product of the Baire space U with the pseudo-complete
space V. According to the projection lemma, 7,(D N (U x V)) contains
a G,-subset E of U which is dense in U. Then E is a G;-subset of
X. Furthermore, EC ny(D)< X’ which is impossible because X’ is
known to be A-embedded in X.

It follows that X’ x Y is A-embedded in X x Y so that X x Y is
a Baire space.

COROLLARY. If X is a quasi-regular Baire space and if the space
Y is (locally) compact Hausdorf or (locally) Cech-complete or (locally)
subcompact, then X XY s a Baire space.
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REMARK. In the Product Theorem the pseudo-completeness of Y
is by no means a necessary condition for X X Y to be a Baire space.
Oxtoby [10] has proved that if Y is any Baire space having a (locally)
countable pseudo-base, then X X Y is a Baire space for any Baire space
X. This result of Oxtoby and our product theorem overlap, but neither
includes the other: (Cf. the examples in 2.4 and 2.6 of which the
latter has no (locally) countable pseudo-base. Indeed there are compact
Hausdorff spaces having no locally countable pseudo-base.) Further-
more, as has already been mentioned in the Introduction, the techniques
employed in the proofs are totally different.
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METRIC CHARACTERIZATIONS OF
EUCLIDEAN SPACES

G. BERG

In a metric space an arc which is isometric to a real
interval is called a segment. In this paper it is shown that,
for 1 < n < 3, n-dimensional Euclidean space (E») is topologi-
cally characterized, among locally compact, #n-dimensional
spaces, by admitting a metric with the following properties:
(1) every two points of the space are endpeints of a unique
segment, (2) if two segments have an endpoint and one other
point in common then one is contained in the other and (8)
every segment can be extended, at either end, to a larger
segment. This follows from the more general result that,
for 1 < n <38, a locally compact, n-dimensional space which
admits a metric with properties (1) and (2) is homeomorphic
to an 7n-manifold lying between the closed 7-ball and its
interior.

Property (1) suffices to characterize E*, for n =1 or 2,
among locally compact, locally homogeneous, 7-dimensional
spaces. For n > 3, properties (1), (2), and (3) characterize £,
among locally compact, n-dimensional spaces that contain a
homeomorph of an n-ball.

1. Introduction. A metric space (X,d) is said to be convex
provided that every pair of points of X has a midpoint—m is a
midpoint of & and y if d(z, m) = d(y, m) = 1/2d(z, y). (X, d) is strongly
convex if every pair of points has a unique midpoint and is without
ramifications provided that no midpoint of 2 and y is a midpoint of
z and y unless z = 2. Convex subsets of Euclidean spaces with
their inherited metrics are examples of metric spaces with these pro-
perties. Lelek and Nitka [8] and Rolfsen [11] have (topologically)
characterized the 2-cell and 3-cell, respectively, among compact 2 and
8 dimensional metric spaces by the last two properties. White [12]
has shown that a 2-complex is collapsible if and only if it can be
given a metric which is strongly convex. Numerous other results
have been obtained for metric spaces with the above properties when
the underlying space is compact or when the metric is also complete.

In the present paper a number of these results are shown to hold
when the underlying space is locally compact. Prinecipally, it is shown
that having a strongly convex metric without ramifications (topologi-
cally) characterizes n-manifolds that lie between the n-cell and its
interior among locally compact, n-dimensional spaces for » < 3. This
reduces to Lelek and Nitka’s or Rolfsen’s result when the space is

11
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compact and yields a characterization of £™ under various homogeneity
conditions.

2. Existence of segments. In a metric space (X,d) a set S is
said to be a segment for the points z and y of X if x and y are
elements of S and S is isometric with the real interval [0, d(x, %)].
It is well known that in a convex, complete metric space every pair
of points has a segment between them. It is shown now that for
locally compact spaces the requirement of completeness can be relaxed.

THEOREM 2.1. Let (X, d) be a locally compact, convex metric space.
If, for each pair of points of X, the set of midpoints of the pair is
compact, then each pair of points is joined by a segment.

Proof. Let p,q be two points of X and let 4, = {p, ¢}. Order
A, by distance from p. In general, if A, has been defined and ordered
by distance from p, then for each x ¢ (4, — {¢}) let m, be a midpoint
for # and the next point of A,. Define A4,., = A, U {m,:xc A, — {g}}.
Let A = Uz A,,a = d(p,q) and f = d(p, —)|A. Clearly f maps A
isometrically onto the set of real numbers of the form 7-.-a where »
is a dyadic rational in [0, 1], and so f maps A isometrically into the
interval [0, a]. To show that A is a segment from p to ¢ it is sufficient
to show that f[A] = [0, a].

Since the dyadic rationals are dense in [0, 1], the image of A is
dense in [0, @]. Also, the image of A is open in (0, @). To verify this
observe that if xe (A — {p, ¢}) and D is a compact distance neighbor-
hood of # then D N A is compact and thus f[A N D] is closed. Since
flA N D] is dense in an interval containing f(x) in its interior, f(z)
is an interior point of f[A]. For the final step let ¢ be any point
of (0,a), and let T be a subinterval of (0, a), symmetric about ¢.
TN fIA] and U, the reflection of TN f[A] in ¢, are both open and
dense in T and hence their intersection is dense in T. Let {¢,}7., be
an increasing sequence of points of TN f[A] N U that converges to ¢,
so if, for each n, t, = 2t — t,, then t, < f[A] and ¢ is midway between
t, and ¢,. Let z, = f'(t.), =, = f'(¢t,) and M, = {y ¢ X: y is midpoint
for %, and «}}. If ye M,,, then y is between z, and =z, and also
A®n, Y) = Ad(®n, Tarr) + A(@0r, ¥) = (Y, v011) + (@01, %7) = d(y, @) so
ye M,. Since each M, is compact there is a point 2 in M-, M,. Now
d(x,, x) = 1/2d(z,, ;) = 1/2|t, — ¢,] and so lim,_. d(z,, ®) = 0. Thus
xe A and clearly f(r) =t. Evidently f[A] =[0,a] and so 4 is a
segment from » to q.

COROLLARY 2.2. If (X,d) is a locally compact, strongly convex
metric space, then the segment between two points is unique and contains
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all the points between them.

The proof for the case where (X, d) is also complete carries over
without change in light of 2.1.
When segments are unique the segment between p and ¢ is denoted

pq.
3. Strongly convex metrics.

DEFINITION 3.1. A topological space Y is said to be contractible
if there exists a mapping f:Y x I —Y such that f(—, 1) is the identity
map and f(—,0) is constant. Y is locally contractible if every neigh-
borhood, U, of any point containg a neighborhood, V, of the point and
a map f:V x I —U such that f(—,1) is the identity map and f(—,
0) is constant.

Throughout this section let (X, d) be a locally compact strongly
convex metric space. We aim first at showing that X is contractible
and locally contractible.

Fix pe X and define the map @: X x I — X as follows: for te I,
Qlp,t) = p for tel,xe X — {p}, Qfx, t) is the point z in px such that
d(p, 2) = t-d(p, 2).

@ is the contracting homotopy and in showing @ is continuous
the fact that the limit of a sequence of segments is again a segment
is used. This fact is the content of 3.3.

NotaTioN 3.2. Throughout the paper D(p, r) denotes the set
{xe X: d(p, x) < r} and S(p, r) denotes the set {x € X: d(p, x) < r} where
pe X and » is a positive real number.

ProposiTION 3.3. Let x,, &, %, +++ be points of X such that
lim,.. 2, = %, %+ ». Then if

(1) y,epx;,1=0,1,2 -+ and

(2) lim,.d(p, ;) = d(p, ¥,) then

(3) limi..v: = %

Proof. Let A = {y,e pz,: conditions (1) and (2) imply (3)}. Clearly
x,€ A because if lim,_. d(p, ¥;) = d(p, x,), then lim; ., d(z;, ¥;) = 0 since
d(z;, ) = d(p, x;) — d(p, y;). Let A’ be the component of A con-
taining 2, and assume that ¢ is a boundary point of A’ relative
to px,. Choose > 0 so that D(q, 5r) is compact. Let w,, v, ¥, ++*
be a sequence that satisfies conditions (1) and (2) but not (3) and chosen
such that d(y,, q) < r. Let q,.e AN D(q,r). Foreachi=1,2 «-- let
t; = min {d(p, 2,), d(p, q,)} and let ¢; be a point of pz; such that d(p, ¢;) =
t,1=1,2 ---. Since lim,_.¢; = d(p, q,) it follows that lim;_., ¢; = q..
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Since both of y;, and ¢; belong to pz;,7 =0, 1, 2, -- - we have d(qg;,
¥s) = |d(p, ¢)) — d(p, v;)| and so lim,..d(g;, ¥:) = d(q, ¥) = 2r. Now
d(g, ¥:) = d(q, q,) + d(q,, ¢;) + d(q;, ¥;) and so is eventually less than 5r.
Thus the sequence {y;}3, is eventually in the compact set D(q, 57).
If z is a limit point of the sequence {y;};2;, then it follows from the
continuity of the distance function d that d(p, 2) + d(z, =) = d(p, )
and so z¢€ px, Since z is the same distance from p as y, it follows
that z = y,. Thus lim; . ¥; = ¥, and this contradicts our choice of y,,
Y1, Y, +++ « It follows that A’ has no boundary point relative to »z,
so must be all of pz,.

ProPOSITION 3.4. @: X X I— X s continuous.

Proof. Follows from Proposition 3.3 and continuity of distance
function.

In contracting X to the point p the map, @, moves every point
closer to p so any distance neighborhood of p is contracted in itself.
The point p was chosen without restriction so X is also locally
contractible.

It follows trivially that X is also connected and locally connected
and these conditions for a locally compact metric space imply separa-
bility [1].

THEOREM 3.5. A locally compact, strongly comvexr metric space
18 contractible, locally contractible, connected, locally commected and
separable.

THEOREM 3.6. An n-dimensional, locally compact, strongly convex
metric space is an n-manifold if it is locally homogenecous and contains
an n-ball.

Proof. Since a locally compact space is second category this
follows immediately from a theorem of Bing and Borsuk [3].

THEOREM 3.7. For n =1 or 2, an n-dimensional, locally homo-
geneous, locally compact metrizable space can be given a strongly convex
metric if and only if it is homeomorphic to E*.

Proof. The usual metric for E* is strongly convex.

It follows from another theorem of Bing and Borsuk [3] that
such a space is an n-manifold. Since it is contractible as well it must
be E*, n being 1 or 2.
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4. Strongly convex metrics without ramifications. Prelimi-
naries. Throughout this section (X, d) will be a locally compact metric
space with d a strongly convex metric without ramifications, briefly
an SC-WR metric.

DEFINITION 4.1. For p and ¢ two points of X the set {xe X:xe
pg or qcpx} is called the ray from p through ¢ and is denoted pg).

ProrosiTION 4.2. If ye (px) — {p}), then py) = Dx).

Proof. Clearly x ¢ py) so it suffices to show that if ze px) then
z€ py>. We consider four cases:

(1) yepx and ze px. In this case it follows immediately from
the uniqueness of segments that either y € pz or z€ py so ze€ py).

(2) yepxr and € pz. The convexity of the metric yields ye
Pz and so z¢€ pyd.

(8) zepy and zepx. Same as (2).

(4) zeDy and € pz. Unless py C pz or pzC py there would
be a ramification point in pz N py. Thus z€ py).

PROPOSITION 4.3. pz) is isometric to a real imterval of ome of
the following forms: [0, «), [0, a), or [0, a].

Proof. This is evident from the previous proposition and the fact
that rays are arc connected.

If pxz) is isometric to the closed interval [0, @], then we say px)
is a ray with endpoint or a compact ray and the point of px) a distance
a from p is the endpoint.

DEFINITION 4.4. A metric space (Y, o) is said to be externally
conver if given p and ¢ in Y there is a point y € Y such that o(p, y) =
o(p, @) + 0(g, ¥)-

Note that (X, d) is externally convex if and only if no ray has an
endpoint.

For rays a result analogous to Proposition 3.3 holds and the proof
carries over as well.

PROPOSITION 4.5. Let p, %, &, Xz, =+« be points of X such that
lim, .. z; = 2, # p. Then if

(1) yepz),i=0,1,2 -+ and

(2) lim;...d(p,y) = d(p, ¥o), then

(3) lim;..y; = ..
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We now define a map which moves points along rays similar to
Q in §3. Fix p in X and let

{x} x [0, o) if pz) is isometric to [0, oo)

@} x [0,

) if pz) is isometric to [0, a)

_*
D = da(p, «)

0, —2 | if &) is isometric to [0, a] .
{x} % [ 3, x)] if px) is isometric to [0, a]

Now let D = U,ex_nD* be the domain of P and define P: D — X
by the following rule:

P(p,t) = p
P(x, t) = the point z of pz) such that d(p, 2) = ¢-d(p, ) for x = p.

PROPOSITION 4.6. P 1is continuous.
Proof. Follows from 4.5 and continuity of distance funection.

REMARK 4.7. Since the function P depends on the choice of the
basepoint p, P will be denoted P, any time confusion might arise.
Likewise D is denoted D,.

Our next goal is to show that every open subset of X contains a
homeomorphic copy of X. The first step is to show that if a sequence
of rays converges to a ray with endpoint, then all but finitely many
of the sequence of rays have endpoints.

LeMMA 4.8. Let p, x,, &, @, =+« be points of X such that px,y =
%, and lim,. . x; = %, Then, for © sufficiently large there is a point
2, € px;> such that pz;, = px;y and lim,_. 2, = x,.

Proof. Clearly lim, . diam (pz;>) = d(p, #;). On the other hand, if
lim diam (pz;)) = d(p, ) + & > d(p, @)

then there is an infinite set of integers, M, such that for ¢ € M there
is a ;€ px;> such that d(p, v;) = d(p, %) + min {6, r} where » > 0 is
chosen to make D(x,, 2r) compact. The set {y;: 1€ M} has a limit point,
9, in D(x,, 2r). Since y satisfies d(p, y) = d(p, ©,) + d(x,, ¥) we have
Y € px,» = px,. This is a contradiction because d(p, y) > d(p, z,). Thus
lim; ... diam (p;)) = d(p, ).

Now choose 7, to be an integer such that x;€ D(z,, ) and

|diam px;> — d(p, 2,}| < r
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whenever ¢ = n,. Then the set (px;>) — px;) U {*;}) is in D(p, 2r) when
1 = n, and since each of the sets is closed it must be compact. Each
of the rays px; with 7 = n, is then compact and letting z; be the
endpoint the lemma is proved.

THEOREM 4.9. Let p be a point of X and f be a map from X —
{p} into (0,1]. Then the function G: X — X, defined by the formula

9(p) = p
g(x) = P,(x, f(x)) for « # p

is a homeomorphism if it is ome-to-ome.

Proof. On X — {p}, g is the composition of continuous functions
so is continuous. It is continuous at p as well because

a(p, Py(@, f(@)) = f(@)-d(p, ©) = d(p, @) .

Assume that g is one-to-one. It remains only to show that g~
is continuous. Note that g™ is continuous at p because if D(p, r) is a
compact neighborhood of » and a = inf {f(2): z € D(p, 1)}, then g[D(p, 7)]
contains D(p, a-r) which is a neighborhood of p.

The map g restricted to any segment px is a homeomorphism of
px into itself with p remaining fixed so if points are ordered by
distance from p, g preserves that order. Let =, «,, ., -+ be points
of g[X] such that lim, ., ; =2, Lety,=g¢"() fori=0,1,2, ...,
Consider first the case where d(p, ¥;) = d(p, y,) + 6 for some 6 > 0,
and all ©=1,2/3,.--. In view of Lemma 4.8, y, cannot be the
endpoint of Py, so we may choose a point w, in (py,y — Py, and
within 6/2 of y,. Let w; be a point of pz;> such that d(p, w;) = d(p, w,)
for ©=1,2,8, --+, and note that lim,., w; = w,. Since w, is farther
than y, from p, g(w,) is farther than g(y,) = x, from p. On the other
hand, for ¢ =1,2,8, «+-, w; is closer than ¥; to p and so g(w;) is closer
than #; = g(y;). From the continuity of g, g(w,) is at least as close
to p» as x,. This case is ruled out and if no sequence can belong
to this case, no infinite subsequence of a sequence can either,
so the remaining possibility is that d(p, v;) < d(p, y,) for all 7 = n,,
for some integer n,. But then Uz, py; is compact and g~ is continuous
on g[U:, p¥:] = Uz, px; and so lim,.. g7'(x;) = g7'(x,).

Note that if f(x) is a nondecreasing function of d(p, ), then g
is a homeomorphism.

COROLLARY 4.10. Let p be a point of X and U a neighborhood
of p. Then there is a homeomorphism, g, of X into U leaving p fixed
and for x€ X, g(x) € pzx.
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Proof. Let 0 <7 <1 be chosen so that S(p,r) C U, and define
the map %: (0, ) — (0, r) by the formula () = 2r/w tan™'t. Observe
that % is one-to-one and A(f) < t. Define f: X — {p} —(0,1] by the
rule f(x) = h(d(p, x))/d(p, x). Let g be defined as in Theorem 4.9 in
terms of f and P,. The map ¢ could fail to be one-to-one only by
mapping two points of some ray, px), to the same point. But d(p,
9(y)) = d(p, v)- f(y) = k(d(p, ¥)), so this cannot happen. Moreover, the
last expression must be less than » so g[X] < S(p, r) C U.

5. Endpoints of rays are sparse. Next we develop some con-
tractibility conditions for X and certain subsets, then show that in
an SC-WR metric space of finite dimension the endpoints of rays are
contained in a nowhere dense set.

Throughout this section let (X, d) be an SC-WR metric space.

PROPOSITION 5.1. Let p be a point of X and r be a positive real.
Then there is a map h: X x [0, 1] — X with the following properties:

(1) h(—,0) is the identity on X;

(2) M-, HIX]c D(p, r);

(8) for tel0,1] h(—, t)|D(p, r) is the identity on D(p,r) and

(4) for (z,t)e (X — D(p, r)) x [0, 1] h(z, t) & S(p, 7).

Proof. Difine the function m: X — [0, 1] by the formulas

{1 ifx=09p
m(x) = . { r .
min 1,——} mnx+#op

d(p, x)
and g: X x [0,1] — [0, 1] by g(z,t) = AL — ) + t-m(x). Let P be the
function defined in § 4 with p as its base point. Define h: X x [0, 1] —
X by h(z,t) = P(x, g(x, t)) and it is routine to verify & satisfies con-
ditions (1) through (4).

REMARK 5.2. By virtue of % satisfying conditions (1), (2), and (3),
D(p, r) is said to be a strong deformation retract of X. A subset A
of X is a retract if there is a map from X — A which is the identity
on A.

ProrPOSITION 5.3. Let pe X and r a positive real. Then for ye
S(p, ), X — {y} is contractible (in itself) if and only if (D(p, r) — {y})
18 comtractible (in itself).

Proof. Let ye S(p, r) be given and take 2 to be the deformation
map defined in the previous proposition relative to D(p, r). From
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properties (8) and (4) of % it is clear that A[(X — {y}) x [0, 1]]c X —
{y}. Thus h retracts X — {y} onto (D(p,r) — {y}). A retract of a
contractible space is contractible [4, p. 26], so D(p, r) — {y} is con-
tractible if X-(y) is. The converse is obvious.

ProposiTION 5.4. Let pe X and r > 0. Then D(p, r) is contrac-
teble and locally contractible.

Proof. In §3 it was shown that D(p, r) is contractible.

Fix ye D = D(p,r) and 6 > 0. Letting %2 be the deformation
map from 5.1 and setting f = h(—, 1) gives us that f is a retraction
of X onto D. Define the map g: D x I— D by the formula g(z, t) =
f(P,(x,1 — t)). Clearly, g is continuous, g(—, 0) is the identity and
9(—, 1) is constantly y. Choose » > 0 so that D(y, r) is compact and
it follows that C, = D N D(y, r/n) is compact for each n = 1,2, 3, ««-.
The nested sequence of sets C, x I converge to {y} x I and since g
is continuous there exists m, such that ¢[C, X I]cS(y,0) N D. It
follows that g|C,, x I contracts C,, to y inside S(y, 6) and thus D is
locally contractible.

DEFINITION 5.5. For a set A in a topological space Y the space
A x I/A x {0}, i.e., the upper-semi-continuous decomposition of 4 x I
whose only nondegenerate element is A x {0}, is called the cone over A.

PROPOSITION 5.6. Let (X, d) be a locally compact SC-WR metric
space. If AcC X is compact and pe (X — A) such that, for xec A,
px N A = {x}, then the set B = U,., D% s homeomorphic to the come
over A.

Proof. The proof of this proposition appears in [8, 6.2] for X
compact. The proof carries over for X locally compact in light of the
properties shown in the preceding propositions.

The following theorem generalizes a result of D. Rolfsen [11] which
was for compact spaces. The proof is identical except that it relies
on earlier propositions in this paper for properties of locally compact
spaces with SC-WR metrics.

THEOREM 5.7. Let (X, d) be a locally compact SC-WR metric space
with dim X =n and 0 < n < . Then the set U= {x: X — {a} fails
to be contractible in ttself} contains a demse, open subset of X.

COROLLARY 5.8. If (X, d) and U are as in Theorem 5.7, then no
point of U is the endpoint of a ray.
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Proof. Let xe X and p # « such that pz) = px. The map P,:
X X I— X defined earlier when restricted to (X — {x}) x I clearly
contracts X — {x} to » missing & so X — {x} is contractible (in itself).
By Theorem 5.7 x ¢ U.

6. Retract properties.

DEFINITION 6.1. Let Y be a topological space and A a subset of
Y. A is said to be a meighborhood retract of Y provided there exists
an open set, O, of Y such that AcC O and A is a retract of O.

DEFINITION 6.2. A metric space Y is said to be an absolute retract
for metrizable spaces, or an AR (M)-space, if for any metric space Z
and a closed subset 4 of Z with A homeomorphic to Y, A is a retract
of Z. Y is said to be an absolute neighborhood retract for metrizable
spaces, or an ANR (M)-space, if for any metric space Z and closed
subset A of Z, with A homeomorphic to Y, A is a neighborhood retract
of Z.

DEFINITION 6.3. A metric space Y is said to be an absolute retract
or AR-space if Y is an AR (M)-space and Y is compact, Y is said to be
an absolute neighborhood retract, or ANR-space, if Y is an ANR (M)-
space and Y is compact.

PRrROPOSITION 6.4. Let (X, d) be a locally compact SC-WR metric
space of finite dimension. If D(p,r)C X is compact, then it is an
absolute retract and if no ray from p ends inside D(p, r), then the set
Sk (p, r) = {xe X: d(x, p) = 7} is an absolute neighborhood retract.

Proof. As is evident from Proposition 5.4, D(p, r) is contractible
in itself and locally contractible and since it is compact and finite
dimensional it is an absolute retract [4, 10.5, p. 122].

To show that Sh (p, r) is an ANR it is sufficient to show that it
is a neighborhood retract of the absolute retract D(p, ») [4, 2.4, p. 101].
Since no rays end inside D(p,r) we can retract D(p, r) — {p} onto
Sh (p, r) by pushing outward along rays from p.

THEOREM 6.5. If (X, d) is a locally compact SC-WR metric space
of finite dimension, then X e AR (M).

Proof. For a point p of X there is a positive number r, so that
D(p, r,) is compact and by Proposition 6.3, D(p, r,) € AR (M). As
noted in Theorem 8.5, X is separable and since each point of X has
a neighborhood which is an ANR (M)-space, Xe ANR (M) [4, 10.4,
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p. 99]. However, since X is contractible, X< AR (M) [4, 9.1, p. 96].
7. Existence of cells in low dimension spaces.

LeMMA 7.1. Let (X, d) be a locally compact, SC-WR metric space.
Then if p, %, and Yy are three non-colinear points of X, then .. P?
is a 2-cell and ..z p2) is 2-dimensional and closed.

Proof. Let A = U..5 vz and A= U..5 02)-

In light of Proposition 5.6 Lelek and Nitka’s proof [8] that A is
a 2-cell carries over from compact to locally compact spaces.

To establish the second part of the lemma, let » = inf {d(p, ?): z €
xy}. Clearly, » > 0, and by Corollary 4.10 there is a homeomorphism
of X into S(p, r) that moves points along rays. Under this map, A
is carried into A and so is 2-dimensional. Moreover, if ¢ is a point
of the closure of A, then the image of ¢ is in the compact set A, so

Dq)y meets Ty at a point z,. It follows that pg) = pz,y C Aand qe A.

THEOREM 7.2. Let (X, d) be a locally compact SC-WR metric space
of dimension n with 1 £ n < 3. Then there is a dense, open set V
of X such that points of V have closed distamce meighborhoods homeo-
morphic to I™.

Proof. For the case n = 1 the theorem follows directly from the
lemma. Since dimension X = 1, X has two points » and ¢. Since X
cannot contain 3 noncolinear points (lemma), X = pg> U gp>. Letting
V = X — {endpoints of pg) and g¢p), if any} the proof is complete.

The case n = 2 or n = 3. The argument that Rolfsen [11] gives
for a similar theorem with X compact and dim X = 8 carries over to
locally compact spaces and, with a small addition, works for dim X =
2 as well. That argument is outlined below with references to results
of this paper needed to carry through various of the steps.

Let U= {xe X: X — {x} fails to be contractible in itself} and let
V = intU. Fix pe V and choose € > 0 so that N = D(p, ¢) is compact
and contained in V. Let S = {xe X: d(p, ) = ¢}.

(1) V is open and dense in X (Proposition 5.7).

(2) S is compact, (n — 1)-dimensional and N is homeomorphic
to the (abstract) cone over S [11, (4), p. 218], (Proposition 6.4).

(3) S is an ANR-space [11, (6), p. 218], (Corollary 4.10).

(4) S does not have the fixed point property [11, (8), p. 218].

(5) For seS, S — {s} is contractible in itself [11, (7), p. 218].

(6) S is connected and if #» = 3, then no finite set separates S
[11, (9), p. 218], (Lemma 7.1).
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(7) If n =3, then S is a 2-sphere [11, (10), p. 219].

(8) If m =2, then S is a 1-sphere.

Since S does not have the fixed point property, it follows from a
theorem of Lefschetz [5] that for some k& = 0 the (reduced) singular
homology group (integral coefficients), H,(S) is nontrivial. S is con-
nected so Hy(S) =0 and dim (S) =1 so H,(S) =0 for k£ = 2, hence
H,(S)= 0. Because of (5), H,(S — {s}) =0 for all £ = 0. It follows
from a theorem of McCord’s [9] that S is a 1l-sphere.

Part (2) along with (7) and (8) yield that N is homeomorphic to I”.

8. Topological characterizations.

DEFINITION 8.1. A point % in a topological space Y has a Fuclidean
netghborhood if for some neighborhood V of y and some natural number,
n, V is homeomorphic to E™.

Throughout this section let (X, d) be a locally compact SC-WR
metric space.

PROPOSITION 8.2. If some point of X has a Euclidean neighbor-
hood, then the set, M = {x e X: x is the endpoint of some ray}, is closed
in X and every point of (X — M) has a Euclidean meighborhood.

Proof. Let p be a point of X with a Euclidean neighborhood V,
V homeomorphic to E™. There is a homeomorphism of X into V so
we may consider X, as a topological space, to be imbedded in E”.
Let int X and Bd X denote the interior and boundary of X as a subset
of E™.

For any subset, Y, of E* if yeintY, then ¥ — {y} is not con-
tractible (in itself). It follows from proof of Corollary 5.8 that for
xe M, X — {x} is contractible (in itself), so M < Bd X.

Consider a point, xe (X — M). Since 2 is not the endpoint of the
ray pzy there is a point ¢ in px) — px. Set t = d(p, x)/d(p, ¢) and
since 0 < t < 1, the map P,(—, t) is a homeomorphism of X into itself
(Theorem 4.9) that carries p to x. By the invariance of domain the
image of ¥V under this map is open in E”, hence zcint X. It follows
that Mc (X N Bd X).

Now M = (X N Bd X) and so M is closed in X, and since (X — M) =
int X every point of (X — M) has a Euclidean neighborhood.

REMARK 8.3. Note that the set, M, = {xe X: px = px)}, where
p is a point with Euclidean neighborhood, is contained in M. However,
in the last part of the above proof it was shown that, in fact, (X N
BdX)c M, so M, = M.
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ProPOSITION 8.4. Let pe X with M, closed. The function r,: X —
{p} — E* U {+ o}, defined by r,(x) = diam px), is lower-semi-continuous.

Proof. Let x, x,, %, --- be points of X — {p} with lim,_.. 2, = x,
and let ¢ be a number less than »,(x,). We may as well assume
lim,_., 7,(x,) exists, and call it s. To complete the proof it remains
only to rule out the possibility that s < &.

If s < t, then there is a point z,€ pzx,» such that d(p, z,) =s. We
can also assume r,(x,) < « for » > 0, so if we choose z, € pz,) such
that d(p, 2,) = (diam px,> — 1/n) then, by Proposition 4.5, lim 2z, = z,.
Let D(z,, ) be a compact neighborhood of z, and, clearly, T, < D(z,, )
for n sufficiently large where 7T, = pz,> — pz,. Thus T,, and conse-
quently, pz,> are compact for n large. Let y, be the endpoint of the
compact pz,> and observe that limy, = z,. Since y,¢ M, and M, is
closed z,¢ M,, hence px,p = Pz, contradicting the choice of z,.

THEOREM 8.5. Let pe(X — M) have a Euclidean neighborhood.
If » >0 and D(p, 4r) is compact and contained in (X — M), then
there is a subset T of D(p, r) such that S(p,r)< T and T is homeo-
morphic to X.

Proof. The method of the proof will be to use a sequence of
continuous functions approximating #, to partition X into countably
many subsets. These subsets will be mapped homeomorphically onto
S(p, r/2) and countably many annuli between S(p, 7/2) and S(p, r) along
with a subset of D(p, r) — S(p, 7).

The map 7, is lower-semi-continuous and has range contained in
[4r, + =] since no ray ends in D(p, 4r). Let S = {x e X: D(p, x) = 7}
and r,|S is lower-semi-continuous. A lower-semi-continuous function
on a separable, finite dimensional metric space which is bounded below
can be pointwise approximated by a (strictly) increasing sequence of
continuous functions [2]. Let f'l, fz, Fs, ¢+ be such a sequence approxi-
mating 7,|S and we can assume range of f,, all n, is contained in
[2r, «=). Extend each f, to all of X — {p} by letting f.(x) = f.(¥)
where y is the unique point of S in the ray px). Clearly the extended
functions are continuous on X — {p}.

Define

A, = {re X — {p}:d(p, 2) = f1(x)}
A, ={zeX — {p}: fa(x) = d(p, 2) S fan(@)} for 0<n <
A, ={rxe X — {p}): f.(x) < d(p, x) all n}.

The desired homeomorphism h: X — D(p, r) is defined by the formulas
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Mp) = p
h(x) = P,(x, m(zx)) for x == p

where m: X — {p} — (0, 1] is defined as follows:
r <_2_1_‘__1_> if ze A,
fi(x) 2!
14 dpa) = @) (A2 YL 221 ey,

m(x) = [ Farc@) — ful@) \2* — 1/ 1 q(p,0) 2"
0<n< oo
r .
m, if xeA, .

If e A, NA,. for 0 £n < o, then m(x) has two definitions but
since d(p, ) = f...(x) in that case it is routiné¢ to verify that

r . 2v—1
Fonl@) 2"+
from both definitions. It is also evident that m is continuous on each

A, 07 =« and on U,<. 4, as well.
Observe that for xe¢ A4,, 0 < n < , then

m(x) =

T San(@) — fu@)

which yields

ool e) = e s (Tt

Thus if ,, x,, %;, --+ is a sequence of points in U,<. A, with limit
z,€ A.., then
m(w,) .

: 7

ER ) = e
Thus m is continuous on X and the above bounds on m shows that
m has range [1/4, 1/2] (0, 1].

In order to show that % is a homeomorphism it only remains to
show that % is one-to-one, and because # moves points along rays from
p, it is sufficient to consider one such ray. Fix z,¢ X — {p} and let
b, b;, bs, -+ be points of px,» chosen so d(p, b,) = f.(x) = f.(b,). Let
a, = h(b,) and note

2 —1

Ap, a,) = m(b,)-d(p, b,) = r-=—
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The function m is constant on b, — {p} so & is one-to-one on pb,.
In general, b,b,,, = A, N DT>, SO on b,b,4,

+ B, where " T.<2” > 1)[1 "7 M(—xo)fffx}) (@) 2”1/_2 1]

a.
(@, 2) B = T<2“ > 1>(fn+1(xo) 1— fn(xo)><2”1/“2 1> '

m(z) =

Thus d(p, k(x)) = a, + B.d(p, x) and since B, > 0, is one-to-one on
b.0,.., carrying b, wOns ONtO @0, A, N px,y consists of at most one
point whose image lies a distance » from p. It follows that & is one-
to-one on x> and also that the image of px,> under A contains (px,» N
S(p, 7).

Let T = n[X] and the theorem is proved.

COROLLARY 8.6. For 1l < n £ 3 an n-dimensional, locally compact
metrizable space, X, admits an SC-WR metric if and only if X is an
n-manifold (with boundary) and is homeomorphic to a subset of closed
unit n-ball and which contains the interior of the n-ball.

Proof. The necessity is obvious because the usual metric for E»
restricted to such a subset is SC-WR.

To show the sufficiency let d be an SC-WR metric for X. By
Theorem 7.2 there exists a point » of X and a positive number ¢ such
that D(p, t) is homeomorphic to I*. X is homeomorphic to a set T
with S(p, r) © Tc D(p, r) where r = t/4. D(p,r) is homeomorphic to
I* and thus to B, the unit ball in E*. Let 7' C B be the image of
T under the last homeomorphism. Since T D S(p,r), T Dint B and
T’ being locally compact yields that 7" contains a relatively open subset
of Bd B. T" is a n-manifold and consequently X is as well.

ProposITION 8.7. Let (X, d) be a locally compact SC-WR space.
If X is of finite dimension, the following are equivalent:

(@) (X, d) is externally convex

(b) mo ray has an endpoint

(¢) X vs homogeneous

(d) X s locally homogeneous.

Proof. The pattern of the proof is (a) — (b) — (¢) — (d) — (b).

(@) < (b). This equivalence was noted in §4.

(b) — (c). Assume (b) holds. We first establish that if D(p, r)
is compact and qe S(p, r), then for we pg — {p} there is a homeo-
morphism of X onto itself that carries ¢ to w.

Let a = d(p, q) and b = d(p, w). Define A, = D(p, a) — {p}, 4. =
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D(p,r) — S(p,a) and 4; = X — S(p,r) and define the map f:X —
{p} — (0, 1} by the formula:

5 if we A,
a

F@ =10 (1-2)Am0) —a 5 e g,
a a Y —a
1 if xeA,.

Since f is continuous on each of the three closed sets A4,, 4., and A4,
and uniquely defined on their intersections, it is continuous. Let
hz) = P,(x, f(x)) for x = p and f(p) = p. P, moves points along rays
and since f(x) is a nondecreasing function of d(p, x), h is one-to-one
and therefore a homeomorphism (4.9). Note also that d(p, h(g)) =
d(p, @)+ f(@) = a-b/a = b = d(p, w), so0 h(g) = w.

On A, U {p}, b is the identity and if xe X — (4, U {»}), then the
ray pxz)y is not contained in D(p, r) so there is a point y in pz) a
distance r from p. The segment Py maps into itself under & and
both y and p are fixed so « is the image under % of some point.
Thus 2[X] = X.

Moreover, there is a homeomorphism carrying g to p because there
is a point o’ in gp) — gp and close to p which has a compact distance
neighborhood contained in D(p, ) and containing ¢ in its interior.

For  and y two points of X there is a finite, simple chain of
open distance neighborhoods with the first centered at x and the last
at y. The above homeomorphisms and their inverses allow us to push
2 into the second distance neighborhood and then into center of it.
Continuing this process a finite number of sets pushes z to v.

(¢) — (d). Obvious.

(d) — (b). Assume that (d) holds and there is a point ¢ &€ X such
that ¢ is the endpoint of a ray. Since X has finite dimension, there
is a point pe X such that X — {p} is not contractible (5.7). Let
U and V be neighborhoods of ¢ and p, respectively, and % be a
homeomorphism of U onto V carrying ¢ to p. The point ¢ has
arbitrarily small deleted distance neighborhoods that are contractible,
so let D be one contained in U. F[D] is a neighborhood of p, so there
exists an » such that D(p, r) C f[D], and D(p, ) compact. D(p, r) —
{p} is a retract of X — {p}, so is a retract of f[D] — {p} = fI[D — {qg}].
Since f[D — {qg}] is contractible and since a retract of a contractible
space is contractible [4, p. 26, 13.2], it follows that D(p, r) — {p} is
contractible. This is a contradiction because X — {p} is then contrac-
tible (5.8).

THEOREM 8.8. Let (X, d) be a locolly compact SC-WR metric space
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of dimension n and let M = {xe X: x is the endpoint of a ray}. Then
i 1< n <3 or some point of X has an E"like meighborhood, then
(X — M) s homeomorphic to E™.

Proof. If m <3, then some points of X have an E"-like neighbor-
hood, so we may, in any case, choose pe X with an E"like neighbor-
hood. There exist » > 0 and a set T such that S(p, r)c T'c D(p, r)
and T homeomorphic to X. Under this homeomorphism, if « is not
the endpoint of the px), then & maps into S(p,r), and if % is the
endpoint, it maps into D(p, ) — S(p, r). Thus (X — M) is homeomorphic
to S(p, r). By Proposition 5.6, D(p, r) is the cone over S = {x ¢ X: d(p,
z) = r}. M. Brown has shown [5] that if the cone over a set A is
Elike at the vertex, then the (cone over A) — A is homeomorphic
to E~. Thus, S(p,r) = D(p,r) — S is homeomorphic to E™ and the
theorem follows.

COROLLARY 8.9. Let (X, d) be a locally compact SC-WR metric
space of dimension n. X is homeomorphic to E" if and only if
(1) any condition of Proposition 8.7 holds, and (2) 1 < n < 3 or some
point of X has an KE™like neighborhood.

Note that if any condition of 8.7 holds, then X is locally homo-
geneous and by Theorem 3.6, X is an wn-manifold if it contains an
n-ball. We can change 8.9 slightly as follows:

COROLLARY 8.10. A locally compact space of dimension % is
homeomorphic to E™ if and only if it admits an SC-WR, externally
convex metric and, for n = 4, contains an n-ball.

9. Compact spaces. Rolfsen [10] proved that a compact n-mani-
fold (with boundary) which admits an SC-WR metric is homeomorphic
to I* when # = 6. In this section it is shown that the result holds
for n = 4 or 5 whenever there is a terminal point in the space.

DEFINITION 9.1. In a metric space (X, d), a point p is said to be
a terminal point if for x, ye X, d(x, ¥) = d(z, p) + d(p, y¥) implies p =
x or p=4.

THEOREM 9.2. Let (X, d) be a compact SC-WR metric space. If
X is an n-manifold and has a terminal point, then X s homeomorphic
to I,

Proof. Let p be a point of (X — 0X) (06X is the boundary of
X), and let M = {xe X: px) = px}. As is evident from the proof of
Proposition 8.2, M is the boundary of X in an embedding of X in
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E*, so M = o0X. First, note that if xe M then the segment, pw,
meets M only at z.

Take ¢ to be a terminal point of X and since ge M, q¢ has a
neighborhood, V, relative to M which is homeomorphic to E*'. Let
Dy, Doy D3, +++ be a sequence of points of pg — {q} which converges to
g. For each i =1, 2, 3, -.. define the function h;: M — M by the rule:
hi(x) is the endpoint of the ray zp;>. If y = h;(x), then z¢ yp;> and
by our earlier observation, %;(y) = ®. Thus A; is one-to-one and onto
for each ¢, and the continuity of %; is easily established, so h; is a
homeomorphism of M onto itself.

Suppose that for each integer, ¢, there is a point x;e M — (VU
h[V]). M is compact, so there is a point x,€ M which is a limit of
some subsequence of x, %, +-+. We may assume that lim,..z; = x,.
Let z be a limit point of {h;(x;):4= 1,2, ---} and note z¢ V hence
z #+ q. But since lim p; = g, d(x,, 2) = d{(w,, ¢) + d(g, ) contradicting
the choice of ¢g. For some ¢ then, M = VU &]V].

The compact Hausdorff space M being the union of two open
(n — 1)-cells is an (n — 1)-sphere. The set (J.., P& is homeomorphic
to I" and is all of X, so the theorem is proved.
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THE SPACE OF BOUNDED SEQUENCES WITH
THE MIXED TOPOLOGY

AJiT KAUR CHILANA

The space of bounded sequences with the mixed topology
has some interesting properties and can be used to answer
two questions on boundedly generated spaces asked by T. Ito
and T. Seidman.

1. Introduction. We consider the locally convex algebra m of
bounded complex sequences with pointwise addition and multiplication
equipped with the mixed topology [11]. The topology 7 is the same
as the strict topology B [1] on C(S), when S is taken to be the
space of positive integers. This space has a number of interesting
properties, some of which can be found in [11], [3] (Example 3), [1],
and [4]. In this note we obtain some further results such as: this
space is hereditary boundedly generated [6], it has an unconditional
Schauder basis, and its Gelfand map is continuous.

The basic ideas are as in [7]. A locally convex space E is said
to be boundedly generated, in short, BG if it is the closed linear span
of a bounded subset; it is said to be hereditary boundedly generated,
in short, HBG, if every closed linear subspace of the space is BG
[6]. E is called sequentially barrelled if every z,(E, E’)-null sequence
in the topological dual E’ of E is equicontinuous [10]. The sequential
dual E*+ of E is the set of sequentially continuous linear functionals
f on E(i.e., f(x,) — 0 whenever x,— 0 in E) [10]. E is called sems
1-barrelled if every r,(E, E’)-bounded sequence in E’ is equicontinuous
[3]- A barrel in a locally convex algebra E that is also an idempotent
set (i.e., AC E such that A.Ac A) is called an m-barrel and E is
said to be m-barrelled if every m-barrel in £ is a neighborhood of 0
[8]. Let E be a complex locally convex algebra. Let M denote the
set of nonzero, continuous, multiplicative, linear functionals on E,
provided with the weak topology induced by E. Let C(M) denote
the space of complex continuous functions on M with the topology of
compact convergence. The Gelfand map G on E to C(M) is given
by G@)(m) = m(x) (xc E, me M). E is called strongly semi-simple if
G is an algebraic isomorphism of E into C(M).

Now let E denote the space m with the mixed topology 7 or,
equivalently, the strict topology 8. A base of r-neighborhoods of 0
is given by

%:{Ua: {x:<xn): |xn] <a/n1n:1,29 .“}?a’:(an)’ 0<a,n———><>o},

29
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Let B={wecl:|a,|<1l,n=12 .-}, ||x|] =sup{le.: =12 -}
for xem. Let ¢ = (x,): 2; =1 and x, = 0 if 7 = n. Let

l‘:{xem: ij_‘,]xn[<oo},

and [z, = S |2, ] (@wel). The a-dual of m is I* ([7], § 30.1) and
(m, 1) is thus a dual pair.

2. Properties of the space E.

I. E is complete and has the Mackey topology 7,(I").

It is proved in [1] (also in [3]) that E is complete. The second
part follows from [4], Theorems 2 and 4, on taking S to be the set
of positive integers with the discrete topology.

II. No topology on m compatible with duality is barrelled or m-
barrelled.

The set B is a barrel [3] and not a neighborhood in E, also
it is idempotent. As E carries the strongest topology compatible with
duality and barrels remain barrels under any topology compatible with
duality, the result follows immediately.

III. E is an HBG space.
For any subspace F' of E, F=J{®BNF): n=12 ---} and,
therefore, F' is the closed linear hull of a bounded subset of itself.

REMARK 1. It was asked in question (2) of [6], if there are any
HBG spaces that are not Banach or separable Fréchet spaces. 1I
and III give an affirmative answer.

ReEMARK 2. In [2] the first part of question (8) in [6] was
answered in the negative and the following more general question
was raised: If F' is a BG space with dual F’, then must there be a
barrelled topology compatible with duality (F, F’)? The example
given there to prove that the answer is “No” is artificial in the sense
that its completion is a Banach space and thus barrelled. By I, E
is a complete space and II and III show that it serves as a better
example.

IV. A sequentially continuous linear functional on E 1is con-
tinuous and E is sequentially barrelled.

Combining [5], Theorem III (2.8) and I above, we have E’= E*.
Thus 7 =7 (E*, E). Proposition 4.3 in [10] then gives that E is
sequentialy barrelled.
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V. E is not semi 1-barrelled.

Consider A={e":n=1,2,...}Cl'= E'. Foreach we E, and for
n=12 ¢, |e"@)] = |2, <||2]. So A is 7,(E’, E)-bounded. Also
the polar 4° of A in E is B which is not a neighborhood. There-
fore, A is not equicontinuous.

REMARK 8. It is known ([3], Proposition 9 (ii), p. 481) that a semi
1-barrelled space is sequentially barrelled. IV and V show that the
reverse implication may not be true. We take this opportunity to
point out that there are two Proposition 9 in [3] (!) and in Proposi-
tion 9 (ii) on p. 481 [3] it should be almost semi-1-barrelled instead
of almost semi-barrelled.

VI. E has a Schauder basis (e"), which is

(i) bounded multiplier,

(ii) boundedly complete,

(iii) mnot of type P*,

(iv) wunconditional,

(v) shrinking,

(vi) mot of type P,

(vii) momnotone, and

(viii) e-Schauder [5].

We note that m is perfect and normal ([7], § 30.1), E’ =l = m*
and 7 = 7,(l'). We can use [5], I(2.5) to obtain (i), (ii), and (iii). To
prove (iv) we appeal to [5], I(2.4) and (i) above. The strong dual
of E is (I',]] . ||) and it has (¢”) as a Schauder basis, so (v) is true.
For (vi) note that ¢*— 0 in E. Also % satisfies the conditions for
(e™) to be monotone and SyU,cC U, for all U,e Z and N=1,2, «--.
Thus (vii) and (viii) are true.

REMARK 4. It is well-known that m with the sup-norm topology
is not separable and thus cannot have a basis. The above result
shows the difference a change in the topology can make.

VII. C(M) is barrelled.
Let 0= fel® and f be multiplicative on E. Because

z = lim Zj‘, xe
f(@) = lim, .. >, x;f(¢’) for each ze€ E. So there is an » such that
f(e™) =0. Also f(e") = f(e"e™) = f(e") f(e"), so we must have f(e") =1.
Now for j =+ n f(e")f(e') = f(e®¢)) = f(0) =0, so f(¢/) =0. Thus
f(x) = x, and f can be identified with e*el'. So
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M={"n=12---}.

Also {zg}°NM = {¢"} if xem be such that z,=1 and z; = 2 for j = n.
Hence M can be identified with the set of positive integers with the
discrete topology. Therefore, C(M) is the space of all complex
sequences with the topology of pointwise convergence and is, thus
barrelled.

REMARK 5. We note that m-barrelledness of some topology com-
patible with duality is sufficient in [8], Lemma 8.1 (or [9], Cor. 6.3)
and even this condition is not necessary as shown by II and VII.

VIII. E has jointly continuous multiplication.
If ¢« = (a,) be such that 0 <e@,— « then for b = (b,), where
b, = al*, 0 < b,— o and also U, U, U,.

IX. The Gelfand map is continuous but not a homeomorphism.

It is immediate from the proof of VIIL.

The next result shows that £ does not, however, have a good
functional representation.

X. E cannot be embedded algebraically and topologically in a
C(X) for X a locally compact Hausdorff' space or for X a completely
regular Hausdorff space.

From the proof of VII we get that G is an isomorphism of E
into C(M), and thus F is strongly semi-simple. Also in view of VIII,
E is a topological algebra in the sense of [9]. Combining Theorem
4.6 of [9] and IX above we get the required result.

REMARK 6. This space also helps in distinguishing some classes
of topological algebras such as m-k-barrelled algebras, m-k-infrabar-
relled algebras, locally boundedly multiplicatively convex algebras.

I should like to thank the referee for his suggestions regarding
the format of the paper.
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DIFFERENTIABLE OPEN MAPS OF
(p + 1-MANIFOLD TO p-MANIFOLD

P. T. CHURCH AND J. G. TIMOURIAN

Let f: M?»#* —> N? be a C® open map with p =1, let
R, 1(f) be the critical set of f, and let
dim (B,—(/)NfYy) =0

for each y € N». Then (1.1) there is a closed set X< M 7+! such
that dim f(X) =< p — 2 and, for every x < M7+ — X, there is
a natural number d(x) with f at 2 locally topologically
equivalent to the map

Gam: C X RP1—> R X Rr-?
defired by
¢d(a:)<z9 tls Sty tp—l) = (% (zd(x))’ tly Tty tp—l)

(# (z¢®) is the real part of the complex number 2¢*),

The hypothesis on the critical set is essential [3, (4.11)], but in
[4] we show that any real analytic open map satisfies this hypothesis,
and thus this conclusion.

COROLLARY 1.2. If f: M***— N? is a C*" open map with
dim (B,_,(f)) =< 0, then at each ze M, f is locally topologically
equivalent to one of the following maps:

(a) the projection map p: R — R?,

(b) 7: Cx C—C X R defined by
(2, w) = 22+ W, |w|* — | 2|?), where W is the complex conjugate of w.

(e) gt C— R defined by +4(2) = G#(z9.

In order to read the proofs in this paper, the reader will need to
have [3] at hand. In particular, the terms locally topologically
equivalent, branch set By, layer map, extended embedding, and O-
regular are defined in [3; (1.3), (1.5), (2.1), (2.3), and (4.1), respec-
tively].

2. Spoke sets. The definition and lemmas of this section are
given in somewhat greater generality than needed in this paper (i.e.,
for open maps), for use in a subsequent paper.

Let I be any 2-manifold (without boundary).

DerFINITION 2.1. Let 4, X ¢&: C X R*™'— R X R*™' be defined by
Pro X !(Z, t) = (|2 l, t) and Y X ‘(zy t) = (%(zw)’ 8 (w =1, 2, cee)e Thus

35
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B(y, X ¢) = @ and B(y, X ¢) = {0} X R*™* otherwise. For w = 0 let
L=D*x D" and let J=[—1,1]; for w =1 and 7 > 0 sufficiently
small, let

L = (D*x D) N (¥ X 97 ([—7, 7] x D7)

and let J = [—7, 7]. These examples motivate the following defini-
tion.

Let f: I x R*'— R X R*™* be a layer map, let J = [b,, b,] C R,
and let Wc R*™ be a closed g-cell (¢ =0,1, .-+, p — 1). Let {7;} be
a (possibly empty) collection of 2w disjoint closed ares in S'(j = 1,
2, 00, 2w); let A =U;v;, and let & S*x W—I1% X W be a layer
embedding such that B,Nimagl = @, fol: 7;, X WaJ X W, and
for each component @ of Cl[S! — A], f(§(@ x W)) ={b} X W(E =0
or 1). A spoke set of f over J x W is (i) a compact, connected sub-
space L C f~(R x W) such that (ii) L N (I™ x {t}) is a 2-cell for each
te W and (iii) for some { as above, the boundary 2 of L with respect
to fT(Rx W) is imag{. Thusif A=¢g, f(@ ={b}x W@E=0or
1). (In case A # @ and ¢ =1, L is homeomorphic to the hub and
spokes of a wagon wheel, where {(A X W) corresponds to the ends
of the spokes.) The index &(L) =1 — w.

LeEMMA 2.2, Let f: I X R — R X R be a layer map with
dim (B, N (I x {t})) = dim (f(By) N (R X {t})) =< 0 for each tec R*™, let
E C B; be compact, let ac R*™, and let € > 0. Then there are a closed
(p — 1)-cell neighborhood W of a, closed intervals J;(j = 1,2, ««+, m),
and spoke sets L; over J; X W such that

(iV) EnN Lj #* @ and EN ™ X W) C UJ'(LJ' — 25,

(v) the L; — 2; are mutually disjoint, and

(vi) each diam L; < e.

Proof. Let F be a compact neighborhood of E in /™ x R, let
{U,} be a cover of 7™ by interiors of closed 2-cells, and let ¢ be the
Lebesgue number of {U, X R*™} as a cover of F. We may suppose
that ¢ < min (0, d(E, bdy F')). Thus

(1) for each ¥ Cc F with diam ¥ < ¢, there is a closed 2-cell U
with ¥ c (int U) x R

Given ye R with (y,a)e f(E) and X =EN f'(y, a), let @ be
the finite set and v: @ X D—I™® X R be the extended embedding
with imagy N B; = @ given by [3, (2.5)] for X and &. According to
that lemma each component K of f~'(intD)-imagy meeting X
has diam K < &, and eaeh is open. Since X = EN f(y,a) and E
is compact, one may prove (by contradiction) that it is possible to
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select the p-cell neighborhood D of (y,a) in R x R** sufficiently
small that each component K of f~'(int D) — imagy meeting E has
diam K < e. Summarizing.

(2) each component K of f~'(int D)-imagy with K N E # @ has
diam K < e, so that K cint F.

Choose a closed interval J(y) € R with y eint J(y),

J(y) x {a}cint D,

and end points b(y), b.(y) with (b(y), @), (b.(y), a) ¢ f(By). Since
F(F NB,) is closed, there is a closed (p — 1)-cell neighborhood W(y)
of @ in R* such that (0J(y) X W) N fF(FNB,) = @ and

J) x Wy cD.

Let y(y) be the corresponding extended embedding (restricted) over
J x W.
There are y,, ¥;, *++, ¥. € B with (y;, @) € f(F) and

F(E) N (B x {a}) © U;int (J(y;) x {a} .

The points {bi(y;): 1=0,1; 7=1,2, ---, u} are the end points of a
finite set of closed intervals with mutually disjoint interiors; let
Juh =1,2, .-+ 7) be those intervals with (J, X {a}) N f(E) = O.
Let W be a closed (p — 1)-cell neighborhood of ac R with
WcN; Ww;). Then (0, X W)N f(FNBy) =@ and

FE)N (R x W) Ui ((int ) x W) (h=1,2,+--,7).

Since each J, is contained in some J(y,), restriction of v(y;) yields an
extended embedding y, over J, X W.
Let J = [b,, b,] be one of these intervals J,, let

v: (@ XJ) X W—> 1% X R
be the layer embedding v,, and let Pc F be a component of
F'({b;} X W) — imagy.

Since ({b;} x W)NFENBy) = @, £71({b;} x W) Nint F is a p-manifold,
P is a compact connected p-manifold with boundary, and [3, (1.9)]
f|P: P—{b} x W is a bundle map. Thus [11; p. 53, (11.4)] it is a
product bundle map, and since f is a layer map

(3) there is a layer embedding N A'xX W—I? X W, where
MA*x W) = P and 4'~ S* or [0, 1].

In particular, PN (/™ X {s}) is a component of f~'(b;, s) — imagy
(se W; 1=0,1), and CI[PN (I™ X {s})] ~ 4*. From the compactness
of F and the finiteness of @, the number of such components P is
finite.
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Let K be a component of f~(J X W)-imagy meeting E (thus by
(2) diamK < e and KcintF) and let T be a component of the
boundary of K in (i.e., relative to) /™ x W. Then

Tc f~'({b, b} x W)U imagy.

Moreover, from (38) there are a finite union (possibly empty) A of
disjoint arcs in S* and a layer embedding {: S' x W— I x W with
imagl =T, {(A X W)= TNimagy, and

CEIS' — Al x W) = TN f7({bs, b} x W) .

For each se¢ W and component (arc) v of A, fol: v Xs~J X s,
and for each component 4 of Cl[S* — A], f(C(4 X {s})) = (b;,s) 1 =0
or 1). Thus if A # @, there are an even number of such components
(arcs) 4, and they alternate in value. Hence there are an even
number (possibly zero) of components (arcs) of A.

The union of such embeddings { over all Je{J,: 2 =1,2, <+« 7}
and components K of f~'(J x W) — imagy is finite: call them

Ci(j::l;z"."k)‘

Let 2, = imag{; and let K; be the corresponding component K; by
(1) there is a closed 2-cell U;c I* with K;C (int U;) x W, and thus
each K, N (™ x {s}) is a 2-cell-with-holes contained in int U;. Each
Q2; separates U; X W into two components; let L; be the closure of
the component disjoint from oU; X W. Each L;N (™ X {s}) is a 2-
cell, and since the K; are mutually disjoint, for ¢ = j exactly one of
the following is true: (L;—2)N(L; — 2;) = @, L;c L;, or L;C L,
The desired spoke sets are those L; with ENL;+* @ and L; & L;
for any 7 # j. Since each diam K; < ¢, each diam 2; < &, so that
diam L; < &. Since EN(*x WycU;K,cU;L;, EcB; and
B;NQ2; =00, EN({™x W)ycUA(L; — 25).

LEMMA 2.3. Let f: I*X R — R X R*™* be a layer map, let L,
(resp., L;, 5 =1,2, <+« q) be a spoke set over J X W(resp., J; X W’),
and let se WnN W'. Suppose that L; N (I X {s}) C L,,

By 0 LN (" x (sh < Y (Ls — 29
and the L; — 2; are mutually disjoint (j > 0). Then
&(Lo) = J};g &(Ly) -

Proof. Sinece B(f,) < B;N (™ x {s}) and &L;) = &L;N{™ X {s})),
it suffices to prove the lemma for f = f,: I*— R. Thus L;C L, and
B,NL,cUjsL; — 2;. If A; (see (2.1)) has 2 w(j) components
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(w() = 0,1, -++), define g;: L;— R to agree with f on 0L; = 2; and
to be topologically equivalent to +r,;. Let h: L,— R agree with f
on Ly — Ujse(L; — 2;) and with g; on L; (j=1,2,-++,q9). Then
B(h) = U;-.B(g;), and so is discrete.

Let D(L;) be the identification space obtained from

(L; x {0) U (L; x {1})

by identifying (z, 0) with (x, 1) for each xe A = A(L;), let D(g,):
D(L;)— R be defined by D(g;) (z,0) = D(g,) (x,1) = g;(x), and let
D(h) be defined analogously. Define a vector field u; (resp., v) on
D(L;) (resp., D(L,)) which is 0 precisely on the (discrete) branch set
B(D(g;)) (resp., B(D(h))) and elsewhere is transverse to the level
curves of D(g,) (resp., D(h)), i.e., a “gradient vector field” (j =
0,1,:.+,9). For any vector field & with isolated zeros, let the sum
of the indices of a at its zeros [7, p. 32] be denoted by ¢ (a).
Since L; ~ D? the Euler characteristic

X(D(Ly) = 2 — 2w(j) = 2&(Ly) .

According to the Poincaré-Hopf Theorem [7, p. 35] (differentiability is
not really needed in our case) y(D(L;)) = ¢(u;), so that 2&(L;) = ¢ (u;)
and 28(L,) = ¢ (u,) = ¢(w). Thus 2&8L) =) =23 s.¢(@|L;) (by
definition of 0) = Djsot(U;) = 23550 §(Ly), so that &(L,) = 35, 8(Ly)
(where 7 =1,2, «.-, q).

Alternatively, we could have used [5, p. 370] or [10, p. 35, (4.3.6)];
in this case we would have removed an open 2-cell with boundary a
level circle about each local maximum or minimum point of g; and
h, in order to have open maps. Or, we could have used a counting
argument based on the Euler -characteristics of L; L, and
L, — U;int L;; the first two spaces are 2-cells, and the last one is
disjoint from B;, so that information about it can be obtained from
3, 1.9)].

3. Spoke sets of open maps.

LemMMA 3.1. Let f: I X R — R X R be an open layer map,
and let L, be a spoke set over J X W, where W is a closed (p — 1)-
cell. Then

(a) fy,tyN L, does not contain a homeomorph of S*
((y,9) e B x R*™)

(b) &Ly = 0;
(e) flL)=JxW;
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(d) (L) #= 0 implies that B,N (L, — Q)N (™ x {t}) #= @ for
every tec R*
(e) of dim (f(By) N (R x {£})) =0 for every te R,

dim (B, N f~'(y,9)) <0 for every (y,t)e R X R*™,
and &(L,) = 0, then B;Nint L, = &.

Proof. Suppose (a) is false, where /A is the homeomorph of S*.
Then 4 bounds an open 2-cell 4 in L,N (I™ X {t}) ~ D> Since f;:
I*— R is open, f,(4) is an open interval, while f,(4) is a closed
interval with f,(04) a single point, and a contradiction results.

If &Ly >0, then 2,N (I™® x {t}) is a component of f~'(y,t) for
some y e R, and a contradiction of (a) results. Thus (b) is true.

From the definition of L,(2.1), f(L)<J x W, and from that
definition and (b), f(R,) =J X W, so that (¢) J x W = f(L,).

BN —92)N{I*" x{t}) =2 for some tc W, then

g: Lo N (I % {t}) — J x {¢}

defined by restriction of f has B, = @ [3, (4.10)], and so is a bundle
map [3, (1.9)]. Thus [11, p. 53, 11.4)] L, N (I X {t}) ~J X F, where
the fiber F' is a 1-manifold with boundary. Since J x F ~ D? (2.1)
(ii), F is connected and F' » S'. Thus F ~ [0, 1], so that &(L,) = 0.
Conclusion (d) results.

For a spoke set L of f over I x U, let *L be LN f~(int(I x U));
thus *L — Q = int L (interior relative to 7™ x R*™%)., Since the re-
striction map «a: f~ (int (/ X W)) —int (J x W) is open, *L, — 2, is
open in fX(int (J/ x W)), and B(f| L) N 2, = @, the restriction map
Bo: *Ly—int (J X W) is open. Suppose that f satisfies the hypotheses
of (e), i.e., &(L,) = 0, while (z, s)e B,Nint L,. Given & > 0, which
we may assume is less than d(B,, 2,), let W’ and the spoke sets
L;G=1,2 +-+,9) be as given by (2.2) for f, &, a =s, and E =
(B;N L,), where (z,s)eintL,., From (b) each &(L,) <0 and from
(2.3) &(Ly) = 3550 &(Ly); thus &(L;) = 0 for every j, so in particular
&(L,) = 0. Let B *L,— f(*L,) be restriction of f.

For each (2, t) € f(L;) — f(By), (¢ =0, 1), (B:)7'(», t) is a 1-manifold
with boundary; by (a) each of its components is homeomorphic to
[0, 1], and since &(Ly) = 0, (8)™(z, §~[0, 1]. By [3, 4.3)@)] (8", »)
is arcwise connected for each (y, u) € imag 8;. Choose 6 > 0 such that
S((z, s), 6) cint L,. Then

Sy, ) NS, 0) < (B)(y, w) < 7'y, w) N S((w, 9), ¢) ,

so that f is O-regular at (x,s) [3, (4.1)]. Sinee (v,s8)eB,N L, is
arbitrary, by [3, (4.2)] f is O-regular at each point of L,. Thus g, is
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a bundle map [3, (4.3) (b)], so that B,Nint L, = & .

LEMMA 3.2. Let g: I X R*'— R X R*™ be an open layer map,
let L be a spoke set over J X W where W is a (p — 1)-cell and let
a, W~ B,NL with woa the identity map. Then g|int L 1is
topologically equivalent to 4, X ¢ (w = 2,38, +++; see (2.1)).

Proof. We may as well replace g by its restriction to g~ (intJ X
int W), and L by LN g™ (intJ X int W), i.e., we may as well suppose
that intJ = R and int W = R**. Let h: R x R*— R X R*™ be the
layer homeomorphism defined by hi(y,t) = (y,t) — g(a(t)), and let
M=hog|L. Then B, = B,N L and MB;) = {0} x R*™

Let J; be (—,0] or [0, =) according as % is odd or even. (1)
Let K be a component of M 7'((intJ;) X R*™), and let B: K —intJ; X
R and v: K—J; X R*" be the restriction of A. Since B, = &,
B is a bundle map with fiber a 1-manifold F [3, (1.9)], and so
K~ F x intJ; x R’ [11, p. 53, (11.4)]. Since K is connected, F' is
also, and by (3.1(a)) F ~ [0,1]. By [3, 4.3)(a)], v*(0, t) is arcwise
connected for each te R,

Given (z, s) € B,N7" ({0} x R*™) and ¢ > 0 with S((z, s), ¢)C int L,
let L’ be a spoke set over J’ x W’ given by (2.2) for n, E = {(x, s)},
a =38, and ¢. Then L’ satisfies the original hypotheses, so that
(*)"“(y, t) is arcwise connected for every (y,t). Choose 6 > 0 with
S((x, s), ) cint L’. Then

S((x, 5),0) N7 (y, 1) < (V)7 (y, ) < S((x, 8), &) N7 (y, ?)

for each (y, t)eJ’ x W', so that 7' is O-regular at (x,s). By [3, (4.2)]
v is O-regular, and (by [3, (4.3)(b)]) (2) ¥ is a (product) bundle map
with fiber [0, 1].

For each te R** and component K (see (1)), 7| (K N (I x {t})) is
a product bundle map over J; X (f) with fiber [0, 1], so that A7 (0, ?)
is a deformation retract of L N (/™ x {t}) ~ D*. Thus A!(0, f) is con-
nected. Since A0, {) contains no homeomorph of S* (3.1(a)), and
210, %) — {a(t)} is a l-manifold with boundary points the 2w
((L) = 1 — w) points of A (0, %) N 2 (2.1), it follows that A'(0, t) is
homeomorphic to the union of 2w arcs disjoint except for their com-
mon endpoint a(f). As a result a(f)e KN (I® x {t}), so that each K
contains imag «, i.e., B;.

Let K; (¢ =1,2,+--,2w) be the components K enumerated so
that for any te R, (int K;) N (/™ x {t}) are the components of

(int L) N (1™ x {t}) — 270, t))

in counterclockwise order around a(f) with MK, = J; x R Let
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d; =K, Nint L, let ¥ = 4, X ¢(see (2.1)), and let 4; be the closures
of the components of ' (intJ; X R*™") enumerated in analogous
fashion.

By (2) there is an orientation-preserving homeomorphism g; of 4;
onto R x J; x R* with wopy, = 1| 4;. Lety,; be the homeomorphism
of R x J, x R** onto itself defined by

”i(x, Y, t) = (x, Y, t) - ‘U,(C\f(t)) + (0’ 0’ t) ’
and let {; = y; o ;. Then {(a@®®) = (0,0, £), so that
Li(By) = {0} x {0} x R*.

There is an analogous orientation-preserving homeomorphism &; of 4,
onto R X J; X R with mwo &, = 4|4, and §(By) = {0} x {0} x R,

Let @ = (int L) N »* ({0} x R*™), and let I; (resp., ') be the
closure in @ (resp., ¥+ '({0} x R*™)) of the component in & — B(resp.,
7 ({0} x R*™) — By) meeting both A; and 4., (resp., 4; and 4,,,),
where ¢ and 7 -+ 1 are interpreted mod 2w. In case w = 1 there are
two such components, and 1°; is so chosen that, for each te R*™™, a
counter-clockwise path around «(t) from A; to 4;,, passes through
Y;. Then (£)™*0 {; (also (&) " o ;) defines a homeomorphism of 77,
onto +; with (§)o{(B) = By. Let p: @~ ({0} x R*™) agree
with (§)'-{; on T,

Let o, be the layer homeomorphism of B x {0} X R*™ onto itself
which is the restriction of & 00", (on {(v;.), o; agrees with the
identity map) and let z; be its first coordinate map. Let ¢; be the
homeomorphism of R x J; X R*™* onto itself defined by ¢; (x, ¥, 1) =
(i, t), v, t), and let x; = (§) o g; o {;. Then y;: 4;~ 4;, they agree
with o, and they thus define y: int L ~ C X R*™; since wo{;, = M| 4;
and 7o & = 4| 4;, where m: R x J; X R**—J; X R’ is projection,
Aroy = N|int L. This is the desired conclusion.

4. The Proof of the theorem.

REMARK 4.1. According to the Rank Theorem [3, (1.6)]
B,c R,_,(f), and we prove (1.1) under the weaker hypothesis that
dim (B; N f~(y)) < 0 for each ye N7,

Proof. Let X be the complement of the set on which f has the
desired structure; then X B, is closed. We suppose that
dim f(X)zp—1,

and will obtain a contradiction.
Sinee f is C?, dim (f(R,—(f))) < » — 2 [2, p. 1037]. If, for every
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xe M — fYf(R,—(f))), there is an open neighborhood

U.c M — f7(f(B,—(1))

of x with U, compact and dim (f(U, N X)) < p — 2, it follows from
the fact that {U,} has a countable subcover that dim(f (X)) =p — 2.
Thus, there is an Te M** — f(f(R,-.(f))) such that, (1) for every
open neighborhood Uc M** — f~(f(R,-(f))) of Z, dim (f(UN X)) =
p— 1.

By [1, p. 87, (1.1)] there are open neighborhoods U of Z and V
of f(x) and Cr diffeomorphisms o: R* X R**~ U and p: V~ R x R*™
such that po foo=g is a Cr layer map and 0(0,0) = Z. By
hypothesis dim (B, N ¢7'(y, t)) = 0 for each (y,?)e B x R*.

Since o7(X)c B,, B,C R,_,(g) (by the Rank Theorem [3, (1.6)]),
R, .(9) N (B X () = By(g.), and dim(g,(B(g,))) = 0 by Sard’s Theorem
(e.g. [2, p. 1037]), (2) dim (g(B,) N (B> x {£})) = 0 and

dim (g(c™(X)) N (B x {t)) = 0.

On the other hand, (by (1)) dim (g(67*(X)) = » — 1, so there is an
+ > 0 such that

A= (Cl[S(0, r)] x R N o~(X)

has dimgd) =p—1. If m: R x R*'— R’ is projection, then
dim (7(g(4))) = p — 1 (by (2) and [6, p. 91]), and there is an open
(p — Vy-cell Tc r(g(4)) [6, p. 44] with T compact. Thus (3)

AN(R X {th) = @ for each teT.

Let Wc T and the spoke sets L;(j =1, 2, ---, q) be as given by
(2.2) for g, any ac T, E= AN (R*x T), and (say) e =1. If (4) (i)
the cardinality w() =1 of B,N(R*x {tHhN{U;L,) (teintW) is
bounded above by |3;&(L;)|, choose scint W such that w(s) is
maximal and let (x;,s) ¢ =1,2, --+, w(s)) be these points. Other-
wise, (4) (ii) there are seintW and distinet points (x;,s) (¢ =1,2, ---,
I3 8Ly +1) of B,Nn(Ex{th N (UJ; L;). Let w' be w(s) in case
4 @) and |>;&L;)|+ 1 in case (4) (ii). Let &> 0 be less than
d(x,, x;) for h % ¢ and d(B,, U;2;), and let W’ cCint W and {L;} be
as given by (2.2) for g, a = s, E = UJ; L; N B,, and this . Thus (5)
the (x;, s), are in distinct spoke sets L.

By hypothesis and by (2), the hypothesis of (3.1) (e) is satisfied,
so that by (38.1) (d) and (e) &L;) = 0 if and only if L;,NB,= &.
We may thus omit those L; and Lj with &(L;) = 0 = &(L}). From
(3.1) (b) each &(L,) < 0 and &(L}) < 0, and from (5) and (3.1) (d) the
cardinality ¢ of {L}} satisfles w ¢ = |3, &L})|. Since each Lj is
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contained in some L; >;&(Lj;) = >, &Ly by (2.8), and so w =
| 3% &(L;)|; this contradicts (4) (ii), and hence (4) (i) must be true.

For te W', w(it)=c¢ by (3.1) (d), while ¢ = w(s) by (4) (i), so
that w(t) = w(s). Thus (by (38.1) (d)) each B,N(R* X {th N L, is a
single point for te W’, and since B, is closed, there is a homeo-
morphism «;: W’ ~ L}, N B, with 7 o «; the identity map on W’. By
3.2 U, (e (X)N L) =@. But this set contains 4N (R* x W),
contradicting (3).

7]

REMARK 4.2. In case p =1, C°® may be replaced by C? and the
argument can be shortened considerably. In that case (4.1) results
from [12, p. 103, Theorem 1] (cf. [18, pp. 7-8]), and (4.1) in case B;
is discrete is [10, p. 28, (4.3.1)] and [9]. Considerable information
relating to open maps f: M*— N' is given in [5], [8], and [10].

4.3. Proof of (1.2). The hypotheses of (1.1) are satisfied (with
C*if p=1). Incase p=1, X = @, so that at each xe M+, f at
x is locally topologically equivalent to +ry,. In case p = 2, for each
vxe M — X with d(x) =1 (i.e., 2By, dimB;,=p—-1=1 in a
neighborhood of 2x; the assumption that dim R,_,(f) = 0 contradicts
the Rank Theorem [3, (1.6)]. Thus B;c X, so that

dim f(B) < p—2.

That f is locally topological equivalent to o or to 7 is now a con-
sequence of [3, (4.7)].
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ON ADDITIVE FUNCTIONS WHOSE LIMITING
DISTRIBUTIONS POSSESS A FINITE
MEAN AND VARIANCE

P. D. T. A. ELrLIOTT

In this paper two characterizations are given of those
additive arithmetic functions which possess a limiting distribu-
tion with a finite mean and variance. It turns out that the
study of such functions fits naturally within the framework
of the theory of Lambert series.

1. An arithmetic function f(xn) is said to be additive if for every
pair of coprime positive integers a and b the relation

f(ab) = f(a) + f(b)

is satisfied. If in addition the relations

f@ = f®)=---

hold for each prime power then we say that f(n) is strongly additive.
For clarity of exposition only we shall confine ourselves to the study
of strongly additive functions in this paper.

For each real number z = 1 we define the frequency function

v,(m; f(n) <z)=a731.
f?’rﬁzz

If as ¢ — oo these frequencies converge to a limiting distribution in
the usual probabilistic sense then we say that f(n) has a limiting
distribution.

2. THEOREM. For any (real valued) additive function f(n) the
following three propositions are equivalent:

(i) f(m) has a limiting distribution with finite mean and
variance.

(ii) The series

3. f(op™ and X fH(p)p™
both converge.
(iii)
lim sup x“é JiHn) < oo

z—00

and
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limx™ 3, f(n)
z—00 nx

exist.

REMARK. The equivalence of Propositions (i) and (ii) is exactly
what one should expect from the interpretation of f(n) as the sum
-of independent random variables which take (respective) values f(p)
with probability p~* and zero with probability 1 — p~. More surprising,
perhaps, is the fact that the hypothesis that f(n) be additive improves
the otherwise weak conditions (iii) to equivalence with (i). We shall
(perhaps surprisingly) appeal to a result concerning Lambert series.

It will be clear that a form of theorem involving complex-valued
additive functions could be proved if we confine our attention to the
equivalence of Propositions (ii) and (iii).

3. Proof that (i) tmplies (ii).
We define the function

fp) if [fP)I<1

1 otherwise.

fip) =

Then the Erdos-Wintner criterion (see for example Kubilius [3] Theorem
4.5 pp. 74-85) asserts that f(n) possesses a limiting frequency (unre-
stricted) if and only if both of the series

2 f'(p)p™" and 3 (f'(p))s=

converge. Let F(z) denote the limiting frequency guaranteed by (i).
Then for any positive real number B such that + B are eceontinuity
points of F'(z) we see that

7 3 fm)— |

ZdF(z), (x— ).
nsw <B
If(n)|=B

12|
Next, for any real € > 0 there is a number A4 such that
liminfy,(n; [f(n)| < 4A) >1—c¢.

From the Erdos-Wintner criterion we see that those primes ¢; for
which | f(¢g;)| = 1 are such that the series

>\ q7t

converges. Let us denote the set of these primes by Q.

A straightforward application of the sieve of Eratosthenes shows
that those integers which are prime to every ¢; have a natural density.
In fact we obtain
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v g f v — T (1= 2), ).

2

Set a for this product, and let A be chosen so that the second of our
two assertions above holds with ¢ = a/2. Let the integers n; run
through all those integers » which satisfy both

|f(n)] = A and g, }nvj .
From what we have so far said it is clear that

liminfy,(n;n =n; < 2) = a/2,

P
and in particular we have
v(n;m=n; L) = ald

for all z = z,, say.
Consider the sum

S, = 2, 2 fng,)

nigjse

where ’ denotes that the side condition 24 < | f(g;)| = B — A is to be
satisfied.
From these restrictions a typical summand satisfies

Fng) = (Fg)| — AP = —i—fz(qj)
so that

>1 5 pe)lted
: 4 q;

qjsx:co

W

and therefore

lim sup 3} 2y < lim sup ™S,

£ g sz Qj r—00
gg Mﬂﬂgrﬁﬂw.
|z|=B —co
Since these inequalities hold for any sequence of suitable continuity

points + B which tend (in absolute value) to infinity, we deduce that
for any B> 0,2=0

S £e) = | 2R

g;s%
where !
2A<|fl@g)l=B—-4A
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so that letting B— < and then x yields

£ila) - ..

ifaizza Q;

Moreover,
LIy
1=/ mis24a P =t gy
and
Z _Jii@_ < co
o<t p

so that altogether the series

2 ()™
converges. The convergence of the second series in (ii) follows imme-

diately.

Proof that (ii) implies (iii) and (i).

We begin with the remark that for any additive function, complex
valued or otherwise, the Turan-Kubilius inequality (see for example
Kubilius [3] pp. 31-35) asserts that for a suitable positive constant ¢

251 f(n) —g: f@p— P = Cé oo™, (z=1).

NZw

In our present circumstances the sums
p;x f(p)p™ and p;x SHp)p™

are uniformly bounded for all real values of x, so that

Srw =23 (fm) - 3 o) + 202 for)
= O(w) ,
and

limsupa™ >, fA(n) =D < oo .

From the Erdos-Wintner criterion f(n) possesses a limiting distri-
bution F(z), say. For each real number B such that + B are con-
tinuity points of this limiting distribution, an application of Fatou’s
lemma yields

2dF(z) £ liminf2™ >, ffn) £ D.
B £—co

1A
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Since B is otherwise arbitrary F(z) has a finite second moment, and
hence a finite mean and variance.

This completes the proof of (i).

Furthermore,

i 3 f(n)——>g 2dF(Z), (@— ),
}f&_)lxéB PIsE

whilst

limsupa™ 3> |f(n)| < B limsupa™ >, fn) < B™'D

1f(m)1>B

from which it follows trivially that as & — o
o™ 3, f(n)

converges to the mean of F(z).
This completes the proof of (iii).

Proof that (iii) implies (ii) (which will complete the proof of the
theorem).

As one would expect this part of the proof takes a little more
effort since we have to start, so to speak, from scratch. We recall that
an additive function f(n) is said to be finitely distributed if and only
if there are two positive real numbers ¢, and ¢, so that for an unbound
sequence of real numbers z = 1 we can find at least k = c,x integers
1S, <a, <+ <a, £ so that

| fla) — fla)] = e

holds for every pair (a;, a;), 1 £ 4,7 < k. This concept was introduced
by Erdos [1] who proved

LEMMA 1. A function f(n) is finitely distributed if and only if
there is a constant ¢, and an additive function g(n) so that

f(n) =clogn + g(n) ,
where
2@ (@)p < oo

There is an alternative proof, on somewhat different lines, given by
Ryavec [4].

In our present circumstances we have
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@ 3 fm) = E

Bz
for all # = 2 (say). Thus for any positive real number A > E'?,
v.(n; [ f(n)| 2 A) S EA* <1, (x=2).

It follows from Lemma 1 that f(n) is finitely distributed, and has the
form

c;logn + g(n) .

Let 7 denote the set of primes ¢; on which |g(q;)| > A. Let n; run
through those squarefree integers which are prime to each ¢;. Since

.97

qgerm

converges, a straightforward application of the sieve of Eratosthenes
shows that

1
g+ 1

vx(n;nzméx)—ill(l— >=B>0, (@ — o),

say. For each integer 7 let v(n) denote the number of distinct prime
divisors of . We next assume that ¢, # 0 and obtain a contradiction.

Let ¢, be sufficiently large that the inequality Ay(n) < ¢, logn
holds for all integers n = 2. Then for every real number z = 2 we
have

Exz 3, fi(n) 2 3 (e logm; — Ay(ny))?

= ¢t 3 log*n; + O(log x>, v(n)) .
nsw

;=%
For all sufficiently large values of = the first of these two terms is
1 + o(1))Bcix log®x

whilst the second is at most O(x log x loglog ). This clearly yields a
contradiction. Hence ¢; = 0 and the additive function f(n) satisfies

S (< e

We now argue exactly as in the proof that the existence of a limiting
distribution for f(n) which has a finite variance implies that the series

2 (o)™

converges, and deduce the same result.
It remains to secure the convergence of the series
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2 f(op~.

(We do not as yet know that a limiting distribution for f(n) exists,
although if we set @, = <. ' (p)p~! then we do know that f(n) — «a,
has a limiting distribution. See, for example, Kubilius [3] Theorem
4.4 pp. 72-74.)

Consider the generating function
G@) = 3, fn)z" .

If N is any positive integer and z is any complex number then by
the Cauchy-Schwarz inequality

S fwyer|

N<nmn=2N

= WAC WL

< EN?|z]™.

It is easily seen that G(z) is defined by an absolutely convergent
series if z satisfies |z| < 1. By means of the representation

i) =3 )

we invert the order of summation to obtain:

G = 5 ()2
Since
a;"gif(n) — A, (x — =), say,

it is readily established that for real values of z

G(z)~1A as z 1—.

We now appeal to a Tauberian theorem concerning Lambert series.

LEMMA 2. Let a, n=1,2, --- be a series of real numbers, and
define

H@) = 3,0, -
n=1

ny
for positive real values of y. Let H(y)— A as y— 0 +. Let the sum
of the a, be a slowly decreasing function in the sense of Hardy [2]

§6.2 pp. 124-125, that s of © <y are real numbers, so that as x — oo
and Yy — o in such a manner that y/x — 1, then
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liminf >, a,=0.

o0  TAZY

Then

Sa,— A, (x—> ).
REMARK. If the a, are allowed to be complex then provided that
we replace the condition of slowly decreasing by a condition of slow
oscillation viz:

lim 3 a,=0,

z—o0 2I<NZY

the same conclusion may be drawn. A proof of this lemma can be
found in Hardy [2], Theorem 261, pp. 373-374.
In our present circumstances we set

{f(zo)zo*1 if n=1p,
0 otherwise

”

and have established that
H(y) = yGEe™)— A, (y—>0+).

Moreover,

<Z ) < 3 fort S v

<ns2w

so that since the series > f*(p)p™* converges and

5 L = 1og (1B28) 1 o(log 9)) S €0 < o=,
z<ns2z P log H
we see that the condition of slow decreasing required for an application
of Lemma 2 is satisfied.
We deduce that

im S L@ — 4= limes S fn) .
Z—oo0 PEIT p T—roo nEx
Moreover, by (ii) a limiting distribution exists for f(n), which has the
finite mean of value A.
This completes the proof of the theorem.

REMARK. The use of the Tauberian theorem in Lemma 2 is very
convenient for the study of additive functions. If f(p) assumes complex
values the side condition f(p) = O(log p) will suffice in order for Lemma
2 to be applicable. This is a condition which is satisfied in nearly
every case of number theoretical interest.
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MULTIPLICATIVE AND EXTREME
POSITIVE OPERATORS

M. SoLVEIG ESPELIE

Let A and B denote complex Banach *-algebras and L(A, B)
the space of continuous linear operators from A into B. Let
Pc L(A, B) be the convex set of positive linear operators of
norm <1. If A has an identity, and if B is semi-simple and
symmetric, the multiplicative operators of P are shown to be
extreme points of P. If, on the other hand, it is assumed
that, || T|| = || Te|| for T € P, then any extreme point 7 of
P satisfies Te Tab = Ta Tb for all a,bec A. With A as above
and B a B*-algebra, the extreme points of P are multiplica-
tive. Thus we characterize the extreme points of P c L(A,
C(X)) as the multiplicative operators. The results are ex-
tended to include the case when A has an approximate identity.

NotATION. Let A denote a commutative complex Banach algebra
with isometric involution *. We call such an algebra a Banach *-algebra.
Let A’ denote the topological dual space of A and

P,={feA" fza*) = 0 for all ze A4},

the cone of positive functionals on A. Define the usual ordering, =,
on P,. Further, let

PAZ{fGPA:“f” =1
M, ={feP, f(xy) = f(®)f(y) for all x, ye A} and
M,={feM,; f+0}.

The sets M, and P, are compact in the weak* topology and if A
contains an identity (of norm one), then M, is compact in this topology.
The set M, is always a weak* closed subset of the maximal ideal space
4,0f A. The set M, is the symmetric portion of 4,, and if M, = 4,
we call A a symmetric algebra. Equivalently, A is symmetric
if and only if f(z*) = f(x) for all fe 4, and xe A. It is known that
the set of extreme points of the convex set P, is exactly M), [4].

We now replace the scalars of the above paragraph by a Banach
*.algebra B. That is, we consider subsets of L(A, B), the continuous
linear operators from A to B. An element Te€ L(A, B) is called positive
if for every ae A there corresponds a finite set {b;:2 =1, .-+, n} of
B such that T(aa*) = 37, b;bf. Following the notation of the above
paragraph, let P be the cone generated by the positive operators and
define the usual ordering on P. Finally, let
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={TeP:||T|| =Y
and
={TeP: Tab= Ta Tb for all a,be A} .

The question examined in this paper is: When is M exactly the
set of extreme points of P? We denote this latter set by ext P.
With A containing an identity and B semi-simple and symmetric we
obtain Mcext P. An example exists to show that the semi-simplicity
of B is necessary. The symmetry of B appears necessary but we fail
to give an example. To obtain the inclusion in the other direction we
must require that B be a B*-algebra; that is, ||b|]* = ||bb*| for all
be B. Equivalently, B is linearly isometric and *-isomorphic to C(4,)
under the map b — b where 5(k) = h(b) for all he 4;. By placing a
norm condition on P we are able to prove the weaker condition that
Te Tab = Ta Tb for Teext P and a,be A. We say that Pc L(4, B)
satisfies Condition I if || T|| = || Te|| for all Te P.

THE NORM CONDITION. The restriction that || T|| = || Te|| for Te P
is not unusual. This is a well known property of positive functionals
— that is, if B is the set of secalars the condition is satisfied. Further,
if Bis a B*-algebra then we have that || T|| = || Te|| when Te P. This
follows from the fact that in this case the unit ball S of B’ is the
weak* closed absolutely convex hull I°(4,) of 4,. Hence for Te P,

I 7|l = sup || Tb|| = sup sup |P(T0)]

11bl|=1 peexts
= sup sup |ak(Th)| = Sup sup |R(Tb)|

jblj= 1heAB I1bl1=1 hedp
la|=

= sup |hT|| = suphTle =< || Tel|| .
hedp hedp

Since the reverse inequality is evident it follows that ||T'|| = || Te]|.
It is conceivable that if Condition I is valid for Pc L(A, B), for every
A, then B is a B*-algebra.

To our knowledge the first work in characterizing the extreme
points of such sets as P was done by A. and C. Ionescu Tulcea who
considered algebras of real valued continuous functions C(X) and C(Y)
on compact Hausdorff spaces X, Y. They showed that the extreme
points of

Pt = {Te L(C(X),C(Y)): T= 0 and T(1) = 1}

are exactly the multiplicative elements of P*[8,10]. Various investi-
gators have obtained results related to and extensions of the Ionescu
Tulcea result, the work usually being done for algebras of functions
(see [2]). In our work the elements of P do not necessarily satisfy
Te = ¢
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In fact when B is a B*-algebra and P* = {Te P: Te = ¢/}, since
I|T|l = || Te|| for Te P, it follows that P*c P and moreover, ext P* =
Ptnext P. Indeed, we obviously have (P* N ext P) < ext Pt. Further,
if TeextP? and T + Se P, then |[(T 3 S)(e)|| = ||¢’ &= Se|| =<1 and
Se = 0 since ¢ is an extreme point of the unit ball of B. But then
(T4 S)(e) = ¢ and T + Se P* so that S = 0 and Teext P. We note
that throughout this paper we use the well known characterization
of extreme points: If K is a convex set in a linear space X then
xecext K if and only if « + y€ K for some ye X implies that y = 0.

Recently Watanabe in [11] has dropped the requirement that the
algebras be commutative and has placed pseudo-norms on the algebras.
His results, applied to the commutative case, show that M cCext P
when A is B*, and the algebra B is semi-simple and symmetrie, and
both algebras have an identity. Thus, the commutative results in
[11] are consequences of our paper since all hypotheses of our theorems
are satisfied when A or B are B*-algebras with identity.

THEOREM 1. Suppose A and B are commutative Banach *-algebras,
A has an identity, and B is semi-simple and symmetric. If Te P,
then Te M implies Teext P.

Proof. Suppose that T is multiplicative and that there exists an
element Se L(A, B) such that T4+ Se P. Let he M, then AT is an
extreme point of P, [4]. Further, T + hS =0 and ||AT = AS|| < 1.
Thus hSa = 0 for all ae A. But & was arbitrary and B is semi-simple
so that Sa = 0 for all ac A, and hence Tcext P.

The inclusion in the other direction is more difficult to obtain but
is valid if we place additional restrictions on the algebras and on the
cone of positive operators. We now prove two lemmas which are
needed to obtain the implication: If T is an extreme point of P then
T is multiplicative.

LEMMA 1. Let A be a Banach *-algebra and b an element of A
such that b = b* and ||b]| < 1. Then for each a € A, the element aa* —
aba* is of the form wxx* for some xe A.

Proof. This is a known result if the algebra A has an identity,
for then ¢ — b = yy* where y = (¢ — b)*? and y = y* (see [6, p. 245]).
Hence imbed A in the algebra A, with identity adjoined and write
aa* — aba* as a(e — b)a*.

In A, the element y = (¢ — b)'* = 37, (%2)(— b)* exists and in
fact, y = y*. But then, since A is a maximal ideal in A, and ac A4,
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it follows that = ay € A and xz* = (ay)(ay)* = ay’a* = aa* — aba* ¢ A.

LEMMA 2. Let A and B be commutative Banach *-algebras and
suppose TeP. If b,b,eA, with b; = ce} for some c;eA,i=1,2,
define the linear operator S by

S(a) = T(b)T(ab,) — T(b,)T(ad,) for acA.
Then T+ S = 0.

Proof. For any ac A,

(T + S)(aa*) = T(aa*) + T(b)T(baa*) — T(b;) T(b,aa*)
T(aa*) — T(b,) T(b,aa*)
T(p) + T(baa*) — T(b;) T(b,aa™)

T(b,aa*) — T(b,)T(b,aa*) = 0.

v o

v

Since ||b,]| < 1 and b, = c,¢} from Lemma 1 it follows that the
element p, = aa* — b,aa* is positive. Similarly, since || T(b,) || < 1 and
T(b,) is self-adjoint, and since T(b,aa*) is positive, with repeated
applications of Lemma 1 it follows that T(baa*) — T(b,) T(b,aa*) is of
the form 32, ¢e;* in B. In a similar way it can be shown that (T —
S)(aa*) = 0 for ac A.

THEOREM 2. Suppose that A and B are commutative Banach
*-algebras, that A has an identity and that Condition 1 holds for
elements of P. Then Te Tab = Ta Tb for all a,bec A whenever T is
an extreme point of P.

Proof. Suppose that Teext P and be A, with b = ¢cc* for some
ceA and ||b]]< 1. We let S(a) = 1/2(T(b)T(a) — T(e)T(ab)) be the
operator defined in Lemma 2 (taking b, = b and b, = 1/2¢), so that
T+S=0.

Since [|T £ S|| = [|[(T £ S)(e)|| = || Te|| £ 1 and T e ext P it follows
that Te Tab = Ta Tb for all a € A provided that b = cc* and ||b|| < 1.
But every element be A is a linear combination of at most four ele-
ments of the form ec* with ||ec*|| <1 and hence Te¢ Tab = Ta Tb for
all a, be 4.

COROLLARY 2.1. With the Ahypotheses of Theorem 2 it follows that
hT lies on an extreme ray of P, for every he My and Teext P.

Proof. Since Te Tab = Ta Tb for all a,bec A and ||hT| = hTe
for all he M, it follows that if ||RT|| % 0 then (RT/||RT]) (ad)=
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(RTHRT |)(@)RT/||RT])() for a,be A and (RT/||hT||) e M,. But then,
eithgr |hT|| = 0 or AT/||hT|| € ext P,; thus AT lies on an extreme ray
of P, for each he M,.

COROLLARY 2.2. Suppose that the hypotheses of Theorem 2 hold
and in addition, that B is semi-simple and symmetric. Then T is
multiplicative if ||hT]| is 0 or 1 for each he My and T cext P.

Proof. Since hT lies on an extreme ray of P, and ||[hT|| is 0 or
1 then 2Te M, for each he M,. But then, h(Tab) = h(Te Tb) for all
a,be A and he M; and since B is semi-simple and symmetric, it
follows that T is multiplicative.

THEOREM 8. Let A be a commutative Banach *-algebra with
identity and let B be a B*-algebra. Then every extreme point T of
P is multiplicative.

Proof. If TcextP it follows from Theorem 2 that Te Tab =
Ta Tb for all a,be A. Thus it suffices to prove that Te Ta = Ta for
all a ¢ A.

Let S(a) = 1/2(Te Ta — Ta) for ac A. The method of proof of
Lemma 2 shows that T+ S = 0 and so we need only prove that || T +
S|l =< 1. Since B is a B*-algebra and T + S = 0 it follows from our
earlier remarks that ||T + S|| = ||[(T = S)(¢)||. Now, ||T + S| =
(T + S)(e)|| = ||1/2Te + 1/2(Te)*|| = 1/2|| Te|| + 1/2|| Te|} = 1. Fur-
thermore, since 0 £ Te — Se = (3/2)Te — 1/2(Te)? and || Te|| < 1 we see
(letting f = Tee C(4,) that f=0and ||f||<1. Butthen0< f<1
so that (1 — £)(2 — f) = 0 and therefore 0 < (8/2)f — 1/2f* < 1. Hence
[| Te — Sell = 1|(3/2)f — 1/2f*|| £ 1 and the proof is complete.

THEOREM 4. Assume that A, B are commutative Banach *-algebras,
that A has an identity and that B is semi-simple and symmetric. Let
Te L(A, B).

(@) If Teext P and hT lies on an extreme ray of P, forallhe
M, then Te Tab = Ta Tb for a,be A.

(b)y If Teext P and hT = 0 or hTeext P, for all he My, then
Tab = Ta Tb for all a,be A.

The proofs of (a) and (b) are immediate for if AT lies on an
extreme ray of P,, then either ||AT|| = 0 or hT/||hT|| € M, for each
he Mz. But then i(Te Tab) = h(Ta Tb) for all h e My, and since B is
semi-simple and symmetrie, it follows that Te Tab = Ta Tb for a,be
A. Finally, if ATe 4s 0 or 1 for all e M, then T is multiplicative.

We state the following result without proof. Using the above
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methods and Theorem 3 the result follows.

THEOREM 5. Let A be o commutative Banach *-algebra with
identity and B a B*-algebra. If Te P and Te Tab = Ta Tb for a, be
A, then Teext P if and only if Te is an extreme point of K = {be
B:||b]l £ 1 and b = >%,cci, n finite).

It should be noted that if Tecext K and Te¢e Tab = Ta Tb for a,
be A then Teext P when B is semi-simple and symmetric. To obtain
the converse we employ the hypothesis that B is a B*-algebra so that
K can be identified with the set {f: f =0 and || f|| < 1} in C(4y).
It is well known that the set of extreme points of this set is {f: f(x) =
0 or 1 for all xe 4,}.

ExampLES. We now display some examples indicating the need
for the hypotheses placed on the algebras A and B in the above work.
Most of the algebras used in our examples can be found in [10].

Consider the invclution algebra .©7 of functions analytic on the
open unit disc and continuous on the closed disc with the usual
supremum norm and pointwise multiplication. An involution is defined
on .o by f*() = f(z). The algebra .o~ is semi-simple and not
symmetric.

We construct an element of ext Pc L(.%/, %) which is not in M.
Denote by & the element of P defined by A(f) = f(1) for fe.o” and
denote by Z* the element of .o~ defined by Z"(w) = w" for n = 0, 1,
2, -+, Then the operator given by Tf = Z*h(f) for fe. o7 is an
element of ext P and not in M.

It follows that Te P since T(f*) = fQ)f*(1)Z* = (fQOZ)(f(1)Z)*
and || T = sup, ;- || Z°h(f)]| = 1. Suppose that 7+ Se P for some
Se L(.57, .o7) so that || T(Z™) + S(Z")|| = || Z" £ S(Z™)|| £ 1. Since Z*,
for each =, is an extreme point of the unit ball of .o it follows that
S(Z™ = 0 and that S is zero on the polynomials, a dense subalgebra
of .o/ Consequently, S=0 and TeextP. T is not multiplicative
but it should be noted that T satisfies Te T'fg = Tf Tg for all f,
g€ . X

We now consider a space L(A, B) such that the algebra B is not
semi-simple. Let .o~ be the Banach space of the above paragraph.
However, we now place a multiplication on .% defined in terms

of a convolution, fxg(w) = wglf[(l — tyw]g(tw)dt where |w| = 1. We
0

denote this algebra by .o7; it is a Banach *-algebra with the involution

f*#) = f(z) and the supremum norm. With this definition of mul-

tiplication we have lim,_.|| f*||' = 0 for all fe.of since || f*|| =
Il £lI"/(n — 1)), Thus .4 is a radical algebra and we consider the
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algebra .o, + ¢, the algebra with the identity adjoined. This algebra
has one maximal ideal so that it is symmetric. The element Z(w) =
w is positive since it is I* where I{w) = 1 for all w in the disc.

We consider L(.%7 .57 + ¢) and define Te L(.%7, 57 + ¢) by Tf =
fUZ, Z(w) = w. Using methods similar to these above we can show
that Teext P and T¢ M. All the hypotheses of Theorem 4.b are
satisfied except for the semi-simplicity of the range space. Again we
have Te T'fg = Tf Tg for all f, ge oA

Finally we display an operator between two algebras which is
multiplicative and not an extreme point of P when all hypotheses of
Theorem 1 are satisfied except for the semi-simplicity of the range.

Let Q2 be the algebra of all power series a(z) = 3.5, a,2" such that
o lagl/nl < co; the norm is ||a(2) || = Div= ((a,]/n!). Multiplication
is defined in the usual way. £ is a Banach *-algebra with involution
defined by (a(z))* = X2, @,2". The identity of Q is the series with
a, =1 and a, =0 for n = 1.

We consider the maximal ideal generated by the series with a, =
1 and a, = 0 for » = 1. All elements of this ideal are essentially nil-
potent and this is the only maximal ideal in 2. Thus 2 is symmetric and
not semi-gsimple. Let T'e L(Q, 2) be defined by T3 5o @a2™) = Direo @™
It can be shown that Te PcC L(2, 2) and that Te M. Define S by
S@(@) = > 02" Now T+ SeP and S 0 so that T ¢ ext P.

A GENERALIZATION. If we replace the condition that A has an
identity with the condition that A has an approximate identity we
obtain analogues of the above statements. The net {¢,} is an approx-
imate identity in A if ||e,]| = 1 and ¢, > 0 for all & and || e,x — w[l——;—»

0 for all xe A. (We assume that ¢, > 0 for all & since ||xe.el — || =
|| (e, — x)ek || + ||wet — || £ ||we, — x| + ||2*e, — x*|| for all xe A so
that {e,e’} is an approximate identity whenever {e,} is.) We make
use of the fact that for a commutative Banach *-algebra A with
approximate identity, if f e P,, then || f| = lim, f(e,) and M/, = ext P,
[5]. With this result Theorem 1 remains true as stated in this new
setting.

To obtain further generalizations we place Condition I’ on P:|| T} =
lim, || Te,|| for all Te P. We now show that if T is positive in L(4, B)
where A is a commutative Banach *-algebra with approximate
identity and B is a B*-algebra, then Condition I’ holds. For each
a and each he M, we have hTe, < || Te,|| so that ||AT|| = lim, hTe, =
lim inf, hTe, < lim inf,|| Te,||. Since || T|| < supy-. ||T|, it follows
that || T|| < liminf, || Te.||. Moreover, || Te,|| < || T'|| for each « yielding
lim sup || Te,|| = || T|| and hence || T|| = lim|| Te,]| .

THEOREM 6. Suppose that A, B are commutative Banach *-algebras,
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that A has an approximate identity, and that P satisfies Condition
I'. Then, for every extreme point T of P it follows that

T(a)T(b) = lim, T(e,) T(ab) for all a,bec A .

Proof. Let S(a) = 1/2(T(b)T(e.0) — T(e,)T(ba)) be the operator
defined in Lemma 2 with b, = b and b, = ¢,/2, so that T+ S = 0.

Since P satisfies Condition I, it follows that || T+ S|| = lim,|| T(e,) ==
1/2[T(b) T(eaes) — T(e) T(bes)]|| = limg || T(es) || < 1 and hence, T+ Se P.
Since Tcext P we have T(b)T(e.a) = T(e,) T(ba) for ac A and each e,,
so that lim, T(e,) T(ab) = T(a)T(b) for allac A and be A with ||b|| <1
and b = cc* for some ce A.

Now, every product, and hence every element of the form be,
can be written as the linear combination of four positive elements;
that is, be;, = 1/4 3%_, i%(ef + i*b)(er + i*b)* for all be A and all gB.
It follows, from the linearity of T, that lim,T(e,) T(abes) = T(a)T(bes)
for all a,be A and all B; and, from the continuity of 7, that
lim, T(e,) T(ab) = T(a)T(b) for a,be A.

COROLLARY 6.1. With the hypotheses of Theorem 6 for Te P and
he Mg, either hT = 0 or WT/||hT || e M,.

Proof. From Theorem 6 for T e P we conclude that lim, A(Te, Tab) =
h(Ta Tb) for a,be A and he My. Consequently,

[T ||RT (ab) = hT(a)hT(b)

and either AT = 0 or hT/[[hTH eM, for he M. Or equlvalently, rT
lies on an extreme ray of P, for every he M, and TeP.

DEFINITION. As noted earlier, if A is a commutative Banach
-algebra then A, denotes thealgebra with identity adjoined. If fe
P, then f,, defined by fia + ) = f(@) + || f]|, is the extension of
f to A, and PA1 is the cone of positive elements of Aj. Similarly,
P,, denotes the set of positive elements of norm =< 1. Finally, if
TeL(A, B) and T = 0 we define T, to be that element of L(A4,, B)
defined by T.(a + \) = T(a) + Al Tll. (We let B, =B if B has an
identity.) Furthermore, P, denotes the cone of positive operators and
P, those positive operators of norm < 1.

We now prove the statement equivalent to Theorem 3 when A4
has an approximate identity.

THEOREM 7. Let A be a commutative Banach *-algebra with
approximate identity and B a B*-algebra. Then, every extreme point
T of P is multiplicative.
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Proof. From the decomposition for products used in Theorem 6
it follows easily that if T is a positive operator, then T(abd*) = (T(a*b))*
for a,be A. Since A has an approximate identity and T is continuous,
it follows that T(a*) = (Ta)* for a e A. Moreover, since the range of
T is contained in Cy(4,) (or C(4y) if B contains an identity), letting
h, (or ») be that element of 4, defined by #4,(b) = b(z) for be C,(4y)
it follows that (Ta*)(x) = (Ta)(x) for ae A and ze 4,. Further, for
T positive from a Cauchy-Schwarz inequality [9, p. 213] we conclude
that | T(ad*) ’(x) < [T(aa*)T(bb*)](x) for a,bc A and xe 4. Letting
b = e, and taking the limit we obtain |Ta|(x) = || T|| [T(aa*)](x) for
xed, and ac A.

We now show that for any T e P the element 7, defined by Ti(a +
A) = Ta +\ || T is, in fact, positive. Thus, if Te Pand || T|| =0, then

[Ti(a + M(@* + V@) = [Taa* + ATa* + XTa + M T ||1(@)
= [Taa* — 2Re (— N)Ta + |\ T1](x,)
z [YITI 1 Tal® — 27 Ta| + M T (1)
=YITI[ Ta] = [ITl M) = 0

for all @ + A€ A, and =, € 4,, where , is the extension of the element
2 in 4, when B does not have an identity. Finally, when B does not
have an identity, let «’ be that element of 4, which has A as its
corresponding maximal ideal (we note that in this case 4, is the one
point compactification of 4;); then [T.(a + N)(a* + N)](@') = [N *(x) = 0
for ¢« + nxe A,. Thus T, = 0. Since the range of T, is contained in
a B*-algebra, P, satisfies Condition I and hence || T.|| = || Teell.

We now show that T, is an extreme point of P,.. Suppose that
there exists Se L(A4,, B) such that T, &+ Se P,. Then, ||T\e + Se|| =
[le’ &= Se|| £ 1 and hence Se = 0 since ¢ is an extreme point of the
unit ball of B,. Let S denote the restriction of S to A, then, since
T+S=0and [|[T+S| <1, it follows that S = 0 since Tcext P.
Therefore, S= 0 and T, is an extreme point of P, so that from Theorem
3 it follows that T, is multiplicative. Hence, T is multiplicative and
the proof is complete.
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DOMAINS OF NEGATIVITY AND APPLICATION TO
GENERALIZED CONVEXITY ON A REAL
TOPOLOGICAL VECTOR SPACE

JACQUES A. FERLAND

The purpose of this paper is to derive conditions for the
existence of domains of mnegativity, and then to determine
maximal domains of convexity, quasi-convexity, and pseudo-
convexity for a quadratic function defined on a real topological
vector space.

1. Introduction. Martos, in [14] and [15], and Cottle and the
author, in [3], [4], [6], and [7], study quasi-convex and pseudo-convex
quadratic functions defined on K", the n-dimensional Euclidean space.
Furthermore, in [6] and [7], the author uses the concept of domains
of negativity that was introduced, mutatis mutandis, by Koecher in
[11]. The purpose of this paper is to derive conditions for the existence
of domains of negativity, and then to generalize the results found
in [6].

In §2, we briefly review definitions needed in the rest of this
paper. We also state relations between the classes of convex, quasi-
convex, and pseudo-convex quadratic functions on a convex set. Con-
ditions for the existence of domains of negativity and properties of
these are given in §3. In §4, convex quadratic functions are studied.
Then, domains of quasi-convexity and pseudo-convexity for quadratic
forms are specified in §5, and, in §6, we extend this analysis to
quadratic functions.

Note. Another approach to this theory have been used by Siegfried
Schaible in “Quasi-convex Optimization in General Real Linear Spaces”,
Zeitsehrift fiir Operations Research, 1972.

2. DEFINITIONS. Let E' denote the field of real numbers with
the natural topology and let X be a vector space over E'. We assume
that X admits a norm, i.e., there exists a mapping # — |z| from X
into EY = {a € E*|a > 0} with the following properties:

(i) |z| =0 if and only if z = 0,

(i) [ax] = |n] |z] for all xe E* and all ze X,

i) lz+yl<|z|+ |y| for all 2 and y in X.

A topology on X is determined by this norm, and X, so endowed, is
called a topological vector space over E'.

Let X and Y be two real vector spaces. The mapping 4: X —Y

is a linear transformation if and only if for all vectors = and y in

67
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X and for all real numbers a and g
Alaz + By) = aA®) + BA(Y).

If Y= E" then A is said to be a linear form from X into E'.
The mapping L: X X X — E'is a bilinear form on X if and only if
(i) L(z,y) = L(y, ) for all z and y in X,
(ii) L(z,y) is linear and continuous in y for each fixed =.

With each bilinear form L is associated a unique quadratic form Q: X— E*
defined by

Q(x) = L(x, z) for all ze X .

A quadratic function on a real vector space X is a mapping R:
X — E* defined by

R(x) = 1/2Q(x) + P(x) for all xe X,

where @ is a quadratic form and P is a linear form, both defined on X.
The radical of a bilinear form L is the set

X(L) = {xe X|L(z,y) = 0 for all ye X}.

L is nondegenerate on X if X(L) = 0. Otherwise, L is degenerate.
If X, and X, are subsets of X, then the complement of X, relative
to X, is the set

X\X;={zeX |ze X)}.
Also, the sum of X, and X, is the set
X+ X,={xeX|lz=u+v,ucX, and ve X;}.

If E, and E, are subspaces of X, then X = E, @ E,, the direct sum
of E, and E,, if and only if for each © e X there exists a unique pair
e E, and ve E, such that © = u + v.

In [11], Koecher introduces the notion of domains of positivity in
a real topological vector space, and mutatis mutandis, we define a
domain of megativity in X determined by L as a subset Y of X having
the following properties:

(i) Y is open and nonempty,

(ii) L(x,y) <0 for all © and ye Y,

(ili) for all x¢ Y there exits a vector ye Y\X(L) such that
L(z, y) > 0. (Note that Y is the closure of Y.)

A subset S of X is said to be conver if and only if for all z, ¥y
in S and for all €0, 1]

@) =1 —6x+ 0yeS.
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Furthermore, S is solid if and only if it has a nonempty interior, S°.

The quadratic function R(x) = 1/2Q(x) + P(x) is convex on a convex
set S in X if and only if for all # and y in S and for all 4¢]0, 1],

(1) Rl —0)x+ 0y) < (1 — O)R(x) + 0R(y) .

The quadratic function R(x) = 1/2Q(x) + P(x) is quasi-convexr on
a set S in X if and only if for all z and y in S

(2) R(y) < R(x) implies L(x,y — %) + Ply — ) < 0.

The quadratic function R(x) = 1/2Q(x) + P(x) is pseudo-convex on
a set S in X if and only if for all # and ¥y in S

(8) L{x,y — 2) + Ply — 2) > 0 implies R(y) > R(z) .

Observe that if we take P(x) = 0 for all x ¢ X, then (1), (2), and
(8) are the conditions for the quadratic form @ to convex, quasi-convex,
and pseudo-convex, respectively.

If S is a convex set, then denote by C(S), QC(S), and PC(S) the
classes of all quadratic functions R that are convex on S, quasi-convex
on S, and pseudo-convex on S, respectively.

Notice that Mangasarian’s results in Chapters 6 and 9 of [13] hold
for a quadratic function R(x) = 1/2Q(x) + P(x) defined on an arbitrary
real topological vector space if we replace the expression (VR(%), y —
2) by L(z,y — ) + P(y — ). (Recall that in E* the gradient of R
evaluated at z, V R(x), is the column vector of the partial derivatives
of R at z.) Thus, from [13, Theorem 9.1.4], we have this equivalent
definition: a quadratic function R(x) is quasi-convex on a convex set
S in X if and only if for all #, y€ S and for all 4¢]0, 1]

(4) E(@ — 0)x + 0y) < Max {R(z), R(y)} .

Furthermore the results in [13], [Chapters 6 and 9] imply that if S is
a convex set in X, then

(5) C(S) c PC(S) = QC(S) .
In [3], Cottle and the author have shown the following.

(6) PROPOSITION. If the real valued function h is quasi-convexs
on a nonempty conver set S in E™ and continuwous on S, them h is
quasi-convex on S, the closure of S.

Since this result holds for a quadratic function R defined on an arbi-
trary real topological vector space, if S is convex, then

(7) QC(S) = QC(S) .
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It follows from (5) and (7) that for a convex set SC X
(8) C(S) = PC(S) = QC(S) © QC(S) .

Observe the similarity with Ponstein’s results for X = E". See [16].

3. Domains of negativity. In this section we give necessary and
sufficient conditions for a bilinear form to determine a pair of domains
of negativity in a real topological vector space. The importance of
domains of negativity in the study of quasi-convexity and pseudo-
convexity will become apparent in §§5 and 6.

First we introduce the following notation. For each xe X we
denote by FE(x) the subspace generated by =z, i.e.,

E@) ={zeX|z=ax,ac E'}.

Given a certain bilinear form L and an arbitrary subspace E of X,
we denote

E,={zeX|Lx, 7 =0 for all xc E}.

Referring to [10, p. 6], the following is true.
(9) PROPOSITION. If xeX and Q(x)# 0, then X = E(x) @ E.(v).

Relative to a bilinear form L, we say that a nonzero vector ze
X is
positive-valued if and only if Q(z) > 0,
negative-valued if and only if Q(z) <0,
zero-valued if and only if Qx) = 0.

Suppose that L is a nondegenerate bilinear form, i.e., X(L) = 0.
Furthermore, suppose there exists a vector z ¢ X such that Q@) = — 1
and E.(z) is an inner product space where L(u, v) is the inner product,

i.e.,

L(w,v) = L(v, w) for all w, ve K ()
Qu) = 0 for all ue K, (v)
Q(u) = 0 implies u = 0.

For details see Schaefer [17, p. 44] or Greub [9, p. 160]. From (9),
X = E(x) @ E(w) .

Using the same type of argument as in [9, p. 268], the following
can be shown.
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(10) PROPOSITION. If z is a megative-valued vector or if z is a
nonzero but zero-valued vector, then L(x,z) # 0.

Define the sets

Yt ={ze X|Q() <0 and L(z,2) < 0},
Y ={2eX|Q(?) <0 and L(x, 2 > 0},

Notice that Y+ and Y~ are nonempty since e Y+ and —xe Y. It
is easy to verify that

Y*={2e¢X|Q() <0 and L(z, z) < 0} U {0}
7~ — (2 X|Q() <0 and L(z,2) > 0} U (0) ,

and that Y+ U {0}, Y- U{0}, Y*, and Y~ are solid convex cones.
Furthermore, a modified version of arguments [6, (3.22) and (3.32)]
shows that Y+ and Y~ are domains of negativity.

The definitions of Y* and Y~ and (10) imply the following result.

(11) THEOREM. Given the pair of domains of negativity Y+ and
Y~ in X determined by L, then

(a) ze X" =Y"UY if and only if Q) <0,

(b) zeX'= (YN\YHU(Y\Y) if and only if Q) =0,

() zeXt=X\(YtUY") if and only if Q(z) > 0.

Since Y* and Y~ are maximal ([11, p. 5]), then it follows from
(11) that the pair Y* and Y~ in X determined by L is unique.

In summary, if the vector « € X is such that Q(z) = — 1 and E.(x)
is an inner product space, then there exists a pair of domains of nega-
tivity in X determined by L. This sufficient condition can be ex-
pressed into another form. To see this, we need the following result.

(12) PROPOSITION. If there exists a vector € X such that Q(x)= — 1
and E.(x) is an inner product space, then for all ze X such that Q(z) <
0 the subspace E.(z) is an inner product space.

Proof. For contradiction, suppose that Q(z) < 0 for some zeX
and FE,(z) is not an inner product space. Hence, there exists a nonzero
vector y € E,(2) such that Q(y) < 0. On the other hand, by definition
of x there exists a pair Y+ and Y~ of domains of negativity in X
determined by L.

Suppose ze Y*. If Q(y) < 0, then via (11), either the pair y and
z belongs to Y* or the pair — y and 2z belongs to Y*. Since L(y, ?) =
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L(— y,2) = 0, in either case we have a contradiction to the definition
of domains of negativity.

If Q(y) = 0, then, via (11), either y € Y*\Y* or — y e Y*\Y*. Since
y # 0, either the pair z and y or the pair z and — y contradicts the
property that if u ¢ Y* and v e Y\ X(L), then L(u, v) < 0 ([11, Theorem
1 a.]). The proof is complete.

Relying on (12), if the set {x e X|Q(x) < 0} is nonempty and for
each x in this set the subspace E,(x) is an inner product space, then
there exists a pair of domains of negativity. Other trivial sufficient
conditions for the existence of such a pair are Q(x) < 0 and E,(x) empty
(i.e., dim X = 1). Now we turn to the necessity of these conditions.

(13) THEOREM. If there exists a pair Y+ and Y~ of domains of
negativity in X determined by L, then the set {vxe X|Q(x) < 0} is
nonempty and for all xe X such that Q(x) < 0 the subspace K. (x) is
an tnner product space or is empty.

Proof. Since Y* is nonempty, it follows that {re X|Q(z) < 0}
is nonempty. The second condition is shown by a similar argument
as in (12), and this completes the proof.

We are left with the problem of studying conditions for the
existence of domains of negativity when the bilinear form L is degen-
erate in X, i.e., when X(L) #+ 0. Referring to Schaefer [17, p. 20], the
vector space X can always be expressed as

X = (X/X(L)) & X(L)

where X/X(L) is called the quotient space of X over X(L). It is well-
known that the bilinear form L is nondegenerate on X/X(L).

If there exists a pair Y; and Y7 of domains of negativity in
X/X(L) determined by L, then denote

Y= Y@ X(L)
Y- =Y: XL .

First, since Y7 and Y; are nonempty and open, so are Y+ and Y.
The other conditions for Y* and Y~ to be domains of negativity in
X follow from the fact that if z, ye X, then

r=u+t, ue X/X(L) and te X(L),
y=v+ z ve X/X(L) and ze X(L) ,

and
L(x, Y) = L(u, v) + L3, 2) = L(u, ) .
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Hence a pair Y and Y~ of domains of negativity in X determined
by L exists if and only if such a pair exists when L is restricted to
X/ X(L).

4. Domains of convexity for a quadratic function. In this
section, we want to determine the convex sets in X over which a
quadratic function is convex. In [2], Cottle has studied this problem
for quadratic functions defined on K", and, as we shall see, these
results hold on an arbitrary real topological vector space.

Using definition (1), this result follows immediately.

(14) PROPOSITION. The quadratic function R is convex on a convex
set S in X if and only if the quadratic form @Q is convex on S.

The same kind of argument, as when the quadratic form is defined
on E", can be used to show the following result.

(15) PROPOSITION. The quadratic form @ is convexr on a4 coOnvex
set S in X if and only if for all x and y in S

Qlz —y)>0.

Notice this generalization of Cottle’s result [2, (2)].
Recall that a set K in X is said to be a linear manifold if it is
of the form

K=F+ =z

where xe€ X and E is a vector subspace of X. ([1]).

With each convex set S in X is associated a carrying plane K(S)
defined as the linear manifold of least dimension which contains S.
The same argument as in [2] shows the following property.

(16) PROPOSITION. If the quadratic form Q is convex on a convex
set S in X, then Q is comvex on K(S).

It follows that if the quadratic form @ is convex on a solid convex
set S in X, then @ is convex on X.

5. Domains of quasi-convexity and pseudo-convexity for quad-
ratic forms. The results found in Chapter 3 of [6] hold even for
quadratic forms defined on a real topological vector space. Since only
slight modifications of these arguments are needed for the generali-
zation, we will restrict ourselves to the statements of the results.
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Suppose that Y is a domain of negativity in X determined by L.

(17) THEOREM. The quadratic form @ is quasi-convex on Y and
pseudo-convexr on Y\X(L).

(18) THEOREM. If the quadratic form @ is quasi-convex, but not
convex, on a solid convex set S, then there exists a unmique pair of
domains of nmegativity, Y+ and Y-, in X determined by L, and SC
Y"or Sc Y.

(19) THEOREM. If the quadratic form Q is pseudo-convex, but not
convex, on o solid convex set S, them there exists a unique pair of
domains of megativity, Y+ and Y, in X determined by L, and SC
YHX(L) or Sc Y \X(L).

Therefore, if Y+ and Y~ is a pair of domains of negativity in X
determined by L, then Y+ and Y~ are maximal domains of quasi-
convexity, and Y*\X(L) and Y\X(L) are mazimal domains of pseudo-
convexity for a quadratic form @.

6. Domains of quasi-convexity and pseudo-convexity for quad-
ratic functions.

We wish to extend the analysis of Section 5 to quadratic functions.
With each quadratic function R(x) = 1/2Q(z) + P(x), associate the
set

M = {oe X|L(a, ) + Px) = 0 for all ze X} .

A direct generalization of results in Chapter 4 of [6] gives this
sufficient condition.

(20) THEOREM. If YC X s a domain of negativity determined by
L and M is nonempty, then the quadratic function R(x) s quasi-convex
on Y + M and pseudo-convexr on Y\X(L) + M.

Before we proceed to determine necessary conditions for the
quasi-convexity of a quadratic function on a solid convex set, we have
to specify under what conditions the set M is nonempty.

It is obvious that the real topological vector space X can be
expressed as

X=EQE QE

where E*, E~ and E° are subspaces of X such that
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Q(x) > 0 for all xe E*\0,
Q(x) < 0 for all xe E-\0.
Q) = 0 for all xe E°,

This decomposition may not be unique, but for the rest of this section
we make the following assumption:
(21) There exists at least one decomposition

X=E*®E ®E

where E* and E~ are complete (i.e., each Cauchy sequence in E* or
E~ is convergent).
Under this assumption the following is true:

(22) PROPOSITION. If R(z) = 1/2Q(z) + P(x), then either the set
M= {acX|L(a,s) + P(®) =0 for all v X} is nonempty or there
exists a vector te X such that P(t) = 0 and L(z,t) = 0 for all xe X.

Proof. First we show that both conditions cannot hold simul-
taneously. Indeed, suppose there is an ae M; i.e., L(a, x) +P(x) =
0 for all xe X. On the other hand, if ¢ is such that L(x, t) = 0 for
all xe X and P(t) # 0, then x = e gives a contradiction.

Next, suppose that if L(x, t) = 0 for all # € X, then P(t) = 0. Hence
X = E*@ E- @ E° implies that for all ze X

L(a, ) + Px) = (L(a*, &*) + P@*)) + (L(a~, 27) + P(x7))

where a*,x*€ E* and a~, "¢ E~. Relying on [17, p. 44] it follows
that there exist at least one a*e £+ and one ¢~ ¢ E~ such that for
all xte E+

L(a*, ") + Plz*) = 0
and for all x~ ¢ E~
L@ ,2") + Px") =0.

This shows that M is nonempty and the proof is complete.

Notice this proposition generalizes to an arbitrary real topological
vector space X, satisfying assumption (21), a well-known result proved
in Gale’s book [8, Theorem 2.5] for the case X = E”".

This proposition and similar arguments as in [6, (4.4), (4.13), and
(4.15)] are combined to show these results.

(23) THEOREM. If the quadratic function R(x) = 1/2Q(x) + P(x)
18 quasi-convex, but mot convex, on a solid convex set S, then
(i) M is not empty,
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(ii) there exists a unique pair of domains of negativity, Y+ and
Y-, in X determinelg by L,
(i) Sc¥*+ Mor SCY + M.

(24) THEOREM. If the quadratic function R(x) = 1/2Q(x) + P(w)
18 pseudo-convex, but not convex, on a solid convex set S in X, then
(i) M is not empty,
(i) there ewists a unique pair of domains of negativity, Y+ and
Y-, in X determined by L,
(iii) Sc(Y\X(L) + M) or Sc (Y"\X(L) + M).

Therefore, if M is nonempty and Y* and Y~ are a pair of domains
of negativity in X determined by L, then Y* + M and Y~ + M are
maximal domains of quasi-convexity, and Y*\X(L) + M and Y— X(L) +
M are maximal domains of pseudo-convexity for a quadratic function R.
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A COMPACT SET THAT IS LOCALLY HOLOMOR-
PHICALLY CONVEX BUT NOT
HOLOMORPHICALLY CONVEX

MicHAEL FREEMAN AND REESE HARVEY

It is shown that a certain simple imbedding T of the
ordinary two-dimensional torus in C? contains a polynomially
convex compact 7T-neighborheod of each of its points, but T
is not holomorphically convex in even the weakest presently
accepted sense. This example illustrates some of the limita-
tions of a theory of lower dimensional sets in C*. In partic-
ular, it shows the difficulty of developing a theory based on
local information.

In the following K will denote a compact set in C*, °(K) the
Banach algebra of continuous functions on K, and < (K) the algebra
of functions holomorphic on some C" neighborhood of K. Also, let
A(K) denote the Banach subalgebra of & (K) obtained by taking the
closure of the image of #7(K) in & (K). A compact set K is said to
be holomorphically convexr if K and the spectrum of A(K) are home-
omorphic under the natural map. In [5] a notion of the “envelope of
holomorphy”, for K a compact subset of C”, was introduced; there
it was proved, in particular, that K is equal to its envelope if and
only if K is holomorphically convex. The Cartan Theorems A and
B for open holomorphically convex sets in C* admit analogues for
compact holomorphically convex sets in C* (see [5]). One might con-
jecture that the E. E. Levi problem for open sets in C* admits a
compact analogue. That is, one might conjecture that if K is locally
holomorphically convex (i.e., for each point z € K there exists a com-
pact neighborhood N of z in K such that N is holomorphically convex)
then K is holomorphically convex. The example presented below
shows that this is not the case.

If “holomorphic approximation” holds on a compact set K< C”
(i.e., (K) is dense in & (K)) then the spectrum of A(K) = & (K)
is of course homeomorphic to K so that K is holomorphically convex
according to the above definition. Even if a compact set K has the
property that “local holomorphic approximation” holds (i.e., for each
point z e K there exists a compact neighborhood N of z in K such
that ~2(N) is dense in Z°(N)) the set K need not be (globally) holo-
morphically convex because of the example presented below. In
particular, this provides an example of a compact set in C* where
local holomorphic approximation holds but global holomorphic ap-
proximation does not hold; as distinguished from the well-known

K
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fact that if K is a compact subset of the complex line C and local
holomorphie approximation holds then it is true that global holomorphic
approximation holds (see for example [2]).

In [4] a notion of a “totally real set in C*” was introduced in
order to better understand the properties of R™ in C™ which are
crucial for the development of Sato’s theory of hyperfunctions. Sato’s
basic theory [12] was shown to hold with R" replaced by a totally
real set. In the definition of a compact totally real subset K of C
there are two local requirements which heuristically ensure that K
has no (locally) “complex structure of dimension = 1” (see [4], Defini-
tion 3.4 and the Remark 1 afterward). The example presented below
shows that the local information contained in the assertion that K is
a totally real set (which is more than just local holomorphic convexity
but less than local holomorphic approximation) is not sufficient to
ensure that K is holomorphically convex. In particular, in the duality
result, Corollary 3.10 of [4], the hypothesis that K be holomorphically
convex is necessary.

We would like to acknowledge that R. O. Wells has independently
verified that the example given here is not holomorphically convex.

The example is very simple. It is just the two-dimensional torus
T imbedded in C* as T = {z:(|#2,] — 3)* + #i=1,y, = 0}. In fact, (a)
the envelope of holomorphy of T is the set

T={e(z]|—-8+al<1,y =0

obtained by filling up T in C x R x {0}; but (b) each point a of T
has a compact T-neighborhood N on which the polynomials CJ[z,, 2]
are dense in the Banach space & (N) of continuous functions on N.
Of course this implies in particular that each compact subset of N is
polynomially and hence holomorphically convex.

The proof of (a) rests on the observation that T has a basis for
its neighborhood system consisting of the Hartogs domains

U ={el(a =3+l -1 <e |y <e,e>0

(which are clearly circled in z, for each fixed z,), and on the proposi-
tion below, which asserts that the envelope of holomorphy of U, is

175={Z:(|z1!-—3)2+x§<1+6,iyzl<s},%28>0.

This shows that any function holomorphic in a neighborhood of T
has a holomorphic extension to a neighborhood of 7. Moreover, since
each U, is holomorphically convex, so is 7 = .o U,. Thus T is the
envelope of holomorphy of T (see [5] for the precise definition of
envelope of holomorphy of T).
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PROPOSITION. U, is the envelope of holomorphy of U. for 0 <
e = 1/2.

Proof. The open set U, is a domain of holomorphy because it is
pseudoconvex (see [3] or [8]). The fact that the functions z—
(lz,] — 8)*+ a2 and z— |y,* are plurisubharmonic on U, ¢ < 1/2,
implies that U, is pseudoconvex by [8] Theorem 2.6.7 (iii).

Each function f holomorphic on U, has a holomorphic extension
to U,. For this it suffices to see that the Hartogs-Laurent expansion
(see [13] page 130) for f on U,

(1) f@ = 3 fu@a,

is normally convergent on U7, for then its sum will extend f as as-
serted. Here the coefficients f, are holomorphic on {z,: 22 <1 +¢, |9.| < €}.
From the normal convergence of (1) on U, it follows that

(2) 3 sup (St ze K} < o0

where 0 =0 <eand K; ={z:(jz| — 8+ a;: =1+ 9, |y.] =< d} (a pro-
duct of a torus in C X R and a closed interval in R). Now the
maximum principle applied (for fixed 2z, to z, — f.(2,)2" shows that
the suprema in (2) become no larger if extended over

K, ={z (2] -3+ a2<1+9, |y <)

Thus (2) holds with K, replaced by K;, and since any compact subset
of U, is contained in the interior of some K,;, the normal convergence
of (1) on U, is proved. Thus U, is the envelope of holomorphy of U..

PROPOSITION. FEach point a of T has a compact neighborhood N
in T such that Clz, z.] is dense in & (N).

Proof. Two cases will be distinguished.

(1) The point a is not on one of the top or bottom circles |z, =
3,2, = &= 1+ 0i. Then a is a totally real point of T (i.e., the ordinary
real-linear tangent space T, to T at a is not complex-linear). The
proposition is known for this case (see [11], [9] or [6]) but a simple
direct proof can be based on the real-analyticity of 7. It will be
shown that ¢ has an open neighborhood U such that UN T is mapped
into R* by a biholomorphic map + = (4, ¥r): U~— C>. Then if N is
any compact subset of TN U, the ordinary Weierstrass Theorem im-
plies that C[w,, w,] is uniformly dense in & (v(N)). Since 4+ is
invertible, the polynomial combinations of +~, 4, are dense in & (N).
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If U is taken from the beginning as a polycylinder, then -, and +
are approximable on N by polynomials in z,, z,, which proves the pro-
position in case (1).

The map + will be found by constructing its inverse. Note that
there is an open neighborhood V of 0 in R* and a real-analytic map
é6: V— T such that ¢(0) = a and d@¢(R*) = T,. Here d.f denotes the
Fréchet derivative of fat 0. Then there is an open set V in C? such
that V' N R* = V and a holomorphic map 4: ¥V — C* such that ¢|V = ¢.
Clearly, d,¢(R? = T,. Moreover, T, NiT, = {0}, so C =T, +iT, =
d,¢(R?) + id,p(R?) = d,¢(R* + iR? = d,¢(C>). Thus d,$ is invertible, so
$ has a holomorphic inverse + near 0 by the inverse function theorem.

(2) |a,|=38,a,= 1+ 40. Then there is a closed disk D =
{2.: 12, — a,| < €} on which the graph of g(z,) = (signa,)V/'1 — (|2,| — 3)*
defines a compact set N = {(z,, 9(z)): |2, — a,| = e} T. Clearly, N is
a T-neighborhood of a. Moreover, the level curves of g, as arcs
of radii > 1, do not disconnect C and have no interior points. There-
fore, by Mergelyan’s Theorem [10] (§5, Theorem 1.5), the polynomial
combinations of 2z, and ¢ are dense in & (D). The proposition is
proved by transporting this property to N via the homeomorphism
2 — (2, 9(2))-

There is a result (going back to Grauert [3]) of a positive nature
which enables one to conclude from local information that a compact
subset K of C* is holomorphically convex. Briefly, the method is as
follows (cf. [11], [9] or [6]). Suppose that in some C* neighborhood
U, of each point a € K there exists a C* nonnegative strictly plurisub-
harmonic function @ such that KN U, equals {ze U,: () = 0}. By
using a partition of unity one can construct a nonnegative strictly
plurisubharmonic function ® in a neighborhood U of K such that
K = {ze U: ®(z) = 0}. Then for sufficiently small ¢ > 0, each of the
sets W, = {ze U: 9(z) < ¢} is a Stein open neighborhood of K and K is
o (W.)-convex. Hence K is holomorphically convex. The use of this
result is limited by the fact (see [7]) that sets K which satisfy the
local condition described above must be (locally) contained in a &
submanifold of C* all of whose points are totally real.

On the other hand, this technique is extended in [1], where such
a function @ (which is only required to be plurisubharmonic-not
strictly) is constructed in a neighborhood of a point on a two-manifold
where its tangent space is complex linear but whose second-order
behavior is sufficiently “hyperbolic” (in a precise sense given in [1]).
This result is delimited by the above example T, which (in the same
sense of [1]) exhibits a kind of “parabolic’” behavior at such points.
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POSITIVE-DEFINITE DISTRIBUTIONS AND
INTERTWINING OPERATORS

RoE GooDmMAN

An example is given of a positive-definite measure # on
the group SL(2, R) which is extremal in the cone of positive-
definite measures, but the corresponding unitary representation
L* is reducible. By considering positive-definite distributions
this anomaly disappears, and for an arbitrary Lie group G
and positive-definite distribution ¢ on G a bijection is estab-
lished between positive-definite distributions on G bounded by
1~ and positive-definite intertwining operators for the repre-
sentation L”. As an application, cyclic vectors for L* are
obtained by a simple explicit construction.

Introduction. The use of positive-definiteness as a tool in abstract
harmonic analysis has a long history, the most striking early instance
being the Gelfand-Raikov proof via positive-definite functions of the
completeness of the set of irreducible unitary representations of a
locally compact group [5]. More recently, it was observed by R. J.
Blattner [1] that the systematic use of positive-definite measures gives
very simple proofs of the basic properties of induced representations,
and the cone of positive-definite measures on a group was subsequently
studied by Effros and Hahn [4].

The purpose of this paper is two-fold. First, we give an example
to show that positive-definite measures do not suffice for the study
of intertwining operators and irreducibility of induced representations,
despite the claim to the contrary in [4]. Specifically, we exhibit a
positive-definite measure ¢ on G = SL(2, R) such that g lies on an
extremal ray in the cone of positive-definite measures on G, but the
associated unitary representation L* is reducible, contradicting Lemma
4.16 of [4].

Our second aim is to show that when G is any Lie group, then
the correspondence between intertwining operators and positive func-
tionals on G asserted by Effros and Hahn does hold, provided one deals
throughout with positive-definite distributions instead of just measures.
The essential point is the validity of the Schwartz Kernel Theorem
for the space Cy(G), together with a result of Bruhat [3] about
distributions on G x G, invariant under the diagonal action of G.
Using this correspondence, we obtain cyclic vectors for representations
defined by positive-definite distributions, using a modification of the
construction in [7]. (The proof of cyclicity given in [7] is invalid,
since it assumes the existence of a measure on G corresponding to

83
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an arbitrary intertwining operator. Cf. [6] for a proof of cyclicity
using von Neumann algebra techniques.)

1. Notation and statement of theorems. Let G be a Lie group,
and denote by & (G) the space C°(G) with the usual inductive limit
topology [10]. Fix a left Haar measure dx on G; then d(xy) = 4,(y)dz,
where 4, is the modular function for G. If ¢ € =2(G), define ¢*(z) =
#(@™)dz(x)"'. Denote by <’'(G) the space of Schwartz distributions
on G. A distribution a is positive-definite if a(¢*+¢) = 0 for all ¢ € 2 (G),
where convolution is defined as usual by

re® = | vwsw iy .

If @ and g are distributions, say that a < g if 8 — « is positive-definite.

Given a positive-definite distribution ¢, one obtains a unitary
representation L* of G by a standard construction: Let L, g(x) =
#(y~'x) be the left action of G on = (G). Then (L,@)**(L,) = ¢* x4,
so the semi-definite inner product p(g*x+r) is invariant under left
translations. Define I, = {$ € 2 (G): p(¢**¢) = 0}. The quotient space
9, = 2/(G)/1, is then a pre-Hilbert space with inner product (¢, ¢), =
2(3**qr), where ¢ — ¢ is the natural mapping of &7 (G) onto &,. Let
&%, be the completion of <,. The operators L, pass to the quotient
to give a strongly continuous unitary representation y — L4 of G on
2.

Suppose now that ae &'(G) satisfies 0 K a €< ¢t. Then 1,2 I,

and there exists a unique self-adjoint operator A on £#, such that

(1.1) (A, ¥)u = a(yp*xg) .
The operator A obviously satisfies

1.2) 0<A<T
(1.3) L:A = AL!,

since the Hermitian form a(¢*+g) is nonnegative, bounded by (¢, ), =
[|#]%, and invariant under left translations by G. It was asserted
(without proof) by Effros and Hahn in [4, §4] that when g is a measure,
then every operator A satisfying (1.2) and (1.8) is given by formula
(1.1), where « is a positive-definite measure. Unfortunately, this is
false in general, as shown by the following example:

THEOREM 1. There is a positive-definite measure ft on the group
G = SL(2, R) such that:

(i) The only measures a satisfying 0 € a € ¢ are the measures
ey, ce |0, 1].
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(ii) The representation L* of G defined by pt is reducible.

If we allow positive-definite distributions in formula (1.1), however,
then we obtain all intertwining operators, as follows:

THEOREM 2. Let G be a Lie group, and let p be a positive-
definite distribution on G. Suppose A is an operator on 57, satis-
Sfying (1.2) and (1.3). Then there exists a wunique positive-definite
distribution « on G such that (1.1) holds. Furthermore, the local order
of a can be bounded in terms of the local order of p( and the dimen-
ston of G.

REMARKS 1. Theorems 1 and 2 show that the cone of positive-
definite measures on SL(2, R) is not a face of the cone of positive-definite
distributions.

2. For a study of unbounded intertwining operators, cf. [9].

3. In case g is a positive-definite measure, then the distribution
a in Theorem 2 has finite global order at most 2(dim G + 1).

A sequence {¢,} € =(G) will be called a d-sequence if ¢,(x) = 0,
limng é.(x)dx = 1, and Supp (¢,) — {1} as » — . Any J-sequence is an
G
approximate identity under convolution, of course.

COROLLARY. Let {¢,} be a delta sequence, and set w, = ¢r+¢,.
Then the vector & = I\, W, will be a cyclic vector for the representation
Le, provided N, > 0 and \, — 0 sufficiently fast as n — oo.

2. Proof of Theorem 1. Let G = SL(2, R) in this section. We
distinguish two closed subgroups of G: the subgroup B consisting of

all matrices b = (3 2_1), with s, t real, s+ 0, and the subgroup V

consisting of all matrices v = (}0 (1)>, ¢ real. One has BNV = {1},

while V. B consists of all unimodular matrices(g g)such that a %= 0.

The map v, b — v-b is a diffeomorphism from V Xx B to the open subset
V-B of G. Let dv and db be left Haar measures on V and B, respec-
tively, and let 4, be the modular function of B. Left Haar measure
dx on G is then given by the formula

@.1) SG Fa)ds = ME F(ob) 4, (b~)dbdv = SBSV £(bv)dbdv
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[2, Chap. VII, §3, Proposition 6].
Suppose that p is a unitary character of B. Then p(b)db is a
positive-definite measure on B, and the measure ¢ on G defined by

|, f@du@ = | 74,0 pw)d

is positive-definite [1]. As in §1, we denote by L* the corresponding
representation of G on 27Z.. The representation L* is equivalent to
the “principal series” representation of G induced from the one-dimen-
sional representation p of B. Using the integration formula (2.1), we
can identify the representation space &7, with L,(V, dv). (This gives
the so-called “non-compact picture” for the principal series [8].) Indeed,
if ¢, 4 € 2(G), then an easy calculation using (2.1) shows that

@, ) = | @,
where
s0)0) = | sD)2,0) " pB)d -

The restriction of L* to the subgroup V becomes simply the left
regular representation of ¥ in this picture.

LEMMA 1. Let A be a bounded operator on L,(V) which commutes
with left translations by V, and suppose that there exists a Radon
measure & on G such that

(2.2) (Ae(g), e(¥)) 1,01 = A(P*x0)

for all ¢, € 2 (G). Then there is a Radon measure v on V such that
Af = fxy, for fez(V).

Proof. Since A is translation invariant, it is enough to establish
an estimate

(2.3) HANHD| = Cellfll

for all fe =r(V) supported on an arbitrary compact set K<V (|| f |l
denoting the sup norm). Let S5#~=(V) be the space of C* vectors for
the left regular representation of V. By Sobolev’s lemma, 5#7=(V)C
C=(V), and A leaves the space 5#~~(V) invariant. Hence, Ae(g) is a
C= function for every ¢ ¢ < (G).

If fe=z(V) and ge &7(B), write f & g for the function f(v)g(b).
Via the map v, b — vb we may consider f &) g as an element of = (G).

Then ¢(f ® g) = \,f, where A, = g g(b)4,(b)"*p(b)db. In particular,
B
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if {f.} and {g,} are d-sequence in & (V) and <7 (B) respectively, then
Ny, —1 as n— oo and f,® g, is a d-sequence on G (by the integration
formula (2.1)). Hence, we deduce from (2.2) that

Ae(g)(1) = alg)

for all ¢ ¢ &(G). Fix ge & (B) such that A, = 1. Then for any f ¢
(V) we have f = &(f ® g), and hence

(2.9) AN =af 9 -

Since a is a Radon measure, the right side of (2.4) satisfies (2.3),
which proves the lemma. (In fact, v is the measure f — a(f ® g).)

Completion of proof of Theorem 1. Now take for p the character
p{(b) = sgn (s), when b = (0 Z ) Then it is known [8] that the

induced representation L* in this case splits into two parts, and when
S#, is realized as L.(V), then any nontrivial intertwining operator is
a scalar multiple of the classical Hilbert transform

Af@) = lgg%gwf(x — yydy -

(We identify V with R via the map x — G; (1)) )

The Hilbert transform does not satisfy estimate (2.3). For example,
if

sin (kx)
7 = o) 3, 5588

where ¢ € &7(R) is fixed with ¢(x) = 1 for |x| < 1, then Supp (f.) &
Supp (¢) and sup, || fall. < e [11, p. 182].
On the other hand,

AfW0) = 3 culklog )™ + O(1)
as n — o, where
) B
c, = —S 7" sin (kx)dx .
TJ—-1
Since ¢, — 1 as k— o, and since J(klog k)™ = + o, it follows that
sup, | Af.(0)] = .

3. Proof of Theorem 2 and Corollary. Let G be an arbitrary
Lie group (assumed countable at infinity), and let ¢ be a given positive-
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definite distribution on G. If we set ||¢||, = p(¢**¢)'", then ¢ — || 4|,
is a continuous seminorm on & (G). Suppose now that A4 is a bounded
operator on the representation space 5#.. We may associate with A
a bilinear form B, on & (G) by the formula

(3.1) Bu(v, ) = (A, %), -

Here ¢ — & is the canonical map from < (G) into 5%, as in §1, and
Jé = ¢ (complex conjugate). By the Schwarz inequality and the
boundedness of A we see that

(3.2) | Ba(yr, )| = (LA | S1]ullJ¥ ] -

Clearly,  — || J4r|| . is also a continuous seminorm on & (G). Although
[|J¥4 ||, need not be bounded in terms of |[+||,, nevertheless, the local
order of this seminorm is the same as the local order of |/-||,. (If
Kc G is a compact set and o is a continuous seminorm on =2 (G),
we say that p has order < » on K if there is a finite set of differential
operators {D;} on G each of order =< », such that o(¢) < max; || D;¢||.

for all ¢ with Supp (¢) & K.)
The main analytic fact we need is the following version of the

“kernel theorem” for continuous bilinear forms:

LEMMA 2. Suppose B is a bilinear form on = (G), and p,, 0, are
continuous seminorms on Z(G) such that

(3.3) | B(g, ¥) | < 0.(8)0x() «
Then there is a distribution T on G X G such that

B(g, v) = T(¢ Q ¥) -

Furthermore, if K, and K, are compact subsets of G, and if p; has
order < r; on K;(j =1, 2), then T has order < 7, + r, + 2(dim G + 1)
on any compact set M C Interior (K, x K,).

Proof. Since multiplication by a C= function is an operator of
order zero, we may use a partition of unity and local coordinates to
reduce the problem to a local one in R? d = dim @, such that K; =
{lx] =2l R and M = {(z,9); |z| = 1,|y| =1} & R* x R".

Let ¢,e = (RY) satisfy ¢, = 1 on {|| < 1} and Supp (¢,) & K,. Set
e.(x) = do(x)ei™*, where ne N* and n-x = nx, + +++ + n,28;. Then if
D is a differential operator of order r, one has || De,||.. < C1 + |n]|)".
Hence, the a priori estimate (3.3) implies that for some constant C > 0,

3.4) | B(en, €)= C(L + [m[)"(1 + [n])™

for all m, n e N°.
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Suppose now that f is a C™ function on R x R? with Supp (f) &
M. Then the Fourier series of f can be written as

@, ) = Do Flm, n)en@ey) ,

where {f(m, n)} are the Fourier coefficients of f. Define
(3.5) T(f) = 3. J(m, m)Blen, ¢.) -

The series (3.5) is absolutely convergent, and by (8.4) we have the
estimate

3.6) [T(f)] = Cisup {1.F0m, )| (L + [myn+asi(l 4 | mf)rerasy,

where C, = C>,.,., XL + [m)™ (1 + [n])™** < . Since the right side
of (3.6) is a seminorm of order r, + 7, + 2d + 2 on M, this proves
the lemma.

Completion of proof of Theorem 2. Suppose now that the operator
A in formula (3.1) commutes with the representation L*. Then the
distribution 7 on G x G such that B,(¢, ) = T(¢ ® ), which was
constructed in Lemma 2, satisfies for all ze G,

3.7 T6.f) = T(f) , fezGx G,

where 6.f(x, y) = f(z7'z, 27'y).

The structure of distributions satisfying (3.7) was determined by
Bruhat [3, Prop. 3.3]. Let ¢ denote the distribution on G determined
by left Haar measure, and let @: GX G — G X G be the map &(x, y) =
(x, zy). Then (3.7) forces T to have the form

I(f) = Q@ a)(f9) ,

where « is a distribution on G. Symbolically,
7(f) = || £(a, sn)dadaty) -

In particular, if ¢, v e 2(G), then
(A, 7)u = TUT¥ ® ¢)
= | [v@sendsiat)
= a(y*xg) .

Hence, o serves to represent the intertwining operator A, and is
obviously positive-definite if A = 0. Since @ is a diffeomorphism, the
order of ¢ @ a on a compact set M G x G is the same as the order
of T on @7'(M). By Lemma 2 and inequality (3.2), the local order
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of ¢®@ a (and, hence, the local order of &) can, therefore, be bounded
in terms of the local order of p¢ and the dimension of G, as claimed.

Proof of Corollary. Using Theorem 2, we are able to rehabilitate
the attempted proof of cyclicity in [7]. Given a o-sequence {y,} on
G, let K< G be a compact set such that K = K and Supp (v,) E K
for all ». Since [|+]|. is a continuous seminorm on < (G), there are
right-invariant differential operators D,, ---, D, on G such that

(3.8) 191l = max || Doy ||

for all + supported on the set K-:.
Now set w, = vi=y,, and let {\,} be any sequence such that
A, > 0 and

(3.9) S n, max || Dy, |12 < oo .
n g

The series & = >\, W, then converges absolutely in 27, (since ||w, ||, <
[l 12). Let _#~ be the G-cyclic subspace generated by &, and let A
be the projection onto .#"*. Since A& = 0, we have >\ \,(AW,, ¢), =
0 for all ge (G). But ey = L.(6)F, where L(f) = S F(@) L (0)d
is the integrated form of the representation. Since A commutes with
~, I~

L,, this gives (AW, d), = (A¥,, ¥.*9),.. Thus taking ¢ =, and
letting k — oo, we see that

(3-10) 11}2 (Awny "’z}k)# = (A“}m ”‘;n)#

(note that ¢ — ¢ is continuous from < (G) to £#,). Furthermore, by
the Schwartz inequality, the boundedness of A, and the calculation
just made, we have the estimate

(AT, Fel S 1l et
< Cmax || Dy, L -

(Here we have used estimate (3.8), the right-invariance of D;, and
the inequality || f*¢|le = || fll=llgllz,) Thus we may apply the domi-
nated convergence theorem to conclude from (3.9) and (3.10) that
SN (A, Fa). = 0. But A, >0 and A = 0, so in fact (A, V). =
0 for all n. (So far we have simply followed the line of proof of
[7], replacing uniform convergence of the series >, \,w, by the stronger
condition (3.9), in return for allowing g which are distributions rather
than measures.) Finally let o be the positive-definite distribution on
G representing A, which exists by Theorem 2. Then a(y}*+r,) =0 for
all n. By the Schwarz inequality, this implies that a(¢xy,) = 0 for
all e 27(G) and all n. Letting » — o, we conclude that a = 0.
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THE TYPE OF SOME C* AND W*-ALGEBRAS
ASSOCIATED WITH TRANSFORMATION
GROUPS

ErvLior C. GOOTMAN

Let (G, Z) be a second countable locally compact topological
transformation group, % (G, Z) the associated C*-algebra and
L a certain naturally constructed representation of Z' (G, Z)
on L¥G X Z,dg X da), dg being left Haar measure on G and
« a quasi-invariant ergodic probability measure on Z. Repre-
sentations of Z7(G, Z) constructed from positive-definite meas-
ures on G X Z are used to prove that Z7 (G, Z) is type I if and
only if all the isotropy subgroups are type I and Z/G is T, and,
under the assumption of a common central isotropy subgroup,
that I, has no type I component if o is nontransitive. By
means of quasi-unitary algebras, necessary and sufficient con-
ditions are derived for L to be semi-finite under the weaker
assumption of a common type I unimodular isotropy subgroup.

After establishing notation and discussing preliminary material
in §2, we prove in §3 that %/ (G, Z) is type I if and only if Z/G is
T, and all isotropy subgroups are type I. This result, proven by
Glimm [9, Theorem 2.2] for the special case in which isotropy subgroups
can be chosen “continuously”, is not surprising in light of Mackey’s
Imprimitivity Theorem and the correspondence between representations
of (G, Z) and systems of imprimitivity based on (G, Z) (see §2).
Our general proof, based on the fact that isotropy subgroups can
always be chosen “measurably” [1, Proposition 2.3], follows by con-
struction of a direet integral of certain representations which, by
being defined in terms of positive-definite measures, are easily specified
and shown to form an integrable family.

In §§4 and 5 we consider the type of a W*-algebra .o~ constructed
via an ergodic quasi-invariant probability measure « on Z (see §4 for the
construction). This algebra was studied by Murray and von Neumann
in [14], [15], and [16] for the case of G discrete (see also {4, pp. 127~
187]), by Dixmier in [3, §§10-12] for the case of G acting freely on
Z and by Kallman in [10] for the case in which « is transitive. In
§4 we first show that .o is the von Neumann algebra generated by
the representation of Z/ (G, Z) determined by the positive-definite
measure 6, X da on G X Z. Then assuming that almost all (da) points
in Z have the same isotropy subgroup H, we use a direct integral
decomposition of .o arising naturally from a consideration of the
measure J, X da to prove that if a« is nontransitive and if H is in

93
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addition central in G then . has no type I component. In §5 we
use different methods, namely the theory of quasi-unitary algebras,
to derive necessary and sufficient conditions that . be semi-finite,
under the weaker assumption that almost all (da) points in Z have
the same isotropy subgroup H and that H is type I and unimodular.

The results of §38 are contained in the author’s Doctoral Disser-
tation written at the Massachusetts Institute of Technology under the
direction of Professor Roe W. Goodman.

2. Notation and preliminaries. If X is a second countable
locally compact Hausdorff space, we denote by .97°(X) the continuous
functions on X of compact support, with the inductive limit topology,
and by M(X) the dual space of Radon measures on X with the weak
*-topology. For ze X, i, M(X) is the probability measure on X
concentrated at #. For a locally compact group G, d,g, or simply dg,
denotes left Haar measure on G and 4, the corresponding modular
function. We assume throughout this paper that both G and Z are
second countable locally compact Hausdorff spaces, that all Hilbert
spaces are separable and that all representations of algebras are
nondegenerate.

Although we refer to [6], primarily §§1, 3, and 4, for the construc-
tion of and basic results concerning Z/ (G, Z), we list for convenience
some facts, and establish more notation. .%7(G x Z) is a topological
*-algebra and is dense in Z/ (G, Z) [6, pp. 32-35]. The correspondence
L =V, M) between representations L of Z/ (G, Z) on a Hilbert space
7 and systems of imprimitivity <V, M) based on (G, Z) and acting
on 57 is completely determined [6, pp. 34-37] by

CL(F)x, yp

.1)
= | (9, Vo), 4dg, £ & 57(G x Z), 5, ye 57 .
If there is no possibility of confusion, we shall use the same symbol
M for the representation of .977(Z), its extension to the algebra L>(Z)
of bounded Borel functions on Z, the corresponding projection-valued
measure, and the generated W*-algebra in <& (5#). We denote by
D(G x Z) the set of positive-definite measures on G X Z, that is,
{(pe M(GX Z): p(f*+f)=0Vfe % (GxZ). peDG x Z) determines
a representation L? of Z/(G, Z) on 577, and there is a canonical con-
tinuous map of (G x Z) onto a dense subspace of 5#* [6, §4].
Blattner’s results on induced positive-definite measures and their
connection with induced representations [2, Theorem 1] can be extended
from the group to the transformation group context. Let H be a
closed subgroup of G and L = (V, M) a representation of % (H, Z).
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As a special case of [18, §3], one can construct an induced system of
imprimitivity <{ind (V), ind (M)> based on (G, Z) and thus by (2-1) an
induced representation ind (L) of % (G, Z). Ind(V) is the usual
representation of G induced from the representation V of H. If pe
D(H x Z) define $e M(G X Z) by

(2.2) B(f) = p(f 445" uxz), e (G X Z) .

LeEMMA 2.83. If p in D(H x Z) determines a representation L of
Z (H, Z), then e D(G x Z) and determines a representation of Z (G,
Z) unitarily equivalent to ind (L).

Proof. The proof of Theorem 1 of [2] can be repeated, with
obvious modifications, and we omit the details.

LevMA 2.4, If 2 — L° is an integrable family of representations
of % (H, Z), then v — ind (L°) is an integrable family of representa-
tions of Z (G, Z) and Sind (L®) 1s unitarily equivalent to ind (SL")

Proof. We sketch the argument. Let L° = (V® M*> on S#°.
By using the approximate identity in .97 (H x Z) and the two formulas
in [6, Lemma 3.26] one sees that x —V?*(s) and & — M*(h) are meas-
urable operator fields for se H, he 9 (Z). By Theorem 10.1 of [12],
x—ind (V*) is a measurable field of representations of G on the

induced Hilbert spaces ind (5#°*) and Sind (V*) on Sind (£7°°) is unitarily

equivalent to ind (SV’”) on ind (S%””) A similar argument verifies

that - (ind (M®))(h) is measurable for k€ .97°(Z) and that the unitary
operator implementing the above equivalence for the representations

of G transforms X(ind (M7)(h) into (ind (SM’»(h). From the fact z —

ind (V*) and = — ind (M*) are measurable it follows that x — ind (L*) is
measurable. To see this, note that any we % (G, Z) can be approxi-
mated in norm by finite sums of the form > f, & h;, ;€ % (G) and h;
97 (Z), and then apply (2.1). To finish the proof we note that from
the 2 formulas in [6, Lemma 3.26] again, it is clear that for any
measurable field of representations x — L* = (V*, M*) the system of

imprimitivity corresponding to SL’” is <§ Ve, SM’°> Thus the repre-

sentations Sind (L*) and ind(SL“ are unitarily equivalent because
their respective systems of imprimitivity <Sind (V9), Sind (M“)> and

<ind (g v*), ind (§M>> are.

For ve D(H) the measure ¥, defined by (2.2) with Z ignored, lies
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in D(G). If H is the isotropy subgroup of @ € Z then vy x 6% € D(H x
Z) and the induced measure on G x Zisexactly b x 6. If L =<V,
M) is the representation of %/ (H, Z) determined by v x 6p, V is
unitarily equivalent to the representation of H determined by v, M(k) =
k(@)I for ke 2 (Z),ind (M) is concentrated on the orbit Go, and the
commutants of ind (L) and V are algebraically isomorphic (see [6,
§4] for details).

3. The type of (G, Z). For e Z let H, denote the isotropy
subgroup of ®,d;,, a left Haar measure on H, and v, the induced
measure d,.

LEMMA 3.1. There ts a choice of left Haar measures on the
tsotropy subgroups of G so that for each fe . 27 (G <X Z), the function
0: Z — C defined by 0(p) = (v, x0.)(f) 1s bounded and Borel.

Proof. Let .&°(G) denote the family of all closed subgroups of
G, endowed with the compact Hausdorff topology described by Fell in
[7]. The map @ — H, of Z into .&”(G) is Borel |1, Proposition 2.3] and
left Haar measures d, can be chosen on the subgroups H of G so that
the map H — d, of S2(G) into M(G) is continuous (this follows from [9,
appendix] and the proof of Theorem 4.2 of [8]). Thus for g e % (G)
the composite map ® —v,{g) is Borel. To show that # is bounded
and Borel, we need the following estimate (see [9, Lemma 1.1]). Let
K be a compact subset of G and se % (G) with »=0 and #=1 on
K. Since H—d,(~) is a continuous function on the compact set .&# (@),
it is bounded by a positive constant a. For any ke 2 (G x Z) with
suppk & K x Z, and for any He &7(G), pc Z, we have

(=) | dy % (k)| = |dulk(-, P)| = |kl du()] < @] k]|, -

Thus 6 is bounded. Let 4 and B be compact subsets of G and Z
contained, respectively, in relatively compact open sets Uand V. If fe
27 (G x Z) with suppf S 4 x B, f can be uniformly approximated
by finite sums of the form 3, ¢;® ki, g:€ 5 (G), suppg; S U, h; e
2 (Z), supp h; S V. The estimate (x), applied to the compact set
K = U, implies that ¢ is the uniform limit on Z of the Borel functions
P — (Vo X 8,) 9: R hy) = 3, vo(9:)hi (@), and is thus Borel.

Fix a “measurable” choice of left Haar measures on the isotropy
subgroups as allowed by Lemma 3.1 and for e Z let L¢ denote
the representation of %7 (G, Z) on the Hilbert space 57°¢ determined by
Yo X do.

LEMMA 3.2. For every positive Radon measure a on Z the direct
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tntegral representation L = S Ledo(p) exists.
z

Proof. For fe % (GxZ) let f'(p) denote the canonical image
of f in &#¥*. The map f — f'(®) is continuous with respect to the
inductive limit topology on .#°(G x Z) and the norm topology on
S7¢ (this follows from [6, Lemma 3.7]). Since G and Z are second
countable, 2 (G x Z) contains a countable dense set {f;} [6, proof
of Corollary 4.12], and by the preceding remarks and Lemma 3.1, it
follows that the fi(®) are a fundamental sequence of measurable vector

fields and thus the direct integral 57 = S S#¢da(P) exists [4, Chapter
zZ

II, §1, »° 4]. Each ue % (G, Z) is the limit in norm of a sequence
ke (G X Z) and thus <L*(u) fi®), £i(P)y = lim, (v, X 0,)(f]*haxf5)
is a measurable function on Z, again by Lemma 3.1, and the direct
integral L =\ L*da(®) exists.
z

It follows from [9, Theorem 2.1] and [6, Theorem 4.29 and Lemma
4.30] that each L¢ is an irreducible representation of %/ (G, Z) and
that L® = L7 if and only if ® and 7 lie in the same G-orbit.

THEOREM 3.3. Z (G, Z) is type I if and only if the orbit space
Z|G is T, and all the isotropy subgroups are type I.

Proof. If Z/G is not T,, there exists an ergodic positive Borel
measure « on Z which is not concentrated on any orbit [5, Theorem

2.6]. By Lemma 3.2 and [5, Lemma 4.2], L = S Leda(®) is a factor

representation of Z(G, Z) not of type I. Also, szince a factor repre-
sentation W of an isotropy subgroup induces a factor representation
L of Z7(G, Z) of the same type, the commutants of L and W being
algebraically isomorphie, Z/(G, Z) is not type I if there is a nontype
I isotropy subgroup. Conversely if Z/G is T, every factor represen-
tation L =<V, M) is induced from an isotropy subgroup by the
Imprimitivity Theorem, since the projection-valued measure M is ergodic
and thus concentrated on an orbit. If in addition all the isotropy
subgroups are type I, so therefore is Z/ (G, Z).

4. On the type of .%. Let a be an ergodic quasi-invariant
probability measure on Z, g-a the measure defined by g-a(4) = a(g—A4),
ge @, A Borel= Z, and A,(-) the Radon-Nikodym derivative d(g-a)/dc.
Let (W, P> be the system of imprimitivity based on (G, Z) and acting
on LXZ, da) by

(W@N)P) = N(@)Ef(97'P) »  (P)F)P) = MP)F(P) »
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9€G,peZ he L*(Z)and f e L Z, da). Denoting by U the left regular
representation of G on L* @), we consider the type of the W*-algebra
& on LXG)Q L*Z, dx) generated by the operators U(g) ® W(g) and
IQ P(h), g€ G, he L*(Z). Our definition of .o~ is the same as Kallman’s
[10] except for modifications due to our preference for left rather than
right action of G on Z.

LeMMA 4.1. &7 is spatially isomorphic to the W*-algebra generated
by the representation L* of Z/ (G, Z) determined by o, X da in D(G X Z).

Proof. The natural map of the algebraic tensor product 22 (G) ®
% (Z) onto a dense subspace of (G x Z) clearly extends to an
isometry of L¥G) Q LXZ, da) onto L*G X Z,dg x da). By the proof
of Theorem 5.3 of [13], A can be chosen to be jointly measurable on
G x Z and it is then clear that under the above isometry the system
of imprimitivity C<UQ W, IR P) is transformed into the system {V’,
M’ given by

(V@) )T, P) = N(P)Ef (97, g7'P)
and
(M'(h) )X, P) = @) f(t, ),

9,teG,peZ he L=(Z) and feLXG x Z,dg x da). For fe 27 (G X
Z) define (Rf)(g, ®) = f(g, PIA,(P)'®. Rf is measurable on G x Z.
Since

[ §.170. 9 n@a@ias = | | 176, 09 da@ris

and k(g, ®) = f(9, 9®) lies in 22" (G x Z), Rf is square-integrable. Rou-
tine calculations verify that R extends from .2 (G x Z) to an isometry
of 57+, the Hilbert space of L% onto L*(G X Z, dg X da) which
transforms the system of imprimitivity given by

(V@A) P) = flg7't, 97'9) and (M(R)S)E, P) = MP)f(E, P),

t,9eG, peZ, he L*(Z) and fe 22 (G x Z) into <V', M'). To check
that V transforms into V'’ requires use of the identity

Mt P) = NP (s7'P) a.e. (da)

for each s, te G. As (V, M) is precisely the system of imprimitivity
on 57* determined by 4, X da (see formulas 4.4 and 4.6 of [6]) and
as {V, M) generates exactly the same W*-algebra as the corresponding
representation L* of Z/ (G, Z), we are done.

Now let .27 denote the W*-algebra generated by the representation
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L. Henceforth, we assume that a is concentrated on a G-invariant
Borel set in Z all of whose points have the same isotropy group H,
which is a priori normal in G. The more general case in which it is
assumed merely that all isotropy subgroups are conjugate can be
reduced to the above case [1, Chapter II, §2]. If 7 is a representation
of H, we denote by ¢g-m the representation (g-7)(h) = w(9~*hg). We
shall obtain a direct integral decomposition of .2~ and then use the
following lemma to prove that, under additional hypotheses on H, .&
has no type I component if « is nontransitive. We denote by [<Z, €]
the W*-algebra generated by operator algebras < and <&, by <%’
the commutant of <& and by 2 <% the center <% N <7’ of <Z.

LeMMA 4.2. Let <& be a W*-algebra on o Hilbert space 57 and
& a commutative subalgebra of <Z'. If <& has a type I component
then so does & = [F, ¥].

Proof. We use the notation of [4, Chapter I, §2, n’1] for induced
and reduced algebras. <Z has a type I component if and only if there
is a nonzero projection F' in 2 <# and an abelian projection E in <%,
whose central support is the identity (relative to <#, on the Hilbert
space F'57) [4, Chapter II, §8, n°1, Corollary 1 and n°2, Theorem 1].
We shall show that the projections F' and FE satisfy the same pro-
perties for < as they do for & 8Since 2% = Z N(Z N F') <
aNE'NF)Y= 2, Fe Z . %5isclearly a commutative algebra
commuting with <z and by [4, Chapter I, §2 »’1, Proposition 1], &,
is generated by &% and <%, and (&) is generated by elements of the
form KEBCE, Be &%, and Ce &%. This is because products of the
form BC, Be &, Cc &5, form a generating subset of <, closed under
involution and multiplication. That (&25); is abelian follows easily
now from the hypothesis that (<Z); is abelian and from the fact that
E lies in <&, and thus commutes with &%. Since Fe #, & & K
clearly has central support equal to the identity with respect to the
larger algebra <., and we are done.

THEOREM 4.3. Let « be a nontransitive ergodic quasi-invariant
probability measure on Z, and assume that almost all (da) points of
Z have the same isotropy subgroup H. If the lefi regular representation

T of H can be decomposed as a direct integral T = ngfd'Y of irre-

ducibles T7 on 577, so that a.e. (d7), g+ T7 is unitarily equivalent to
Tr for all ge G, then & has no type I component.

Proof. We note first that the hypotheses on T are certainly
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satisfied if H is central in G. In any ecase, since H is normal in G,
dgly = 4z and 8, x da € D(G x Z) is induced from the measure 8, x da e
D(H x Z) (see formula (2.2)). Thus L* is induced from the representa-
tion R* of Z/(H, Z) determined by 4, x da in D(H x Z). By applying
Lemma 4.1 to B* one obtains a unitary equivalence between R* and 7* =
KTRIIRQ) on L(H) Q L*Z, da), where Q is the natural projec-
tion-valued measure from Z to L*Z, da). As H leaves almost all (da)
points of Z fixed, each <T"Q I, IQ Q> is a system of imprimitivity,
based on (H, Z) and acting on 5#" ® L*Z, da). Denoting by o’ the
corresponding representation of Z/(H, Z) and by ind o7 the induced
representation of Z (G, Z), we have by Lemma 2.4 and its proof a

unitary equivalence L~ = S ind o7dv. If .97 had a type I component so
r

would [.o7, L™(I", dv)] by Lemma 4.2, and therefore [4, Chapter II, §3,
Exercise 1] so would the representations ind ¢7 for v in a set of
positive measure on I". We shall use Lemma 4.2 of [5] to verify that
in fact ind ¢7 is a.e. (d7) a nontype I factor representation, and the
theorem will be proven. @ has a natural direct integral decomposition

Q) = SZQw(h)da@), where Q¢(k) is multiplication by h() on C,he

L>(Z). Fix vel'. The system of imprimitivity <T" ® I, I QY @*), or
simply <{T", Q*>, on 27" ® C = 277 determines a representation z¢ of

Z (H, Z) and again by Lemma 2.4, ind " = S ind r¢da(p). It follows
z

from Theorem 2.1 of [9] and the discussion preceding that theorem
that each ind ¥ is an irreducible representation of Z/ (G, Z), since T"
is an irreducible representation of H, and furthemore that ind z¢ is
unitarily equivalent to ind z7 if and only if ¢ = g.» and 7" = g.T"
for some ge G. If g-T" = T7 for all g€ G, ind ¢ = ind 77 if and only
if @ and 7 lie in the same G-orbit. « is thus ergodic with respect
to the relation of unitary equivalence among the components ind ¢
of indo’, and by Lemma 4.2 of [5] ind o7 is a nontype I factor
representation. By hypothesis, this is true a.e. (dv) and we are done.

5. On the type of & (continued). We derive necessary and
sufficient conditions for .~ to be semi-finite, under the assumption of
a common isotropy group H which is type I and unimodular. Our
proof is modelled on Dixmier’s in [3, §§10-12], where the case of free
action is considered. As there, we assume that the Radon-Nikodym de-
rivative d(g-a)/da = \,(+), considered as a function on G x Z, is conti-
nuous and strictly positive. With no loss of generality, we also assume
that support @ = Z. We start with the realization of .o as the W*-
algebra on L*(G x Z, dg x da) generated by {V(g), M(h):g9eG, he
L~(Z)}, where



THE TYPE OF SOME C* AND W*ALGEBRAS 101
(V@) ¢, P) = (@) f (g7, 97'P) and
(M) f)(E, ) = MP)fE, P), felXG x Z,dgxda) .

(See the proof of Lemma 4.1, where V and M are denoted by V' and
M)

(5.1)

For fe 2 (G x Z), define

(5.2) Fi(g, P) = 4(9)7"n,(®)'*f (g, #) and
£(g, P) = 4(9) "\ (@) F (g7, ¢7'P) .

Also, let (W, N> be the system of imprimitivity on LG x Z, dg X
da) given by

(5.3) (W) N)(t, ) = 4(g)"*f(tg, #) and
(N(h) f)(t, P) = ht™'P) f(t, P) .

Our definitions differ from Dixmier’s due essentially to our preference
for left action of G on Z. Denote by L and R the representations
of Z (G, Z) corresponding, respectively, to (V, M) and (W, N).

LemMaA 5.4. (G x Z), with f? and f° as in (5.2), convolution
as multiplication and inner product as in LG x Z,dg X da), is a
quasi-unitary algebra with underlying Hilbert space LG X Z,dg X
da). Its left algebra #' is 7 and its right algebra #T = (#Y
18 the algebra generated by (W, N).

Proof. That the conditions on [3, p. 277] are satisfied can be
verified as in [3, Proposition 9] and we omit the computations. For
fe (G x Z), denote by 7'(f) and m"(f), respectively, the bounded
operators on LG x Z,dg x da) of left and right convolution by f.
FP' and 2" are, respectively, the W*-algebras generated by all z*(f),
(), fe (G x Z) (see [3, p. 278]). The remainder of the lemma
follows by use of (2.1) to verify that L(f) = #’(f-\'* and R(f) =
7 (feen""?) for all fe (G x Z).

We denote by J the positive self-adjoint extension of f — f4, by
S the isometric extension of f — f* [3, p. 278], by P*(P") the set of
operators in #Y(#") commuting with J, and by Q(Q") the operators
in ZY#Z") commuting with all of P{(P”"). Theorem 2 of [3] and
Theorem 1 of [17] yield the following: 2! is semi-finite if and only
if there exist (unbounded) positive invertible self-adjoint operators
A and A’ belonging to <#Z' and &7, respectively, so that A’ = SAS
and J is the minimal closed extension of A(A4')™%, and if this is the
case, then 4 and A’ belong to @' and Q", respectively, and Q' < P,
Q" < P'. As in [3], we derive necessary and sufficient conditions for
A, A’ as above to exist in terms of the action of G on some measure
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space (B, db) by investigating how A and A’ correspond to the operators
of multiplication by certain elements of L~(B, db). In the case of
a nontrivial isotropy subgroup H, this necessitates an examination of
various direct integral decompositions. We assume familiarity with
the notation and results of [4, Chapter II, §§1-3]. If 7 is a represen-
tation of a group K, we denote by m(K) the W*-algebra generated by
{r(k): ke K}.

LXG x Z,dg x da) is naturally isometric with the direct integral
over (Z, da) of the constant field of Hilbert spaces ¢ — 52 (9) = L*G),
with the algebra M corresponding naturally to the algebra of diago-
nalizable operators. Denote by & the algebra on L*(G x Z, dg x da)
generated by multiplication by bounded Borel functions on G X Z and
by &4 the subalgebra generated by the bounded Borel functions
on G/H x Z, considered as functions on G x Z. Let V and W
denote, respectively, the left and right regular representations of G on
LAG (W (9) £) (@) = 4(9)**f (tg)), and M(G)(M(G/H)) the algebra on LXG)
generated by multiplication by bounded Borel functions on G(G/H).
Then clearly (see (5.1) and (5.3)) the W*-algebras &, &, [, V(H)],
[, 2 V(H)] and [M, 2 V(H)] are all the direct integrals, respectively,
of the constant fields of W*-algebras @ — M(G), M(G/H), [M(G), V(H)],
[M(G), 2 V(H)] and 2 V(H) on L*(G). Also, each operator W(g)

decomposes as SZW(g)da(gD).

LemmA 5.5. If H is unimodular, then Q' = [M, 2" V(H)].

Proof. It follows from (5.1) and (5.2) that M < P* and that V(H) &
P! for H unimodular. If Ae @ & #' = ("), then Aec[W(G), N]
by Lemma 5.4, and Aec[M, V(H)]' by the preceding remark. By
modifying the proof of [3, Lemme 26] so that instead of dealing with
compact subsets K, K’ of G one deals with subsets of the form KH,
K'H, K and K' compact, it follows that [M, N] = ¥ N V(H) = &#.
As (ZnNVH)Y) =<', V(H)] =<, V(H)] we have Aec[M, N =
[<£ V(H)]. Thus A = SZA(sv)doz(@), A(p) € [M(G), V(H)] a.e. (de), and
we must show A(@) e 2" V(H) a.e. (do). From the fact that A ¢ V(H)’
it follows that A(®)e V(H)' a.e. (da), and from the fact that Ac
(W(G))’ N & it follows that A(@) e (W(GR)) N (M(G/H)) a.e. (dx). By
a commutation theorem of Takesaki [19, Theorem 3] the latter algebra
is exactly V(H) (note that the left and right coset spaces G/H, H\G
are identical) and we are done.

We now decompose L*G) explicitly with respect to the abelian
W=-algebra 2 V(H). Choose left Haar measure dh and dg on H and

G/H, respectively, so that ng(g)dg :X SH flghydhdg, for all fe

GlH
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22 (G). Let o denote a Borel cross-section from G/H to G with
o(g) = e, and let 7(g) = a(g)™g, so that every ge G may be written
uniquely ¢ = a(g)7(g), 7(9) € H. Define 6(g) by

|, 7lahg™ydn = 6@ s, £ e .2 (H)

and denote by U, the isometry of L*(H) into itself given by (U, f)(k) =
8(9)*f(g*hg). Let V be the left regular representation of H on L*(H)

and SAn('Y)Rfd“/ its canonical central decomposition. (G, H) is a Borel
H
transformation group [18, Theorem 2.4].

LEMMA 5.6. LAG) is isometric with the direct integral over (G/H,
dg) of the constant field of Hilbert spaces §— L*(H). The operator
U implementing the isometry is (Uf)(g, h) = f(e(®h), f € L} (G). For
s e LXG/H, dg, L}(H)), (U'2)(g) = 2(g, 7(9)). Furthermore,

vV U = (@@ Vg

and (6@ - V)h) = U V(h) U,;, so that 2 V(H) is transformed by
U into

{S U AU, -dg: Ae 2 V(H)} .
GIH

2 V(H) is invamiA(mt under A — U;5AU,;, and if Ae 2 V(H) corres-
ponds to fe L=(H, dv), U;i5AU,; corresponds to the fumction g~*-f,
gwen by (97 f)(7) = f(g-7).

Proof. All of the statements except the last are either standard
results or can be verified easily by direct computation. We note that
s € L*(G/H, dg, L*(H)) can indeed be congidered as a jointly measurable
function on (G/H X H,dg x dh) by [11, Lemma 3.1]. For the last
statement of the lemma see, for example, {1, Introduction, Proposition
10.2].

REMARK 1. The automorphisms A — Us5;AU,; of 2 V(H) into
itself define an action of G/H on 2 V(H), for if heH, U, is the
product of a left and a right translation by elements of H and thus
commutes with 2 V(H) [3, Theoreme 1]. Thus G/H is an auto-
morphism group on (H, dv), as indeed it is on (Z, da), but we shall
continue to regard G as the group acting on these spaces. Since H
acts trivially and is unimodular, however, the following equalities,
which we shall use shortly, hold: o(g)® = g®, 4(d(g)) = 4(9), Moy = N,
and 8(a(g)) = 0(9),9e G, PeZ.
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REMARK 2. We shall use Lemma 3.1 of [11], without further
explicit mention, to identify L*(X, dx, LXY, dy)) with L}(X < Y, dx x
dy) and the space of essentially bounded measurable functions from
(X, dx) to L=(Y, dy) with L*(X x Y, dx x dy), where (X, dz) and (Y,
dy) are each one of the spaces (Z, da), (G/H, dg) or (H, dv).

By Lemma 5.6 and the discussion preceding Lemma 5.5, an operator
Ae[M, 2 V(H)] corresponds, after direct integral decomposition of
LXG x Z,dg x da) over (Z,da) and (G/H, dg), to

() [ [, U A@ Updgdate), Aw)ez V) .

But after decomposition over (H, dv), A(®) corresponds to multiplication
by f¢eL~(H,dv) and U;;A(®)U,; corresponds to multiplication by
g~ f9. Regarding f(®,7) = f?(v) as an element of L=(Z x ﬁ, da x
dv), which may involve changing values of f on a (da x dv) null set,
we have A corresponding to multiplication by m(®, g, v) = f(®, g+7).
We now examine what SAS and J correspond to, and we shall obtain
our final result.

LEMMA 5.7. Let A and f be as above. After decomposing over
Z,G/H and H, SAS corresponds to multiplication by k(®, g,7) =
Fg™'p,v) and J corresponds to multiplication by

(P, , V) = A(g) TN (P

Proof. The result for J follows directly from (5.2). Let U, be
the isometry implementing the decomposition over Z and G/H. For
re X Z x G,da x dg), (Ur)(®, g, k) = r(®, o(g)h), and for re L¥Z X
G/H, da x dg, L*(H)), (U'r)(®, 9) = v(@, g, )(9)). UAU* is given by
(*). We shall compute U,SU;* and then

") U(SAS)U = (USUr WU AU NUST) .

Although the computation of U,SU;* and other operators by pointwise
evaluation yields (pointwise) formulas valid only a.e., these formulas
still uniquely determine the element of L=(Z x G/H x H, da x dg X
dv) to which SAS corresponds. Thus we may for simplicity ignore
a.e. considerations. For re L*Z x G/H,dx x dg, L*(H)), it can be
verified directly that

(USU )P, g, h) = 4(g)7"*\ (@) r (g~ 'P, g7, (b 0(§)7)) -
Now

(ho(g9)™) = o(g™) T h e (@)
= (6@ "R o(N(e(@) T e(@T) -
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Defining @(g) = o(~)"o(§)™* and an operator S on L*(H) by (Sa)(k) =
@(h™*), one can compute directly from the above formulae that

(USUTr) (9, 9)
= (4(g)0(g)" N ()2 U, 5-1 V(@(9))S)(r(g~*, §7)

as elements of L*(H), and again by direct computation and (x*) it
follows that

(USASU'r)(2, 9)
= (Usz—, V(2(9))S Usi7-1,A(97'P) U, 5-1, Usz V(@(g)S) (@, ) -

It is clear that SS = I on L*H), and therefore the operator on L*(H)
given by the right-hand side of the above equation equals the product
T.T,T,, where

T, = U,5-) V@(@)S U545,

T, = SA(g~'»)S and

T, = SU,G U V(@(gﬂ))s .
Now A(g~'p)e 2 V(H) and thus SA(g~'9)S = A*(g~'p) e 2 V(H) by
[3, Corollaire, p. 283]. By a tedious but straightforward computation,
one checks that T, = V(®#(¢™)) and thus

TxTsz = Tz(Tsz)
= A*(g'P) (U, V(@(g)S U,z V(@(™)S) .

But 7.7, equals the identity (again a straightforward computation)
and we have finally that

(USASU'r) (@, §) = A*(g7'P)(r(®, 7)) -
Thus SAS corresponds to k(®, g, 7) = f(g7'®, 7) and we are done.

THEOREM 5.8. .7 1s semi-finite if and only if there exists a
positive measurable function v on (Z x H,do x dv) such that

'11/‘(@, gfy) — A( —1 3
—D T = A(gTN(P) a.e. (dgxdaxdy) on G X Z X H.
¥(g7'P, V)

Proof. See [3, Theoreme 7 and Proposition 12] for the proof.
Also see [3, Remarque 1, p. 318] for a slight strengthening of the
theorem and [3, Remarque 2, p. 319] for the measure-theoretic signif-
icance of the hypothesis on +r.
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ANGULAR LIMITS OF LOCALLY FINITELY
VALENT HOLOMORPHIC FUNCTIONS

Davip C. HADDAD

A function f defined in a domain D is n-valent in D if
f(z) — w, has at most n zeros in D for each complex number
wo. The purpose of this paper is to show that a sufficient
condition for a holomorphic function f in |z| <1 to have
angular limits almost everywhere on |z| =1 is that there
exist a positive integer # and a positive number 7, such that
f is m-valent in each component of the set {z:|f(z)| > 7o}.

We have previously shown that the same conditions on f imply
that f is a quasi-normal function of order at most n — 1 [3, Theorem
2], and f has angular limits at a dense subset of [z] = 1 [3, Corollary
1]. Note that the bound 7 on the valence of f is the same for each
component of {z:|f(2)| > r}. This uniformity on » is essential to the
conclusion that f has angular limits almost everywhere on |z| = 1;
for we have shown in the example in [2] that if the uniformity is
dropped, then f need not even have asymptotic values at a dense
subset of |z = 1.

If w = f(2) is a nonconstant, holomorphic function in |z]| < 1, we
denote by F the Riemann surface of f~' (as a covering surface over
the w-plane). If S is a subset of [z| =1, then m(S) denotes the
Lebesgue measure of S.

A Jordan arc T = {z = h(t): 0 < ¢t < 1} lying in a domain D is a
crosscut of D if h(t) —z,€0D as t | 0, h(t)—2z€0D as t ] 1, and
2, # 2. If z,=2, then T is a loopcut of D.

If a holomorphic function f in |z] < 1 is m-valent in a component
D(r) of the set {z:|f(2)| > r} then the connectivity of D(r) is as most
n + 1[3, Lemma 3]. We denote by D*(r) the simply connected domain
obtained by adding to D(r) those (at most %) components of {z: | ()| < 7}
that punch holes in D(r).

LEMMA 1. Let f be a nonconstant, holomorphic function in |z| <1
that is n-valent in each component of the set {z: | f(2)| > r}. For each
r > 1y let {Dy(r)} denote the at most countadble collection of components
of {2:1f()| > r}. Then there exists a countable subset E of (r,, =)
such that 0D} (r) is a Jordan curve for all k and all re (r,, ) — E.

Proof. Define a set R = {r:r > r, and F has no branch points
lying over the circle |w| = 7}. Then the set (r, <) — R is at most
countable. If »¢ R, then for each k, oD} (») N {|z] < 1} consists of at
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most countably many crosscuts and loopcuts T% of |z| <1 by [2,
Corollary 1].

We show that if for a fixed & there are infinitely many curves
T}, then their diameters tend to zero as j-— co. If the diameters
did not tend to zero, then the sequence {7} would have an accumula-
tion continuum in [2| =< 1. Sinece f is a nonconstant, holomorphic
function, {T%} cannot have an accumulation continuum in |2| < 1. By
[2, Theorem 3], f has asymptotic values at a dense subset of |z| = 1,
and hence, by a theorem of MacLane [4, Theorem 1], the sequence
{T%} of level curves cannot have an arc of |z| = 1 for an accumulation
continuum. Hence, the diameters of the curves T% tend to zero as
j— oo.

We still must show that there exists a countable subset E of
(ry, =) such that 0D;(r) has no double points for all £ and all re
(ry, =) — E. Suppose to the contrary that S is an uncountable subset
of R and that for each r ¢ S there exists a component D(r) of the set
{z: | f(z)] > r,} such that 0D*(r) has double points. This implies that
for each r € S, 0D*(r) contains a loopcut T,, since the curves comprising
D*(r) N {lz]| < 1} are Jordan arcs for all re R. The domain D*(r)
cannot be interior to a loopeut; for if it were, f would be unbounded
in D*(r) by the extended maximum principle, and, consequently, the
loopecut would determine two distinct asymptotic tracts ending at one
point contradicting [2, Theorem 2]. (See [4] or [2] for the definition
of an asymptotic tract.) Let G, denote the domain interior to the
loopeut T.. The uncountable collection of open sets G, must contain
a pair that intersect, say G, and G, where ¢ < s. Since the loopcuts
T, and T, cannot intersect inside [z| < 1, then G,C G,, and 7, and
T, end at the same point of |z| = 1. By [2, Corollary 1], T, and T,
determine at least two (since ¢ # s) asymptotic tracts ending at one
point contradicting [2, Theorem 2]. Thus, there must exist a countable
subset F of (r, ) such that dDj(r) is a Jordan curve for all £ and
all re{r,, o) — K.

LeMMA 2. Let f be a nonconstant, holomorphic function in |z) < 1
that is n-valent in each component of {z:|f(2)] > r}. If r. > », and
D(r) is a component of {z:|f(2)| > 7.}, then f has angular limits
almost everywhere on E(r) = D(r) N {z| = 1}.

Proof. We assume m(E(r,)) > 0, for, otherwise, there is nothing
to prove. For » < r, we denote by D(r) the component of {z: | f(z)| >
r} containing D(r), and we write E(r) = D) N {{z]| = 1}. We first
show that there exists se(r,r) such that 0D*(s) is a rectifiable
Jordan curve.

By Lemma 1, the set R = {r e(r,, ) such that F' has no branch



ANGULAR LIMITS 109

points over |w| = » and 0D*(r) is a Jordan curve} is the whole interval
(ry, ) minus possibly a set of measure zero. Let C(r) = dD(r) N {|z| <
1}, and let I" be the family {C(+): r € B}. By passing to the Riemann
surface F, it is not hard to show that the extremal length of the
family I is bounded by 2nx log r,/r,, and this implies 6.D(r) is rectifiable
for infinitely many values re R (for example, see [2, Theorem 1]).
Thus, we can choose s e (r,, ) such that 6D*(s) is a rectifiable Jordan
curve.

By the Riemann mapping theorem and Carathéodory’s theorem on
boundary correspondence there exists a homeomorphism g of D*(s) onto
[£] £ 1 that is a conformal mapping of D*(s) onto |{| < 1. Since the
connectivity of D(s) is finite, | f(¢~({))| > s in some annulus ¢ < |{| < 1.
Hence, fog~' has angular limits almost everywhere on |{| =1 by a
simple extension of theorems of Fatou [1, p. 19] and F. and M. Riesz
[1, p. 22] on angular limits. Since dD*(s) is a rectifiable Jordan curve,
¢g~' maps a set of measure zero on |{| = 1 onto a set of measure zero
on 0D*(s) by a theorem of F. and M. Riesz 1, p. 50]. Thus f has
asymptotic values almost everywhere on E{(s) and hence angular limits
almost everywhere on FE(s) by [3, Theorem 3]. This completes the
proof of the lemma since E(s) D E(r).

LEeMMA 3. Let {I;} be a sequence of mutually disjoint open arcs
on |2\ =1, and let C=;I;, Let f be a conlinuous function on
{lz] < 1} U C that is holomorphic in |[z] < 1. Let | f(z)| = r, for z¢
C,1f(0)| > 7, and the set D = {z:|z| <1, |f()] > 7} be a connected
set whose boundary contains the circle (2| = 1. If f is m-valent in
D, then | f(0)] £ r,exp [27*n/m(C)].

Proof. Let v(r) be the level set {z: | f(z)| = }. The proof consists
of finding bounds on the extremal length A(/") of the family I =
{v(r):r, <r < | f(0)], and F' has no branch points lying over |w| = 7}.
By passing to the Riemann surface F, it can be shown that M) <
2nnflog | £(0)|/r, (for example, see [2, Theorem 1]).

By our hypotheses on f, each arc I; must be separated from
the point z = 0 by a level curve of {z:|f(z)| = r} for each » in the
interval (r, | f(0)). None of these curves can be relatively compact
curves encircling the point 2z = 0 by the maximum principle. Thus,
the Euclidean length of a level curve separating I; from 2z = 0 is
bounded below by min (2, (2/7)m(I;)). Hence, the Euclidean length of
each Y(r)e " is bounded below by (1/m)m(C). By considering the
linear density ©o(z2) defined to be 1 on D and 0 elsewhere, we can
easily obtain the inequality M7") = (1/z*)m(C)*. Combining the two
bounds on A(I") we have | f(0)| < 7, exp [27*n/m(C)?], which completes
the proof of the lemma.
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A point ¢ is a Plessner point for a function f defined in |z| <
1 if for every Stolz angle S at ¢, the cluster set of f at ¢ with
respect to the domain S is total.

THEOREM. A sufficient condition for a holomorphic function f
i |2] < 1 to have finite angular limits almost everywhere on [z] =1
18 that there exist a positive number r, and a positive integer n such
that f is m-valent in each component of the set {z:|f(2)| > r}.

Proof. Suppose to the contrary that the set of points of [z| =1
at which f does not have finite angular limits has positive measure.
Then, by a theorem of Plessner [1, p. 147] and a theorem of Priwalow
[1, p. 146], f must be a nonconstant function whose set of Plessner
points P has positive measure.

For each r > 0, let {D;(r)} denote the at most countable collection
of components of the set {z:|f(2)| > r}. By Lemma 1, there exists
r, > 1, such that éD}(r,) is a Jordan curve for each j and F has no
branch points over the circle |w| = 7. Thus, D} (r) N {|z] < 1} con-
sists of at most countably many level curves which are crosscuts of
lz| < 1. Write D; = D;(r), E; = D N{lz| =1}, and E} = {{z]| = 1} —
E;. Since by Lemma 2, f has angular limits almost everywhere on
U; E;, we can assume PC [); Ej}. Let w; be the harmonic measure
in D¥ of the set 0Df N{/#2| <1}. We need the following lemma whose
proof we postpone.

LEMMA 4. There exists a harmonic function v in |z| < 1 having
angular limit 0 almost everywhere on (; K, and ®;(z) = 1 — v(z) for
2eDfj=1,2, ).

Thus, there exists a point z,¢ P at which v has angular limit 0.
Then, by the definition of P, there exists a sequence {z,} of points
lying inside a Stolz angle at 2z, and converging to 2, such that | f(z,)| >
r, for each k and f(2,) — o as k— c. At most finitely many z, can
lie in the same component D; since z,€ PC (); Ej. Hence, we can
assume (by taking subsequences if necessary) that z;e D; ( = 1,2, «++)
and D, N D, = ¢ for j # k. By Lemma 4, w;(z;) —»1 as j— oo.

By the Riemann mapping theorem and Carathéodory’s theorem on
boundary correspondence, there exists a homeomorphism g; of D7 onto
|| < 1 that is a holomorphic map of D} onto |{| < 1 sending z; into
0. Applying Lemma 3 to the function #; = fog™ and the set C; =
9;(0DF N |z| < 1) we have |h;(0)| < r, exp[27*n/m(C;)’]. On the one
hand, %2;(0) = f(2;)— ~ as j— . On the other hand, m(C)) =
2w ;(97'(0)) = 2rw;(2;) — 27 as j — oo, and this implies A;(0) - - as
j— . Thus to complete the proof of the theorem, we need only
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prove Lemma 4.

Let u; be the harmonic measure in |z] < 1 of the set E}, and let
() = Sk, 1 — u;(z). Clearly, {v,} is an increasing sequence of
nonnegative harmonic functions, and v, has angular limit 0 at each
point of the set M, E}. Since the set Df N D} can contain at most
two points for 5 # ¢, each point e” lies in at most one of the sets
E,E, ---, E, for all but finitely many values of # in the interval
[0, 27). Hence, Tim,_,:» v,(2) <1 (k = 1,2, - +) for all but finitely many
values 6¢]0,2r). It follows from the extended maximum principle
that v,(2) <1 for |2| =1k =1,2,---). By Harnack’s theorem, the
sequence {v,} converges in |z| <1 to a bounded harmonic function
v(). Let I =1{0:0=<0 < 2rm, ¢’ N; E}, and v, v, v,, --- have angular
limits at ¢}, Then, writing v(e”) for the angular limit of v at €%,
we have

glv(e”’)dﬂ = Lv(e"") — v,(e?%)db

< g“v(ei% — v,(e")do
v(0) — v,(0) .

Thus, v has angular limit 0 at ¢ for almost all 6¢ I, since v(0) —
1,(0) =0 as k— . Since the set M; E; — {¢’: e I} has measure
zero by Fatou’s theorem, v has angular limit 0 almost everywhere on
N; Ej. Clearly, v(2) = v;(z) = 1 — u,;(2) for all j and |2z| < 1, and by
Carleman’s principle of domain extension, ®;(z) = w;(z) for ze D} (j =
1,2, ...). This completes the proof of Lemma 4 and hence of the
theorem.

REMARK. The conclusion of the theorem raises the following
question. Are all functions that satisfy the hypotheses of the theorem
of bounded characteristic? This seems to be a difficult question to
answer. The best we can presently show is that T(r) = o(1/1 — 7),
where T is the Nevanlinna characteristic of f.
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ON QUASI-COMPLEMENTS

WiLLIiAM B. JOHNSON

Results of H. P. Rosenthal and the author on w*-basic
sequences are combined with known techniques and applied
to quasi-complementation problems in Banach spaces.

1. Introduction. Recall that (closed, linear) subspaces Y, Z of
the Banach space X are quasi-complements (respectively complements)
provided YNZ = {0} and Y + Z is dense in X (respectively, Y +
Z = X).

Suppose that Y, Z are quasi-complements, but not complements,
for the separable space X. We show that there exist closed subspaces
Y, and Y, of X with Y,c YC Y,, dim Y/Y, = o = dim Y,/Y, such
that Y., Z are quasi-complements and Y, Z are quasi-complements.
This generalizes a theorem of James [5], who proved the existence
of Y, for the case of general separable X and the existence of Y;
for separable, reflexive X. Our proof uses James’ method (and w*-
basic sequences), but seems simpler than James’ construction. Also,
our argument provides information for some nonseparable spaces.

We show also the following.

THEOREM 2. Suppose Y is a subspace of X and Y* is weak*-
separable. If X|Y has a separable, infinite dimensional quotient space,
then Y is quasi-complemented in X.

Theorem 2 was discovered by J. Lindenstrauss and H. P. Rosenthal
[unpublished], both of whom apparently use an idea from [3]. Our
argument uses w*-basic sequences and Rosenthal’s proof of Theorem
2 in the case where X/Y has a reflexive, infinite dimensional quotient
(cf. [12).

The final result of the paper is that every subspace of a separable
conjugate space admits a weak*-closed quasi-complement which is
spanned by a boundedly complete w*-basic sequence.

The notation and terminology agree with [6]. In particular,
subspaces and quotients are assumed to be infinite dimensional and
complete. For Ac X, A* is the annihilator of A in X*, while for
Bc X*, B° is the annihilator of B in X and B is the weak*-closure
of Bin X*.

II. THE THEOREMS. We recall the definition of w*-basic sequence
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[6]: A sequence (y,) C X* is called w*-basic provided that there exists
(%,) € X Dbiorthogonal to (y,) and, for each ¥ in the weak*-closure [&:]
of the closed linear span [y,] of (y,), ¥ = w*-lim, >~ y(x)y..

In [6] it was proved that, when X is separable, if (y,) < X*,

yn-i”lo, but lim inf ||y,|| > 0, then (y,) contains a w*-basic subse-
quence. Let us note that the same result is true when X admits a
weakly compact fundamental set. Indeed, in this case there exists by
[1] a norm one projection P on X with PX separable and (y,) < P*X*.
P*X* is isometric to (PX)* and the relative weak* topology on P*X*
from X* agrees with the weak* topology on P*X* considered as the
conjugate of PX. Therefore, the above mentioned result from [6]
applies to show that (y,) has a w*-basic subsequence.

PFirst we prove the extension of James’ theorem:

THEOREM 1. Suppose that Y, Z are quasi-complements, but not
complements, for X.

(a) If Y has a weakly compact fundamental subset, then there
exists a subspace Y, of Y with dim Y/|Y, = ~ and Y,, Z are quasi-
complements.

(b) If X/Y has a weakly compact fundamental subset (in par-
ticular, if X does), then there exists a subspace Y, of X with Y,D Y,
dim Y,/Y = oo, and Y,, Z are quasi-complements.

Proof. Pick positive numbers (a,) less than 1 so that a, + a,a, +
005 + +»+ < oo. Let p be a bijection of N x N onto N (N is the
set of natural numbers) so that for each n and j, p(n,j) = J.

To prove (a), we use the fact that Y + Z is not closed to select
unit vectors (¥,) in Y with d(y,, Z) = inf {||y. + z||: 2€ Z} — 0. Since
YNZ={0},0 is the only possible weak cluster point of (y,), and

hence either y, ., 0 or the weak closure of (¢.) is not weakly com-
pact. Thus, by either [2] or [11], (y,) has a basic subsequence,
which we also denote by (¥.).

Let (y7) be a bounded sequence of functionals in Y* biorthogonal
to (¥,). Since Y admits a weakly compact fundamental set, the unit
ball of Y* is weak* sequentially compact (cf. [1]), so we may assume,

by passing to a subsequence, that y;} AN y*. (yr — y*) converges w*
to 0 and is bounded away from zero, so it has a w*-basic subsequence.
Thus by passing to a subsequence of (y,, ¥ — ¥*), we have that there
exists a biorthogonal sequence (z,,«}) in Y with ||z.|| =1, (|zx]])
bounded, d(z,, Z) < n'a,a,a, + - @,, (%,) is basic, and (x}) is w*-basic.
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Let Y, = [(#!)7 U (@@n,) — Zpimi+)im=:]- (The annihilator of (a)
is of course taken in Y.) We claim that Y, N [2,w,,] = {0}- To see
this, first note that w} = 2%, + @&5me + .02 .. + +++ is absolutely
convergent, w}(%ym,,) = 1, while wi(%,.) =0 when 7% m. By
construction, Y, (w})", and (w})* N [(%y,1,)] = {0} because (@41 is
basic under some ordering and (%, w}) is biorthogonal. Hence,
Y. N [%,n,] = {0}, whence dim Y/Y, = oo.

We complete the proof by showing that Y, + Z is dense in X.
Now (x})° + [«,] is dense in Y because (x}) is w*-basic, so we need
show only that (x,.,,,)C Y, + Z. But

Lpinry — O (ORpin,1) = Bpra,n) — (G02) T (@epin,ny — Tpim,n)
— eee = (@85 0o B HARpin,sy = Bpta,itn)

= (W0 * 0 B) " Tpim,igny o

Since  d(®pin,540, Z) = (1, J + D78 o0+ Cpninny S 0 + D700, 00+ @,
it follows that d(@, ..., Y1 + Z) £ (§ + 1)™. Since j is arbitrary, this
completes the proof of (a).

The proof of (b) is very similar to the above: Since Y, Z are
not complements, Y* + Z* is not closed in X*. Thus there exists
a sequence (y}) of unit vectors in Y+ with d{y}, Z*) — 0. Of necessity,
y;“—iﬂlo. Now Y* = (X/Y)* in the canonical way, so (y}) has a
w*-basic subsequence. Hence for an appropriate subsequence (x}) of
(y}), we have that there exists a biorthogonal sequence (%,, #}) in X
with (| x,||) bounded, ||z} || =1, (®}) C Y, (x}) w*-basic, and d(z}, Z+) <
nlaa, 000 .

We define Y, to be the weak*-closure of [Y* N (®,)* U (@i®}n.q —
Thmian)mioi]e Since Y Y*:, wehave Y,0 Y. To show that dim Y,/
Y = oo, it clearly suffices to prove that Y; N [m = {0}. But note
that ¥, = Tpn,) + GATpin,n + C00B0n,s + ¢+« 1S absolutely convergent,
2X.uW,) =1, while #},.,(, =0 when m = n. By construction,
Ya)* D (WT5n,5y — Tpnisn)miz and (¥,)* D (2,)*, hence (y,)' D Y. But
W.)" N [@5n0] = {0} because (%) is w*-basic in some ordering and
(Y, Tkin,1y) is biorthogonal.

Since Y NZtc Yt NZ* = {0}, we have that Y, + Z is dense
in X. To show that Y,N Z = {0}, we prove the equivalent fact that
Y + Z* is w* dense in X*. But Y* N (x,)* + [2}] is w* dense in
Y+ because (x}) is w*-basic, so we need only show that each z},
is in the closure of Y; + Z. To see that this last statement is true,
write
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Brn — O [2 0 — Thna] — (@0) T — Fhinn] — ¢ ¢
- (axaz e aa’)—l[aix:(nyi) - x§<n,j+1)]

- (ala2 e aj)—lx;;{n,j—}—l) .

Since d(x}n, i1, Z) = (M, J + D70+ o+ Qppnyjeny = (0 + D7y -0+ @y, we
have d(x},., Y;: + Z) < (7 + 1) for arbitrary j.

Next we prove the result of Lindenstrauss and Rosenthal.

Proof of Theorem 2. Since X/Y has a separable quotient, there
exists a biorthogonal sequence (z,,xz}) in X with (z})c Y-, (2}) w*-
basic, and normalized so that [|z,|| = 1. Since Y * is w*-separable, a
biorthogonalization argument (cf., e.g., [8] or [7]) shows that there
exists a biorthogonal sequence (y,, ¥;) for Y with (y})c X*, Y N (y}) =
{0}, and normalized so that ||y}|| = 1.

Define T: X — X by Tz = S, 27" y*(@)x,. Then ||T| < 1/2, so
I+ T is an isomorphism. Hence (I + T)* is a weak*-isomorphism on
X*, whence (zF + T*z}) is a w*-basic sequence w*-equivalent to (z}).

Computing T *x}, we have T*x}(x) = xf Tw = x} Do , 27" i (x)x, =
27k (x); 1., Tk = 27 'yl

We claim that (2} + 27" 'y¥)* is a quasi-complement to Y. First
we show that Y* QM] = {0} (so that Y -+ (xF + 27" 7'y})"
is dense). But if z* GM], then, since (xF + 27" "'y}) is w*-
equivalent to (x}), we can write o* = w*-lim, .. >, oz + 2, 27 'qyf
for some sequence («;) of scalars. Thus for each n,2*(y,) = 2" 'a,,
hence, since 2*e Y+, a, = 0.

We complete the proof by showing that Y N (zf + 27 'y¥)" = {0}.
For suppose ¢ is in this intersection. Since ye Y, x}(y) = 0 for each
n. Hence y¥(y) = 0 for each n, whence ye ()N Y = {0}.

THEOREM 3. Suppose X* is separable and Y is a subspace of
X* with dim X*|Y = . Then there exists a weak*-closed subspace
Z of X* with Y, Z quasi-complements and Z = [z,] for some boundedly
complete, w*-basic sequence (z,).

Proof. Mackey [8] showed that Y has a quasi-complement, say,
W. Let (w,, w}) be a biorthogonal sequence in W with ||w,| =1
and [w,] = W (cf. [9]). By Theorem III. 2 of [6], there exists a
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biorthogonal sequence (x,, 2¥) in X with (z}) C Y, (z}) boundedly com-
plete and w*-basic, normalized so that ||z,| = 1.

Define T: X— X by To=> 7,27 "'w,(x)x,. Then||T||<1/2,s0 [+ T
is an isomorphism and hence (I + T)* is a weak*-isomorphism. One
checks that T*x} = 27"'w,, so that (x} + 27""'w,) is a w*-basic
sequence w*-equivalent to (z}). Letting Z = [a} + 27 'w,], we have
by Proposition 1 of [6] that Z is weak*-closed.

Certainly Z + Yo (w,), so Z+ YD Y + W and thus is dense.
Suppose thatze Z N Y. Then z = >, a, (xF + 27" 'w,) for some scalars
(,) because (xf + 27" 'w,) is basic. Hence also >\, a,x} converges,
whence z — D> a,xf = >2 27" w, is again in Y. Certainly

- 27", is also in W so that >0, 27" 'w, = 0. Thus @, 27" =
wiSe, a2 'w,) = 0, so that z = 0.

REMARK. Separability of X* in Theorem 3 is essential to get
that Z is weak*-closed. Indeed, regard m = [*. Rosenthal [12]
showed that ¢, is quasi-complemented in m. However, if Z is a quasi-
complement for ¢, in m, then Z cannot be weak*-closed. For if Z
were w*-closed, then m/Z would be isomorphic to (Z7)*. But m/Z
is separable, hence reflexive (cf. [4]). Thus Z° would be a reflexive
subspace of I, a contradiction (cf., e.g., [10]).
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ON 2-TRANSITIVE COLLINEATION GROUPS
OF FINITE PROJECTIVE SPACES

WiLLiAM M. KANTOR

In 1961, A. Wagner proposed the problem of determining
all the subgroups of PI'L(n, q) which are 2-transitive on the
points of the projective space PG(n — 1, q), where » = 3. The
only known groups with this property are: those containing
PSL(n, q), and subgroups of PSL(4,2) isomorphic to A.. It
seems unlikely that there are others. Wagner proved that
this is the case when 7n <5. In unpublished work, D. G.
Higman handled the cases n» = 6,7. We will inch up to » <
9. Our result is that nothing surprising happens. The same
is true if » = r* + 1 for a prime divisor » of g — 1.

One of Wagner’s results is that it suffices to only consider
subgroups of PGL(n, q). Once this is done, it becomes simpler
to view the problem as one concerning linear groups: find all
those subgroups G of GL(n, ¢) which are 2-transitive on the
1-spaces of the underlying vector space V. Our approach is
based primarily on three facts. (1) Wagner showed that the
global stabilizer in G of any 3-space of V induces at least
SL(3, q) on that 3-space. (2) Unless G = SL(n,q) or n =4,
g =2, and G = A;, no nontrivial element of G can fix every
1-space of some n-2-space of V. (8) G < SL(n,q) if |G| is
divisible by a prime which is a primitive divisor of ¢ — 1
for a suitable m < n — 2.

Wagner’s results are in [10]. Higman’s result, and the case n =
2% + 1 and ¢ odd, are mentioned by Dembowski [1], p. 39. The result
mentioned above in (2) is an easy consequence of results of Wagner.
The idea used in (3) is due to Perin [8] and, independently, to G.
Hare and E. Shult.

I am indebted to G. Seitz for several helpful remarks.

2. Notation and preliminaries. As already mentioned, we will
be dealing with linear groups. Let V be an #n-dimensional vector
space over GF(q). We write GL(V) = GL(n, q) and SL(V) = SL(n, g).
It will be convenient to regard everything as taking place in the
relative holomorphic V. GL(V). For any subgroups K, L of this semi-
direct product we can then consider the normalizer N (K) and central-
izer C,(K). If L £ GL(V) and W is an L-invariant subspace of V,
we write L" = L/C,(W) for the subgroup of GL(W) induced by L.
C(V/W) and L' are defined similarly. For any group G, as usual
G is its commutator subgroup, Z(G) its center, and @(G) its Frattini
subgroup.

119
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A group A is said to be inwvolved in a group B if A~ C/D with
B=C>=D.

(2.1) If R < GL(V) has prime power order and (|R|, ¢) = 1, then
V=C/R) D[V, R], where [V, R] = (v —vrjve V,re Ry is Ny v, (R)-
invariant.

Proof. [3], p. 171.

(2.2) Let R =< GL(V) have prime power order with (|R[, ¢) = 1.
Let W be an R-invariant subspace. Then dim C,(R) = dim C,(R) +
dim Cy, (R).

Proof. [3], p. 187, or (2.1).

Both (2.1) and (2.2) will be used frequently, generally without
reference.

A primitive divisor of ¢* — 1 is a prime r satisfying »[¢* — 1 but
rygt— 1 for 1 <14 <k; clearly k|r — 1.

(2.3) (i) 1If q is a prime power and k = 2, then ¢* — 1 has a primi-
tive divisor unless k = 6,9 =2, or £k =2 and ¢ is a Mersenne prime.

(i) Let » be a primitive divisor of ¢* — 1, and let R be an -
subgroup of GL(V) for a GF(g)-space V. 1If C,(R) = 0, then k divides
dim V.

Proof. (i) [12].

(i) This is clear if |R| < r. Let |R|>r, and let R, < Z(R)
have order ». Then V= W[V, R], where W = C,(R,) is R-invariant
and C,(R) = 0. By induction, & divides dim W and dim [V, R.].

(2.4) Suppose dim V = am, r is a primitive divisor of ¢ — 1, and
R £ GL(V) is an r-group such that C,(E) = 0. Then:

(i) Each nonecyclic composition factor of N = N, (R) is involved
in PSL(«, ¢™); and

(i) If R is abelian, each noncyclic composition factor of N/C,(R)
is involved in the symmetric group S..

Proof. Write V=W, H--+- P W,, with each W, a sum of R-
isomorphic irreducible R-spaces and no two W, having isomorphic
irreducible R-subspaces. Set R; = Co(W,. Then Z(R/R;) is cyclic
and nontrivial; let Z; be its subgroup of order ». By (2.3 ii), dim W, =
me,; for some ¢;. Consequently, 8 < a and e¢; < a.

N permutes the W,. Let K be the kernel of this permutation
representation. Then N/K is involved in S; < S,, and hence in
GL(«x, g™).
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Set K; = Ngnw,(Z;). Then K is contained in K, X «-+ x K,
Moreover, K; is contained in I"L(e;, ¢™). This proves (i).

Now assume that R is abelian. Then R/E, is a cyclic group
normalized by K. Since N R; = 1, it follows that K/C(R) is abelian.
Since N/K is involved in S, this proves (ii).

(2.5) Let q be odd, and let H < GL(V). Suppose that H>>A =1,
where A is an elementary abelian 2-group. Set

m = min {{H: Ny(B)||B < A, |A: B] = 2} .
Then m < dim V.

Proof. (G. Seitz.) Let V be an H-irreducible section of V on
which A acts nontrivially. Let H and A be the groups induced by
H and A. Then A # 1, and the corresponding m = m. We may
thus assume that V = V is H-irreducible. By Clifford’s Theorem
(3], p.70), V=V, & --- @V, with the V; direct sums of A-isomor-
phic irreducible A-spaces, no two V; having a common irreducible con-
stituent. Here A induces a group of order 2 on each V,, while H is
transitive on {V,, --«, V,}. Thus, {C,(V}|t =1, --- t} is an orbit of
H of subgroups of A of index 2. Consequently, ¢ = m, so dim V = m.

(2.6) Let L be a finite group and K <] L with L/K simple.
Suppose L has no proper subgroup L, for which L,/ L,N K~ L/K.
Then:

(i) K is nilpotent; and

(ii) Each proper normal subgroup of L is contained in K.

Proof., (i) Let S be a Sylow subgroup of K. By the Frattini
argument, L = KN,(S), so our conditions on L imply that L = N,(S).

(i) Let M<IL and M £ K. Since 1 + MK/K<IL/K, MK = L
and hence M = L.

(2.7) Letd>e=2and ¢t =1. Then PSL(d, q) is not involved
in PSL(e, q*).

Proof. 1If p is the prime dividing ¢, then p-Sylow subgroups of
PSL(d, g) and PSL(e, ¢') have nilpotence class d — 1 and ¢ — 1, re-
spectively.

We now come to our main technical lemma.

(2.8) Let ¢ = p*, where p is a prime, and m = dim V. Suppose
either m = 3,4, 0or 5, or m =6 and p =2. Let LGL(V) and H, K<L,
where H< K, L/K~PSL(3, q), and L/H~PSL(3, q) or SL(3, q). Assume
that L has no proper subgroup L, for which L,/L,N K ~ PSL(3, q).
Finally, assume: (£) If 1 == he H and p } |h|, then dim C, (k) < m — 3.
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Then there are L-invariant subspaces X, Y with X > Y such that
the following hold.

(@ K= P x C with P a p-group, |C|]=@8,¢—1), and H=P
or K.

(b) L/P~ SL(, q).

(c) PVIX, PXI¥ and PY are all 1.

(d) dim X/Y = 3 and L** =SI(X/Y).

() If m<5 and g+ 2, then L"* and L* are 1. Moreover,
some element ¢ of order p in the center of a p-Sylow subgroup of L
satisfies dim Cy(9) = m — 2, and even dim C,(g) = m — 1 if P = 1.

Proof. Everything is obvious if m = 3, so assume m > 3. We
will proceed by a series of steps.

(i) Clearly L = L'. We can apply (2.6) to L. In particular, K
is nilpotent.

(ii) Suppose that there are L-invariant subspaces V,, V, with
V.= V,and dim V,/V, £ 2. We claim that L centralizes V,/V,. For,
C.(V,/V,) <1 L, and since L""2 does not have PSL(3, ¢) as a homomor-
phic image, (2.6) implies that C,(V,/V,) = L.

(iii) Next, suppose that there are L-invariant subspaces X, Y
with X > Y, dim X/Y = 3 and L*" = 1. We claim that (a)—(e) hold.

Arguing as in (i) we find that L*¥ = SL(X/Y), while L"/¥ and
LY are both 1 or SL(3, q). Write K = P x C with P a p-group and
C a p'-group. C induces a group of order 1 or (8,9 — 1) on V/X, X/7Y,
and Y. By (2.2), (a) holds unless |C| =9 and m = 6. However, in
this case C £ Z(L), so L/P = (L/P)’ is a central extension of SL(3, q)
by a group of order 9, and this is impossible [2].

Thus, (a), (b), (c), and (d) hold.

Now let m < 5. Then dim V/X and dim Y are < 2, so L"/¥ and
L¥ are 1 by (ii). If P+ 1 then, by (c), each g = 1 in P satisfies
dim Cy(9) = m — 2.

Suppose P = 1, so L ~ SL(3, q). By results of Higman [4], §5,
if ¢ = 2 then there is an L-invariant 3-space T, and each element of
L inducing a transvection on 7T is a transvection of V. This proves
(e).

(iv) From now on we assume that m and L are chosen with m
minimal such that (2.8) is false. Then m > 3.

L is irreducible on V. For otherwise, there is an L-invariant
subspace W with V> W > 0.

Then LY %1 and L'/" 1. For suppose, say, that L""" = 1.
Consider L%, K", and H". By (2.2), (#) is inherited by L". Also,
if Ly< L and LY/LY N K" ~ PSL(S, q) then L,K/K ~ L,/L,N K has

PSL(8, g) as a homomorphic image, so that L,K = L and hence L, = L.
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Consequently, L” satisfies the hypotheses of (2.8). Then we can find
subspaces X and Y of W such that (iii) applies, whereas (2.8) is
assumed false. Thus, L" == 1 and L"/" = 1.

By (ii) we must have m = 6 and dim W = 3. Then (iii) again
applies, and this is again impossible.

(v) By (iv) and the nilpotence of K, ((K|, q¢) = 1.

K is not central in L. For suppose K < Z(L). Since L = L', L
is a homomorphic image of the covering group of PSL(3,q). Then
L is PSL(3, q) or SL(3, q) (see, e.g., [2]).

On the other hand, L has an irreducible GF(q)-representation of
degree m, where 4 < m <6 and ¢ is even if m = 6. No such repre-
sentation exists by [7] and [9].

(vi) Let » be a prime and R, an »r-Sylow subgroup of K such
that B, £ Z(L). Set R= R, N H. Then RZ£ Z(L) and R < L.

Let A be a characteristic elementary abelian subgroup of R. By
#), |A] <.

We claim that A < Z(L). For otherwise, L has a nontrivial
GF(r)-representation of degree < m — 3 <38. By (2.6ii), PSL(@3,q)
is involved in GL(3, r). Thus, ¢ = 2 and » + 3. Since A is a non-
cyclic elementary abelian subgroup of GL(8,2), |A| = 7%, Then L acts
transitively on A — {1}. However, not all elements of A — {1} are
conjugate in GL(6.2).

Thus, 4 £ Z(L). In (iv), |A| = r. In particular, Z(R) is cyclic.

(vii) Suppose rfq — 1. By (vi), R < GL(6, q) is nonabelian, so
r=38|¢g+1 and m = 6. Moreover, R[> B with |R: B|=38 and B
abelian. By (vi) we can find B, #+ B with R[> B,, |R: B,| = 3, and B,
abelian. Then BN B, < Z(R) and |R/Z(R)| £9. Consequently, L
centralizes Z(R), R/Z(R), and hence also R, which is not the case.

Thus, r|lg—1. In (iv), ASLNZ(GL(V)) < Z(SL(V)), so r|(g—1, m).

There are now just three possibilities: m = 4, r = 2; m = 5, r = 5;
and m = 6,r = 3.

(viii) Letm =4,r=2. By (vii), ~1e R. There is an involution
t# —1in R. Either dimC,(f) = 2 or dim C,(—¢) = 2. This contradicts (¥).

(ix) Let m = 5,r=5. A 5-Sylow subgroup of GL(5,q) has a
normal abelian subgroup of index 5 (the “diagonal subgroup”). Thus,
we can find B< R with B abelianand |R: B|=1or 5. By (vi), |R: B| is
5 and B is not characteristic in R. Let B, < R, B, # B, satisfy the same
conditions as B. Then B,N B < Z(R) and |R: Z(R)| < 5. By (vi),
Z(R) is cyclic, so L centralizes Z(R), R/Z(R), and hence also R, which
is not the case.

(x) Finally, let m =6, =3, and ¢ = 2. Here 3|]¢g—1. On
the one hand, L/C.(R/®(R)) can be regarded as a subgroup of GL(e, 3)
for some e; on the other hand, using (2.6) and (K|, q) =1, we
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find that this group has an elementary abelian 2-subgroup of order
¢* whose normalizer is transitive on the nontrivial elements. By (2.5),
e=q — 1. However, a 3-Sylow subgroup of SL(6,q) has order
< 3(q — 1% Thus, 3° 7' =3 < |R| < 3¢% and since g =4 this is
ridiculous.

This contradiction completes the proof of (2.8).

3. Wagner’s results and some corollaries. Let V be n-dimen-
sional over GF(q), n =3, and let G < GL(V) be 2-transitive on 1-spaces.

(8.1) For each 3-space T, N, (T)" = SL(T).

Proof. Wagner [10], p. 417.

8.2) If n = 5then G = SL(V), unlessn = 4,¢ = 2, and G~ A4,
Poof. Wagner [10], p.422.

(8.8) For each n-l-space W, N (W) is 2-transitive on the 1-spaces
of V not in W.

Proof. [6], p. 6.

(3.4) If G has an element g =+ 1 such that dim C,(g) = n — 2,
then G = SL(V) or n =4,q = 2, and G~ A..

Proof. We may assume that |¢g| is prime and » > 5. Since
dim [V, g] < 2 and g centralizes V/[V, ¢g], there is a 3-space T > [V, ¢]
such that g7 # 1. Then 1 = C(V/T)" <A N,(T)". By (8.1), C(V/T)" =
SL(T). Choose ¢’ € C,(V/T) with |¢'||¢ + 1 and dim C,(¢’) = 1. Then
dim Cy(¢') = n — 2.

We may thus assume that (|g|, ¢) =1. Since ¢g!"*1== 1, as before
C, (V)T = SL(T) for each 3-space T > [V, g]. By the 2-transitivity
of (3, this holds for every 3-space of V.

Choose m =< n maximal with repect to C,(V/U)" = SL(U) for all
m-spaces U. Suppose m < n. By Wagner [10], p. 420, m < n — 2.
Take any subspace W of dimension m + 1 or m + 2. For each m-space
U< W,C,(V/U) fixes W and centralizes V/W, while C,(V/U)" =
SL(U). By Wagner [10], p. 420, and (3.2), C(V/W)" = SL(W) for
each m + l-space W. This contradicts the maximality of m.

(8.5) Let s be a prime and S an s-group maximal with respect to
dim C,(S) = 3. Then N,(S) is 2-transitive on the 1-spaces of Cy(S).

Proof. Take any 3-space T < C,(S). Then S is Sylow in C(T).
By the Frattini argument and (3.1), (Ny(S) N N(T))" = N(T)" =
SL(T). Our assertion follows immediately.
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4. The case n = r*+ 1, There is one very easy case of our
problem.

(4.1) THEOREM. Let r be a prime divisor of ¢ — 1, and let a=1.
Then every collineation group of PG(r*, q) which ts 2-transitive on
points contains PSL(r* + 1, q).

We first prove:

(4.2) Let r be a prime divisor of ¢ — 1, and let « = 1. Let V
be an r*-dimensional vector space over GF(g). If G < I'L(V) is transi-
tive on V — {0}, then »||G N Z(GL(V))|.

Proof. Let #* be the largest power of » dividing ¢? — 1, where
d = r*. Then ¢ is not an r*th power, so »||G N GL(V)|.

Let R be an r-Sylow subgroup of G. By [11], p. 6, each orbit
of R on V — {0} has length divisible by 2.

R fixes no nontrivial proper subspace of V. For, if it did we
would have »#|¢g™ — 1 with 1 <m <d. Sete= (d, m). Then r#|¢g°—1.
However, as dfe is a power of 7,(¢* — 1)/(¢° — 1) is divisible by r, and
this contradicts the definition of »%.

Let xe Z(R) N GL(V) have order r. Since r|q — 1, % can be
diagonalized. By the preceding paragraph, = is a scalar transforma-
tion, that is, x e Z(GL(V)).

(4.3) Let r be a prime divisor of ¢ — 1, and let « = 1. Then a
collineation group of the affine space AG(r?%, q) which is 2-transitive
on points contains the translation group.

Proof. (4.2).
Now (4.1) follows immediately from (3.3) and (4.3).

5. Primes dividing |G|. We will consider the following situa-
tion in the remainder of this paper.

Let V be an n-dimensional GF(q)-space, n = 6, and G be a sub-
group of GL(V), 2-transitive on l-spaces, such that G 2 SL(V). We
may clearly assume that G > Z = Z(GL(V)).

In this section let s be a prime dividing (|G|, ¢" — 1), 1 <m £
n — 2, such that s is a primitive divisor of ¢™ — 1. (5.1) is essentially
due to Perin [8] and, independently, to E. Shult and G. Hare.

(5.1) If m = n — 2 then ¢ = 2 and n is even.

(5.2) Suppose that n = am + B, ¢ < 8 < m + 2, and an element
of order s centralizes some 3-space X. Then, for some #»’ satisfying
5<n <n and » = n (modm), there is a subgroup of GL(%’, q), not
containing SL(n’, q), which is 2-transitive on the points of PG(n'—1, q).
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Clearly (5.2) has an inductive flavor. Since the proofs are similar,
we will only prove the second of the above results.

Proof of (5.2). Choose S < Cy(X) as in (8.5). Set W = C,(S),
W* =[V,S], and N = Ng(S). Then V= W W*, Cy«(S) =0, and
N7 is 2-transitive on 1l-spaces.

Set »’ = dim W, so »’ = 8. By (2.31ii), since 8 < m + 2 we have
dim W* = vym with vy=a. Then W' =n—"Tm=n—am=B>a=".

We must show that »’ > 5 and NV Z SL(W). Deny this. Then
either N" = SL(W) or ' = 4,9 =2, and N" ~ A,. In particular,
the commutator subgroup N’” contains a nontrivial element central-
izing an n'-2-space.

In this situation, C,(W*)¥ < Z(GL(W)). For otherwise,
Cy(W*)” << N'" implies that Cy.(W*)” = N’". Then C,(W*) has
a nontrivial element g centralizing an n’-2-space of W. Hence,
dim C,(9) = n — 2, which contradicts (3.4).

It follows that N’ has PSL(n’, ¢) as a homomorphic image, unless

%' = 4 and ¢ = 2, in which case A, may be a homomorphic image.

Since C,«(S) = 0, we can apply (2.4): each noncyclic composition
factor of N"" is involved in PSL(v, q™). Since »'>", by (2.7) PSL(n’, q)
cannot be such a composition factor. Thus, ' =4,¢ = 2,7 <3, and
A, is a composition factor of N’”". However, A4, is not involved in
PSL(3,2™). This is a contradiction.

REMARK. It is useful to note that the above proof holds under
slightly weaker hypotheses: s is a primitive divisor of ¢ —1,S# 1
is an s-subgroup of G with W = C,(S) of dimension ' =3, (n — n')/m <
n', and Ng(S)” is 2-transitive on 1l-spaces.

We conclude this section with two miscellaneous results.

(5.8) Assume that G has a cyelic subgroup H of order ¢* — 1
containing an r-Sylow subgroup of G for some prime » dividing
¢ +q+ 1. Then ¢ =2 and n is even.

Proof. Suppose ¢ #2 or ¢ =2 and » is odd. By (2.3), H is
transitive on V — {0}. Thus, H is transitive on the 3-spaces fixed by
its subgroup R of order 7.

On the other hand, by (3.1) each 3-space is fixed by a conjugate
of R. Thus, G is transitive on 3-spaces, and this contradicts Perin
[8] or (5.1) since n = 6.

(5.4) Assume that G has a cyclic subgroup of order ¢"* —1
fixing some n — l-space W and transitive on W — {0}. Then Ny (W)
is 2-transitive on the l-spaces of W,q = 2, and » is even.
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Proof. We may assume that G — Z has no element fixing all
1- spaces in W. By [6], Lemma 7.3, N/(W) is 2-transitive on the
l-spaces of W. The result now follows from (2.3) and (5.1).

6. The case n =<9, Let n, V,G, and Z be as in §5, so G £
SL(V). Let p be the prime dividing q.
Assume that 6 = n = 9.

6.1) n = 6.

Proof. Suppose n =6. If ¢q =2 then ¢° — 1 is a prime. By
(5.4), the stabilizer of a 5-space W is 2-transitive on W — {0}. By
(3.2) and (8.4), G = SL(V), which is not the case.

Thus, ¢ > 2. Let r be a prime dividing ¢ — 1.

Suppose that there is 3-space T for which N (T) — Z contains an
element inducing a scalar transformation of order » on 7. Using Z,
we find that 7|[C,(T)|. Let R be an r-Sylow subgroup of Cy(T).
By (8.4), T=C,(R). By (3.5), Ny(R)"=SL(T). Also, Ny R) normalizes
the 3-space [V, R]. An element of order p in the center of a p-
Sylow subgroup of N,(R) centralizes 2-spaces of both C,(R) and [V, R],
and hence centralizes a 4-space of V=C,(R)@P[V, R]. This contradicts
(8.4). Thus, no element of G — Z of order » has an eigenspace of
dimension > 2.

Now take any 3-space T, and write T= X@P Y with dim X =2
and dim Y =1. Set F = NyX) N Ng(Y), so F*¥ = GL(X). Take
R < F of order » with R £ Z and R” £ Z(F*). By the Frattini argu-
ment, Ny(R)* = GL(X). Let F < N,(R) be minimal with respect to
E* = SL(X).

Since R is diagonalizable and each of its eigenspaces has dimen-
sion 1 or 2, we can write V= X@GW,. P W, with W,> Y, dim W;=
2, and W, invariant under Ny (R). If ¢ == 8, E = E’ centralizes W,,
so an element of F of order p centralizes a 4-space, which contradicts
8.4). If ¢ = 3, R cannot have more than two eigenspaces as |R| =
2, which is again a contradiction.

(6.2) ¢ is even.

Proof. Assume that ¢ is odd. There is an involution te G — Z.
Since n = 6, dim C,(¢) or dim C,(—t) is =3. Let S be a 2-group in
G maximal with respect to dim C,(S) = 3. Set W = C,(S) and W* =
[V,S], so V= W@W* Set M = NyS). By (8.5), M" is 2-transi-
tive on 1l-spaces. Since M > Z and all involutions in MY centralize
at most a 2-space (by the maximality of S), dim W < 4. Consequently,
by (8.2), M" = SI(W).

By (4.1) and (6.1), » =T or 8, so dim W* < 5.
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We claim that C,(W*)" < Z(GL(W)). For otherwise, C,( W*)"<J
M" yields C,(W*)" = SL(W). Then C,(W?*) contains a nontrivial
transvection of V, which contradicts (3.4).

Thus, C,(W*) is cyclic and M’'"" has PSL(W) as a homomorphic
image.

Suppose that dim W = 4. Then dim W* = 3 or 4. Use of M'""
yields dim W* = 4 and M""" = SL(W*). If g # 1 is in the center of
a p-Sylow subgroup of M’ then ¢" and ¢"" are transvections, and this
contradicts (3.4).

Thus, dim W = 3. Let L < M be minimal with respect to having
PSL(8, q) as a homomorphic image. Let H= C, (W) < K <L with
L/K ~ PSL(3, q). Then (2.8) applies to W*, L™ K", and H"".

Choose ge L so that ¢" is as in (2.8 e). If ge H= C, (W), then
dim Cy(g)=n — 2. If H" = 1then H = 1, and both ¢" and ¢"" are
transvections, so once again dim C,(9) = n — 2. In either case we have
contradicted (3.4).

6.3) n=T1,8.

Proof. Let m =T or 8. Fix a prime »|q + 1.

Take any 3-space 7. By (3.1), NAT)" = SL(T). Also, N (T)
actson V/T. By (3.4), C.(V/T)" £ Z(GL(T)) (since otherwise, Co(V/T)
would have an element of order »), so C,(V/T) is solvable. Thus,
N,(T)"" has PSL(3, q) as a composition factor. By (2.8), there is
an r-group R =+ 1 in Ny (7T) such that dimC,,,(R) =2, and then
dim C,(R) = 3.

This contradicts (5.2) with n =2-2 + 3 or 2-2 + 4.

(6.4) If w =9 then ¢ =2 or 4.

Proof. Suppose n = 9 and ¢ > 4 is even.

(i) By (5.2) with » = 2-3 + 3, no nontrivial element of order
dividing (¢* + ¢ + 1)/(¢ + 1, 3) can centralize a 1-space.

(ii) Let T be any 8-space. Let L < N, (T) be minimal with
respect to having PSL(3,q) as a homomorphic image. By (3.4),
C.(VITY£Z(GL(T)), so (2.8) applies to L"*. Consequently, by (i)
there is a 6-space Y > T such that L*" = SL(Y/T) and L"" = SL(V]Y).

(i) Let s be a prime dividing ¢ + 1. By (ii), there is an element
of order s centralizing a 3-space.

Let S be an s-group maximal with respect to dim C,(S) = 3. By
(3.5}, N,(S) is 2-transitive on the l-spaces of C,(S). In view of (i),
it follows from (3.2), (6.1), and (6.3) that dim C,(S) = 3.

Let T = C,(S) in (i), and choose L =< N,(S) there. By (i) and
the proof of (2.4), (LS)""5! acts as a subgroup of I'L(3, ¢*, with S
inducing scalar transformations.
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(iv) Since ¢ >4, by (2.3 i) there is a prime r = 8 dividing ¢ — 1.
Moreover, if g # 16 we can choose r # 5.

We claim that some element of order r centralizes a 4-space. For,
since r # 8, in (ili) we can find ge L — Z of order r such that ¢"-5]
has an eigenspace of dimension = 4. Consequently, some element of
{g, Z) of order r centralizes a 4-space.

(v) Let R be an r-group maximal with respect to dim C,(R) = 3;
by (iv), R+ 1. Set T'=C,(R) and T* =[V, R]. By (38.5), N (R)*
is 2-transitive on l-spaces, so dim 7= 3 by (i). We can thus choose
L £ Ny(R) in (ii).

We claim that LR centralizes R and that R is diagonalizable.
Certainly (LR)™ < GL(T*). Suppose r > 5. Then an »-Sylow sub-
group of GL(6,q) is diagonalizable, and hence abelian. By (2.41i)
(with m = 1, @ = 6), each composition factor of L/C,(R) is involved
in S;. By (2.6ii), L = C,(R), so R < Z(LR).

Consider the case » = 5,q¢ = 16. Suppose L > C,(R). Then L
acts nontrivially on R/@(R), where |R/@(R)| < 5. By (2.6ii), 16 + 1
divides |GL(7, 5)|, which is not the case.

Thus, L centralizes R. There is an s-group S, < L such that
dim C(S,) = 2. Since R normalizes C.(S,) and [T*, S,], it follows
that R is again diagonalizable. Thus, R < Z(LR).

(vi) T* is the direct sum of R-invariant subspaces, each invariant
under LR. By (i) and (v), there are 3-spaces X and X’ such that
T = XP X', R* and R* consist of secalar transformations, L* =
SL(X"), and L* = SL(X').

Consequently, for each he R, dim C,(h) = 3,6, or 9.

(vii) By (iv), there is an r-group R, = 1 maximal with respect
to dim Cy(R) = 4. By (vi), W = C,(R,) has dimension 6. Set M =
Ny(R).

Take any 3-space T < W. Let R = R, be an »-Sylow subgroup
of C,(T). If R= R, then Ny(T)" = SL(T) by the Frattini argument.
If R> R, then the choice of R, implies that C,(R) = T, and hence
that R is an r-group maximal with respect to dim C,(R) = 3; by (v),
C.(R)* = SL(T), so again N(T)" = SL(T).

Consequently, M"™ is 2-transitive on 1-spaces. Then (¢°—1)/(¢—1)
divides |G|, and this contradicts (5.2).

6.5) If » =9 then q +# 4.

Proof. Suppose n =9 and ¢ =4. We will try to imitate the
proof of (6.4) using » = 3. Steps (i) and (ii) of that proof still hold.
We begin by showing the existence of e G of order 3 such that
a¥ = 2~ for some 2-element y. Take T and L as in (ii). Then we
can find », ye L with |x] = 38,y a 2-element, and % = z™'a, a € C(T).
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By (2.8), C(T) = P x C with P a 2-group and |C| =1 or 3. Then
{#) is Sylow in <z, y>P. By the Frattini argument, some element of
{y)P inverts (x>, and we may assume this is y.

We next claim that some element of order 3 centralizes a 4-space.
For, assume that this is false, and choose x, ¥ as above. Since ¢ =
4, 2 is diagonalizable and has at most 3 eigenspaces. However, no
element of {x, Z) — {1} centralizes a 4-space, so C,(x) = T is a 3-space
and z has two other 3-dimensional eigenspaces T,, T,. Moreover, by
our assumption, C,(7T) has a cyclic 3-Sylow subgroup. Thus, by the
Frattini argument, N ((x))" = SI{T), so Cy(x)" = SL(T). Since
|GL(T): SL(T)| = 3, y" € SL(T), so we can find ¢e C,(X) such that
cye Cy(T). Clearly ¢ 'y inverts z, so there is an involution te
{c'y>. Here, t centralizes T and centralizes 2-spaces of each T;, so
dim C,(t) = 7. This contradicts (3.4), and proves our claim.

Now define R, T, T*, and L as in (v). We will be able to obtain
a contradiction precisely as in (vi) and (vii) if we can show that R =
Z(LR) and R is diagonalizable.

By (2.6), L > K with L/K ~ PSL(3, 4) and K nilpotent. By (2.2)
and (2.8), K= P x C with |C]| =3 or 9 and P a 2-group; moreover,
there is an L-invariant 3-space X < T* such that L* = SL(X), L™"* =
SL(T*/X), and P centralizes T, X, and T*/X. By (3.4), no nontrivial
element of P centralizes a 4-space of T*. Consequently, P is elemen-
tary abelian of order < 4°. Thus, if P £ Z(L) then PSL(3, 4) is iso-
morphic to a subgroup of GL(6, 2), which is not the case ([7], [9]).
Thus, K < Z(L).

Now suppose that L acts nontrivially on R, and hence on R/@(R).
Since R =< GL(6, 4), |R/®(R)| < 3°- 8% Thus, PSL(3,4) or SL(3,4) is
isomorphic to a subgroup of GL(8,3). Then GL(8,3) has an ele-
mentary abelian subgroup of order 4* whose normalizer is transitive
on the nontrivial elements. By (2.5), this is impossible.

Consequently, L < C,(R). An element of L of order 5 centralizes
1-spaces of X and 7*/X. It follows that 7* is the sum of R-invariant
2-spaces. Thus, R is diagonalizable and R < Z(LR). This completes
the proof of (6.5).

Last, and least:

6.6) If w=9 then g = 2.

Proof. Suppose n =9 and ¢ = 2. Using (5.1) and (5.2) we find
that |G| =2%-32.5.7.17.73 for some «, 8.

Let S be a 73-Sylow subgroup of G. By (5.3), |C,(S)| = 73. Thus,
INAS)| = 87. 73 with v =< 2.

By Sylow’s theorem, 2%-357.5.7.17 = 1 (mod 73). A little arith-
metic shows that this is impossible.
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In view of (3.2) and the results of this section, we can now state:

THEOREM 6.7. Let H be a subgroup of PI'L(n,q) which is 2-
transitive on the points of PG(n —1,q). If 3=n <9, then H=
PSL(n,q) or n=4,q =2, and H~ A,.
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COMPLETIONS AND CLASSICAL LOCALIZATIONS
OF RIGHT NOETHERIAN RINGS

J. LAMBEK AND G. MICHLER

Given a right Noetherian ring R and a prime ideal P of
R, the injective hull of the right R-module R/P is a finite
power of a uniquely determined indecomposable injective I».
One forms the ring of right quotients REr of R relative to
Ir and the right ideal M/ = PRy of Rr generated by P. The
M-adic and Ir-adic topologies are compared; they turn out to
coincide on every finitely generated Kr-module when R is a
classical quasi-local ring with maximal ideal M. This condi-
tion also implies that R satisfies the right Ore condition with
respect to the multiplicative set Z°(P) introduced by Goldie,
that the M-adic completion ﬁp of Rp is the bicommutator of
Ip, and that Rp is an n by » matrix ring over a complete
local ring.

Introduction. If Pis a prime ideal of the commutative Noetherian
ring R, then, by a theorem of Matlis [8], the completion R, of the ring
of quotients of R at P is the bicommutator of the injective hull of the
R-module R/P. Recently Kuzmanovich [5] proved an analogous result
for Noetherian Dedekind prime rings. Both these results are special
cases of Theorem 6 below: Let P be a two-sided prime ideal of the
right Noetherian ring R, and assume that the ring of right quotients
R, at P is a classical quasi-local ring with maximal ideal M = PR,,
that is, R,/M is a simple Artinian ring and, for every right ideal F
of Rp, Ny-. E + M = E. Then the bicommutator of the R-injective
hull of R/P is the M-adic completion of B,. The hypothesis of Theorem
6 is satisfied by the prime ideals of the enveloping algebra of a finitely
generated nilpotent Lie algebra, by the augmentation ideal of a group
ring of a finite group over a right Noetherian prime ring of charac-
teristic zero, and by the nonidempotent prime ideals of a right and
left Noetherian hereditary prime ring.

These results are consequences of Theorem 5, which states that
R, is a classical quasi-local ring with maximal ideal M if and only if
R,/M is a simple Artinian ring, and, on any finitely generated Rp-
module, the M-adic topology coincides with the I.-adic topology. Here
I, denotes the unique (up to isomorphism) P-torsionfree indecomposable
injective R-module with associated prime P. By [7], Theorem 3.9,
the injective hull I,(R/P) of the R-module R/P is isomorphic to a
direct sum of g copies of I, where g is the Goldie dimension of the

prime ring R/P. Thus the bicommutators of I, and I,(R/P) are
isomorphic.
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Concerning terminology, we refer to [6],[7], and [8]. All rings
are associative and have a unity element. Modules are right R-modules
and unitary. We put

& (P) ={ceR|V,cpcre P=—=1recP}.

We begin by comparing topologies, generalizing the known result
when R is commutative [6].

PROPOSITION 1. If R satisfies the right Ore condition with respect
to = (P), then on any finitely generated Rp-module the I,-adic topology
contains the M-adic topology, where M = PR.

Proof. Let G be any finitely generated Rp-module. Take any
fundamental open neighborhood GM™ of zero in the M-adic topology.
We claim that GM" is also open in the I.-adic topology, in fact,
G/GM" e &#, the class of all Ry-modules isomorphic to submodules of
finite powers of I,.

Since & is closed under module extensions, and since

GMrsGMcS---SGMES G,

it suffices to show that GM*/GM**'e . Put H= GM*, then H is
a finitely generated Rp-module. Now R,/M is a simple Artinian ring,
by [7], Theorem 5.6. Hence H/HM is isomorphic to a finite direct
sum of minimal right ideals of R,/M.

It remains to show that R,/Mec .. Indeed, in view of [7],

Lemma 5.4, the mapping R—h—+ R, — Rp/M has kernel P, and so
Ry/M may be regarded as an R-module extension of R/P. Actually,
it is an essential extension; for, if 0 == [¢q] € Rp/M, then ¢ ¢ M, but
qc € h(R), for some ¢ec & (P), and gc ¢ h(P), since otherwise ¢ = gec™* e
h(P)R, = PR, = M. Thus R,/M is isomorphic to an R-submodule of
I.(R/P) = Ii. By [7], Theorem 5.6, R,/M is torsionfree and divisible,
hence R,/M is also isomorphic to an R,-submodule of I%, and so
Ry/Me &,

This completes the proof. In the converse direction we have the
following result. We remark that condition (1) plays an important
role in [4], Theorem 5.3.

PROPOSITION 2. Suppose M = PR, is a two-sided ideal of Rp.
Then (1) = (2) = (3):

(1) For each right ideal E of R, there exists a natural number
n such that E N M < EM.

(2) For each element i€ I, there exists a natural number n such

that 1M* = 0.
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(8) On any finitely generated Ro-module the I.-adic topology is
contained in the M-adic topology.

Proof. Assume (1). Let 0~ 4¢l,, and put F = {ge R,|ig = 0},
E={gecR,|qgM < F}. Note that EM S F < E. Pick n so that EN
M*< EM, then EN(M* + F) = (ENM") + F = F. Since I, is
indecomposable, F' is meet-irreducible, hence ' = F or M" + F = F.
We shall prove that F' == E, hence M* < F, and so (1) implies (2).

As P is the associated prime ideal of the R-module I,, P is the
right annihilator of some nonzero R-submodule U of I,. Putting V =
UR,, we see that VM =0 and V == 0. Now iR, = R,/F, hence 0 =
VNiR, = G/F, say, where F S GE E,F #+ G, hence F = E, as
remained to be shown.

Assume (2), and let G be a finitely generated R,-module. Take
any fundamental open neighborhood of zero in the I,-adic topology.
By definition, this has the form Ker f, where f:G— I7 for some
positive integer n. Let p,: I" — I, be the canonical projections, with
k=1,2 ..+, n, and put G, = p.(f(G)). Then G, is a finitely generated
Ry-submodule of I,.

By assumption, there is a natural number »(k) such that G, M** =
0. Let u = Max {u(l), -+, u(n)}, then f(G)M* = 0, hence Ker f contains
GM*, a fundamental open neighborhood of 0 in the M-adic topology.
It follows that every open set in the I.-adic topology is also open in
the M-adic topology. Thus (2) — (3), and the proof is complete.

We know from [7], Lemma 5.2, that for each element q € R, there
exists an element ¢ € &°(P) such that qc € h(R), where h: R — R canon-
ically. This does not imply that R, is the classical ring of quotients
of A(R) with denominators in k(% (P)), unless R satisfies the right Ore
condition with respect to &°(P). (See [7], Proposition 5.5.) However,
we have the following.

PRrROPOSITION 3. Let P be a two-sided prime ideal of the right
Noetherian ring R, and assume that M = PR, is a maxtmal two-sided
ideal of Ry such that Rp/M is Artinian. Then, for every integer n=1,
Rp/M™ is the classical ring of right quotients of h(R)/(M" N h(R)), and
its elements have the form [R(r)][R(c)]™*, with re R and ce & (P).

We could deduce this from [9], Theorem 2.4, by first proving
that the ideals A~ (M") are the nth symbolic powers P™ defined there
in a different fashion. However, it is a bit quicker to deduce this
directly from the following result by Small. (See [10], Theorem 1.)

Suppose P is the prime radical of the right Noetherian ring S,
and 2 is a multiplicatively closed subset of S consisting of elements
with zero right annihilators. Suppose the classical ring of right
quotients of S/P has elements of the form [s]{c]™, with seSand ce
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&. Then S satisfies the right Ore condition with respect to & and
has a classical ring of right quotients with elements of the form sc™'.

Proof. In [7], Theorem 5.6, in the proof of the implication (1) =
(2), it is shown that R,/M is the classical ring of right quotients of
R/P, and that its elements have the form [r][¢]™, where rc R, and
ce & (P). Since h'(M) = P, by [7], Lemma 5.4, the result holds for
n = 1.

To obtain the result for n = 2, we shall apply Small’s Theorem
to the ring S = W(R)/(M* N h(R)). To this purpose we must show that
the elements of (& (P)) modulo M* have zero right annihilators. In
fact, we shall see that they have left inverse in R,/M>.

Take any ce & (P). In view of the case n =1, we have R, =
Ryc + M. Hence M= MR, = Mc-+ M? and s0o Ry = Rpc-- Mc+ M*=
Ryc + M*. By Small’s Theorem, R,/M* is the classical ring of right
quotients of h(R)/(M* N h{R)), and denominators may be taken in Z"(P)
modulo M2

Repeating the same argument, we see that R, = Rpc-+ M? and that
Rp/M? is the classical ring of right quotients of A(R)/(M* N k(R)), with
denominators in &’ (P) modulo M* Ete, etc.

In accordance with [7], we call the ring S a classical quasi-local
ring if it is right Noetherian, it has a maximal ideal M such that
S/M is Artinian, and every right ideal of S is closed in the M-adic
topology. In view of the following lemma, this implies that M is the
Jacobson radical of S.

LeMMA 4. Suppose M is a primitive ideal of the ring S, and
every finitely generated right ideal of S is closed in the M-adic topology.
Then M is the Jacobson radical of S.

Proof. The first assumption assures that M contains the radical.
We claim the second assumption implies the converse. We shall prove
that if E is any right ideal of S and M + E = S then £ = S.

Suppose M + E = S. Without loss in generality, we may take ¥
to be finitely generated. Now M = SM = M* + EM, hence M* + E =
M*+EM+FE=M+ E=S. Similarly M* + E = S, and soon. Hence
the M-adic closure -, (E + M™) of E is also S. By assumption,
E is closed, hence K = S.

THEOREM 5. Let P bea two-sided prime ideal of the right Noctherian
ring R, and put M = PR,, where R, is the ring of right quotients
of R at P. Then the following conditions are equivalent:

( * ) R satisfies the right Ore condition with respect to & (P)
and, for each right ideal E of Ry, there exists a natural number n
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such that EN M" < EM.

( **) Ry is a classical quasi-local ring with maximal ideal M.

(***) M is a two-sided ideal of Rp, Rp/M is a simple Artinian
ring, and on any finitely generated right Rp-module the I,-adic and
M-adic topologies coincide.

(****) M s a two-sided ideal of Rp, Rp/M is simple Artinian,
and for each finitely generated right ideal E of Rp there exists a
natural number n such that E N M" < EM.

Proof. We shall show that (*) = (**) = (***) = (****) = (*).

Assume (*). In view of [7], Theorem 5.6, (**) will follow if we
show that every right ideal ¥ of R, is closed in the M-adic topology.
Now its closure is given by E = 3=, (F + M®). Pick n so that EN
M" < EM, then

Ec(F+MYNE=F+ (M'NE)SF+ EM.

Take any ec E, then e = f + 3k e;m;, where feF,e e E, and m; ¢
M. Then [e] = 3k, [e;]m;, modulo F, hence E/F < (E/F)M.

It was pointed out in the discussion preceding [7], Theorem 5.6,
that R, is right Noetherian. Thus E and E/F are finitely generated
Rpy-modules. We may therefore invoke Nakayama’s Lemma and deduce
that E/F = 0. Thus F = E, and so (**) holds.

Assume (**). By Lemma 4, M is the Jacobson radical of R,. By
[7], Theorem 5.6, R satisfies the right Ore condition with respect to
& (P). Let G be any finitely generated right Rr,-module. Then, by
Proposition 1, the I,-adic topology on G contains the M-adic topology.
By Proposition 2 and [4] Theorem 5.3, the converse is true. Thus
(***) holds.

Assume (***). Suppse E is any finitely generated right ideal of
R,. Then EM is an open subset of E in the M-adic, hence in the
Ip,-adic topology. Now the I.-adic topology on any module induces the
Ir-adic topology on any submodule. Therefore, EM = E NV, where V
is an open subset of R, in the I.-adic topology. Since R, is a finitely
generated R,-module, V is an open set in the M-adic topology, hence
M=V for some n, and so ENM"S ENV = EM. Thus (****) holds.

Assume (****). It remains to prove the right Ore condition. Given
a€ R and ce & (P), we see from Proposition 3 that, for each positive
integer n, there exist a,e R and ¢, € € (P) such that hA(ac, — ca,) =
h(u,) € M* N h(R).

Let F be the right ideal generated by the wu,, then F' = u,R +
«os + U, R, since R is right Noetherian. Taking E = FR, in the above,
we see that FR, N M*< F M, for some n. Hence h(u,) = um, + -+ +
u, M, where the m; e M.
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Pick de &(P) so that all m,d e h(R), then mde M N W(R) = W(P),
and we may write m,d = h(p;), where p, e P.

Put ¢’ =¢c,d — Xk, e0; and o = a,d — DF, a;p;;, then an easy
calculation shows that h(ac’) = hica’). Moreover C' € & (P), since ¢, d e
& (P) and X ¢;p; e P. Since ac¢’ — ca’ e Ker h, we can find d' e & (P)
so that (a¢’ — ca’)’ = 0, hence a(¢’d’) = ¢(¢’d’). This establishes the
right Ore condition for R, and our proof is complete.

THEOREM 6. Let P be a two-sided prime ideal of the right Noetherian
ring R such that Ry is a classical quasi-local ring with maximal
ideal M = PR,. Then

(a) the M-adic completion 1%1, of Rp is the bicommutator of the
P-torsionfree indecomposable injective R-module I, with associated
prime P,

() R, is a ring of n X m matrices over a complete local ring D
whose Jacobson radical J is finitely generated.

Proof. (a) By Theorem 5, R satisfies the right Ore condition with
respect to °(P). By [7], Theorem 5.6, every torsionfree R-module is
P-divisible. In view of [6], Proposition 2, R, is therefore a dense
subring of the bicommutator S of I, with respect to the finite topology,
as the P-torsion theory coincides with that determined by I, by [7],
Corollary 3.10. By [6], Corollary 1, the finite topology coincides with
the I,-adic topology on R,, and S is the completion of B,. By Theorem
5, the I[,-adic topology on R, coincides with the M-adic one. Therefore
S is the M-adic completion of R,.

(b) follows immediately from (a) and [9], Corollary 2.7.

REMARK 7. By [9], Remark 3, there exists a right Noetherian
ring R with a two-sided prime ideal P such that R satisfies the right
Ore condition with respect to & (P), even though R, is not a classical
quasi-local ring with maximal ideal M. In that example R, is not
Hausdorff with respect to the M-adic topology, hence the bicommutator
of I, is not the M-adic completion of Rj.

Thus the right Ore condition does not imply the second part of
(*) in Theorem 5. Conversely, Example 5.9 of [7] shows that the
second part of (*) does not imply the right Ore condition.

We conclude by giving some classes of examples satisfying the
condition of Theorem 5. But first we note that, in view of Theorem
3.3 of [9], each of these is also equivalent to the following, which
involves only the ring R itself:

(+) For every right ideal F of R there exists a positive integer
n such that F N P™ < cl,(FP), where P™ is the nth right symbolic
power of P.
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For notation see [9].

COROLLARY 8. Let R be the enveloping algebra of a finitely
generated nilpotent Lie algebra, and assume that P is a nonzero prime
ideal of R. Then the conclusions (a) and (b) of Theorem 6 hold.

Proof. In Theorem 2.6 of [9], it is shown that, if R is right and
left Noetherian, P™ coincides with the symbolic nth power defined
by Goldie in [4]. To deduce (+), we therefore refer to [2], namely
to Theorem 6, Corollary 7 and Remark I.

COROLLARY 9. Let R = AG be the group ring of a finite group
G over a right Noetherian prime ring A of characteristic zero, and let
P be the augmentation ideal of R. Then the conclusions (a) and (b) of
Theorem 6 hold.

Proof. Condition (4) holds by Corollary 3.7 of [9].

Actually, in this example R, is the classical ring of right quotients
of R, and M = PR, = 0, because P is the P-torsion ideal of R.

COROLLARY 10. Let R be a right and left Noetherian hereditary
prime ring, and assume that P is not idempotent. Then the conclusions
(@) and (b) of Theorem 6 hold. Furthermore, D is a complete discrete
rank one valuation ring.

Proof. By [11], R/P is a simple Artinian ring. It is known that
P is an invertible ideal. By Lemma 1.1 of [3], it then follows that
P has the Artin-Rees property. Now, by Corollary 2.8 of [9], P" =
P, hence condition (+) holds.

It remains to show that D is a rank one valuation ring. By the
remark preceding Theorem 5.6 in [7], R, is hereditary Noetherian and
guasi-local. As is well-known, this implies that R, is hereditary
Noetherian. By Morita equivalence, D is hereditary Noetherian. But
it is local, hence a discrete rank one valuation ring.

For the sake of completeness, we shall show that P is invertible.
Let @ be the maximal ring of right and left quotients of R and put
R.-P={geQ|qP< R}. It is known [3] that R & P(R.-P) provided
P is finitely generated and projective as a right R-module and “dense”
in a technical sense, which means that P has zero left annihilator in
R when P is a two-sided ideal. Since R is right Noetherian, right
hereditary, and prime, P satisfies all three conditions.

Now P& (R.-P)P < R, and P is maximal. Therefore (R.-P)P =
P or R. Suppose the former, then P < P(R.-P)P = P? which would
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lead to the contradiction that P is idempotent. Therefore, (R.- P)P = R.
Finally, consider P-.R = {ge Q|Pgq = R}. Then

P-.R = (R.-P)P(P-.R) < R.-P.

By symmetry we obtain P(P-.R) = R and R.-P< P'.R, and so P is
invertible in Q.

For the sake of completeness, we shall also include the argument
of [1] to show that P has the Artin-Rees property. Let E be any right
ideal of R and put E, = (KN P*)P~* Since R is right Noetherian,
there exists a positive integer k such that £, S E, + -+ + E,_,. Then
ENP:= EP S S, (ENP)P< EP, and this is the Artin-Rees
property.
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BOREL SETS OF PROBABILITY MEASURES

KENNETH LANGE

Let M(X) be the collection of probability measures on the
Borel sets of a Polish space X. The Borel structure of M(X)
generated by the weak* topology is investigated. Various
collections of probability measures arising in nonparametric
statistics are shown to Borel sets of JM(X). Attention is
particularly focused on collections arising from restrictions
on distribution functions, density functions, and supports of
the underlying probability measures.

1. Introduction. Baynesian statisticians assume prior distri-
butions on certain families of probability measures. This amounts
to putting a probability measure on a family of probability measures.
Now families of probability measures typically arising in statis-
tics are parametrized by some Borel set of Euclidean n-space. In
such cases, one has a natural Borel structure or c-algebra of subsets
with which to deal. In nonparametric situations the natural Borel
structure is not so obvious. Ideally, one might desire each commonly
occurring family of probability measures to be a Borel set of some
properly chosen complete separable metric space. Then a prior distri-
bution could be viewed as a probability measure on the entire space
which is concentrated on the given Borel set. Our aim is to show
that many, if not most, nonparametric families of probability measures
are indeed Borel sets of complete separable metric spaces. This
advances slightly the cause of nonparametric Baynesian statistics, but
does not overcome the more difficult barrier of finding reasonable prior
distributions in nonparametric situations.

In our probabilistic model we suppose X to be a complete separable
metric space. Let C(X) be the bounded real-valued continuous functions
on X under the sup norm topology. Then the collection of probability
measures M(X) on the Borel sets of X can be viewed as a subset of
the dual of C(X) under the weak* topology. It is well known that
M(X) is metrizable as a complete separable metric space with this
topology [16]. Our investigations will center on the Borel structure
of M(X).

Dubins and Freedman have done the spadework for the subsequent
discussion in their basic paper [8]. Section 3 generalizes their analysis
of the relationship of distribution and density functions to probability
measures. Section 4 explores the connection between a probability
measure and its support when the underlying space is no longer
compact. Section 5 collects some further examples not considered in
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[8], and §6 adds to the fund of counterexamples.

Finally, before moving on to some preliminary definitions, let us
cite two other areas where the Borel structure of collections of mea-
sures can be fruitfully pursued. Much work has been done on so
called ergodic decompositions of invariant measures. The original
stimulus for this research came from classical statistical mechanics.
The reader may consult [20] for a detailed theoretical discussion and
further references. Another area of potential applications is the analysis
of Poisson and point processes. See [14] for steps in this direction.

2. Preliminary definitions.

2.1. Borel spaces. First, let us give a compressed account of
Borel spaces. The reader is advised to consult §§1-3 of Chap. 1 of
[2] for a fuller treatment. A Borel space (X, ) consists of a set
X together with a distinguished c-algebra of subsets & Quite often
X itself is said to be the Borel space and .o~ is tacitly understood.
For example, if X is a topological space, then .o~ is always taken to
be the smallest o-algebra containing the open sets. A function f: X -—
Y between two Borel spaces (X, .o”) and (Y, %) is called Borel if
f(B)e .o whenever Be 7.

The sets in the g-algebra .o of a Borel space (X, .o”) are also
termed Borel sets. Every subset Z of X inherits a relative Borel
structure {ZNA:Ae v}, If (X, %) and (Y, &) are two Borel
spaces, the product Borel structure .o X £ is defined to be the
smallest o-algebra of subsets of X x Y containing the Borel rectangles
AXB,Ae .7, and Be <Z. Suppose ~ is an equivalence relation on
a Borel space (X, o) and 7: X — X/~ is the projection taking each
point into its equivalence class. The quotient Borel structure on X/~
is the largest c-algebra making 7 a Borel map.

Certain Hausdorff topological spaces have very well behaved Borel
structures. Among these are Polish spaces. A Polish space is a
topological space which is metrizable by a complete separable metric.
It is well known that any locally compact space with a countable
neighborhood hbasis is Polish. Such spaces will be referred to as
locally compact and separable.

One property of Polish spaces will be particularly useful later on:
Suppose X and Y are Polish spaces. Let B be a Borel set of X
equipped with the relative Borel structure. Also let f: B—Y be a
one-to-one Borel map. Then f(B) is a Borel set of Y. (See Cor. 3.3 of
Chap. 1 of [16].) This fact will be applied to show that certain Borel
maps are Borel isomorphisms. A map f: X —Y between two Borel
spaces (X, %) and (Y, &) is said to be a Borel isomorphism if it
is one-to-one, onto, Borel and its inverse is Borel.



BOREL SETS OF PROBABILITY MEASURES 143

Yet another class of Borel spaces appearing in the sequel is the
class of analytic Borel spaces. To define this notion it is necessary
to mention a second notion. A Borel space (X, .%7) is called countably
separated if there exists a countable collection of Borel sets {4,}3,
such that for any two points u, ve X there is some A, with either
ued,, véA, or u¢A, veA, A Borel space (X, . %) is analytic if
it is countably separated and the image of a Polish space under a Borel
map. A subset of a Borel space is called analytic if it is an analytic
Borel space with its relative Borel structure; it is called complementary
analytic if its complement is analytic. Every Borel set of an analytic
Borel space is analytic, but not every analytic set is Borel. If f: X—
Y is a Borel map between two analytic Borel spaces, then the image
and inverse image of every analytic set under f is analytic.

2.2. Notation for topological spaces. Suppose T is a topological
space and Y is a subset of 7. Y~ will denote the closure of Y, Y°
the interior, and Y’ the complement. For two subsets ¥ and Z put
YAZ = (Y\Z) U (Z\Y), the symmetric difference of ¥ and Z. R" will
mean FEuclidean n-space and C* the space of n-tuples of complex
numbers. If w = (u, ---,u%,) and v= (v, ---, v,) are in R*, then
{u, vy = S\, uw; will denote the usual inner product and ||u|| =
e, ul*? the usual norm.

2.8. Multi-index mnotation. A multi-index j = (5, ---, 7,) is a
finite sequence of nonnegative integers. |j| denotes the sum >, 7.
If 2 =(, .-+, 2,)eR" put 2 = zitxi». For a function f:R"—C
continuouslty differentiable of order |j|, set D, = d/ox; and D’f =
DD

2.4. Comments on probability measures. Suppose X is a Polish
space. The support of a probability measure ¢ e M(X) can be charac-
terized as the complement of the largest open set on which ¢ vanishes.
If v is a o-finite measure on the Borel sets of X and g is absolutely
continuous with respect to y, then the density of p¢ will mean the
Radon-Nikodym derivative dg¢t/dy. On R"™ densities will always refer
to Radon-Nikodym derivatives with respect to Lebesgue measure.
The distribution function F,: R*— [0, 1] of ¢e M(R") is defined by
Fua, <+, 2,) = p((— oo, @] X +o0 X (= o0, 1,]).

Finally, for X Polish we should mention an alternate description
of the Borel structure of the collection of probability measures M(X).
Varadrajan proved that the Borel structure on M(X) generated by
the weak* topology is precisely the smallest Borel structure making
each of the maps ¢ — p(A) Borel, where pe M(X) and A is a Borel set
of X. (See Lemma 2.3 of [20].)
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3. Borel properties of M(R®) in terms of distribution and
density functions. Let us treat the case of distribution functions first.
Our opening lemma is a generalization of a well known result in the
theory of stochastic processes. (See Thm. T 47 of Chap. 4 of [12].)

LeMMa 3.1. Suppose M, is a Borel space and M, a metric space.
Consider a function f(x, +--, ®,, y) from R" x M, into M,. If f s
Borel in y for x, -+-, %, fivred and right continuous in each x; for all
other variables fixed, then f is Borel im all variables jointly. The
same conclusion holds if R"™ is replaced by a product of intervals.

Proof. The general case follows from the one dimensional case
since one can replace M, by (I[x=!U;) x M,, where the U;’s are inter-
vals. So consider f:U x M, — M, satisfying the condition of the
lemma, where U is an interval. Foreach k = 1, 2, ---, choose pairwise
disjoint intervals Fi(n = 1, +++, n,, n, finite or <) which are closed
on the right, have union U and satisfy length {F}) < 1/k. For each
k and n let 27 be the right endpoint of F7. Now define f.(z, ¥) =
f(xy, y) whenever xe F7. Since f is continuous on the right in its
first variable, f, — f pointwise on U X M,. Since f is Borel in its
second variable, each f, is Borel on U x M,. Finally, because M, is
a metric space, the limit f of the Borel functions f, is Borel.

DEFINITIONS. For 0 £ k < « let CHR"™ be the topological vector
space of all complex-valued functions on R" having continuous deriva-
tives of order %k under the topology of uniform convergence on compact
sets. Note that f,, — f in C*{R") means whenever j is a multi-index
with {j| £k, Dif, — Df uniformly on each compact set of R". C*R")
is a separable Frechet space since the polynomials with rational coeffi-
cients form a countable dense subset [19]. Lip (R") will denote the
collection of complex-valued functions f on R" satisfying |f(x) —
f@)| £ esllz —yll for all # and y and some constant ¢, depending
only on f. Finally, let H(C*) be the topological vector space of
holomorphie functions in % complex variables equipped with the topology
of uniform convergence on compact sets. H(C") is also a separable
Frechet space.

LEMMA 3.2. FEach of the spaces C*(R"),1 < k < «, and Lip (R")
48 @ Borel subset of C°(R™). If H(R") denotes the holomorphic functions
i 1 real variables, then H(R") is o Borel set of C°(R™) too.

Proof. The natural injection of C¥R"),1 <k < o, into CYR")
is continuous. Hence its image in C°(R") is a Borel set. Lip(R") is
a Borel set of C°(R") because the map
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£ —gup LL®) = SW)

= [|o— vl

is lower semicontinuous in the classical sense (not to be confused with
the notion of lower semicontinuity for set valued maps discussed in
the next section), hence Borel. Last of all, the map H(C") — C°(R")
given by restricting a holomorphic function on C*» to R" is certainly
continuous. It is one-to-one because a holomorphic function on C* is
completely determined by its values on R". (See 9.4.4 of [6].)

THEOREM 3.3. For each probability measure ¢t on R™ let F, be
the distribution function of p. Then the set of probability measure
u with F, satisfying any of the conditions below forms a Borel set
of M(R"):

1. F, is continuous.

2. F, is Lipschitz, i.e., |F.(x) — F,(y)| < clle — y|| for some
constant ¢ and all z and y.

3. F, is continuously differentiable of order k,1 <k < oo.

4. F, is holomorphic.

Proof. Let us prove the assertion in part 1. first. Designate by
{r.}y-, the points in R" having all components rational. Since ¢t — ¢(A4)
is Borel from M(R™) to R for every Borel set A in R", the function

p—inf sup |Fy(r) — Fu(r)| = g(tt)
Zig lrg—rgh<tin

is Borel. Our claim is that {z: g(¢) = 0} is the collection of all prob-
ability measures with continuous distribution functions. In faect, if
x = (x, -+-,2,) and ¥y = (y, ---, ¥,) are two points in R, the expansion

w, if k<7

Filw) = Fuy) = 2, (FuE) = P&, 28 =1 0

leads immediately to the conclusion that g(#) = 0 implies F', is con-
tinuous. On the other hand, if F', is continuous, it is actually uniformly
continuous. This follows from the fact that for every & > 0 there is
a compact set K with p#(K) > 1 — ¢. The uniform continuity of F,
then clearly entails g(¢) = 0.

To prove the assertion of the theorem for parts 2.—4. it is sufficient
by Lemma 3.2 to prove that the map g — F, is Borel from the collec-
tion of probability measures having continuous distribution functions
into C°(R"). To do this it is enough according to Thm. 2 of the
appendix of [13] to show g — I(F',) Borel whenever [ is a continuous
linear functional on C°(R"). Since the dual space of C°(R") consists
of the complex measures y with compact support (18.19.8 of [7]), the
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problem reduces to showing ¢ — SF;,dv Borel for every complex measure

y with compact support. But this follows from Fubini’s Theorem once
one notes Lemma 3.1 says F.(z) is jointly Borel in g and z.

COROLLARY 3.4. For |7] £k the map (z, ) — DF (x) is jointly
Borel in x and ¢ on the Cartesian product of R" and the set of all
re M(R®) with distridbution functions tn C*(R").

Proof. Since the natural injection of C*(R") into C°(R™) is Borel,
its inverse is also. Hence the map p¢— F,. is Borel from {pe M(R"):
F,c CR")} into C*R"). Also the map f — D’f of C*(R") into C*(R™)
is continuous, and the map (z, g) — g{x) of B*x C°(R") into the com-
plex plane is Borel by Lemma 3.1. Now combine these facts and the
statement of the corollary follows.

Our next aim is to prove analogues of the preceding for probability
measures having densities. Some of the asserticns for densities follow
by noting that the density of a probability measure on R can be
recovered by differentiating the distribution function a sufficient number
of times. For the sake of completeness though, it seems preferable
to proceed directly.

THEOREM 3.5. Let S be a Polish space and pt o o-finite meas-
ure on the Borel sets of S. The collection of probability measures
absolutely continuous with respect to tt and the collection of probability
measures equivalent to p both form Borel sets of M(S). Furthermore,
the map taking a probability measure y absolutely continuous with
respect to tt into its demsity f,€ L'(¢t) is a Borel isomorphism.

Proof. Consider the separable Banach space L'(z) of p-integrable
functions. Take a countable collection of Borel sets {A4,}s-, in S which
are dense in the measure algebra derived from p. The set

B= ({feLiw: (frde = ofn{rew: (rap =1}

is a Borel set of L'(¢#). We claim that B consists of the function in
L'(¢) which are nonnegative p-almost everywhere and have integral

1. Suppose fe B. Then it is necessary to show S fdp = 0 for every
A
Borel set 4. But
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By taking p(A4,4A) small enough, we can make the second and third
contributions on the right of * as small as desired.

Now map f in B into the measure f,(4) = S fdp. This map is
one-to-one and continuous for the weak* topologonn the set of pro-
bability measures. The image of B under the map is a Borel set and
reduces simply to the probability measures absolutely continuous with
respect to p. Furthermore, the inverse of f — , is also a Borel map.

To prove the assertion about probability measures equivalent to
p it suffices to prove that the set of fe B with f > 0 p-almost every-
where forms a Borel subset of B. Now this set is

(ﬁ@ n {fe L‘(ﬂ):gfxd,cd/«e > —71-2—}) n {fe L) gfd)u — 1} _c.

B(Ap)>1m

For, if fe B\C, then there is an m and a sequence {4, )z, with

#A,) > L and g fdp—0.
m Ak

Assuming f > 0 p-almost everywhere, this contradicts the absolute
continuity of g with respect to g,. On the other hand, if fe C and
(A) > 0, then take A, so that p(A4,4A4) is small and p(4,) > 1/m for

some m. Then our earlier representation * of | fdy shows that
A
L fdp>0.

DEeFINITIONS. D(R") will denote the space of infinitely differen-
tiable functions with compact support. It is well known that D(R")
is a countable union of separable Frechet spaces. [19] S(R") will
denote the space of infinitely differentiable functions rapidly decreasing
at infinity together with all derivatives. With its usual topology
S(R") is a separable Frechet space. Finally, for 1 < p < =, L?(R")
means the Banach space of equivalence classes of Borel functions
whose pth powers are integrable.

LEMMA 38.6. For 1 < p < o each of the following spaces is a
Borel set of L*(R™):

C*R™ N L*(R*) k=0,1,2 -+, 0
Lip (B") N L*(R")

H(R" n L*(R"

S(R™)

D(R™).

M
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Proof. Since each of the spaces C*(R*),1 < k < «, Lip (R"), H(R"),
S(R™, and D(R") reside in C°(R") as Borel sets, it suffices to show
that C°(R™) N L?(R") is a Borel set of C°(R") and that the injection
C(R*) n L*(R") — L*(R™) is Borel. The first ingredient of the proof
follows from the fact that

f—swl _|f@pds=|if@prd

lzll<n

is a Borel map of C°(R") into the extended real line. As for the
second, note that

f—lim|  fegeds = [ r@g@ds
is Borel from C°(R™) N L*(R") into C for every ge LY R"), where 1/p -+
1/¢g = 1 and L%R™ is identified with the dual of L*(R"). According
to the criterion already cited in Theorem 3.3, this implies that the
injection C°(R™) N L*(R") — L*?(R™ is Borel.

THEOREM 3.7. The collection of probability measures on R™ whose
densities lie in any of the spaces C*(R"™), Lip (R™), H(R"), S(R™) or D(R")
form a Borel set of M(R™).

Proof. The map taking a probability measure to its density with
respect to Lebesgue measure is Borel into L'(R™). Now apply the last
lemma.

4. Supports of probability measures. In order to analyze the
relation of a probability measure to its support, we find it convenient
to introduce the Fell topology [10]. Let X be a locally compact
separable space. Denote the collection of closed subsets of X by & (X).
The Fell topology on & (X) can be given by specifying a basis of open
sets of the form U(C, {V, -, V,}). C is compactin X and {V, ---,
V.,} is a finite, but possibly empty, family of open sets. U(C;{V, +--,
V) ={YezX):YNC=¢and YNV, % ¢,2=1, ---, n}. Fell dem-
onstrates that & (X) is a compact Hausdorff space with this topology.
Furthermore, as Fell observes, Z°(X) is separable and thus a compact
metric space if X is separable. Indeed, if £Z is a basis for the topology
of X and each element of <Z has compact closure, then the sets U(C;
% ), where C is the closure of the union of a finite subset of <Z
and & C <7 is finite, form a countable basis for & (X).

Next we wish to define notions of semicontinuity for maps into
% (X). Since our definitions differ slightly from Kuratowski’s [11]
and Berge’s [3], we feel it prudent to give a detailed discussion.
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(Especially with reference to the next lemma see Chap. 6, Sec. 2 of

[3])

DEFINITION. Let f: T— & (X) be a map from a topological space
T into &(X). f is said to be lower semicontinuous if {te T: f(¥) N
V = ¢} is open whenever V is open in X. [ is upper semicontinuous
if {teT: f(®) N C = ¢} is open whenever C is compact in X. Obviously,
a map f: T— & (X) will be continuous if and only if it is both lower
and upper semicontinuous.

LEMMA 4.1. Suppose {fi: T — % (X)}ics s a nonempty collection
of maps from a topological space T into & (X).

1. If each f; is lower semicontinuous, then t— (U;cs fi(D)™ s
lower semicontinuous.

2. If each f;is upper semicontinuous, then t — [Nies fi(f) is upper
semicontinuous.

3. If the index set A is finite and each f; is upper semicon-
tinwous, then t— U;es fi(f) is upper semicontinuous.

Proof. 1. Take Vopenin X. Then {te T: (Ui, f:(t)" NV = ¢} =
{te T: (Uiea fs)) NV # ¢} = Useu{te Tt fi()) NV + ¢} is open in T.

2. Take C compact in X and suppose f,e T satisfies ;e f:(t) N
C = ¢. It is enough to show the existence of some neighborhood of
t, where ;.. fi(t) N C = ¢ continues to hold. To this end select one
function g from the collection {f;: T — " (X)};., and reduce the collec-
tion to {f;: T — & (X)}ic: by eliminating g. If g(t) N C = ¢, then our
choice for the neighborhood of ¢, is obvious. Otherwise, put K =
9(t) N C. For each xe K there is at least one index ie Y with z¢
fi(t). Choose a neighborhood V, of x with compact closure and
satisfying fi(t) N V; = ¢. Since f; is upper semicontinuous, it is
possible to select a neighborhood W, of ¢, such that f;({) N V; = ¢ for
all te W,. LetV,,-..-, V, cover K. Applying the upper semicon-
tinuity of g there also exists a neighborhood W of ¢, where g(¢) N
(C\(Ur-1V.,)) = ¢. It now follows that on WN (M7=, W.,), (Nics f:(H) N
C=¢.

3. For C compact in X, {teT: (Uses fi(®)) N C = ¢} = Niea{teT:
fit)ynC = ¢}

The next lemma shows that upper and lower semicontinuous
mappings are Borel. (Compare Lemma 9.4 of [17].)

LEMMA 4.2. The following are necessary and sufficient conditions
for a map f: T— & (X) from a Borel space T into & (X) to be Borel.
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1. {teT: f(&) NV = ¢} is a Borel set for each open set V.
2. {teT:ft) NC = ¢} ts a Borel set for each compact set C.

Proof. Both conditions are clearly necessary for f to be Borel.
To prove their sufficiency consider a basic open set U(C; {V,, +--, V.,})
in (X). UC;{Vy, -+, V.h=UC;d NU(g{V.YN---NU@{V.}.
Let d be a metric for X and define W,, by {x e X: d(z, C) = inf,., d(z,
Y) < 1/m}. Then U(C; ¢) = Un=,U(g; {W,})’. On the other hand, if
{K;}=, is a sequence of compact sets whose union is some V;, then
U(g; {Vi}) = U . U(K;; )’ Thus any basic open set can be expressed
in terms of a countable number of open sets of type U(K; ¢) or U(s;

{V.

LeEMMA 4.3. The map pt— support (1) ts lower semicontinuous
Jrom M(X) into & (X).

Proof. For V open in X, {¢: support () NV = ¢} = {p: (V') > 0}
is open in M(X). In fact, {¢: (V) = 0} is closed because p(V) <
lim, inf p,(V') holds for every converging sequence g, — ¢ in M(X).
(See Thm. 6.1 of Chap. 2 of [16]).

LeMMA 4.4. Each of the following maps is Borel:

1. F: 7.5 (X) - &(X) given by F(QI2.Y,) = (U= Y)™.
TIz., &(X) has the product topology.

2. GII- g X)—ZF(X) given by G(II7-.Y,) = N7- Y.

3. H:&(X)— & (X) given by H(Y) = (Y.

4, J:Z#X)— & X) given by J(Y) = (Y9~

Proof. 1. The projection F: [I7., €(X) — & (X) taking 13,7,
into Y, is continuous. Hence F(IT;-.Y,) = (Ui, Fi(Il3-.Y,))" is lower
semicontinuous.

2. @G is upper semicontinuous.

3. It suffices to show that the set of Y ¢ & (X) satisfying (Y%’ N
V = ¢ is Borel for each open set V. Now (Y)Y NV=g¢ iff Y°'OV
iTYoOVIT YoV iff YNV~ =V~. The collection of Y satisfying Y N
V= =V~ is a Borel set because it is precisely the set where the Borel
maps Y—Y NV~ and Y —V~ agree.

4. Again it is enough to prove that the collection of Ye & (X)
satisfying (Y°) " NV = ¢ is Borel for each open set V. Let W = (V)"
Then (YY) NV=¢iff VVO(Y)" iff VO Y°iff WO Y°iff W (Y
if W n (YY) = W’'. But the collection of Y satisfying W' N (Y°)' =W’
is precisely where the Borel maps Y—W’' N H(Y) and Y — W’ agree.

THEOREM 4.5. Each of the following collection of sets in & (X)
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ts Borel:
1. For every positive integer k, the collection of Z e & (X) having
k or fewer points.

2. The collection of compact sets Ze & (X).

3. The collection of compact connected sets Z e & (X).

4. The single closed set Y e & (X).

5. The collection of Ze &(X) contained within a given closed
set Y.

6. The collection of Ze & (X) containing a given closed set Y.

7. The collection of Ze & (X) with empty interior.

8. The collection on Zec & (X) with no isolated points.

9. The collection of Ze & (X) which are open as well as closed.

Proof. 1. <=* is the collection of Ze & (X) having k or fewer
points. According to Fell [10], &* is closed and therefore compact
in & (X). Since the union map [It., #(X) — & (X) is both lower
and upper semicontinuous, the image of T[%., &', which is &% is
compact in &(X).

2. Let {C,}3-, be an increasing sequence of compact sets having
U, C. = X. The collection of compact sets Ze & (X) is the countable
union of closed sets U=, U(g; {C.}).

3. The compact disconnected sets coincide with the intersection
of the collection of compact sets with the union of the basic open sets
U(V,UVY;{V, V.})), where V,NV,= ¢ and (V,U V)’ is compact.

5. Ze & (X) is contained within Y iff Z¢ U(g; {Y'}).

6. Ze#(X) contains Y iff ZNY =Y. Hence the collection of
Ze & (X) containing Y is where the Borel maps Z—2Z2NY and Z—

Y agree.
7. Let H be the map of last lemma. Then Z has empty interior
iff H(Z) = X.

8. Let J be the map of the last lemmma. Then Z has no isolated
points iff J(Z) = Z.
9. Ze®(X) is open iff HZ)NZ = ¢.

COROLLARY 4.6. The collection of probability measures in M(X)
having support in any one of the families 1.—9. listed above is Borel.

We now wish to introduce notions of congruence and symmetry
for the space of closed sets 2°(X). To be specific, suppose G is a locally
compact separable topological group which acts on the right of X. If
for each fixed ge G, the map x — xg is continuous, then G also acts
on Z(X). For Ye & (X) and ge G define Yg to be {yg:ye Y}.

LEMMA 4.7. If the action X X G — X 1is jointly continuous, then



152 KENNETH LANGE

s0 s the action & (X) x G — & (X). (Compare Prop. 2.2 of Chap. 2
of [2].)

Proof. For Ye % (X) and ge G let UC;{V,, ---, V,}) be a basic
neighborhood of Yg. Since Yg NV, = ¢, there exists ;¢ Y, a neigh-
borhood W, of x;, and a neighborhood U; of g with W, U, cV,. Let
V = N.U; and reduce V if necessary so that V'~ is compact. Also
define K ={&h™":2ecC, he V-}. K is compact, and by a further
reduction of V it is possible to assume YN K = ¢. Now the neighbor-
hood U(K;{W,, +-+, W,}) XV of (Y, g) maps into U(C;{V,, «--, V.}).

The next theorem provides some more instances of Borel sets of
probability measures.

THEOREM 4.8. If G is a locally compact separable topological
group, then the collection of closed subgroups is closed in & (G). The
collection of closed mormal subgroups is also closed in & (G). If G acts
continuwously on a locally compact separable space X, the fixed points
of € (X) under the action of G form a closed set of € (X). Finally,
the orbit of any Ye & (X) under the action of G is a Borel set o
& (X).

Proof. The first statement is just Fell’s observation. Indeed,
the collection of closed subgroups is the complement of the union of
U({e}; ) with the basic open neighborhoods of the form U(V (V;)™;
{V,, V.}), e being the identity of G and Vi and V; being compact.
The second statement is a special case of the third statement. Simply
note that G acts on itself by (x, g) —¢'xg and hence on & (&) by
(Y,9) =Yg ={9'xg:xc Y}. The fixed points of this action form a
closed subset of & (G). Intersecting the collection of fixed points with
the collection of closed subgroups gives the closed normal subgroups.
Finally, the third statement is obvious, and the fourth statement
follows because an orbit in & (X), {Yg:9e G}, can be written as a
countable union of compact sets, Up-. {Yg:9¢e K.}, if {K,}J7., is a
sequence of compact subsets of G whose union is G.

ExampLES. The sets in & (R") spherically symmetric about the
origin are just the fixed points of & (R") under the action of the
orthogonal group. Furthermore, under the action of the orthogonal
group, the orbit of a subspace of dimension m, m < n, is the collection
of all subspaces of dimension m. The collection of all sets in & (R")
geometrically congruent to a given closed set Y lies on the orbit of
Y under the affine orthogonal group, i.e., the group generated by all
orthogonal transformations and translations. As a consequence, the
collection of all affine subspaces of a given dimension m forms a Borel
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set of & (R"). Similarly, considering the group of dilations (resp.
homothetic transformation with the origin as center), it is clear that
the collection of closed spheres (resp. closed spheres centered at the
origin) forms a Borel set of & (R"). (Consult [4] for the geometric
terminology.)

The remainder of this section deals with convexity and subspaces
and is inspired by [18]. Since the present proofs are different from
those in [18] where results overlap, and require perhaps less background
of the reader, we have furnished complete arguments.

THEOREM 4.9. On R" the map Y — clconv (Y) which takes a closed
set into its closed convex hull is Borel from & (R™) into & (R™). Hence
the collection of closed convex sets forms a Borel set of © (R"), and the
collection of probability measures with convex support forms a Borel set

of M(R"™).

Proof. Let {l;};c. be the collection of linear functionals on R".
For each positive integer k¥ and e 4 define L} & (R") — < (R") as
follows: Li(Y) = {we R": l;(x) = SUDuerns, l(w)}, where S, is the sphere
{we R ||w|| £ k} and Li(Y) is taken to be ¢ if Y NS, = ¢. Let us
check that L! is upper semicontinuous. For C compact {Y e & (R"):
LA(Y)NC = ¢} ={Ye(R"):YNS.N{te R () = inf,.; li(s)} = ¢}, s0
L! is upper semicontinuous because S, N {t€ R":[,(t) = inf, . li(s)} is
compact. Now note that ¥ — N;., L(Y) is upper semicontinuous and
Nics LXY) is the closed convex hull of YN S,. It follows that Y —
Ui Nies LEY) is a Borel map taking Y into its closed convex hull.

The second claim of the theorem is true because the closed convex
sets Y of & (R"™) are simply where the Borel maps Y — Ui MNies LE(Y)
and Y —Y agree.

DEFINITION. Suppose Y is a nonempty closed convex set of R".
For any point 2 € R", prox (x, Y) is defined to be the unique point of ¥
closest to . In other words, if d is the metric on R™ derived from
the Euclidean norm, then prox (z, Y) is the unique point of ¥ where
d(z, Y) = inf,, .y d(z, w) is attained.

LeMMA 4.10. Suppose f: T — & (R") is a Borel map with f(t) a
nonempty closed convex set for every te T. Then for every xe R", t —
prox (z, f(t)) is a Borel map of T into R™.

Proof. First, let us show that ¢ —d(z, f(¢)) is a Borel map of T
into R* = {ze R: 2z = 0}. It suffices to show that {te T: d(z, f(¢)) < €}
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is a Borel set of T for each ¢ > 0. But {te T:d(x, f(t) < &} = {te T:
{ye R*:d(x,y) < e} N f(t) + ¢}. Next the map s —{ye BR": d(z, y) < s}
is Borel from R* into Z°(R") because for K compact

¢ if zeK

+ o Ne = =
{se R*:{ye R d(@,9) < s} N K = g} 0<s<d@,K).

Finally, note that prox (x, f(¢)) = f(®) N {ye R": d(x, y) =< d(z, f(1)}.
Since t — prox (x, f(t)) is a Borel map into & (R"), it follows at once
that it is a Borel map into R".

LeEMMA 4.11. Suppose f: T — & (R™) has the same properties as
in the last lemma. Then the map t — f(t)* = {ye R":vae f(t)<z, y) =0}
is also Borel from T into & (R™).

Proof. Let {z,}:-. be a dense collection of points in R". Since
f () equals the closure of Us-, prox (z,, f(t), {ye R*: vz e f(t){z, ) =
0} = Nio. {y € B™ {prox (®,, f(t), ¥> = 0}. Now t— {ye R": {prox (x,,
f@®), y> < 0} is a Borel map into & (R") because s —{ye R": (s, y) =
0} is Borel from R" into &’(R"). In fact, for a compact set K, s—
inf,.x (s, ) is Borel and {se R": {ye B*:<{s,y) < 0} N K # ¢} = {se B™
inf,.x (s, > = 0}. Similarly, t —{ye R": vz e f(t)<z, y) = 0} is Borel.
To finish the lemma observe that t—{ye R": xe f(t)<z, y> = 0} is the
intersection of two Borel maps.

THEOREM 4.12. The map % (R")\{¢} — & (R") taking a closed set
Y into the smallest subspace containing Y is Borel. Likewise, the map
& (R)\{¢} — & (R") taking Y into the smallest affine subspace containing
Y s Borel.

Proof. The smallest subspace containing Y is [eleconv (Y)]**. The
smallest affine subspace containing Y is

[eleonv (Y) — prox (0, cleonv (Y))]*+ + prox (0, cleonv (Y)) .

The second map is Borel because the action & (R") x R — & (R")
defined by translation is jointly continuous.

COROLLARY 4.13. For each m < m, the collection of probability

measures on R™ whose supports lie within a subspace (affine subspace)
of dimension m forms a Borel set of M(R").

5. Further examples of Borel sets of probability measures.

EXAMPLE 5.1. Let G be a metric group acting continuously on
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a Polish space X. Then G acts by translation on the set of probability
measures M(X). Indeed, define for e M(X) and ge G pg to be the
probability measure assigning measure p{Ag™) to each Borel set A
of X.

THEOREM 5.2. G acts continuously on M(X).

Proof. Suppose ¢, — ¢ in M(X) and g,— ¢ in G as n— . It
is sufficient to prove that

| #eod, ) — | reode)

for every bounded continuous real-valued function f. For ¢ > 0 let
K be a compact subset of X with g, (K)=1— ¢ for all n. Now
estimate as follows:

|[rGondms) - (reodue| = | 1760 ~ r60)ide.e
+ | 17600 — £e0lame + |[Fendm - [fenaue) .

The last term in ** can be made small since f, — #. The middle term
on the right of ** is bounded by 2 sup,.x|f(s)|e. The first term on
the right can be made small because sg, — sg uniformly on K, as we
prove momentarily, and because f is uniformly continuous on the
compact set {kh:ke K, he{g.});-, or h = g}. To show that sg,— sg
uniformly on K let d be the metric on X and suppose d(s,9.,, S.9) >
o for some subsequence {g, } of {g.}, a sequence {s,} of K and some
0 > 0. Since K is compact we may assume s, —s€ K. Then s,g,, —
sg and s,g—sg by the joint continuity of the action of G on S.
This contradicts the assumption that d(s,.g. , s.g9) > 0 for all m. Hence
sg, — sg uniformly and this completes the proof of the theorem.

COROLLARY 5.3. The invariant measures form a closed subset of
M(X) since they are the fixzed poinits for the action of G on M(X).
If G is a Polish group, then the orbit of awny probability measure
under G is Borel in M(X).

Proof. For the second assertion see Lemma 3.4 of [9].

Applications. On R", the orbit of any nondegenerate normal
distribution under the group of invertible affine transformations is the
whole collection of nondegenerate normal distributions. Also the
collection of translates of any probability measure is Borel in M(R").
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Other commonly occurring groups acting on R™ are the orthogonal
group and the group permuting the coordinates of any point. The
latter group arises in the theory of order statistics.

REMARK. A Borel set B of a space X is called invariant under
a group action if Bg = B for every group element g. If ¢ is a pro-
bability measure on X and p(B) = 0 or 1 for every invariant Borel
set B, then p is said to be ergodic. Varadarajan has shown that the
collection of invariant ergodic probability measures is Borel in M(X)
if X is a Polish space and the underlying group is locally compact
and separable. (See Thm. 4.2 of [20].)

ExAMPLE 5.4. Suppose {X,}7., is a sequence of separable metric
spaces. Consider the probability measures M(JI5-. X,) on the product
space [I3-, X,. We claim that the set P = {tte M(TI5-. Xo): ¢ = TToitles
t.e M(X,)} is closed in M(JIz-, X,). Our reasoning goes as follows:
The map M([I3-. X.) — 1o, M(X,) taking a probability measure into
its sequence of marginal probability measures is continuous. Also
the map I3, M(X,) — M(IIz-, X,) taking a sequence of probability
measures into their product is continuous. (Modify slightly the proof
of Lemma 1.1 of Chap. 3 of [16].) P is the set where the composi-
tion of these two maps agrees with the identity map on M(J];-. X.).

If each X, is the same, then the set of probability measures on
II:-. X, having all marginals the same is certainly closed too. Hence
the set of probability measures on J]:_, X, which are product measures
with equal components is closed.

ExXAMPLE 5.5. Suppose X is locally compact and separable. Ac-
cording to Corollary 4.6, the collection of probability measures concen-
trated at &k or fewer points is Borel in M(X). A stronger assertion
is possible.

LEMMA 5.6. Let X be a Polish space. For each 1 =0 > 0 the
collection of probability measures having k or fewer atoms with total
mass = 0 ts closed in M(X).

Proof. An easy induction using Prohorov’s Theorem. (See Thm.
6.7 of Chap. 2 of [16].)

For another application of Lemma 5.6 put 4,,, = {¢e M(X): ¢ has
kE or less atoms with total mass =1 — 1/»}. Then the Borel set
Ni-. Ui, 4,,. consists of those probability measures concentrated on
a finite or countable set of points.
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EXAMPLE 5.7. If one is more interested in the number or geometry
of the atoms rather their total weight, one can proceed as follows in
the locally the compact case: For each pte M(X) and ¢ > 0 let d.(¢) be
the set of atoms of g having individual mass of at least e. Since
{re M(X):d.() N C = ¢} is closed in M(X) for each compact set C of
X, d.: M(X)— Z(X) is upper semicontinuous. (See Prop. I. 2. 8 of [1].)
Apply part 1. of Lemma 4.4 to conclude that ¢ — (U, dy.(10)” is a
Borel map into &(X). p¢— (U;=. dy.(1))” can be used to keep track
of the cardinality of the atoms and their positions.

ExAmPLE 5.8. The collection of probability measures on R™ with
some moment (all moments) existing is a Borel set of M(R"). To
prove this let {g;: R"— [0, 1]};i=, be a collection of continuous functions
satisfying

1 if o] <4

0:() = 10 if [lollzi+1.

Now note that
r— sup {|*] 0.(@)dpe@) = EEZE)

is lower semicontinuous in the classical sense for each multi-index k.
Hence the collection of probability measures having finite kth moment
is a countable union of closed sets. In general, this collection is
neither open nor closed. For instance, on R it is possible to show that
the collection of probability measures having finite first moment is
neither open nor closed. Furthermore, the collection of probability
measures lacking a first moment is dense in M(R).

ExAMPLE 5.9. Occasionally it is convenient to deal only with those
probability measures on R"™ having continuous, strictly increasing
distribution functions. To characterize this family of probability
measures consider for each pair of positive integers n and m the map
G.n: C(R") — R defined by

Ganlg) = inf g(z) — g(w),
llz—wi|>1/n
Jlzl|<m
Hw|lsm
z2W

where 2 = w means z; — w; = 0 for each component of z — w. It is
easy to check that G,,, is upper semicontinuous in the classical sence.
Hence ¢t — @G, (F,) is a Borel map into R from the collection of pro-
bability measures having continuous distribution functions. g has
strictly increasing distribution function iff G, .(F.) > 0 for every =
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and m. Similar arguments can be used to show that {(¢,v): F,, F,
continuous, F.(x) > F.(x) Va} is Borel in M(R") x M(R"). However,
removing the continuity assumptions makes both problems much more
difficult.

EXAMPLE 5.10. A probability measure ¢ on R is said to be sym-
metric if the Fourier transform fi(6) of ¢ can be written as e”'r(d),
where r(6) is a real-valued function of ¢ and ¢ is some real constant.
Now for each positive integer m, {¢?'r(0): te [— m, m] r real-valued
and in C°(R)} is closed in C°(R). Since y,— ¢ in M(R) iff g, — [t
in C°(R), the collection of symmetric probability measures on R is a
countable union of closed sets of M(R).

ExampPLE 5.11. For p a probability measure on R and pe (0, 1),
te R is called a pth percentile of g if p(—co,t) <p and p(— o=, {]= p.
When p = 1/2 the term median is used instead of percentile. It is
easy to show that the set of pth percentiles for ¢ is a compact interval
whose right endpoint is {*(p, ¢#) = sup {re Q: pt(— =, r) £ p} and whose
left endpoint is {7(p, ) = inf {re Q: u(— o, r] = p}, where Q is the
set of rationals. Moreover, {*(p, p)(resp. {7(p, &) is right (resp. left)
continuous in p for fixed g and Borel in ¢ for fixed p. Hence Lemma
3.1 implies {*(p, #) and {~(p, ) are jointly Borel in » and g. Using
this fact one can show various hypotheses in nonparametric statistics
involving the set of pth percentiles to be Borel. Perhaps it is worth
pointing out that (p, 1) — [{~(p, 1), {*(p, 1)] is a Borel map into & (E).

ExaMPLE 5.12. Let us indicate briefly now the Borel structure
on M(X) furnishes a natural framework for the description of several
ideas in probability and statistics. For instance, in the theory of
Markov processes one can define transition functions as Borel maps
from X into M(X). If ¢ is a probability measure on a Polish space
X and « is a Borel map onto another Polish space Y, define # on Y
by #(A) = u(w~*(A)) for every Borel set A of Y. Then g has a regular
conditional probability distribution given z. From our perspective
this means a Borel map y— g, from Y into M(X) such that fi-almost

all 1, are concentrated on 77'(y) and p(B) = S#,,(B)dﬁ(y) for each Borel

set B of X. Finally, we should cite empirical distribution functions.
Let {fi: S— R}z, be a sequence of independent and identically distri-
buted random variables on a Borel space S with probability measure
p. For each positive integer n define a Borel map g,: S— M(R) by
taking p,(s) to be the probability measure giving equal weight to
Fu(s), <+, fa(s). ., is Borel because for every Borel set

ACE, @A) = 2 5076
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where x, is the indicator function of A.

6. Counterexamples. Obviously not all subsets of M(X) are
Borel. Here are some counter-examples.

ExXAMPLE 6.1. For X a Polish space it is well known that X is
homeomorphic to the collection of unit point masses, {6, € M(X): d,({w}) =
1, we X} [16]. If X is uncountable, then there exists Y < X which
is not Borel. But then {§,e M(X): we Y} cannot be Borel in M(X)
either.

EXAMPLE 6.2. Our second counterexample involves the notion of
equivalence between probability measures. It is transparent that
mutual absolute continuity, denoted ~, is an equivalence relation on
M(X). By the axiom of choice it is possible to choose one repre-
sentative probability measure from each equivalence class. The next
theorem shows when this “transversal” can also be taken to be a
Borel set of X.

THEOREM 6.3. Suppose X is a Polish space. Then o Borel trans-
versal exists for ~ on M(X) ¢ff X is countable or finite.

Proof. Suppose X is the set of positive integers. Give Z, = {0, 1}
the discrete topology and consider the product space ]2, Z,. Subtract
off from [[y-, Z, the countable number of sequences in which 1 appears
only finitely often and call the remainder Z. Map Z into M(X) by
taking the sequence {w,};., into the probability measure giving mass
w,(1/2)*1+*+*s to the integer n. This map is one-to-one, Borel, and
provides the desired Borel transversal. The case of X finite is even
simpler. ‘

Now assume X is uncountable. Since any two uncountable Polish
spaces X and Y are Borel isomorphic, (Thm. 2.12 of Chap. 1 of [16]),
it is easy to see that M(X) and M(Y) will be Borel isomorphic too.
Hence it is enough to establish the necessary part of the theorem for
the space [[7, Z, above. But this is the content of Lemma 5.1 of
[15]. Here it is proved that M([I:-, Z.)/~ is not countably separated.
If a Borel (even analytic) transversal existed in this case, then Prop.
2.12 of Chap. 1 of [2] would be contradicted, since M(I[3-. Z,)/~
cannot be analytic if it fails to be countably separated. Note that
~ is Borel as a subset of M([I:.. Z,) X M(II:-. Z,) because of 2.11
of [8].

ExaAMPLE 6.4. Our next two counterexamples partially justify
sticking to locally compact spaces when discussing the relation of a
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probability measure to its support. Suppose X is a Polish space.
Define a Borel structure on the space & (X) of closed subsets of X
by requiring every collection, {4 ¢ & (X): A C B} to be Borel whenever
Be z(X). Christensen shows in Thm. 1 of [5] that this Borel structure
is analytic and on the subspace of nonempty closed sets coincides with
the Borel structure generated by the Hausdorff metric associated with
any precompact metric on X. Furthermore, if X is locally compact,
this is the Borel structure generated by the Fell topology.

Now it is evident that g — support (#) is Borel from M(X) into
& (X). If X is a real infinite dimensional separable Hilbert space,
Christensen proves that the collection W of Z¢ & (X) contained in the
open unit sphere is complementary analytic but not analytic. (See
Thm. 8 of [5].) Since every Zc W is the support of some e M(X),
the inverse image of W under u — support (z) fails to be Borel or
even analytic.

This counterexample also illustrates that the intersection map
(X)) x Z(X)— Zz(X) need not be Borel when X is not locally
compact. Indeed, let Y be the complement of the open unit sphere.
Then W={Zc&(X):ZNY = ¢}.

ExAMPLE 6.5. The same phenomenon of Example 6.4 occurs if
X is a countable Cartesian product of the positive integers. Then
the collection of Ze & (X) which are open as well as closed is comple-
mentary analytic but not analytic. (See Thm. 5 of [5].)
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PRODUCT INTEGRALS FOR AN ORDINARY
DIFFERENTIAL EQUATION IN A BANACH SPACE

DaviD LoweELL LOVELADY

Let Y be a Banach space with norm | |, and let R+ be
the interval [0, ). Let A be a function on R+ having the
properties that if ¢ is in R* then A({) is a function from Y
to Y and that the function from R* X Y to Y described by
(t, x) - A(t)[x] is continuous. Suppose there is a continuous
real-valued function a« on R+ such that if ¢ is in R+ then
A(t) — a(t)I is dissipative. Now it is known that if z is in
Y, the differential equation u/(t) = A()[u(t)l; u(0) =2z has
exactly one solution on R*. It is shown in this paper that if
tisin R* then u(t) = (I’ exp[(ds)A(s)][2] = oI 1[I — (ds) A(s)]![z],
where the exponentials are defined by the solutions of the
associated family of autonomous equations.

The dissipitavity condition on A is simply that if (f, z, y) is in
R*x Y x Y and ¢ is a positive number then

(1) [T — cA@Ilz] — [ — cA@]ly]| =2 [1 — ca@®)]|z — y]| .

The author and R. H. Martin, Jr. [5] have shown that if (1) holds,
and z is in Y, then there is exactly one continuously differentiable
function % from R* to Y such that

(2) w(0) = 2z
and
(3) uw'(t) = A@®)[u®)]

whenever ¢ is in (0, ). In the present article we shall show that
%4 can be expressed as a product integral in each of two forms:

(4) w®) = I exp [(d9) A@)][7]
and
(5) ut) = TLI — @)AG] ] -

Our work is related to results of J. V. Herod [2, §6] and G. F.
Webb [7],[8]. Herod showed that representation (5) is valid if the
mapping (£, ) — A()[«] is bounded on bounded subsets of R* X Y.
Webb obtained in [7] a representation similar to (4) under a set of
hypotheses different from, and independent of, those used here. In
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[8], Webb showed that (5) is valid if A is independent of {. (Actually
Webb in [8] restricted his attention to the case « = 0, but his proofs
adapt easily to the general time-independent case.)

I1. Product integrals. We shall assume throughout that A and
o are as in our introduction, and that (1) is true whenever (¢, z,y)
is in R* X Y x Y and ¢ is a positive number. Now it follows from
either of [5] and [6] that if (¢, 2) is in R* x Y then there is exactly
one solution » of the problem

(6) v'(s) = A@)[v(s)]; v(0) = @ .

Furthermore, this problem generates an operator semigroup, which
we shall denote {exp[sA(f)]:s is in R*}, i.e., if s is in R* then
exp[s4(t)] is a function from Y to Y such that if # is in Y then
exp [sA(?)][x] = v(s), where v solves (6).

It is clear from (1) that there is no loss in assuming a to be
Rt-valued, and we shall. It follows from [6] that if (¢,¢) is in
R* x R* and ca(t) < 1 then I — cA(t) is a bijection on Y, and

HI — cA@®[o] — [L — cA@QI7[y]] £ [1 — ca@®] ¢ — ¥

whenever (v,y) is in Y x Y. If {B,-.--,B,} is a set of functions
from Y to Y, and @ is in Y, then [}, B;[#] = « and JI%, Bj[z] =
B,[T1%z: Bilx]] whenever k is an integer in [1,n]. If (¢, 2,%) is in
R* x Y X Y then the statement

y = I~ ([ds)A@s)] (2]
means that if ¢ is a positive number then there is a chain {r;}7, from 0
to ¢ such that if {s;};., is a refinement of {rj}%, and {5};-, is a

[0, t}-valued sequence such that if k is an integer in [1, n] then §,
is in [s,_,, s.], then

y =L = (s — s )AG [ | < e
The statement
y = 1] exp [(@9) A®)][+]
is defined analogously.

THEOREM. Let z be in Y, and let u solve (2) and (8). Then
each of (4) and (5) is true whenever t is in R™.
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Let m_ be that function from Y x Y to the real numbers given
by

m_[z, y] = im (1/8)(@ + oy| — |x]) .

Now (1) is equivalent to requiring that
m_[z — y, AB)[z] — AD[y]] = a@®) |z — y|

whenever (¢, z,y) is in R* X ¥ X Y (compare [1, p. 3]). Also, if f
is a function from a subset of R* to Y, if ¢ is in the domain of f,
if f7(c) (the left derivative of f at c¢) exists, and if P is given on
the domain of f by P(t) =|f()|, then Pl (c) exists and Pl.(c) =
m_[f(c), f-(c)] (compare [1, p. 3]). If (#,y,2) isin Y X Y X Y then
m_{z,y + 2] < m_[z, y] + [2]| (see [4, Lemma 6]). We are now pre-
pared to prove our theorem.

Proof of the theorem. Let b be a positive number, and let B be
a positive upper bound for the set {a(t): ¢ is in [0, b]}. Let ¢ be a
positive number, and let 6 be a positive number such that (6/8)(e®*—1) <e.
Now {u(t): ¢ is in [0, b]} is a compact subset of Y, so the function
described by (¢, ) — A(t)[#] is uniformly continuous on [0, 8] x {u(t): ¢
is in [0, b]}. In particular, there is a positive number 7 such that
if (r, s, t) is in [0, b] x [0, b] x [0, b] and |r — s| < % then |A(r)[u(t)] —
A(s)[w(t)]| < 6. Let {t,}2-, be a chain from 0 to b such that ¢, — ¢,_, <%
whenever k is an integer in [1, ], and let {Z,};_, be a [0, b]-valued
sequence such that if k& is an integer in [1, n] then %, is in [t,_,, t].
Let v be that function from [0, 8] to Y having the property that if
k is an integer in [1, n] and ¢ is in [f,_,, £,] then

o(t) = expl(t — t,-) A 1L exp [t — ) AE)IIA -

Clearly now v is continuous. Also, v is left differentiable on (0, b]:
if k is an integer in [1, n] and ¢ is in ({._, ¢,] then

v_(t) = AT, _)[v(®)] .

Let P be given on [0, d] by P@®) = |v(t) — u(t)|. Now P(0) = 0. Sup-
pose that ¢ is in (0,b] and % is an integer in [1,%] and ¢ is in
(tees, t]. Now

P_(t) = m_[v(t) — w(t), v_() — w'(9)]
m_[v(t) — u(t), AR )v(®] — ABOu]]
= m_[v(t) — u(®), AC)[v()] — AT )[u(®)]

+ AE-)[u®)] — AB[u®)]

Il
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< m_[v(®) — u(®), A )[v®)] — AT [u@)]]
+ [A@ ) [u@®)] — A@®)[u®)]]
< BP(t) + 5 .

Hence [3, Theorem 1.4.1, p. 15],
P@éﬁﬁwﬁh=wmw—n
0
whenever ¢ is in [0, b]. In particular,

|u(®) - [T exp [t — ) AEI2]
= [u(t) = v()|
= P()
= O9E -1 <e.

Thus we have proved that representation (4) is valid.

Now let b and g be as before. Let ¢ be a positive number such
that ¢8 < 1/2. Now if ¢t is in [0, 8] and » is in [0, ¢] then

[T — rA®][«] — [I — rA@®)][]]
=[-8z — yl
S(1+2rp) |z -yl
S ey — yl

whenever (x,%) isin Y x Y.

Now let K = {u(t): ¢t is in [0, b]}, and recall that K is compact.
Let ¢ be a positive number. By the aforementioned uniform continuity,
there is a positive number 7, such that if (s, ¢, x, y) is in [0, b] %
[0,0] x Kx Kand |[s—t| <7 and |2 — y| <7, then | A(s)[x] — A@®)[y]]| <
(e/b)e%. Let 1, be a positive number such that if (s, f) is in [0, b] %
[0,b] and |s — t| < 7, then |u(s) — u(t)| < 7. Let 6 = min {n, 7, c}.
Suppose that 0 = r<s=t=<band t — r <. Let {§};- be a chain
from r to ¢, and let {§,};_, be a [r, t]-valued sequence such that if
k is an integer in [1, n] then &, is in [&,_, &]. Now

3 6 — 6 AG) ] — (¢ — DAGO]|

G — &) AGHuEI] — A@)u®)]]

IIA
M 1M

= 3 G S)EME = (¢ = EDe
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It is now clear that

| [ a@meia - ¢ - na@xeo)
= (t — r)(e/b)e* .

Let {t}7-, be a chain from 0 to b, and suppose that ¢, — t,_, <0
whenever k is an integer in [1,n]. Let {f,};_, be a [0, b]-valued
sequence such that if % is an integer in [1, #] then %, is in [t._,, t.].
Now

117 — (4 — 6 DA — u(d)|

I [ — (8 — t;_) A u(ty)]

j=k+1

1= & = ) AG[u(t. ]|

<3

k=1

n

i=k

Enl ezﬁ(b_t")lu(tk) - [I - (tk - tk—x)A(Ek)]—I[u(tkd)]l

k=1

< e 3 11— (6 — ) AEu(t)] — ulte)|

A

= ¢ 3% Ju(t) — utes) — (b — te) AED ]|

n

— o%b kgl . Stku'(f)df — (t — tk_l)A(fk)[u(tk)]
= ¢ i: tk—lstkA(S)[u(E)]dE (7 tk—l)A('Ek)[u(tk)]!

<P S) (b — b))t = ¢
k=1
The proof of the theorem is complete.
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A HOM-FUNCTOR FOR LATTICE-ORDERED GROUPS

JORGE MARTINEZ

Results are presented that characterize subdirect products
of reals (respectively, integers) functorially.

By defining a quasi-order on the lattice-homomorphisms (hence-
forth: l-homomorphisms) of one abelian lattice-ordered group (hence-
forth: l-group) to another, one can set up a co-compatible system of
partially ordered groups (henceforth: p.o. groups). Their co-limit
L(A, B), where A and B are the l-groups in question, is a directed,
semi-closed p. o. group. If A is a totally ordered group (henceforth:
o-group) then L(A, B) is simply the subgroup of Hom (4, B) generated
by the o-homomorphisms. On the other hand, if B = R, the additive
group of real numbers with the usual order, then L(A, B) is a cardi-
nal sum of copies of R, one for each maximal l-ideal of A. In general
the co-compatible system mentioned above is far from being directed.

L(., B) is a contravariant functor; not much happens functorially
in the second variable. It transforms l-epimorphisms (onto maps) into
o-embeddings. The functor also preserves finite cardinal sums.

If the sequence 0 — A — B— C — 0 is exact, i.e., C= B\A4, then
0— L(C, X)— L(B, X) — L(A, X) is exact for any o-group X, provided
B — (C is a retraction. This happens in all of the following nontrivial
cases: (1) C is a projective l-group relative to all l-epimorphisms; (2)
B is divisible and A is a prime subgroup of B; (38) B is a direct,
lexicographic extension of A by C.

1. Preliminaries. Suppose {G;|ie I} is a family of p. o. groups.
If G is the direct sum of the G; we call G the cardinal sum of the
G, if we define 0 < ge G if and only if 0 < g, € G; for all ie I; nota-
tion: G = B {G;|ie I}. If each G; is an l-group and G is the cardinal
sum, then G is also an Il-group. Z (resp. R) denotes the additive
group of integers (resp. real numbers), with the usual ordering. We
observe that an Archimedean o-group is o-isomorphic to a subgroup
of R in its usual order; (Holder’s theorem, [3]). A prime subgroup
N of the l-group G is a convex [-subgroup such that G/N is an o-
group. A p.o. group G is semi-closed if given ge G and ng = 0,
with = a positive integer, it follows that g = 0.

We use (C) & for (proper) containment of sets; the symbol\ for
complementation in sets.

All groups in this discussion shall be abelian. If A and B are
l-groups (A, B) will denote the set of [-homomorphisms of A into

169
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B. We would like to construct a group L(A, B) which “comes close”
to behaving like a group of homomorphisms; the problem is of course
that the sum of two l-homomorphisms need not be an l-homomorphism.
Conrad and Diem have come up with a rather large set of l-endo-
morphisms of an l-group, which does turn out to be a semigroup
under the usual addition of homomorphisms; they are the so-called
p-endomorphisms, or polar-preserving endomorphisms (see [2]). We
shall mention them in the sequel.

Suppose A and B are l-groups and 4, ¢ € (A, B). We say that
é dominates 6 if ag A b = 0 implies afd A b =0, for all 0 <aec A4 and
0 < b e B; our notation for this is 4 < ¢. It is immediate that < is
a quasi-ordering of <~(A4, B). In fact, if § < ¢ and also ¢ < 6 we
write ¢ ~ @ and call ¢ and 6 polar equivalent; ~ is indeed an equiva-
lence relation. Moreover, it induces a partial order on the equivalence
classes, which we shall index {<;(4, B) |te I}: &¥(4, B) < < ;(A, B)
if and only if some ¢ ¢ .&;(A, B) dominates a § € &;(4A, B). Now for
each iellet L;(A, Byt ={e ¥ (4,B) |0 < ¢, with ¢e &£(4, B)} =
Uisi Z£i(4, B). (We think of I as being partially ordered so as to
be compatible with the order induced on the equivalence classes.)

We are almost ready to state our first lemma; Hom (A4, B) is of
course the full homomorphism group, <% (4, B) the subgroup of
Hom (A, B) generated by (4, B). Thus <% (4, B) = {6, — 6.4, 6,
are sums of [-homomorphisms of A into B}.

LemMA 1.1, (a) For each tel LA, B)* is a subsemigroup of
Hom (A, B); that s, if 0,, 0, < ¢ then 0, + 6. € ¥ (A, B) and 8, + 6, < .
(b) For each te I £ (A, B) is a subsemigroup of L,(A, B)*.

Proof. (a) Suppose z Ay =0 in A; then ¢ A yp = 0 for g¢
(A, B). If 6,6, < ¢ we get 26, A\ y6 = 0, and in turn x6, A y6, = 0.
Likewise x0, A y0, = 0, and of course z0; A ¥4, =0 for 1 =1,2, so
that (x6, + x6,) A (¥6, + y8,) = 0, and so 6, + 6, is an [-homomorphism.
If ag A b =0 then ad; Ab =0 for both7=1,2,s0ab, +ab, A b=0,
which means that 6, + 6, < 4.

(b) We check that if 4, and 6, are polar equivalent to ¢ then
so is 6, + 6,. We already know that ¢ dominates 6, + 6,. Yet if
ab, + af, A\ b = 0 then since 0 < af, < ab, + ab, it follows that ad, A
b =0, whence ag A b =0. The conclusion is that ¢ < 4, + 6,, and
hence 6, + 0, ~ ¢.

For each ¢ e Ilet L;(A, B) be the subgroup of <Z (A4, B) generated
by L;(A, B)*. If we declare an element ¢ € L;(A, B) positive when it
is an l-homomorphism, one easily sees that L;(4, B) becomes a (directed)
p.o. group whose cone is L;(A, B)*. If ¢ <7, letf;; stand for the
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inclusion map of L;(4, B) into L;(4, B). We define L(A, B) to be the
co-limit in the category of abelian groups of the system {L;(4, B) | {f:}}.
(It is easily verifiable that f;; is the identity on L.,(4, B), and that if
1= J =k then fi;fu = fu.)

ProposiTION 1.2. L(A, B) is obtained as a quotient group of the
direct sum of the L;(A, B) by factoring out the subgroup generated by
all elements of the form

(+¢+,0,¢4¢,0,0,0, 2,0, — ¢, 0, ««+) (with the two nonzero entries
n the ith and jth position respectively, and ¢ € L,(A, B) while 1 < j).

Proof. The statement of the proposition merely sets out in detail
the definition of a co-limit in the category of abelian groups.

Thus a typical element of L(4, B) is a vector (---, ¢;, »++) which
is finitely nonzero, while addition and equality of vectors is subject
to the identification imposed by Proposition 1.2; the entry ¢, € L;(4, B).
The direct sum of the LA, B) may be ordered cardinally using the
partial orders on the L;(4, B); it is clear also that the subgroup being
factored out is trivially ordered in this partial order. We therefore
have a partial order on L(A, B) defined by 0 < ¢c L(A4, B) if ¢ has
a representation (---, ¢;, +++) where each ¢; is an [-homomorphism.

A representation ¢ = («++, ¢;, +++) is said to be in reduced form
if (1) for all 2% 7 in the support of (---,4;, +-+) ¢ and j have no
common upper bound in I, and (2) the cardinality of the support is
minimal with respect to satisfying (1). The following lemma is
obvious.

LemMmA 1.3. (a) Each ¢e L(A, B) can be put in reduced form.
If (voe, @5y o00) and (s+-, 0;, «++) are reduced forms of ¢, then their
supports have the same cardinality, and there is a bijection @ of the
supports such that ¢; = 0. .

(b) 0=9¢cL(A,B) if and only if it has a reduced form
(e2e, ¢;, ++*) such that ¢,€ ¥ (A, B) for each tcl. If so then any
reduced representation is by l-homomorphisms.

ProposiTION 1.4. L(A, B) is a directed, semi-closed p.o. group.

Proof. L(A, B) is obviously directed, so we need only verify it is
semi-closed. Let ¢e L(A, B) and suppose (---, ¢;, ---) is a reduced
form of ¢. Suppose ng = 0 for a positive integer n; the representa-
tion (+--, ng;, -+ +) of né is clearly again in reduced form. Hence by
Lemma 1.3 each ng; is an l-homomorphism; one can easily check that
each ¢; is in fact an l-homomorphism.
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ProrosITION 1.5. If B is an Archimedean l-group then L(A, B)
is an Archimedean p.o. group, in the sense that if 0 < ¢<c L(A, B)
and nd £ ¢ for each positive integer n, then 6 < 0.

Proof. Suppose n0 <¢,6=0 and 6 =(++-,0; +++) and ¢ =
(+++, ¢;, +++) are both given in reduced form. After reducing ¢ — nd
we have three possibilities for an index ¢ of the support of ¢ — né:

P; for some jel
(¢ — nb); = {—nb, for some kel
la sum of the above .

Again invoking Lemma 1.3 it follows that —n#, is an [-homomorphism,
and ¢; — nd, = 0 forall w = 1, 2, ... whenever the third choice occurs.
In either case, (in the latter using the archimedeaneity of B) it fol-
lows that 6, < 0. This shows 6 < 0, and we are done.

For some information concerning the structure of L(A4, B) we look
in the remainder of this section at some special cases.

A is an o-group 1.6. In this situation the Il-homomorphisms of
A into B are simply the o-homomorphisms. The index set I is then
directed, since the sum of two o-homomorphisms is an o-homomor-
phism. <Z(A, B) then reduces to {¢, — 4.|¢; are o-homomorphisms
of A into B}. Since each L;(A4, B) is a subgroup of <# (4, B) we may
take their union over I; it is easily seen that this union is precisely
(A, B). Moreover, L(A, B) is now the direct limit of the L,(4, B);
it is well known that the direct limit of subgroups of an abelian group
is the union of the subgroups. Hence <# (A4, B) = L(4, B).

We have a converse of sorts:

ProrosiTiON 1.6(a). Suppose A is not an o-group; then there
is an o-group B so that the index set I in the construction of L(A, B)
18 not directed.

Proof. Suppose A is not an o-group, and select 0 < x, y € A such
that « Ay =0. Let M (resp. N) be a prime subgroup that fails to
contain z (resp. y); then ye M and 2 € N. Note that A/M and A/N
are o-groups; we form B, the direct lexicographic extension of A/M
by A/N. We consider two l-homomorphisms ¢ and 6 from A into
B: ¢ is the canonical map from A onto A/M, followed by the (convex)
inclusion of A/M in B; @ is the canonical map from A onto 4/N fol-
lowed by the inclusion of that in B. Now observe that
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6+0@—-yVOo=[+0x—(s+ 0yl VO
=M+, N—y)v0o=0

whereas
+0)e—-y)VOo=(@+0r=M+=20>0.

We conclude therefore that ¢ + 6 is not an [-homomorphism. The index
set I that arises in the construction of L(A, B) is then not directed.

B is an o-group 1.7. One can verify with little trouble that
¢ e L (A, B) dominates 6 e (A, B) if and only if Ker (¢) & Ker (6).
Hence ¢ and 6 are polar equivalent if and only if they have the same
kernel. The kernels are all prime subgroups of A, and so I is anti-
isomorphic to a subset of the root system of primes (see [1], Theorem
1.7, the l-ideals containing a prime subgroup lie on a chain). I is
therefore a tree-system: no two incomparable elements of I have a
common upper bound; plainly, I is far from being directed.

Now if ¢ e L(A, B) then any vector representing ¢ is “almost” in
reduced form; that is, it satisfies the first defining condition, except
the support may be too large.

B =R 1.8. From the discussion in 1.7 it is clear that the index
set I is trivially ordered. We will show there is in fact an index
1€ I for each maximal l-ideal of A, and that L(4, B) is a cardinal
sum of copies of R, one for each maximal l-ideal of A.

If ¢: A— B is an l-homomorphism, then M = Ker (¢) is a maximal
l-ideal. Using the fundamental theorem of l-homomorphisms there is
an o-isomorphism ¢: A/M — B, which, by a well known corollary to
Holder’s theorem, is a left multiplication by a positive real number.
Thus the l-homomorphisms of A into B with kernel M form a semi-
group which is o-isomorphic to the additive semigroup of positive real
numbers. This proves that each L;(A4, B) is a copy of R. It isclear
that one such copy appears for each maximal l-ideal of A, since the
corresponding quotient groups are all o-isomorphic to subgroups of R.

Finally, the subgroup one factors out of the direct sum of these
copies of R to get L(A, B) is trivial here, and we conclude that
L(A, B) is a cardinal sum of copies of R.

A similar argument can be made for B = Z; one then obtains
that L(4, B) is a cardinal sum of copies of Z, one for each maximal
l-ideal of A with cyclic factor in A.

A polar preserving endomorphism of an l-group A is an l-endomor-
phism ¢ with the property that # A ¥ = 0 in A implies that #¢ A ¥ = 0.
(For an in-depth discussion of these endomorphisms the reader is



174 JORGE MARTINEZ

referred to [2].) In our notation the semigroup of polar preserving
endomorphisms is precisely the set of Il-endomorphisms which are
dominated by the identity on A. The subgroup they generate is one
of the L;(4, A).

If ¢ is an l-homomorphism of A onto B and 6 is a polar preserv-
ing endomorphism (p-endomorphism) of B, then ¢4 < ¢, for if ¢ A y=0
then z¢0 A y = 0. Conversely, if ¢’ e (4, B) and ¢ < ¢ one easily
sees that Ker (¢) & Ker (¢'). This implies the existence of an endomor-
phism 6 of B satisfying b = a¢’ if b = ag. 0 is certainly well defined,
and it is a p-endomorphism since ¢ dominates ¢’. It follows then
that if ¢ is the index in I determined by ¢, L;(A, B) is o-isomorphic
to the group generated by the p-endomorphisms of B.

We close this section with a rather general comment: for arbitrary
l-groups A and B the groups L,(A, B) are subgroups of <Z (4, B);
the inclusion mappings are compatible with the f;;, so by the defini-
tion of co-limits we have a “natural” homomorphism of L(A, B) into
Z (A, B). It assignstog=(---, ¢, +--)the sum of the ¢; in Z (4, B).
About all that is on the surface concerning this mapping is that it is
onto and an o-homomorphism. As a major unanswered question we
might pose the following: when is this mapping an o-isomorphism?
In most of the examples one can dream up it is, but as the l-groups
get more complex, our knowledge of the structure of L(A, B) decreases
rapidly.

2. The functor L(-, B). We will show that L(., B) is a con-
travariant functor from the category of abelian Il-groups and I-homo-
morphisms into the category of directed, semi-closed p. 0. groups with
o-homomorphisms. (L(A4, ) does not seem to be a functor at all.)

Suppose ¢: A— A’ is an [-homomorphism; if 4, 6, A’— B are
l-homomorphisms and 6, < 6, then ¢6, < ¢f,. Thus ¢ induces an o-
homomorphism ¢* of each L,(4’, B) into some L, (A4, B); the map
1 — ¢(7) is an order preserving map of I(4’, B) into I(A, B). We have
canonical embeddings z;: L;(4, B) — L(A, B)(i¢ I(A, B)) and

s Li(A’, B) — L(A’, B)(j € I(A', B)) .

We also have the connecting embeddings {f;;}, for ¢ < j e I(4, B), and
{fis}, for 1 < jeI(A’, B). Consider now for each ic I(A’, B) the map
&'y Li(A’, B) — L(A, B). We show that if ¢ <j in I(4’, B) then

Fiit sy = Mg 5
for if 0 £ a,, ., e L;(A’, B)
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(@, — a)fiit' oy = (90, — PN sy = (9O — SN 5000600 letir
= (g, — ¢t Mg,
= (a, — o) s,

By the definition of the co-limit there is a unique homomorphism
L(¢, B): L(A’, B)— L(A, B) such that #,L(¢, B) = ¢'tt4,, for each
1€ I(A’, B). Thus if

a = (' sy Oy ot ') eL(A,, B)’ aL(¢, B) = (“', (¢ai)¢(i)7 M ') ’

it is clear then that L(g¢, B) is order preserving.
The next two lemmas are easy to prove; consequently we shall
not bore the reader with their proofs.

Lemma 2.1. L(-,B) 4s a contravariant functor; that is if
p: A, — A, and 0: A, — A, are l-homomorphisms then

L(¢8, B) = L(6, B):- L(¢, B) ,
and L(1,, B) = 1.4,5. (s denotes the identity mapping on G.)

LEeMMA 2.2. If ¢,¢': A— A’ are l-homomorphisms and ¢ + ¢ 1is
too, then L(¢ + ¢', B) = L(¢, B) + L(¢', B).

In a category & with zero the co-kernel of a morphism f: A— B
is a morphism v: B— C such that fv = 0, and having the property
that if 0: B— D is any morphism with f6 = 0, then there is a unique
morphism 6: C— D such that vé’ = 6. In the category of abelian
l-groups the co-kernel of an l-homomorphism ¢: A — B is the canonical
mapping 7: B— B/J where J is the convex hull of the image of 4.
All epimorphisms of this category have zero co-kernel, but not con-
versely. For instance, the embedding j: Z— Z & Z onto the diagonal
has zero co-kernel, but if ¢ denotes the l-automorphism of ZH Z
given by (a, b)¢ = (b, a) then j¢ = j-1,m; = J, 80 j is not epic.

THEOREM 2.8. If a: A— B is an l-homomorphism with zero co-
kernel then L{a, X) has o trivially ordered kermel. This holds in
particular if a is epic. If a is onto B then L(a, X) is one-to-one.

Proof. Suppose ¢ = (++-, ¢;, +++) € L(B, X) with each ¢, = 0, and
assume ¢L(a, X) = 0. Thus (+++, (@F)aw), *+++) = 0; this means that
the vector (++ -, (@@:)aw, »++) of B {Li(4, X)|ie I(A, X)} is in a trivial-
ly ordered subgroup. Thus each a¢; = 0, and since « has zero co-
kernel, each ¢; = 0.

Now suppose « is onto and e L(B, X). If 6 = (+++,0;, -++)is in
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reduced form then we seek to show (---, (@0))au, ** ) is too. Clearly
1e I(B, X) is in the support of (---, 8;, --+) if and only if a(?) is in
the support of (---, (@0))aw), = ++) since a is onto. Suppose now that
a(7), a(j) are both in the support of (---, (@0)au), «++) and ke I(A, X)
exceeds both of them. Then whenever 0 < v, e Ly(B, X) and 0 < v, ¢
L;B, X), av; + av; = a(v; + 7v;) is an l-homomorphism of A into X.
Again using the fact that « is onto one can then readily show that
v; + 7v; is an [-homomorphism. But then some index of I(B, X) ex-
ceeds 7 and j, contradicting the hypothesis that (---, 6;, ---) is reduc-
ed. A similar argument shows that the size of the support of
(+o°, (@0)ais), =+ +) is minimal; it now follows that (.-, (@0)a, <) is
reduced.

Thus if 0 = 6L(a, X) = (+++, (@0))a), +++) then each af;, = 0 and
so 0, = 0 for all e I(B, X); hence 6 = 0 and so L(«, X) is one-to-one.
(We shall see later that L(a, X) is in fact an o-embedding.)

The natural question here is: what does L(-, X) do to short exact

sequences of [l-groups? (We call a sequence 0 — A = B——‘i C—0 of

l-homomorphisms short exact if « is one to one, B is onto and
Ker (B) = Im (w).) We will show presently that L(g, X) is an o-
monomorphism. Certainly L(g, X)- L(a, X) = L(ag,) = 0, but do we
get exactness at L(B, X)? We shall give some partial answers, and
then make some (hopefully) educated guesses.

ProrosiTION 2.4. If 0— A 5B LN C — 0 is a short exact sequence
of l-groups, and if 0 < ¢ e Ker (L(a, X)) then ¢ e (L(C, X)")L(B, X).
In particulor L(G, X) is an o-embedding.

Proof. If ¢ = (+++, ¢;, +++) =0 and ¢L(x, X) = 0 then

("’1 (a¢1:)a(';>, "') =0.

This means that in B {L; (A4, X)|ie I(4, X){(-+-, (A@:)aisr, -+*) 1S a
vector whose components add to zero. But each entry ag¢; is 0 or an
l-homomorphism; if the sum of l-homomorphisms is zero each of them
is zero. Thus ag; = 0 for each ie I(B, X); since B is the co-kernel
of a, there is an l-homomorphism 7: C — X such that g7 = ¢;. This
determines a ve L(C, X) whose image under L(B, X) is ¢; clearly
0 < v and our proposition is proved.

PROPOSITION 2.5. If 0— A5 BLC—0 splits cardinally, ie.
B=AmC, then L(B, X) = L(C, X) & L(4, X).

Proof. If B= A ®m C we have [-homomorphisms p: C— B and
0: B— A such that ac =1,, 08 =1,, 00 = 0and 1, = oa + Bp. For
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each l-group X we have

L(o, X)L(at, X) = 14,5, » LB, X)L(0, X) = 1,0,x)»
L(o, X)L(p, X) = 0, L(g, X)L(a, X) =0,

and finally by Lemma 2.2
L(e, X)L(o, X) + L(o, X)L(B, X) = 15,z -
This proves L(B, X) = L(C, X) B L(4, X).

PROPOSITION 2.6. Let j: G — G be the natural embedding of the
l-group G in its divisible hull. For each l-group X L(j, X) is an
o-embedding. If X is divisible L(j, X) is onto.

Proof. If ¢, and ¢, are any two homomorphisn_zs of G into the
l-group X which agree on G, then since each zeG is of the form
x = (1/n)g, for a suitable positive integer n», we have

n(@é) = n((1/n)g)d. = 96, = 94, = n((I/n)g)g. = n(xg;) ,

which implies that z¢, = x¢,, since X is torsion free. Clearly then
L(j, X) is one-to-one. Moreover, if ¢: G — X is a homomorphism whose
restriction to G is an l-homomorphism then ¢ is an l-homomorphism;
for if # = (1/n)ge G with ge G then

w@ V 0)¢ = n((1/n)g VvV 0)¢ = (9 V 0)¢ = g¢ V 0 = [n(l/n)gg] V 0
= n[(l/n)gs V 0] = n(xg V 0) .

This says that L(j, X) is an o-embedding. Finally, if X is divisible
then each l-homomorphism of G — X extends (uniquely) to an I-homo-
morphism of G — X; in other words, L(j, X) is onto.

We shall for the remainder of the section study the question of
exactness of L(-, X) for o-groups X; according to 1.7 the picture we
get of L(A, X) is somewhat less cluttered. The preceding result tells
us that if X is divisible we might as well assume that A is. So we
ask: given an o-group X, which exact sequences 0 - A —-B—C—0
go to exact sequences '

0— L, X)— LB, X)— L4, X)?
Prior to going into these questions more deeply we record some inter-

esting properties of L(., X).

PROPOSITION 2.7. Let ¢: A— B be an Il-homomorphism onto B.
If L(g, X) is an o-isomorphism for each o-group X then ¢ itself is
an isomorphism.



178 JORGE MARTINEZ

REMARK. An analogous statement holds for o-groups X with a
minimal nonzero convex subgroup.

Proof. If ¢ is not one-to-one pick 0 < xcKer (¢) and let N be
a prime subgroup that fails to contain z. Set X = A/N and n: A— X
to be the canonical I-homomorphism. Then (+++, 0, ¢+, 9, +¢+, 0, ¢c) €
L(A, X) is not an image under L(g, X).

THEOREM 2.8. Let A be an l-group; A is a subdirect product of
reals if and only if whenever ¢: A— B is an l-homomorphism omnto
B then L(¢, R): L(B, R) — L(A, R) is an l-isomorphism if and only
if ¢ is an l-isomorphism.

Proof. Suppose ¢: A — B is an [-homomorphism onto B. Let us
examine what L(g, R) does. There is a one-to-one correspondence
between the maximal [-ideals of B and the maximal l-ideals of A that
contain K = Ker (9). Now L(B,R) and L(A, R) are both cardinal
sums of copies of R, one for each maximal l-ideal of B and A re-
spectively. So L(g, R) is nothing more than the injection of L(B, R)
onto that portion of L(A, R) corresponding to maximal [l-ideals of A
that contain K.

If L(g, R) is then onto for some ¢ with nonzero kernel, then every
maximal /-ideal of A contains K and so A is not a subdirect product
of reals. Conversely, if A is not a subdirect product of reals let D
be the intersection of all the maximal Il-ideals of A; D = 0. Let
B = A/D and ¢ be the canonical mapping of 4 onto B. By our argu-
ments in the previous paragraph L(g, R) is an l-isomorphism.

REMARK. A similar theorem holds for subdirect products of
integers.

THEOREM 2.9. Let 0—»Aﬁ>Bi C— 0 be a short exact sequence
of l-groups. If X 1is any Archimedean o-group then the induced
sequence

0—(C, X)— L(B, X) — L(A, X) is exact.

If X = R then L(a, X) is onto if and only if every maximal l-ideal
of A is the meet of a maximal l-ideal of B with A. If this is the
case L(B, X) = L(C, X) B L(A, X). If X = Z then L(a, X) is onto
if and only if every maximal l-ideal of A with cyclic factor is the
meet with A of a maximal l-ideal of B with cyclic factor.

Proof. Asin 1.8 we have that if ¢: B— X is an l-homomorphism
its kernel M is a maximal l-ideal and ¢ determines an o-isomorphism
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from B/M - X which is a right multiplication by a suitable positive
real number. The difference here is that not all maximal l-ideals
appear as indices for L;(B, X), and the L,(B, X) themselves need not
be full copies of R. Still L(B, X) is a cardinal sum of subgroups of
R one for each “admissible” maximal l-ideal. Now L(g, X) acts as
in the proof of 2.8: there still is a one-to-one correspondence between
maximal l-ideals of C that appear as kernels of l-homomorphisms into
X and the same type of maximal l-ideals of B that contain A. So
L(B, X) is the injection of L(C, X) onto that portion of L(B, X) cor-
responding to those maximal l-ideals of B that contain A.

As for L(a, X) we have the following: if ¢: B— X is once again
an Il-homomorphism, and M = Ker (¢) 2 A then M N A is a maximal
l-ideal of A and it is the kernel of ag. Thus L(a, X) has the effect
of annihilating all the components of L(B, X) corresponding to maxi-
mal l-ideals of B that contain A, and being the identity on the re-
maining components.

It is now clear that 0 — L(C, X) — L(B, X) — L(4, X) is exact,
and also that the last part of the theorem holds, in the special cases
when X =R or X = Z.

In fact, after we record the following definition we have a better
theorem.

Let X be an o-group and G be any l-group; a prime subgroup N
of G is an X-entry of G if it appears as the kernel of some I-homo-
morphism of G into X. Thus:

THEOREM 2.92. If 0— A% BL C—0 is exact then L(B, X) =

L(C, X) B L(A, X) for an Archimedean o-group X i and only if
every X-entry of A is the meet of an X-entry of B with A.

We have the following sufficient condition for the exactness of
0— L(C, X) — L(B, X) — L(A, X), when X is an arbitrary o-group.

THEOREM 2.10. If 0— A5 BE C— 045 exact, then 0 — L(C, X) —
LB, X)— L(A, X) is exact if A+ N = B for every X-entry of B
which does not contain A.

The proof of this theorem depends upon the following lemma,
which is known and quite easy to prove. (See [1], Theorem 1.14.)

LEMMA 2.11. Let G be an l-group, A be a nonzero l-ideal of G.
There is an o-isomorphism between the set of prime subgroups of G
that do not contain A and the proper prime subgroups of A wvia the

~mapping N— NN A.
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Proof of 2.10. Since the index sets I(-, X) are inversely o-iso-
morphic to a subset of prime subgroups we shall use the prime sub-
groups themselves to index the groups that make up the L(-, X)’s.

Suppose then that ¢ = (---, ¢y, --+) is in reduced form and
pL(x, X) = 0, that is (- -+, (@By)vna, *++) = 0. If N2 A then agy is
identically zero; to see this write ¢y = 6§ — 65, with ¢3, ¢y € L (B, X);
the kernels of ¢; and ¢5 contain N and hence A. In this case we
need not worry about ¢,; pick 6, e L(C, X) such that 80 = ¢} and
By = ¢5; then B0 — ) = ¢y.

We are therefore left to consider those prime subgroups N of B which
do not contain A. By Lemma 2.11 the support of (---, (Xdy)xna, =)
is determined by precisely those prime subgroups; the lemma also guar-
antees that the representation is reduced. We have then that ag, = 0
for each prime subgroup N 2 A. Once again, writing ¢, = é5 — 5
as a difference of [-homomorphisms (whose kernels contain N but not
A, for otherwise they would also vanish when restricted to A) we
have agf = agy.

Our assumption is though that A + N = B for each such prime
subgroup N, and this implies that ¢% = ¢5. The conclusion here is
that the support of ¢ = (---, g, --+) consists of those X-entries which
contain A. Our first paragraph in this proof then makes it clear
that ¢ is the image of some element of L(C, X) under L(B, X). This
completes the proof of the theorem.

COROLLARY 2.10.1. Suppose A is a maximal l-ideal of B, let
C=B/A and 0 - A— B—C—0 be the induced exact sequence. If
A 1s also a minimal prime subgroup then 0 — L(C, X) — L(B, X) —
L(A, X) is exact for all o-groups X.

An l-group G is hyper-archimedean if it is Archimedean and every
l-homomorphic image of G is Archimedean. It is well known (see for
instance [1], Theorem 2.4) that G is hyper-archimedean if and only if
every prime subgroup is maximal (and hence minimal).

COROLLARY 2.10.2. If B 1is a hyper-archimedean l-group and
0—->A—B—>C—0 is exact then 0— L(C, X)— L(B, X) — L(A, X)
18 exact for every o-group X.

Proof. Every prime subgroup of B is both maximal and minimal;
consequently, if N is an X-entry of B that does not contain A we
have B= A + N. Theorem 2.10 now applies.

Another sufficient condition for the exactness of 0— L(C, X) —
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L(B, X) — L(A, X) is obtained by requiring that 0 — 4 LB ﬁ C—0
be “right splitting”, i.e., that g be a retract.

THEOREM 2.11. Let 0— A B LA C— 0 be an exact sequence of
l-groups, and suppose p:C— B 1is an l-homomorphism such that
08 = 1, Then for each o-group X 0 — L(C, X) — L(B, X) — L(4, X)
18 exact.

Proof. We use the notation of the proof of Theorem 2.10. Let
6 = (s++, ¢y, +++) be an element of L(B, X) in reduced form and con-
sider ¢L(a, X) = (+++, (®py)yna, +++); as shown in 2.10 this is once
again reduced. So if ¢L(ox, X) = 0 we have agy = 0 for all X-entries
N of B. As before, write ¢y = ¢ — ¢y as the difference of I-homo-
morphisms of B into X. For each X-entry define 6y, 65: C— X by
0y = psy and Oy = pgy. We claim that 0L(B, X) = ¢, where 6 =
(+o+, 0y, +++) and 0y = 0% — 0O5.

Note that g induces a group direct sum B = A ¢ C; more precisely,
each be B can be expressed uniquely as b = aa + cp, where ¢ = bg.
Thus bB0% = bRosy and bROy = bBEgy, while bgy = aagy + cogh =
axdy + bResY = aagy + bROY; likewise bgy = aagy + bRy, which im-
plies that bé, = bg0y, for all be B.

This suffices to prove that 6L(B, X) = ¢, and our theorem is
proved.

COROLLARY 2.11.1. Let 0— A5 B 2 C — 0 be an exact sequence;
in all of the cases below 0— L(C, X) — L(B, X) — L(A, X) is exact
for each o-group X.

(a) C is a projective l-group.

(b) B is divisible and A is a prime subgroup of B.

(¢) B is a direct lexicographic extension of A by C.

Proof. In each of the above cases B is a retract and the theorem
applies.

COROLLARY 2.11.2. If 0—-A—B—C—0 is exact where A 1is
a prime subgroup of B then 0— L(C, X) — L(B, X)— L(4, X) is
exact for each divisible o-group X.

Proof. Apply Proposition 2.6 and Corollary 2.11.1 (b).

The following example may serve to illustrate a bit the difficulty
in deciding which conjectures ought to be made in connection with

this functor. Let X = Z x Z with the lexicographic order: that is,
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(m,n) =0 if m>0or m=0 and then » = 0. We will show that if
0—A—B—C—0 is a short exact sequence then 0— L(C, X) —
L(B, X) — L(A, X) is exact. So consider an exact sequence 0 — 4 —
B—C—0, suppose ¢ = (+++,dy, »++) is in reduced form and
¢L(a, X) = 0 (¢ L(B, X)). As in the proof of 2.10 it suffices to con-
sider those X-entries N such that N2 A. As before write ¢y =
o5 — ¢y as a difference of Il-homomorphisms whose kernels do not
contain A. By our assumption ag; = agy; ¢ and ¢y have a common
kernel, and after factoring out this kernel we have two o-embeddings
of X into itself, say 6, and 6,, which agree on the nonzero proper
convex subgroup of X. The o-homomorphisms of X into itself are
given by triangular integral matrices

(?:Z) with m >0,n=0o0orm=n=0and p=0.

If 6,= (73‘ f;) (?=1,2) and ¢, agrees with 6, as specified, then

N, = M, so clearly 6, — 6, is either order preserving or order inverting.
Lifting back to B ¢ — ¢y is either an [-homomorphism or the
additive inverse of one. Since a(sF — éy) = 0 there is a unique I-
homomorphism +: C — X such that gy = *(¢F — ¢7). This suffices to
prove the exactness of the sequence.
The reader will appreciate the special nature of the above
example.

3. Comments and questions. It appears that our functor will
be of little use as the classical Hom-functor is in extension theory of
abelian groups and modules. One might try to define an Ext-like
functor using projective resolutions; in that case the question of in-
dependence of the resolution used appears to be an impossible problem.
Or one could choose some “standard” free resolution; here it is obvious
that computations could become nightmarish.

In view of some of our results, particularly Theorems 2.8 and
2.9, one can expect L(-, X) to be useful in characterizing certain
lattice-group theoretical concepts. In any case, one large disadvantage
of our construction is that there is no functoriality in the second
variable.

Another possibility is that L(-, R) might serve as a “duality”
functor between l-groups and abelian groups. Then one practically
has to restrict oneself to subdirect products of reals, (L(A4, R) = 0 if
A has no maximal l-ideals), and then two such subdirect products of
reals might very well have the same dual, (if they have the same
number of maximal l-ideals.) A true duality can be realized, at least
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for subdirect products of reals, if one computes L(4, X) for every
Archimedean o-group, and then associates for each A the whole
“spectrum” {L(4, X)|X is a subgroup of R}. Such a duality is
evidently too cumbersome.
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WEAKLY ALMOST PERIODIC HOMEOMORPHISMS
OF THE TWO SPHERE

W. K. MASON

A self-homeomorphism f of the 2-sphere S? is weakly
almost periodic (w.a.p.) if the collection of orbit closures
forms a continuous decomposition of S2. It is shown that if
f is orientation-preserving, w.a.p. and nonperiodic, then f
has exactly two fixed points, and every nondegenerate orbit
closure is an homology 1-sphere. There is an example with
an orbit closure which is an homology 1-sphere but not
a real 1-sphere. If f is orientation-reversing, w.a.p. and has
a fixed point, then f is shown to be periodic. The orbit
structure of orientation-reversing, w.a.p., nonperiodic homeo-
morphisms on S? is studied.

1. Introduction. Let f be a periodic mapping of the 2-sphere
S? to itself. Kerékjarté [8] and Eilenberg [3] showed that f is
topologically equivalent either to the identity (every point fixed), to
a rotation (two fixed points), a reflection (a simple closed curve of
fixed points), or to a rotation followed by a reflection (no fixed points).
If f satisfies the weaker condition of being almost periodic (equivalent
to having equicontinuous iterates), then the fixed point set of f again
is either empty or an i-sphere, 0 < 7 < 2, [9]. (For related results on
almost periodic mappings of subsets of S? see Hemmingsen [7].)

In the present paper we study the weakly almost periodic
homeomorphisms on S2, (the collection of orbit closures forms a con-
tinuous decomposition of S?, and show that the set of fixed points
is still either empty or an ¢-sphere, 0 < ¢ < 2, (Theorem 3 and Corol-
lary 5). Some other results are: if f: S*— S* is weakly almost
periodic (w.a.p.), orientation-reversing, and has a fixed point, then f
is periodic (Theorem 4); if f: S*— S* is w.a.p., orientation-preserving,
and not periodic, then every nondegenerate orbit closure is an
homology 1-sphere (Theorem 5).

A homeomorphism of S? to itself which is w.a.p. but not almost
periodic is given in [12, Example 1]. This example is not almost
periodic since it has an orbit closure which is not locally connected,
(see [7, Section 5]). The collection of orbit closures, however, is easily
seen to be continuous.

Our main theorems are given in §§6 and 7. Section 3 gives a
summary of results in the theory of prime ends which we need.
Section 4 discusses the fixed point theory used in §§5, 6, and 7.
(Those familiar with prime ends and local fixed point index may skip
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§§ 3 and 4.) Many of our techniques are based on those of Cartwright
and Littlewood in [2].

2. Definitions and notation. If f: X — X is a homeomorphism
and ze X, then the orbit closure of x is the closure of the set of
iterates {f*(x)}, n =0, x£1, %2, «-+, (f° = Id).

The original definition of weakly almost periodic was given by
Gottschalk in [5]. For compact spaces the original definition is equiva-
lent to requiring that the orbit closures form a continuous decom-
position [5, Theorem 5]. The equivalent definition which we shall
use in our proofs is: f: S*— S*® is weakly almost periodic if (a) the
collection of orbit closures is a decomposition of S? (if two orbit
closures meet, they are equal), and (b) for any closed set B, the
union of all orbit closures which intersect B is a closed set, [6,
Theorem 4. 24, p. 34].

A point x e X is a nonwandering point if for every neighborhood
U of ®», there is a nonzero integer # such that f(U)N U=+ ¢. If
x is not a nonwandering point it is a wandering point. It is easily
seen that if f: S*— S? is w.a.p. then every point is a nonwandering
point.

A domain is a connected open set. If A is a set Cl(4) and Bd(4)
denote the closure and boundary, respectively, of A. If U is a domain
of S? and « is a point in a component R of S* — Cl(U), then Bd(R)
is the outer boundary of U with respect to x.

An homology l-sphere K in S* is a continuum (closed, connected
set) such that S* — K has exactly two components.

An open triod is a set homeomorphic to the set of all points
(x, y) in the plane such that either —1 <2 <1 and y =0, or x =0
and 0 <y < 1. The points (—1,0), (1, 0), (0,1) are called the feet
of the triod.

If U is a domain then a crosscut of U is an open arc in U whose
closure is an arc which intersects Bd(U) in two points. An endcut
of U is a half-open arc in U whose closure is an arc which intersects
Bd(U) in one point.

3. Prime ends. In this section we state the results and defini-
tions concerning prime ends which we shall use in §§5 and 6. The
material in the present section is taken from [2], [11], and [15].

Let U be a simply-connected domain in S* with a nondegenerate
boundary. A C-transformation of U onto the open unit disk D is a
homeomorphism 7T: U-— D such that the image of any crosscut in
U is a crosscut in D, and the endpoints of such images of crosscuts
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of U are dense in the boundary of D. The conformal mapping of U
onto D given by the Riemann mapping theorem shows that C-trans-
formations always exist. However, C-transformations may be con-
structed by topological methods, without using conformal mapping
theory, [15, Appendix 2].

Given a homeomorphism f of the closure of U onto itself, and a
C-transformation 7 of U onto D, we have that TfT D—D is a
C-transformation which may be extended to a homeomorphism of the
closed unit disk onto itself, [15, (4.10) on page 6, and (Al.7) on page
27].

A collection of crosscuts Q,, @, --- of the simply connected do-
main U is a chain if (a) the ares Cl(Q), Cl(Q.), --- are pairwise
disjoint, (b) @, separates Q,_, from @,,, in U, (c) there is a point on
Bd(U) whose greatest distance from @, approaches 0 as 7 — oo,
Corresponding to each @, there is a domain G, of U — @, containing
Q.+ Note that G, G, D +-».

If {Q}, {R} are chains of crosscuts, and {G;}, {H} are their
respective corresponding domains, then {Q;}, {R;} are equivalent chains
if for every n there is an m such that H,c G, and G,C H,.
Equivalent chains are said to define the same prime end. Thus, a
prime end of U is an equivalence class of chains of U.

If Q,Q,, -+ is a chain of crosscuts in U, then their images
T(Q), T(Qy), -+~ under the C-transformation T: U-— D is a chain in
D, [15, Appendix 2]. If {Q} and {R;} are equivalent chains in U,
then {T(Q:)}, and {T(R;)} are equivalent chains in D, and in fact
converge to the same point on the boundary of D, ({Q;} and {R;} may
not converge to the same point on Bd(U)). Thus, T setsupa 1 —1
correspondence between prime ends of U and points of the unit circle
[11, p. 621].

If f:CI(U)—Cl(U) is a homeomorphism and F is a prime end
of U, then E is fixzed by f if for some chain {Q,} defining F, we
have that {Q;) and {f(Q;)} are equivalent chains. This definition is
easily seen to be independent of which defining chain is used. If
T: U— D is a C-transformation, #: Cl(D)— Cl(D) is the extension
of TfT, and ¢ is the point on Bd(D) corresponding to the fixed
prime end E, then h(e) = e. Conversely, every fixed point of % on
Bd(D) corresponds to a fixed prime end of f.

If F is a prime end of U, {Q,} is a defining chain for E, and »
is the point on Bd(U) to which the crosscuts {Q;} converge, then p
is a principal point of E. (We remark that there exists a U with
a prime end E such that every point of Bd(U) is a principal point
of E, [13].)

If A is an endcut in U with an endpoint s€Bd(U), then there
is a chain {@; defining a prime end E such that s is a principal
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point of E and each crosscut Q; separates the endpoint of A in U
from some (open) subarc of A having s as an endpoint. FE is the
prime end determined by A. If T: U— D is a C-transformation,
and e is the point on Bd(D) corresponding to E, then T(A4) is an
endcut in D having e as an endpoint, [15, page 5].

4. Lefschetz number and local fixed point index. In this
section we state the results concerning fixed points which we shall
use in §§ 5, 6, and 7.

If X is a compact polyhedron and f: X — X is a map (continuous
function), then there is a certain rational number L(f), called the
Lefschetz number of f, associated with f and X, [14,p. 195]. We
shall use the following two facts about L(f).

Fact 1. If X is a two cell, then L(f) = 1.

Fact 2. If X is a 2-sphere and f is an orientation-preserving
homeomorphism, then L(f) = 2.

For proofs of Facts 1 and 2, see [14, p. 196].

If ¢ is the category of compact polyhedra and maps, let A(e)
denote the set of pairs (f, U), where f: X— X is a map in ¢ and
U is an open subset of X such that f has no fixed points on the
boundary of U. Then there is a function 4, the local fized point
index, from A(e) into the rationals which satisfies the following
axioms:

Al. If (f, U), (9, U) belong to A(e), and f = g on the closure
of U, then (f, U) = i(g, U).

A2. If f, is a homotopy such that (f,, U)ec A(¢) for each ¢,
0 =t=1, then i(f,, U) = i(f,, U).

A3. If (f, U)e A(e) and U contains mutually disjoint open sets
V;,j=1,+--,k, such that f has no fixed points on U — UL, V;,
then

k
WU =2uf, Vo).
In particular, if f has no fixed points on U, i(f, U) = 0.

A4. If f: X— X belongs to e, then i(f, X) = L(f).

A5, If the maps f: X— Y, g: Y— X belong to e, and
(9f, U)e A(e) ,
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then i(gf, U) = i(fg, g7(U)).
For further discussion of the local fixed point index see [4] or [1].

REMARR. If D is the open unit disk, and h is a map of the
closure of D to itself with no fixed points on Bd(D), then i(k, D) = 1.
For, by Fact 1 and Axiom A4, 1 = L(k) = i(h,Cl(D)). Then, by
Axiom A3, i(h, CI(D)) = i(h, D).

5. Preliminary lemmas. Our first lemma is based on Lemma
11 of [2].

LemmA 1. Suppose f: S*— S* is a homeomorphism, U 1is a
stmply connected domain with nondegenerate boundary, f(U) = U,
and every point of U ts a monwandering point. Suppose also that
E is a prime end of U which is fized by f. Then every principal
point of E is a fized point of f.

Proof. Let Q,, @, --- be a chain of crosscuts defining E which
converge to the principal point p of E.

Case 1. f(Q) N Q; = ¢ for some 7. Let V be the component of
U — @Q; containing @i, Qiss, ++-. E is fixed by f, so {@;} and {f(Q,)}
are equivalent chains, hence f(V)N V # ¢. But then f(V) either
contains or is contained in V. Assume f(V)C V. Let W be the
nonempty open set V — CI(f(V)). Then f*(W)nNn W=g¢ if n = 0.
Thus no point of W is a nonwandering point. This contradiction
shows that Case 1 cannot occur.

Case 2. f(Q)NQ:;=¢ for all 4, i=1, 2, --.. For each i,
select a point ;€ Q; such that f(z;)e@Q;. The crosscuts Q,, @, «--
converge to the principal point p, hence {x;} — p, hence {f(x;)} — f(p).
But f(x;)e @, hence {f(x,)} — ». Hence f(p) = p and the proof of
Lemma 1 is complete.

LEMMA 2. Suppose f: S*— S* is a homeomorphism, M is an
invariant continuum in S* which contains no fized point of f, and
every point of S* is a monwandering point. Then #(f, U) =1 for
every component U of S* — M which is invariant under f. (See §4
for discussion of the fixed point index i(f, U).)

Proof. Let U be a component of S — M such that f(U) = U.
M is connected, hence U is simply connected. Also, Bd(U) is non-
degenerate, since M contains no fixed point of f. Let T be a C-
transformation of U onto the open unit disk D. Extend TfT* fo a
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homeomorphism 4 of Cl(D) onto itself. Since Bd(U) contains no fixed
point of f, we see by Lemma 1 that U has no fixed prime ends.
Hence % has no fixed points on Bd(D). Hence i(h, D) =1 by the
Remark, § 4.

We would like to conclude from Axiom A5 of § 4 that #(f, U) = 1.
However, D and U are not compact polyhedra. We overcome this
difficulty as follows: let X be an open 2-cell which contains the fixed
points of f in U and whose closure is contained in U. Let Y be a
closed 2-cell in U containing Cl(X) U f(C1(X)). Let r: Cl(D) — T(Y),
and 7,: S*— Y be retractions. Since T(X) contains all fixed points
of h, we have:

1 = i(h, D) = i(h, T(X)) by Axiom A3
= y(Tr,fT7'r, T(X)) Dby Al
= (fT'r,Tr,, X) by A5
= i(f, X) by Al
= i(f, U) by A3.

The proof of Lemma 2 is complete.

6. Fixed point sets of weakly almost periodic homeomor-
phisms on S

THEOREM 3. Suppose f: S*— S* is a w.a.p. orientation-preserv-
ing homeomorphism. Then either f is the identity or f has exactly
two fized points.

Proof. Let Fix(f) denote the set of fixed points of f. Assume
Fix(f) # S% Since f is orientation-preserving it is easily seen that
f leaves every component of S* — Fix(f) invariant, and so we may
select an arc A in one of these components such that f(4) N A #= ¢.
Denote by M the union of all orbit closures which meet A. M is
closed, since f is w.a.p.; M contains no fixed point of f; and M is
connected since M is the union of the connected set

U_r@

and limit points of this set.

Since M and Fix(f) are disjoint closed sets, we see that Fix(f)
is contained in a finite number U, ---, U, of components of S* — M.
By Axioms A3, A4, and Fact 2 of §4, we have

2= L(f) = i(f, 8) = 3i(f, U) .
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But by Lemma 2, i(f, U;) =1, 1 <75 <s. Hence s =2.
It remains to show that Fix(f)N U;,5 =1, 2, is a single point.
Let U be the component of U, — Fix(f) with Bd(U)) < Bd(U).
Since Bd(U,) and Fix(f) are disjoint closed sets, we see that Bd(U)—
Bd(U) is a closed nonempty subset of Fix(f).

Case 1. Bd(U) — Bd(U,) has more than one component. Then
by [16, Corollary 3.11, p. 109], there is a simple closed curve J in U
which separates Bd(U) — Bd(U,). Let B be an arc with one endpoint
on Bd(U)), the other on J, and contained in U except for one end-
point. Then Bd(U,) UJ U B is connected, and

FBAT)UJUB)NBUT)UJ U B) #¢.

Thus if we denote by N the union of all orbit closures which inter-
sect Bd(U,) UJ U B, we see that N is an invariant continuum which
contains no fixed point of f (this follows similarly to the case of M
above). Let V, ..., V, be the (finite) number of components of
S* — N such that Fix(/)NV; #¢ and V;Cc U, 1 £j <t By Lemma
2,uf,V)=1, 157 <t By Axiom A3,

1=i(f, v:>:§i<f, V)=t.

But J separates two points of Fix(f) N U, hence t > 1. This
contradiction shows that Case 1 cannot occur.

Case 2. Bd(U) — Bd(U,) is connected. The proof will be com-
plete if we show that Bd(U) — Bd(U,) is a single point. We assume
that Bd(U) — Bd(U,) is a nondegenerate continuum and derive a
contradiction.

Assuming Bd(U) — Bd(U,) is a nondegenerate continuum we
establish

Claim 1. There is a simply connected invariant domain C, con-
taining two endcuts A and B such that the endpoint of B on Bd(C,)
is not a fixed point of f, and the endpoint of 4 on Bd(C,) is a fixed
point of f which is not a limit point of Bd(C,) — Fix(f).

Let @ be a crosscut in U both of whose endpoints lie on

Bd(U) — BA(T)) .

Let V be the component of U — @ whose boundary does not intersect
Bd(U), [15,(5.8),p. 6]. V is a component of

S* — (Bd(U) — BAU) U Q) .
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Let p be a point of Bd(V) — Cl(Q). Note that p is a fixed point of

f-

Denote by L the union of all orbit closures which intersect
Cl(Q). L is a continuum. p is not a limit point of L so there is a
connected neighborhood 0 of » which misses L. Let A be an endcut
of V which is contained in 0. Let C, be the component of

S* — ((Bd(U) — Bd(U)) U L)

which contains the endcut A. The endpoint of A in Bd(C,) has a
neighborhood 0 which misses L, hence 0 N Bd(C,) < Fix(f).

Let B’ be an endcut of V with one endpoint b in C, and the
other in the crosscut Q. Then the component of B’ N C, containing
b is the required endcut B.

C, is simply connected because (Bd(U) — Bd(U,)) UL is connected,
(see [15, (5.8), p. 6] and [10, Theorem 74, p. 217]).

C, is invariant because (a) (Bd(U)) — Bd(U))) U L is invariant, (b)
Bd(C,) contains a continuum of fixed points of f, and (¢) f is orientation-
preserving, (for further details see proof of Claim 2 below). The
proof of Claim 1 is complete.

Claim 2. The prime end E of C, determined by the endcut A
is a fixed prime end of f.

Let S,, S;, -++ be a chain of crosscuts converging to the endpoint
s of A and defining the prime end K. Since s is not a limit point
of Bd(C,) — Fix(f), we may assume that the endpoints of S; are fixed
points of f for every 4, 1 =1,2,--.. We also may assume that
every crosscut S; intersects A. From the crosscut S; and the endcut
A we may construct an open triod T; (see § 2 for definition) whose
feet are fixed points of f. Since f is orientation-preserving, we see
easily that f(T)N T; #= ¢. (Hence f(C)NC,+ ¢, and since
(Bd(U) — Bd(U)) U L is invariant, we have f(C, = C,.)

Since f(T)NT;# ¢ for 1 =1, 2, .-+, we see that {S;} and {f(S))}
are equivalent chains, hence E is a fixed prime end of f. The proof
of Claim 2 is complete.

Let T be a C-transformation of C, onto the open unit disk D.
Extend the homeomorphism 77T~ D— D to a homeomorphism #
of the closed unit disk onto itself. % is orientation-preserving, since
f is.

By Claim 2, there is a fixed prime end of C,; hence & has a fixed
point on Bd(D). But then, since 4 is orientation-preserving, every
point of Bd(D) is either a fixed point of A& or converges to a fixed
point under positive iterates of % [2, Lemma 14].

Consider the endcut B of Claim 1. The endpoint of B on Bd(C,)
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is not fixed by f, but this endpoint is a principal point of the
prime end F' determined by B. Hence, by Lemma 1, F is not a
fixed prime end. Hence, if e is the endpoint of 7'(B) on Bd(D), ¢ is
not a fixed point of h. But then, there is a fixed point m of &
on Bd(D) such that {h"(e)}7.,— m. If M is the prime end of C, cor-
responding to the point m, then by Lemma 1, every principal point
of M is a fixed point of f.

Let X, X, --- be a chain of crosscuts of C, defining the prime
end M. We claim that for large j, T(X;) intersects the orbit under
h of T(B). To see this we proceed as follows. Let b be the end-
point of B in C,. Then the orbit closure of b is contained in C,;
therefore, the orbit closure of T'(b) under % is contained in D. In
particular, m is not a limit point of the orbit of 7'(b). Hence, for
large j, the closure of the crosscut 7'(X;) separates m and the orbit
of T(b) in CK{D). But the other endpoint ¢ of T(B) converges to m
under positive iterates of %, so for large j, there is a positive integer
% such that A*(C1(T(B))) intersects both components of

C(D) — CUT(X)) .

Hence *(T'(B)) intersects T'(X;), and our claim is established.
Hence, for large j, X; intersects the orbit under f of Cl(B).
But the chain X, X,, --- of crosscuts converges to a principal

point ¢ of the prime end M. But then ¢ is a fixed point of f which

is a limit point of the orbit of Cl(B). Therefore, the union of all
orbit closures which intersect Cl(B) is not a closed set. This con-

tradicts the fact that f is w.a.p.

This final contradiction establishes that Bd(U) — Bd(U,) is a
single point. Similarly, Fix(f) N U, is a single point, and so f has
exactly two fixed points. The proof of Theorem 8 is complete.

THEOREM 4. Suppose f: S*— S*is a w.a.p. orientation-reversing
homeomorphism. Then either f has no fixed points, or f is periodic
with pertod 2.

Proof. Suppose f has a fixed point.

Claim. f has more than two fixed points.

Suppose the claim is not true. Let A be an are intersecting no
fixed point, such that AN f(4) = ¢. Denote by M the union of all
orbit closures which intersect A. M is an invariant continuum con-
taining no fixed points of f. Let U be a component of S* — M con-
taining a fixed point of f. Then f(U) = U and U is simply connected
with a nondegenerate boundary. Let T be a C-transformation of U
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onto the open unit disk D. Extend Tf7T™' to a homeomorphism %
of the closed unit disk onto itself. % is orientation-reversing, since
f is. But then %2 must have two fixed points on Bd(D), [16, Theorem
7.3, p- 264]. These fixed points correspond to fixed prime ends of U.
By Lemma 1, the principal points of these prime ends are fixed points
of f. This contradicts the assumption that M contains no fixed
points of f. The proof of our claim is complete.

But now consider the homeomorphism f* S*-— S% f? is orienta-
tion-preserving, w.a.p. [6, Theorem 4.24, p. 34 and Theorem 2.33, p. 17},
and by our eclaim, has more than two fixed points. Hence, by
Theorem 3, f* = Id. The proof of Theorem 4 is complete.

COROLLARY 5. Suppose f: S*—S* s a w.a.p. orientation-
reversing homeomorphism. Then the set of fixed points of f is etther
empty or is a simple closed curve.

Proof. Follows from Theorem 4 and [3].

7. Orbit closures of weakly almost periodic homeomorphisms
on S%

THEOREM 6. Suppose f: S*— S? is ¢ w.a.p. orientation-preserv-
ing homeomorphism which ts not periodic. Then every nondegenerate
orbit closure is a l-dimensional homology 1-sphere.

Proof. f s Id so by Theorem 3, f has exactly two fixed points.
Let K be a nondegenerate orbit closure. We show that K separates
the fixed points of f. Suppose not. Then there is a simple closed
curve J which separates K and the fixed points of f, (connect the
fixed points by an arc missing K, then “enlarge” the arc slightly to
obtain a disk whose boundary is J). We must have f{J)NJ # g,
since otherwise every point of J would be a wandering point. Denote
by M the union of all orbit closures which intersect J. Then M is
an invariant continuum which separates K and the fixed points of f.
Let U be a component of S* — M which intersects K. Since every
point of U is a nonwandering point, there is an integer % such that
MUy N U+ ¢. Since M is invariant, f~(U) = U.

f™is a w.a.p. orientation-preserving homeomorphism [6, p. 34 and
p. 17}]. f is not periodic, hence f™ = Id, hence by Theorem 3, f™
has exactly two fixed points. These fixed points are the original
fixed points of f, and so the domain U contains no fixed points of f~.
But by Lemma 2, i(f", U) = 1. This contradiction shows that the
orbit closure K must separate the fixed points of f.
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We now show that K is connected. Let V be a component of
S? — K containing a fixed point of f. Let B be the outer boundary
of V with respect to the fixed point of f not in V, (see § 2 for de-
finitions). B is connected, [10, Theorem 25, p. 176]. And V and the
fixed points of f are invariant, hence B is invariant. But K is a
minimal invariant set, and Bc K, hence B = K.

K is one dimensional, since outer boundaries contain no interior
points.

Finally, S — K has exactly two components. For, if there were
more than two components, then some component U would contain
no fixed point of f, and we would arrive at the same contradiction
as in proving that K separates the fixed points of f.

Thus K is a 1l-dimensional homology 1-sphere and the proof of
Theorem 6 is complete.

REMARK. [12, Example 1] is an example of a w.a.p. orientation-
preserving homeomorphism with an orbit closure which is an homo-
logy 1-sphere but not a real 1-sphere.

THEOREM 7. Suppose f: S*— S* is a w.a.p. orientation-revers-
ing homeomorphism which is not periodic. Then, with two exceptions,
every orbit closure is the wunion of two disjoint homology l-spheres.
The exceptions are (a) a period 2 orbit, and (b) one orbit closure
which 1s an homology 1-sphere (the “axis of reflection’).

Proof. f* is a w.a.p., orientation-preserving, nonperiodic homeo-
morphism. Hence, by Theorems 3 and 6, f* has two fixed points,
and every nondegenerate orbit closure is an homology 1-sphere. The
orbit closure under f of a point # is the union of the orbit closure
of © under f* and the orbit closure of f(x) under f*. Thus, the two
fixed points of f2 correspond to a period 2 orbit under f, and every
other orbit closure under f is the union of two homology 1-spheres
which are either disjoint or equal. Let H denote the collection of
orbit closures under f which are homology 1-spheres. We show that
H has exactly one element.

Let G be the decomposition space whose points are orbit closures
under f%. Let w: S*— G be the natural decomposition map [16,
p. 125]. If K is any nondegenerate orbit closure under f2, then
w(K) is a cut point of G, since K separates S®, w is an open map,
[16, p.130], and orbit closures are connected. Hence G has exactly
two noncut points, (the fixed points of f%), hence G is an are, [16,
p. 54]. Define a map ¢9: G— G by gw(K)) = w(f(K)) for all orbit
closures K of f2. It is easily seen that g is a nontrivial period 2



196 W. K. MASON

map of the arc G onto itself. Fixed points of G correspond to ele-
ments of the set H defined above. But g has exactly one fixed point
[16, p. 264]. The proof of Theorem 7 is complete.
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LIMITS FOR MARTINGALE-LIKE SEQUENCES

ANTHONY G. Mucct

The concept of a martingale is generalized in two ways.
The first generalization is shown to be equivalent fo con-
vergence in probability under certain uniform integrability
restrictions. The second generalization yields a martingale
convergence theorem.

1. Introduction. In what follows {X,, ®8,} is a sequence of
integrable random variables and sub-sigma fields on the probability
space (2,3, P) such that

X, is B,-measurable
%n c %'n-l—l
B = o(D i’%) .

We call the sequence {X,,%8,} an adapted sequence. In [2] Blake
defines {X,, B,} as a game which becomes fairer with time provided

B(X,|B,) — X, —2>0 as n=m— oo,
i.e., provided, for all ¢ > 0:
lim P(|E(X,|8B,) — X,.|>¢ =0 as m—> .
n>m

It is proven in [1] that if {X,, B,} becomes fairer with time, and if

there exists Ze L, with |X,| < Z for all n, then X, —% X, some
Xe #.

In the present paper we will show that X, ——% X under the less
restrictive assumption that {X,} is uniformly integrable. We will
further show that in the presence of uniform integrability {X,, B,}
becomes fairer with time if and only if {X,} converges in probability,
i.e.,

B(X,|B,) — X, — 5 0& X, — X, —50.

Finally, by using the more restrictive concept that {X,,8B,} is a
martingale in the limit, namely,

lim (B(X,|%,) — X,) =0 a.e.,

n=m—oo

we will prove (Theorem (2)) a generalization of a standard martingale
convergence theorem.
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2. PROPOSITION 1. Let the sequence {X,} be uniformly integrable
and assume

limg X, ewists, all AecU, .
A 1

n—oo

Then there exists X € & such that

lim LX,, - SX all AcS.

n—rco

Proof. Let Ae®B, 6> 0. There exists 4, U B, with P(A44,) <
0. This, together with the augument in Neveu [3] (page 117) proves
the desired result.

REMARKS. Let 2 =[0,1) with Lebesgue measure. Let B, be
the o-field generated by the subintervals A4,,, = [k/2*, (E + 1)/2"), k =
0,1,+..,2* — 1. Set X, = 3% (—1*L,, , where I, is the indicator
function of A. Then for any Ae U B, we have lim%ws X, =0.

Further, {X,} is uniformly integrable. However, {X,} does ;101; con-
verge in the .&4-norm.

ProposiTION 2. Let {X,} be uniformly integrable and assume
{X.,} becomes fairer with time:

(*) lim P(|E(X,|SB,) — X,[>¢ =0.
Then there exists X € &<, such that X, =L X
Proof. Let AeSB,,p =9 = m. Then

| x-]x = || zaxis) - x,

< | | BX, 1) — X, + ¢
AU E(X I8 —Xgl>e)
§2supg 1 X:| + €.

kBT JAUEX B —X gl>e)

By uniform integrability and the assumption (*) we see that

lim S X, converges, all Aec Cl B, .
A 1

n—oo

By Proposition 1, there exists X e ¢ with

1im§ X,,:SX, all AcSB.
A4 A

fn—c0
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Note that {E(X|8,), B,} is a martingale and E(X|8,) — X both in
the &£ and the almost sure sense (Levy’s Theorem). Since

[1x - x1={Ix - BxIB)| + || BCXIB) - X1,
it will be enough to show §|Xn — F(X|%8,)|— 0. Now

[1x. - Bxim) = | (X, ~ B(X|%B.)

(X, ZE(X13,))

(B(X|B,) — X,) .

S(X,,<E(X|Qb,,))

Letting %' = » and setting A = (|E(X, |8,) — X.| > ¢), we have

X, - BX(8) = | 1%+ 1%,

S(XWEE(X]%»,,,))

(X, = X)| +¢

+ }S(X,,;E(X,,HB”))
=< 2sup | | X,|
k A
1 1l
+ 1| (X, — X)| +¢.
Mx,zEx8,) i

By uniform integrability and condition (*), the first integral is small.
Letting ' — o, the difference in the remaining integral tends to
zero. An identical analysis shows

(B(X|B,) — X,) — 0.

S(x,,<E(X|m)
REMARKS. SupposeX, —~%, X. Then since
Lix={x-x+{x,
A A
we see that {X,} is uniformly integrable. Further

P( B(X,|B,) — X >9 < L|| EX,|B) — Xa|
1
= 2|1x - X,

so {X,, B,} becomes fairer with time. It is shown (Neveu [3], page
52):

{X,} is Cauchy in the &4 norm & {X,} is uniformly integrable
and {X,} is Cauchy in probability.

We tie these results together with Proposition 2 to get
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THEOREM 1. Let {X,,B,} be an adapted sequence. Then the
following three statements are equivalent:

(a) There exists Xe & and X, —> X .
(b) {X.} is uniformly integradble and E(X,|8,) — Xm—P> 0.
(c) {X.,} is uniformly integrable and X, — X, L, 0.

COROLLARY 1. Let the adapted sequence {X,,B,} be uniformly
antegrable. Then

E(X,|8,) — X, 250X, — X, —250.

REMARKS. In the absence of uniform integrability we have neither
implication. Consider the following two examples:

(1) Set X, =>7y, where {y,} is a sequence of independent
identically distributed random variables with zero means. Set 8B, =
oY, Yoy +++, ¥s). Clearly {X,,8,} is a martingale, so E(X,|8,) —

X, —— 0. But, if, for instance

1 with probability %

ylo = . . 1 ’
—1 with probability 5

then

v

N—

P(X,— X,|=1) = (zyl 1

ey 1o — o,
(Zl / vVn—m

<
)

so X, — X, —i 0.
(2) Let {y.} independent where P(y, = k°) = 1/k* and P(y, = 0) =
1— 1/k%
Then, setting X, = >,*y, we have
| E(X[Bp) — Xp| = B >,y 2 1

while

P(X, - X|z9=P(Znze)=PU@wz9)

so in this case X, — X, —2,0 while E(X,|8,) — X,+~0.
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Recall now the definition that {X,,®B.} be a martingale in the
limit, namely:

** EX,|8B,) — X, — 0 almost everywhere.

THEOREM 2. Let the adapted sequence {X,,B,} be uniformly
integrable and a martingale in the limit. Then there exists X e &
such that

X, —— X almost everywhere and in the Z-norm.

Proof. Clearly, {X,, 8,} becomes fairer with time, so from Theorem

1 there exists Xe.&2 with X, =% X. Now, for an arbitrary sub-
sequence {n'},

le — X[ é IXm—E(Xn’I%m)I + [E(Xn’ —'X‘%m)l + IE(Xi%m) —'Xl .

By Levy’s theorem, the third term is less than &/8 for large enough
m. The first term is also bounded by ¢/3 for large m,n’ since
{X., ®B,} is a martingale in the limit. We must now show that the
second term is small. Note first that for an arbitrary o-field &7 we
have

E(X,|.) =% E(X|s7 .

Now start with the o-field B, and note that the convergence
=z

E(X,|%B) —l—»E(X |B,) implies the existence of subsequence {n,} C {n}

with E(X, |®B,) — E(X|®8,) almost everywhere. Continuing, we have

E(X,,|B) — E(X|B,), and we can extract {n;} C {n,} with E(X,,|B;)—
E(X|%B,) almost everywhere. Thus, there exists a subsequence {#} <
{n} with E(X;|8,) — E(X|8,) a.e. for all m, namely the diagonal
subsequence. Now choose {n'} as a subsequence of {#}, and we can
bound the second term above by &/3.

Applications. 1. Let {y,} be a sequence of independent random
variables such that

1im§ Sul=0.

Then 3.7y, exists a.e. and in the .¢5-norm.
Proof. Set S, = >"y,. Then

s ={jsal+]| S w

?
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so it is clear that {S,} is uniformly integrable. Further, setting
EB’” = U(yly y25 ty, yn)! we have
=

so {S,, B,} is a uniformly integrable martingale in the limit.

n

> Ui

m+1

b

| B(S.1B.) = Sal = || S e

2. Let {X,,®B, be an adapted uniformly integrable sequence
with |E(X,.,18,) — X,| = ¢, where {c,} is a sequence of constants
with 3¢, < . Then there exists xe <, with X,— X almost
everywhere and in the &-norm.

Proof. We have
E(X,|8,) — X, = gE(X,,H ~ X,|B,)
= 5 BB, — X.1B)|B,).
Thus

|B(X,|B,) — X,| < %_ ¢, .

Editorial note. See also R. Subramanian, “On a generalization
of Martingales due to Blake,” Pacific J. Math., 48, No. 1, (1973),
275-278.
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RELATIONALLY INDUCED SEMIGROUPS

EUGENE M. NORRIS

This paper gives sufficient conditions, of a relation-theoretic
nature, in order that a quotient of the state space of a re-
cursion (or topological machine) be a topological semigroup
iseomorphic to the endomorphism semigroup of the recursion,
generalizing recent function-theoretic results.

Relations. By a relation R from a set A to a set B, we mean that
R is a subset of 4 x B. If A and B are topological spaces, we say
that R is closed to mean that it is a closed subset of the product
space. If R is a relation from A to B and S is a relation from B to C,
their composition is the relation So R from A to C defined by (a,c) e
SR if and only if there is some be B with (a¢,b)e R and (b,¢) € S.
This is contrary to the notation in [1], but agrees with the usual
(non-algebraist’s) notation for the composition of functions. The
inverse of a relation R is the relation R~ defined by (b, a) e R if
and only if (a, b) e R. A relation from A to A is reflexive if R con-
tains 4, = {(a, a): a € A}, symmetric if R~ < R (whence follows R~ = R),
and transitive if R- RS R. R is an equivalence relation if it is
reflexive, symmetrie, and transitive. For any relation R from A to B
and any subsets A’'S A, B’< B, A’R denotes the set {be B: (¢,b) e R
for some ac A'}; RB' is then defined to be the set B’R™*. We write
aR rather than {a}R and Rb for R{b}, for simplicity’s sake. It is
known that if A’ is compact and R is closed then A’R is closed; if
A, B, and C are all compact Hausdorff spaces and R and S are closed
relations from A to B and B to C respectively then So R is also
closed. It is also known that if A is compact and R is a closed
equivalence on A then the quotient space A/R = {aR:ac A} is com-
pact Hausdorff. See Kelley [3] for topological details.

After Riguet [5, 6], a relation B from A to B is called difunc-
tional if Ro R™'c RS R; we observe that any function is difunctional
and any symmetric, transitive relation is difunctional; in elementary
geometry, the relation of orthogonality is difunctional, as Riguet
noted. We use Riguet’s 1950 results freely [6] and note in particular
that if R is a difunctional relation from A to B satisfying A = RB
and B = AR, then R'o R and R R™ are equivalence relations on A
and B, respectively, closed if R is closed and 4 and B are compact
Hausdorff. Furthermore, A/(R™'o R) = {Rb: be B} and B/(R-R™) =
{aR: ae A}. For any difunctional relation R, the slices aR and o'R
either coincide or are disjoint, a property well-known for equivalence
relations; the same property holds for slices Rb, Rb/, since R™ is
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difunctional if and only if R is difunctional. In fact, this property
of slices characterizes difunctional relations. Unfortunately, the com-
position of difunctional relations need not be difunctional.

Recursions. A recursion is a triple (7, X, +), where T and X
are spaces and T x X —— X is a continuous binary operation, the value
t+ o of which at the point (¢, ) is usually denoted by juxtaposition,
unless emphasis seems wise. For 7<= T and X'< X, we write 7' X"
(or occasionally T’ X’) to denote the set {tx:te T’ and zc X'}. We
frequently avoid the use of curly brackets, writing Tx for T{x} and
so forth. In particular, if R= T x X and ¢,z are elements of T,
then t(zR) = {t} - (R), the translate of the slice 2R. A recursion is
c.o.d. if both spaces are compact Hausdorff or both are discrete.

For the sake of completeness we state below an easily established
folkloric lemma that A. D. Wallace attribute to G. E. Schweigert [7],
and a generalization, the Induced Function Theorem (IFT for short),
proved in [1]. The lemma is frequently used in what follows.

LemMMA 0. If A, B, and C are all compact or all discrete spaces,
if f1 A— B and g: A— C are continuous functions with f surjective
and if the condition f(a) = f(a’) implies g(a) = g(a’) for all a,a’ holds
then there is a umnique continuous jfunction h: B— C, satisfying
h(f(@) = g(a) for all a in A.

Induced Function Theorem. Let A and B be both compact Haus-
dorff’ or both discrete spaces, RS A X B a closed relation from A to
B, and E and F closed equivalence relations on A and B, respectively.
If A=RB and RoE-R'S F then there is a wunique continuous
function h making the following diagram of projection and quotient
functions analytic:

A—R— B
]
A/E ————— BJF.

Furthermore, if in addition to the previous hypothesis B = AR and
R« Fo RS E, then h is a homeomorphismn.

Results.

THEOREM 1. Suppose (T, X, -) is a c.0.d. recursion and RS T x X
18 a closed difunctional relation satisfying, for all t',t",t and sc T,

(1) ¥R =¢t"R—t(tR) = t"(tR)

(2) tR=¢({"R)—=1t(sR) = t'(t"(sR))
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(8) T=RX and X=TR

(4) for each t,t' in T there is some ¥’ in T with t({'R) = t"R.
Then X/(RoR™) is a topological semigroup with multiplication *
satisfying tR*'R = t(t'R) identically.

Proof. From difunctionality and hypothesis (3), R™'o R and Ro R™
are equivalence relations on T and on X, respectively, and are closed
if T and X are compact. The Induced Function Theorem implies that
there is a unique homeomorphism ~ making the following diagram of
projection and quotient maps analytie.

Te—R—X

l l

T/(R'eR) ———— X/(R-R™)
In the following diagram,

TXx X——X

S

X/(RoR™) x X/(RoR™) ——> X/(Ro R™)

we note that (¢,x)e R iff tR = q(x) and Rx = p(f) iff n(Rx) = tR.
If (¢, ) and (¢, 2') satisfy [hp X q] (¢, ) = [hDp X q] (', %) then h(p(t)) =
h(p(t)) and q(x) = q(x’), so that tR =t'R. If e Rx then zct"R,
hence tx € t(t”R) = t'(t”R) by hypothesis (1). We also have t'z’ ¢ ¢’(t”R)
since Rz = Ra'. Hypothesis (4) allows us to conclude that (tx, t'2’) €
RoR™, i.e., q(tx) = q(t'2’). Hence Lemma 0 applies to give a unique
continuous function* making the diagram analytic. We observe that
tR*q(x) = tq(x) for all te T and all xe¢ X. Now* is associative, for
if t,¢'t” e T, then there is some se T such that {({’R) = sR, and hence
(tR*'Ry*t"R =t(t R)*{"R =sR*t"R=s(t"R) = t{'(t"R)) = tR*{'(t'R) =
tR*(Y' R*t"R), using hypothesis (2).

THEOREM 2. Suppose (T, X, +) is a ¢c.0.d. recursion and R& T x X
18 a closed difunctional relation satisfying

(1) T=RX and X=TR

(2) the set Z={zeT:tR = t'R=t(zR) = t'(2R)} is not empty

(8) for each t,t' e T there is some t"' e T with t{'R) = t"R

(4) i tR = t'(t"R) then for any z€ Z, t(zR) = t'(t"(zR)).
Then {zR:z<c Z} 1is a topological semigroup in the quotient topology
with multiplication* satisfying zR*2’'R = 2(z'R) for all z,2' e Z.

Proof. For simplicity, let Z = {zR:z<c Z} be the subspace of the
quotient space A/(R-R™). We dispose topological considerations first.
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One verifies easily that if T and X are compact, then Z is closed,
and it follows by standard results that ZR and finally Z are compact.
Of course, if T and X are discrete, so is Z.

On the algebraic side, we observe that Z- ZR< ZR, for if z,2'e Z
and tR = 2(z’R), then it will be seen that te Z (such ¢ exists by hy-
pothesis (8)). To this end, suppose that ¢R =¢"R, and let ¢ (zR) =sR
to infer that t'(¢R) = t'(2(z'R)) = s(z'R), by hypothesis (4). Since z¢ Z,
then t'(zR) = t"(zR) and hence sR = t”(zR); it then follows from
hypothesis (4) that s(2’R) = t”(2(2'R)), so that ¢’(tR) = ¢"(tR), implying
that te Z. Hence Z-ZR< ZR.

If  and ' are points in ZR satisfying (x,x’)e Ro R™, then
(zx, za’) e Ro R also, and hence we may infer from Lemma 0 that
the function Z x Z—— Z given by z*2’R = z- (¢'R) is continuous.

Finally, if R’ is the relation from Z to Z defined by (2,2 R) e R’
if {#} x # R< R, then we can easily see that R’ is closed and difunc-
tional, so that R’ and the compact or discrete recursion (Z, Z, *)
satisfy the hypothesis of Theorem 1. Theorem 2 now follows.

Representation. Assuming the hypothesis of Theorem 2, let S be
the semigroup (with compact open topology) of all continuous funections
from the quotient space A/(Ro-R™) into itself, and let end denote the
subsemigroup of S defined by fe end if t- f(&) = f(t-Z) for all te T
and all Z in X/(Ro R™). The function F: T— S, given by F,(t'R) =
t'- (tR), is easily seen to be continuous and maps Z into end; let F”
denote the restriction of F' to Z. In a similar way, the map G: Z—
ZR/(R- R™) given by G(z) = zR is a continuous surjection. Lemma
0 is seen easily to apply, giving a continuous function H: ZR/(R- R™*)—
end satisfying Ho G = F, from which we see that for any ze Z and
any te T, [H(zR)] (tR) = t(zR). Routine computation, using hypothesis
(3) and (4), shows that H(zR*2’R) = H(z'R)o H(zR), so that H is an
anti-homorphism.

THEOREM 3. If, in addition to the hypothesis of Theorem 2, for
some z,€ Z and all te T it is the case that t(z,R) = tR = z,(tR), then
H is an anti-iscomorphism and ZR/(Ro R™) is a monoid with z,R its
identity; furthermore, the set z,R is a set of generators for X, i.e.,
T(z,R) = X.

Proof. That z,R generates X is clear from the equations t(z,R) =
tR and TR = X. That z,R is the identity follows from the fact that
for any zeZ,2R*2,R = z2(z,R) = 2R = z,(:R) = z,R*2R. If H(zR) =
H(z’R) then zR = 2,2R) = z,( R) = # R, so that H is injective. To
see that H is also surjective, let fe end, and suppose f(z,R) = t,R;
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we will see that ¢, Z. To see this suppose 'R = t"R and compute:
t'(tR) = t' f(z,R) = f(t'(2,R)) = f({'R); similarly, t"(t,R) = f(t"R); it
follows that ¢, Z. Now for any te T, we see that f(tR) = f(t(z,R)) =
tf(z,R) = t(t,R) = [H(t,R)](tR), implying that H is surjective.

REMARKS. Theorem 2 obviously generalizes Theorem 1 and also
contains a previous result of the author [4]. When R is a continuous
function from 7 onto X it is a closed, difunctional relation and
RoR™ = 44, so that X/(RoR™) is homeomorphic to X, and the set
ZR is just the image of Z; R is surjective just in case X = TR.
Hence Theorem 1 generalizes the theorem of [7] and Theorem 2, the
theorem of [8], which in turn elegantly generalize theorems of Aczel-
Wallace, Hosszu, Barnes, Fleck, Weeg, Oehmke et. al. (see [8] for
references). Other applications will be announced elsewhere. In
view of recent results of Fay [2], the present work allows one to
induce semigroups “in” the objects of many categories. The details
of this extension will be left for another time.
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A COMPARISON OF ¢-DENSITY AND k-DENSITY

ARTHUR E. OLSON, JR.

In this paper a comparison is made between c-density and
k-density in the general setting of Freedman density spaces
in additive number theory. The comparison is motivated by
the following question of Freedman: Does there exist a den-
sity space and a set such that the c-density of that set is
positive and the k-density is zero? The answer is yes. More
generally, there exists a density space such that for any two
real numbers p; and p, with 0 < p; < p; < 1, a set can be con-
structed such that the k-density of the set is p; while the
c-density is p..

Let S be any nonempty subset of an abelian group G with binary
operation -+ and identity element 0. We define a relation < on S by
saying y < x whenever x — y e S\{0}. The set S is called an s-set
whenever the following conditions hold:

(s.1) 08

(s.2) S\{0} = ¢

(s.3) S\{0} is closed with respect to .

(s.4) L(x) ={y|lyeS,y <z ory=ua} is finite for each x ¢ S\{0}.

Corresponding to each x ¢ S\{0}, let H(x) be a subset of S satisfy-
ing the following three conditions:

(c.1) {0, s} & H(x)

(c.2) H(x) & L(z)

(c.8) if ye H(x)\{0}, then H(y) & H(x).

Let & (H)={F|F<S,F finite, 0eF, F\{0} == ¢, x ¢ F\{0} implies
H(») & F}.
Then & (H) is said to be a fundamental family on S.

Freedman [1] calls the ordered pair (S, & (H)) a density space
whenever S is an s-set and # (H) is a fundamental family on S.

For any two sets X, D < S with D finite, let X(D) denote the
number of nonzero elements in X N D.

DEFINITION. The k-density of a set A & S with respect to & (H),
written «,, is

@, = glb{—g%lﬁ’e ﬂ‘(H)} .

DEFINITION. The c-density of a set A & S with respect to F (H),
written a,, is

209
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_ A(H(2))
a, = glb{m e S\{O}} .

We begin our comparison of k-density and c-density by stating
without proof the following two results of Freedman.

THEOREM 1. Let (S, & (H)) be a density space. For any set
A Swe haove 02 a, =, < 1.

THEOREM 2. Let (S, & (H)) be a density space and A be a subset
of S with 0eA. The following three conditions are equivalent:
() a, =1, (i) ., =1, and (iii) 4 = S.

For the remainder of this paper we suppose that e, <1. Freedman
posed the following question [1]: Does there exist a density space
(S, &# (H)) and a subset A of S such that @, > 0 and a, = 07 The
answer is yes.

ExampPLE 1. Let I be the set of nonnegative integers with the
usual addition and let d be any positive integer. Let H(x) be defined
by

~({0,1,2, .-, d} U {a} if e=d+1,
{0, @} otherwise ,

where xe I\{0}. Then (I, & (H)) is a density space. Let A=
{0,1,2, ---,d}. Then o, =0, but a, = d/(d + 1) > 0.

Example 1 shows that there are density spaces for which a;, = 0
and «, is arbitrarily close to (but not equal) 1. Example 1 also
answers a second question of Freedman [1]: Does 0ec A and a, > 0
imply that A is a basis for I? The answer is, of course, no. The
set A has finite cardinality and hence cannot be a basis for I.

H(z)

ExAmMPLE 2. Let I” denote the set of all zero terminating
sequences of nonnegative integers. Then (I, &# (L)) is a density
space. For any positive integer N = 2, let

IP\A = {(z,, %, --+)| 2; = N for all ¢ and z; = N for exactly one 73} .

Then a, = 0 and a, = (N — 1)/N which again answers Freedman’s
first question. This density space is less artificial than the space in
Example 1. However, it does not serve as an answer to Freedman’s
second question.

In the final theorem of this paper we show that it is possible to
create a density space for which there exist sets having any k-density
and c-density we want as long as Theorems 1 and 2 are not violated.
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THEOREM 3. There exists a density space (I, & (H)) such that if
00, =0.<1, then there is a set A< I such that @, = p, and

o, = 0,
Proof. Let {(d;, b;)} be a sequence of ordered pairs of positive

integers satisfying 1 < d; < b, where all possible such pairs occur and
occur infinitely often.

For all z e I\{0}, define

{0,1,2,.--, 2}

{O’ 192’ .‘.’dl_l,x}
ifd =20,

{0,b1+19b1+2"”’x}
ifb+1=0=b+d, -1,

{O,bl+1yb1+2’”'7b1+d2_1,x}
ifb,+d,<x=<b +0,,

(1) Hw =
i b+ lsas b+ dy—1,

0, 350+ 1, 3 b; + 2, ++v, 336y + dyy — 1, 1)
it 36+ dnSas b,

The space (I, & (H)) is a density space.
Let o, and p, satisfy the hypothesis of the theorem. Let {u}
and {v;} be strictly decreasing sequences of positive rational numbers

less than 1 such that
0, =glb {uili: 1y2’ "'}1
0. =glb {v;|t1=1,2, ---}, and u; < v; for each ¢.
Since u; and v, are positive rationals, there exist positive integers
a;, b}, and d} such that ; = a,/b} and »; = a;/d;. Since 0 < u; < v; < 1,
we have 1 £ a; < d} £ b.. Furthermore, there is a strictly increasing
function 7(s) such that b, = b,,, and d;, =d,,, for s=1,2, ..., Let

A= {O}U{xlxel,i‘,bi—l- 1 gxgjijb,., where 7 = 0 and
J+ 13 r(s) for all s}

=1 =1

Uﬁ{xlwel, m}i‘:lbi—{— lgxs_”i‘,lbi-l—a,}.
s=1 3
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We now show that a, = 0, and @, = 0,.
For each positive integer s, we have

A b+ d))

i=1

(S b+ ) P

i=1

Qs

s *

Since o, = glb {v,|s =1, 2, ---}, we have @, < p,. Also for any positive
integer m there is an integer 7 = 0 such that 3., b, + 1 = m < 3! b,.
If 5 +1 = r(s) for some s, then

fr(s)—1

Ay . AE(E b do)) 4
I(H(m)) — I(H(mz)"—l b, + d “\> d, ’

= ")

Otherwise A(H(m)) = I(H(m)).
Therefore,

_ AHm) |, _ _ _
, =gl &)y 1 2 otz glb{|s=1,2 -2} =p,.
a, =g {I(H( ))‘m } glb{v,|s }=p
Hence we have a, = 0.

It is more difficult to show that e, = p,. For each integer j = 0,
define that set F; by

F,-:{o,iz;bwl,iZibﬁZ””’gb‘}'

By formula (1) we have

ma(g)

F;= _U(,) H(m) ,
where m,(j) = 3., b; + 1 and m.(j) = 31 b;, and hence F;e 7 (H).
If 5 + 1 = r(s) for some s, then

(2) AF) _ G G g

I(Fg) bi+1 br(s)

Since o, = glb {u,|s=1,2, ---} we have a;, < 0. Now consider any
Fe 7 (H). For each integer § =0, let G;=FNF;. Now since
Fe s (H) and F;e & (H), we have G;e . (H) U {{0}}. Now ¢ #j
implies F;; N F; = {0} and hence G; N G; = {0}. Also F'is finite. Hence
there is a finite integer

J = max {j | G\{0} = ¢} .

Now if G\{0} = ¢, then G, # (H). If GNA # ¢, then j + 1 = 7(s)
for some s and
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8)—1 r{s)—1

{Tglbi+ 1: HZ‘J bi+2, cccy 2_.‘. bi + as}nggFj,
and so
(3) AG) o A

I(G) I(Fy)

If G\A = ¢, then A(G;) = I(G;) and inequality (3) still holds. There-
fore, by statement (3) and since G; N G; = {0} for 7 +# j, we have

Ary _AUGE)  XAG)  agy . Aw)

for some 1 1 =£1=J). If ¢4+ 1= r(s) for some s, then by statement
(2), we have

AF) _ w, .

I(F)
If i+1%2(s) for all s, then A(F) = I(F;). In either -case,
A(F)/I(F) = u, for some s. Therefore,

@, = glb{%lﬁ’eﬁ'(ﬂ)} > glbfu,|s=1,2 -} = 0, .

Hence we have a;, = p..
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ON THE SEMISIMPLICITY OF GROUP RINGS
OF LINEAR GROUPS 1I

D. S. PASSMAN

In this paper we continue the study of the semisimplicity
problem for group rings of linear groups. We consider the
case in which the characteristics of the two fields involved
are both equal to » > 0 and we obtain appropriate necessary
and sufficient conditions in terms of the abstract structure
of the group.

Let K[G] denote the group ring of G over the field K. In this
paper we study the semisimplicity problem for K[G] with G a linear
group. If char K = 0 and if G is a linear group over any field, then
it is trivial to see that JK[G] = 0. Thus the only case of interest
occurs when char K = p > 0. A study of this situation was initiated
by A. E. Zalesskii in [4] and continued somewhat in [3]. Here we
solve the problem in case G is a linear group over a field L and
char L = char XK. Before we can properly state the result it is neces-
sary to describe a certain characteristic subgroup #(G) of G. There-
fore, we postpone the statement until the next section. We follow
the notation of [2] and [3].

1. Normal p-subgroups. Let G be a linear group over a field
L of characteristic p>0. That is, G is a subgroup of the group of
units of L,, the ring of u X w matrices over L. Of course G is also
contained in I,, where L is the algebraic closure of L and thus
without loss of generality we may assume that L is algebraically
closed. Thus for the remainder of this work L will denote a fixed
algebraically closed field of charp > 0 and any subgroup of L, for
any % will be called an L-linear group.

It is apparent from [4] that a necessary ingredient here must be
a consideration of the normal p-subgroups of G. We start with a few
elementary observations. If G is any group let O,(G) denote its
maximal normal p-subgroup. It is clear that 0,(G) always exists.
If G = L, we let LG donote its L-linear span. Thus certainly LG is
an L-subalgebra of L,.

LEMMA 1.1. Let G be an L-linear group. Then

(i) O, G) is a nilpotent group.

(ii) G/0,(G) is an L-linear group.

(iili) If 0,(G) = {1), then G can be represented as am L-linear
group in such a way that LG is semisimple.

215
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(iv) If LG is semisimple and H <| G then LH is semisimple.

Proof. Observe that LG is a finite dimensional L-algebra so JLG,
its Jacobson radical, is nilpotent. We start by proving (iv). If ze G
then since H<]|G, x normalizes H and hence clearly = acts as an algebra
automorphism on LH. Since JLH is characteristic in LH we have
2 (JLH)r = JLH so (JLH)x = x(JLH). Thus since LG is spanned
by all such x we obtain easily (JLH)(LG) = (LG)(JLH). Now JLH
is nilpotent and therefore by the above so is the ideal (JLH)(LG).
Thus JLH)LG) S JLG = 0 and JLH = 0. This yields (iv).

Now let y#: LG— LG/JLG be the natural map and let P={gc G|1(g9) =
1}. Since G £ LG, P is a subgroup of U= {1l + a|acJLG} < LG.
Now JLG is nilpotent and char L = p > 0 so we see easily that U is
a nilpotent p-group. Thus P is a nilpotent p-group and P = 0,(G).

Now ¢#(LG) = LG/JLG is a finite dimensional L-algebra so it is
contained in L, for some integer w. Furthermore, LG/JLG containg
the group G = G/P and is clearly spanned by it. This shows that G
is an L-linear group with LG semisimple. If 0,(G) = (1) then
certainly P = {(1> so G = G and (iii) is proved.

Observe that if we show that P = 0,(G) then (i) and (i) will
follow and to do this we need only show that @ = 0,(G) = (1.
Since LG is semisimple, part (iv) and @ <] G implies that L@ is also
semisimple. Let I be the subalgebra of LQ spanned by all 1 — 2
with € @. Then I is an ideal of LQ and I is a finite dimensional
algebra (without 1) spanned by the nilpotent elements 1 — z. As is
well known (see for example the proof of Lemma 10.1 (ii) of [2]) this
implies that I is nilpotent so IS JLQ =0. IfzcQ thenl —xecI =0
so # =1. Thus @ = (1) and the lemma is proved.

Let G be any group and let H be a subgroup of G. We set
D (H) = {xe G|[H: Cp{n)] < oo} .

Clearly D (H) is a subgroup of G and if H is normal or characteristic
in G then so is Dy(H). Furthermore,

Dy(G) = 4(G) = {we G|[G: Cy2)] < oo}

is the F. C. subgroup of G. Finally 4°(G) is defined to be the sub-
group of 4(G) generated by all p-elements, that is elements whose
order is a power of p. We say that G is a 4-group if G = 4(G).

LemMMA 1.2. Let G be an L-linear group.
(i) If H]{G and G = Dy(H) then [H: H N Z(G)] < o=.
(i) If 0,(G) = ) then 4°(Q) is finite.
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Proof. Since LG is finite dimensional we can choose some finite
number of group elements z,, «,, ---, x, which span LG. By assump-
tion for each ¢, [H:Cy(x;)] < o and thus by Lemma 1.1 of [2],
[H: Z] < = where Z = [}Cy(x;). Now Z < LG is centralized by a
spanning set so it is, therefore, centralized by all of LG and hence
by all of G. This shows that Z & Z(G) and thus (i) follows.

Suppose 0,(G) = 1> and set H = 4°(G). Then H = 4(H) so by
part (i) applied to H we conclude that [H: Z(H)] < «. Now 0,(G) =<1)
and Z(H) <] G so 0,(Z(H)) = 1) and since Z(H) is abelian this says
that Z(H) has no elements of order ». Thus 4?(Z(H)) = (1>. On
the other hand, since [4°(G): Z(H)] < o, Lemma 19.3 (v) of [2] implies
that [Z(H): 47(Z(H))] < . Thus 4*(Z(H)) = <{1) yields | Z(H)| < o
and hence | H| < «. This completes the proof.

Let G be any group. We define a characteristic subgroup .&(G)
of G as follows. Let P = 0,(G) and set G* = Dy(P) so that G* N P =
D.(P) = 4(P). Then &(G) is the subgroup of G* given by

G*22(G) 24(P), ZL(G)/4P) = 4(G*/4(P)) .

LeMmA 1.8. Let G be an L-linear group. Then with the above
notation [Z(G): A(P)] is finite and F(G) is a characteristic A-sub-
group of G.

Proof. (@) is clearly characteristic by its construction. Now
G* |G so 0,G* < 0,(G) = P and thus 0,G*) = 4(P). Therefore,
by Lemma 1.1 (ii), G*/4(P) is an L-linear group and certainly
0,(G*/4(P)) = {1>. Thus Lemma 1.2 (ii) implies that 4*(G*/4(P)) is
finite and we see that [.&°(G): 4(P)] is finite. Furthermore, since
clearly G* = D,(4(P)), Lemma 1.2 (ii) yields [4(P): 4(P) N Z(G*)] <
and this and the above show that .&°(G) has a center of finite index.
Therefore, <~ (G) is a 4-group.

We can now state our main result. If H is a subgroup of G we
say that H has locally finite index in G and write [G: H] = L.f. if
for all finitely generated subgroups S of G we have [S: SN H] < .

THEOREM. Let K be a field of characteristic p > 0 and let G be
a linear group over a field of the same characteristic p. Then JK[G]=+0
if and only if there exists an element he F(G) of order p with
[G: Cy(h)] = L.f.

Observe that the above necessary and sufficient conditions concern
the abstract structure of G and not how G is written as a linear
group.
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2. The case: O0,(G) = {1>. The linear groups with 0,(G) = {1}
were studied in [4] under the additional assumption that K = L,
that is the two fields are the same, and the semisimplicity problem
was solved in that case. Here we modify the original argument
slightly to handle the case in which K and L are different.

If S is a subset of any group G we say that S has finite index
in G and write [G: S] < « if G can be written as a finite union,
G = U? Sx;, of right translates of S.

LemmaA 2.1. Let G be an L-linear group and let T,, T, «++, T;
be a finite number of L-subspaces of LG properly smaller than LG.
Let S be a subset of G and suppose that

G:SULjJ(GﬂTi).

Then either [G:S] < = or G=Ui(GNT) and G has a subgroup H
of fintte index with LH = LG.

Proof. We assume that [G:S] is infinite and we consider all
ways of writing G as a finite union

G:LSJSxiuLZJ(GmM@-)

where x;¢ G and the M; are L-subspaces of LG each contained in
some T;. By assumption such a decomposition exists. For each such
union we associate an ordered pair (d, r) where d = max dim M; and
7 is the number of M; of dimension d. We say (d,r) < (d,, ) if
d <d, or d, =d, and », <7, This then is a well ordering and
assume the above union is so chosen that (d,») is minimal. By
definition d < dim LG. We may assume that dim M, =d for
1=1,2, .-+, 7. Note that the M; terms must occur since [G: S] = .
Fix k< 7» and gc G. Then

GnMgs =08 uUEn M

SO
¢nM, < SegUU (G0 Mg
s ¢
= L) Sz:g7 U ':J (GN Mg™)
and thus

GN M =S U u (@ N (Mg~ 0 M) .
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Thus replacing the term G N M, in the original union by the above
yields a new such union with the subspace M, replaced by the finitely
many subspaces M;g~* N M, for 1 =1,2, «+-, ¢&. If dim (Mg N M,) <
dim M, for all 47, we then get a new decomposition with some smaller
parameter (d', /). Since this cannot happen we conclude that for some
i, Mg N M, =M, or M; 2 M,g. Since M, has the largest dimen-
sion of all the subspaces we therefore have M, = M,g for some 7 < 7.

We have therefore shown that G permutes by right multiplica-
tion the subspaces M,, M,, ---, M, and hence if H is the stabilizer of
M, then [G:H]< . If LH = LG then MH = M, implies that
M(LH) = M, and then M,G = M,. Again by the minimality of (d, )
and [G:S] =~ we have GNM, = @ so let yeGN M. Then
MG =M, yields M,2yG =G. Thus M, 2 LG, a contradiction.
This shows that LH = LG and therefore LH is a proper subalgebra
of LG.

Finally let 1 =g, 9., -+, 9. be a set of right coset representatives
for H in G. By renumbering the M;s if necessary we may assume
that M,g, = M;. Let T; be chosen with M; < T;,. Now MH = M,
yields yH & M, so yHy, & M,9; = M;. Thus

GzyGZGyHgiEGMiEGTa
so clearly G = Ui/ (GN T,) and the lemma is proved.

For the remainder of this work we let K denote a fixed field of
characteristic p. If G is a group and if z,ye G we use v ~ 4y to
indicate that # and y are conjugate in G.

LEMMA 2.2. Let a = >F a,0.€ K[G],®x =0 and suppose that
a is milpotent. Then for some © + 7 and some integer n we have

p™ "
g: ~ ¢9; -

Proof. Let S denote the subspace of K[G] spanned by all Lie
products [gB, 7] = 87 — ¥R with B,ve K[G]. Then S is spanned by
all Lie products [z, y] = zy — y2 with z,yc G. Now yx = x " (ay)x
80 yx ~ ey and, therefore, we see that if e S then the sum of the
coefficients of 6 over any conjugacy class of G is zero.

By assumption « is nilpotent so we can choose » = 0 with a* = 0.
Then Lemma 3.4 of [2] yields

k
0=a”=>3a"g" + 9
i=1

for some 6eS. If a;, # 0 then since the sum of the coefficients in
the conjugacy class of g must be zero in the above and since the
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contribution of 6 to this sum is zero, we conclude that some j == ¢
must exist with ¢?" ~ 497".

LEMMA 2.3. Let G be an L-linear group with LG semisimple.
Since L is algebraically closed, LG s a finite direct sum of full
matriz rings over L and we embed LG in L, for some w by placing
the matrixz rings of LG in blocks along the diagonal of L,. Then
tr, the matrixz trace map on L,, yields a nondegenerate symmetric
bilinear form («, B) = trap on LG.

Proof. The form (a, B) = trag is certainly bilinear and sym-
metric. We need only show that it is nondegenerate on LG. Let
ae LG with (o, LG) = 0. Then

tr (LG)a(LG) = tr a(LG)(LG) = tra(LG) = 0

so every element of the ideal (LG)a(LG) has trace zero. But any
nonzero ideal of LG contains one of the full matrix ring and certainly
all its elements cannot have trace 0. Thus a must be zero and the
lemma is proved.

We now obtain our generalization of Zalesskii’s result by modify-
ing the proof of [4]. It is apparent that the proof could be greatly
simplified if we only knew that the radical was a nil ideal.

LEMMA 2.4. Let G be an L-linear group with O,(G) = <1>. Then
G has a normal subgroup G, of finite index and a representation of
G, as an L-linear group in such a way that LG, is semisimple and
if Gy H] < o then LG, = LH.

Proof. Since 0,(G) = (1), Lemma 1.1 (iii) implies that G can be
represented as an L-linear group with LG semisimple. We now con-
sider all normal subgroups H of G of finite index and all ways in
which H can be represented as an L-linear group with LH semisimple
and we choose G, to give the minimum possible dimension of LG,.

Thus we have G, <] G, [G: G] < « and G, is an L-linear group
with LG, semisimple. Furthermore, let H be a subgroup of G, of
finite index. Then [G: H] < <« so H,, the intersection of the finitely
many G-conjugates of H, is a normal subgroup of G of finite index.
Since H, <] G, we have LH, semisimple by Lemma 1.1 (iv) and thus
by the minimality of the dimension of LG, we have LG, = LH, and
hence LG, = LH.

PROPOSITION 2.5. Let G be an L-linear group with 0,(G) = {1).
Then JK[G] ts nilpotent.
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Proof. Let G, be the normal subgroup of G of finite index given
in the preceding lemma and let us write LG, as described in Lemma
2.3. Thus LG,< L, and tr yields a nondegenerate bilinear form on
LG,. We show now that K[G,] is semisimple.

Suppose by way of contradiction that @ = 3%, a,9; € JK[G,] with
a # 0 and with the group elements g; distinct. If xe G, then also
ax =% a,0.0e JK[G,]. Thusif G, is the finitely generated subgroup of
G, given by G, = <gu Gy vy iy x> then aerK[Go] N K[Gl] & JK[GJ
by Lemma 16.9 of [2]. We show now that for some 7 = j, tr (g;x) =
tr (g;2). N

Suppose this is not the case and let GF(p) denote the algebraic
closure of GF(p). Since G, is a finitely generated subgroup of L, we
can find, by the Extension Theorem for Places, a place @: L —
GF(p) U {c} such that ® is finite on all the matrix entries of the
generators of G, and their inverses and furthermore for all 7 = g,
P(tr (g;x)) = @(tr (g;2)). If < denotes the corresponding valuation
ring in L then clearly G, & #, and ® can be extended to a homo-
morphism @: &7, — GF(p). and therefore ¢(G,) is finite.

Consider the natural map 7: K[G,] — K[®(G))]. Since 7 is an
epimorphism, n(JK[G,]) & JK[®(G,)] and thus

7(a) = 3 a(g) e TK[P(G)] -

Now @(G) is finite so JK[®(G,)] is nilpotent and therefore 3%, a,9(g.%)
is nilpotent. Thus Lemma 2.2 implies that for some ¢ % j and some

integer n, P(g:2)"" ~ o) P(9:2)”". Let tr denote the trace map in
GF(p),. Since similar matrices have the same trace and since the
fields have characteristic p > 0 we conclude that

[tr 2(g:0)]”" = tr [2(g:2)™"] = tr [9(g,2)™"] = [tr P(g,0)]"
and thus tr @(9:x) = tr ®(g;x). But certainly tro@ = @otr so we obtain

P(tr (g:2)) = tr P(g:0) = tr P(g;0) = P(tr (9;0))

a contradiction.

We have, therefore, shown that for each x e G, there exists some
1 # j with tr g,z = tr g;x. For each ¢ = j let T;; be the L-subspace
of LG, given by

Tij = {56LG0 i tr (g; —_ g,)5 = O} -

Since tr yields a nondegenerate bilinear form we see that T;; # LG,
and by the above we have
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G = U G N T,;j .
g
But then Lemma 2.1 with S = @ implies that G, has a subgroup H
of finite index with LH = LG, a contradiction. This shows that
K|[G,] is semisimple. Since [G: G,] < o, Lemma 16.8 of [2] implies
that JK[G] is nilpotent and result follows.

3. A local situation. We now study a group G with a rather
special structure. We say G has property (*) if G has a normal
series G 2 W 2 P 2 Z satisfying

1. G/W is infinite cyclic.

2. G = G/P is an L-linear group with 0,(G) = <1).

3. P is an abelian p-group.

4. [P:Z] < o and W centralizes Z.

We say that G has property (**) if G satisfies all of the above and
in addition

5. PN4G) = .

Our aim is essentially to completely determine JK[G] if G satisfies
(*). We start by assuming that G satisfies (**) and prove that JK[G]
is nilpotent. For the remainder of this section we assume that G
satisfies (**) and is given as above. We start by introducing some
more notation.

LemmA 3.1. There exists a subgroup G, of G of finite index
with G 2 G, 2 P and such that

(i) G, = Go/P has a representation as an L-linear group with
LG, semisimple and with LG, = LH for all subgroups H < G, of
finite index.

(i) @G, centralizes the quotient P/Z.

(iii) If W,= G,N W then G,/W, is infinite cyclic.

Proof. The existence of a group G, satisfying (i) is an immediate
consequence of Lemma 2.4. Furthermore, it is clear that this same
property holds for any subgroup of G, of finite index which contains
P. Now G, acts on finite group P/Z and P centralizes this quotient.
Thus we may certainly replace G, by C; (P/Z) if necessary and then
this new @, also satisfies (ii). Finally

G/ W, = GJ(WNG) = GW/W

is a subgroup of finite index in the infinite cyclic group G/W and the
result follows.

We will show that K[G,] is semisimple. Thus by way of con-
tradiction we assume now that G, is given as above and JK|[G,] # 0.
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LEMMA 3.2. There exists a mnonzero element ¥ = ageJK[G,] N
K[W,] satisfying

(1) a= Q, the sum of all the elements of Q, where Q is a finite
subgroup of P.

(ii) B = 32, a,0; where the g; are in distinct cosets of P in
W,

(iii) v centralizes K[P].

Proof. By assumption JK[G,] # 0 and since G,/W, is infinite
cyclic Theorem 17.7 of [2] implies that

I=JK[G] N K[W,]

is a nonzero ideal of K[W,]. Choose ve I, 0 such that Supp 7 is
contained in the smallest number n of cosets of P. By multiplying
7 by a group element if necessary we may assume that one of these
cosets is the identity coset. Thus

n
T = Zl a;g;
=

where ;¢ K[P] and ¢, =1, gs, - -+, g, are in distinet cosets of P.

Let @ be the subgroup of P generated by the support of all the
«;. Then @ is a finitely generated and hence finite subgroup of the
abelian p-group P. Therefore, as is well known, the unique minimal
ideal of K[Q] consists of all K-multiples of Q and thus @ is a multiple
of a, in K[Q]. By multiplying v on the left by this suitable factor
we may clearly assume that «a, = Q. Let heQ. Then 1-ha =0
so (1 — h)ve I has support contained in a smaller number of cosets.
This implies that (1 — h)Y = 0 for all L€ Q and thus we have for all
3, Q; = aiQ for some a;e K. This yields

v =ag = @(ZZ‘, aigi>

and (i) and (ii) are proved.

Finally let A ¢ P. Since P is abelian and ¢, = 1 we see h~"vh —ve I
has support in fewer cosets of P. By the minimality of n we con-
clude that A=vh — v = 0 for all he P and (iii) follows.

We now define an even smaller subgroup of G. Again we fix
the above notation for the remainder of this section. Let

T=1{reQ|h+1,Cqh) L W}.

Now define the subgroup G, by
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Gl = P Wocao(h)
with the understanding that G, = G, if T = Q.

LeMMA 3.8. Let G, be as above. Then
(i) GR2G 2 W, [G:G] < w and G/W, is infinite cyclic.
(ii) If he T then G, = W,Cy (h).

Proof. By definition we have G, 2 G, 2 W,. Moreover, G,/W, is
the intersection of finitely many nonidentity subgroups of the infinite
cyclic group G,/W,. Thus G,/W, is infinite cyclic and [G,: Gi] < .

Finally let he T. Then W, <& G, & W,C, (k) so

G = Wo(G. N Cg(h)) = W,C,(R)

and the lemma is proved.

The reason for working with G, rather than G, will be apparent
in the following result.

Lemma 3.4, Let xc G, — W, and let « be as above. Suppose
that for infinitely many integers s (positive or negative) there exists
an integer r = r(s) = 1 with

aax-sax—z.e e am——rs — 0 .

Then for some he T we have x e Cgy(h).

Proof. The assumption on « clearly implies that for each such
s the group QQ* °Q*™™ ... Q*™" is not a direct product of the indicated
factors. Since there are infinitely many such s there are certainly
infinitely many positive or infinitely many negative ones. Therefore,
by Lemmas 3 and 4 of [1], there exists he @, h =1 and a positive
integer m with 2™ or " in C, (k) and hence 2™e C, (k). Now
zxec G, — W, and G/W, is infinite cyclic so 2™ ¢ W, and by definition
of T we must have he T.

Since G, = W,C;,(h) by Lemma 3.3 (ii) we can write * = wy with
we W, and ye Cy(h). Therefore, ye Cy(h), o™ = (wy)™ e Cg,(h) and
since W, centralizes P/Z we have h* = hz for some zec Z. It then
follows easily by induction on ¢ that

R = haver® .. ogvt
and therefore

A A R
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so we have z'2*" ... 2'" = 1. We now conjugate this last expression
by %' and obtain

2V e VT =1 =22 el V"
Thus since P is abelian we have z = z¥".

Since G satisfies (**) we know that W centralizes Z and thus we
have C;(2) 2 (W, y">. Furthermore, G,/W, is infinite cyclic and
y¢ W, since x¢ W, so clearly [G: C;(2)] < . Hence [G: Ci(2)] < oo
and we have ze PN 4(G). Again by assumption (**), PN 4(G) = {1)
so z=1. Finally h* = h** = h2* = h so xecCy(h) and the result
follows.

Let ~ denote the natural map G,— G, = G,/P and we extend this
to the map K[G,] — K[G,]. Thus for g = 3, a;g; as given before
we have B8 = 33, a,5;. We now represent G, as an L-linear group
as in Lemma 8.1 (i) so that LG, is semisimple.

LEMMA 3.5. We can embed LG, in the matric ring L, in such
a way that tr, the matriz trace map on L,, yields a nmondegenerate
symmetric bilinear form LG, Futhermore, if for each © = j we define
T;; by

T.; = {6 e LG, | tr (§; — §,)0 = 0}
then T,; is a proper L-subspace of LG, = LG..

Proof. The first part follows immediately from Lemma 3.1 (i)
and Lemma 2.3. The second part about T;; follows from the nonde-
generacy of the bilinear form and the fact that g, # §; by Lemma
3.2 (ii). Finally LG, = LG, by Lemma 3.1 (i).

L_EMMA 3:_6. Let e G, — W, and let B be as above. Suppose
that Bz* e K[G,] s nilpotent for all integers s (positive or megative)
with possibly finitely many exceptions. Then for some 1 # j we have
ze T;.

Proof. Since we G, — W, and G,/ W, is infinite cyclic we see that
{Z) is infinite. We consider <(Z) as an L-linear subgroup of G,.
Let V' denote the finite set of exceptional integers in the above and let

S={z"|veV}.

Then S is a finite subset of <Z) so clearly [(Z):S] = . Now let s
be an integer not in V. Since

— n
Bx* = Zl. 0,;9%;
&
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is nilpotent we conclude from Lemma 2.2 that for some 7 = j and
some integer t = 0

(G:a)"" ~ 5,(7;%°)" .

Thus since similar matrices have the same trace and since char
L = p >0 we have

(tr g, @) = tr (g.&°)" = tr (g,2°)"" = (tr g;z°)*" .

Hence trg,z° = tr g;,z° and zZ° e T};.
We have therefore shown that

@ =8SuU (e nTy
and since [{Z): S] = <o, Lemma 2.1 implies that
@ =Yty .
This shows that Ze T;; for some ¢ > 7 and the lemma is proved.

‘We now come to the main result of this section.

PrOPOSITION 3.7. Let G be a group satisfying (**). Then JK|[G]
18 nilpotent.

Proof. We use all the above notation and show first that
JK[G,] = 0. If this is not the case then all of the above lemmas
and notation apply.

Let xe G, — W, and let s = 0 be an integer (positive or negative).
Since G,/W, is infinite cyclic, the element x~* has infinite order
modulo W, Since veJK|[G]N K[W,], Lemma 21.3 of [2] implies
that for some integer r = r(s) = 1 we have

VY ey =0
Now 7 = ap so this yields

algax——slgx—«sa;y—% e a,z-—rslgx-—rs — O .

—1s

By Lemma 3.2 (iii) 7 centralizes K[P] and hence since P <]G, 7*
also centralizes K[P].

We use this latter fact to rearrange the terms in the above
product. First since the product is

YT e T TSR g

s

we can shift the a* " factor past all the v * and obtain

—rs —s —(r—2)s —{(r—1)s —(r—1s —rs
al? nyyx PR ,Yz a:C BSD BI .
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We next shift the a* " ™"° term all the way to the left and continu-
ing this process we clearly obtain

(aax——saz—% e ax——n)(ﬁlgz-—s‘BZ—R cee ‘Bx"‘TS) — 0 .

Let o denote the above first factor and 7 the second. Suppose
that 0 = 0. Now P is an abelian p-group and char K = p so JK[P]
is the unique maximal ideal of K[P]. This implies that every element
of K[P] — JKI[P] is a unit in K[P]. If we now write 7 as ¢ = 2z;y;
with 7;e K[P] and the y; in distinct cosets of P,or =0 and o+ 0
therefore implies that 7, JK[P] and hence ve (JK[P])K[G,. But
this ideal is precisely the kernel of the homomorphism K[G,] — K[G,]
and therefore 7 = 0. Thus

0 = f = Egg—sggmu oo B;_” o (Ezs)r-}-li—rs

and (Bz*)™ = 0.
We have therefore shown that for each s = 0 either

aaz—sa_ﬁ-z.‘: cee az—ra — 0

for some » = r(s) = 1 or Bz° is nilpotent. If the first fact occurs for
infinitely many s then by Lemma 3.4, e C; (h) for some he T. If
this first fact occurs for only finitely many s, then A%° is nilpotent
for all but finitely many s and Lemma 3.6 yields Z € T;; for some 7 = j.

Observe that the above holds for any xe G, — W,. Thus we see
that

i7]

where

S=WwW,uuyp¢c
heT

We apply Lemma 2.1 and there are two possible conclusions. First
there exists a subgroup H of G, of finite index with LH = LG,.
But [Gy:G,] < o so [Gy: H] < o and Lemma 8.1 (i) then yields
LG, = LG, = LH, and contradiction. Secondly we have [G.: S] < o
and this says that G, is a finite union of cosets of the subgroups
W, and C, (k) for all he T. Then by Lemma 1.2 of [2] we see that
one of these subgroups must have finite index in G,. Since G,/W, is
infinite cyclic we, therefore, have for some ke T, [G.: m] < oo,
Moreover, [G: G,] < e and Cg (h) 2 P so this yields [G: C, (h)] < .
Thus =1 and he PN 4(G), a contradiction since G satlsﬁes (**).

We have therefore shown that JK[G,] = 0. Since [G: G] < oo,
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Lemma 16.8 of [2] implies that JK[G] is nilpotent and the proposi-
tion is proved.

4. The main theorem. In this section we prove our result.
However, we first need a few additional facts about groups satisfying
condition (*).

LemMMA 4.1. Let G satisfy (*) and suppose that P (N 4(G) is
finite. Then JK[G] is nilpotent.

Proof. Let @ = PN 4(G) <G and consider G/Q. Then G/Q has
a normal series

G/Q 2 W/Q 2 P/Q 2 ZQ/Q

and it is trivial to see that G/Q has property (*). In addition G/Q
satisfies (**) as follows. Let he P with hQ/Q € 4(G/Q). Then the G
conjugates of % are contained in only finitely many cosets of Q.
Since @ is finite this implies that he PN 4(G) = @ and hQ/Q = 1.
Thus P/Q N 4(G/Q) = (1> and Proposition 3.7 implies that JK[G/Q]
is nilpotent.

Consider the natural map K[G]— K[G/Q]. Since Q is a finite
p-group the kernel of this map is the nilpotent ideal (JK[Q])K[G].
Moreover, we have

JK[GI/JKI[QDKI[G] = JK[G/Q]

and since both JK[G/Q] and (JK[Q])K[G] are nilpotent, the lemma
is proved.

LEMMA 4.2. Let Q be a periodic normal subgroup of a group G
with Q S 4(G). Let g, ye G and suppose that gQ/Q € 4(G/Q). Then
there exists am integer m = 1 such that y™ centralizes g.

Proof. Since hQ/Q e 4(G/Q) it follows that some power y™ of y
with m’ = 1 centralizes gQ/Q and thus (y™, g) € Q. Moreover, since
@ is a periodic normal subgroup of G contained in 4(G), there exists
a finite normal subgroup H of G with (y™, g) e H. This implies that
y™ normalizes the finite coset Hg and therefore some possibly bigger
power y™ of y centralizes g.

At this point we could completely determine the structure of
JK|[G] if G satisfies (*). However, we will content ourselves with
observing the following key fact. If ae K[G] we let
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p-Supp « = {heSupp a |h = 1 has order a power of p} .

PROPOSITION 4.3. Let G satisfy (*) and let x€ G. Suppose that
acJK[G] with 1eSuppa. Then there exists he p-Suppa and an
integer m = 1 such that x" centralizes h and hP/P e 4*(W/P).

Proof. Let @ = PN 4(G) <] G and consider G/Q. Then G/Q has
a normal series

G/Q 2 W/Q 2 P/Q 2 ZQ/Q

and it is trivial to see that G/Q also satisfies (*). Suppose zeZ
with 2Q/Q € 4(G/Q) and choose ye G with G = (W, y>. Then Lemma
4.2 applies and we conclude that y™ centralizes z for some m = 1.
Since ze Z we therefore have C,(z) 2 (W, y™) and hence

[G:Cy(z)] < 0,2e PN 4(G)=Q and 2Q/Q=1.

We have shown that the group G/Q satisfies (*) and in addition
ZQ/Q N 4(G/Q) = {1>. Since [P/Q: ZQ/Q] < « we therefore conclude
that P/Q N 4(G/Q) is finite and hence by Lemma 4.1, JK[G/Q] is
nilpotent.

Write « as

t
a = Z‘f Qa;g;
&

with ;e K[Q] and with g, =1, ¢,, -+, g, in distinct cosets of Q in G.
Since 1eSuppa we can assume that 1€ Suppc«; for all ¢ and hence
g; € Supp a.

Suppose first that a, e JK[Q]. Since 1eSuppa, it follows that
there exists heSuppa, & Suppa with 2 %= 1. Then 2 has order a
power of p and he 4(G) so certainly ™ centralizes % for some u.
Finally hP/P = 1e 4*(W/P).

Now assume that a,¢JK[Q] and let ~ denote the natural map
K[G] — K|[G/Q]. Since Q is an abelian p-group we see that the
kernel of ~is (JK[QDK[G] and therefore for each i, & = a1 for
some a;€ K and by assumption a, # 0. Then

& =3 ad:e JKIG/Q]

has 1 in its support. Furthermore, JK [G/Q] is nilpotent so Theorem
20.2 (i) and Lemma 3.5 of [2] imply that for some 7 # 1, §;€ 4°(G/Q)
and §; has order a power of p. Since Q is a p-group we see that g,
has order a power of p and by Lemma 4.2, z* centralizes g; for some
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n = 1. Now g; has finite order a power of p and G/W is infinite
cyclic so g, W. Moreover, g;Q/Q has only finitely many conjugates
in G/Q so certainly g,P/P has only finitely many conjugates in W/P.
Thus ¢,P/Pe 4°(W/P) and the proposition is proved.

The following is well known.

LeMMA 4.4. Let G be a group and let H be a normal d-subgroup
of G. Suppose that there ewxists an element he H of order p with
[G: Cy(h)] = I.f. Then JK[G]N K[H] # 0.

Proof. Let h and H be given as above and let H* = (k)7 be
the normal closure of (k) in H. Then H* is a finite normal subgroup
of H whose order is divisible by p. We show that JK[H*] & JK[G].
Since JK[H*] = 0 and JK[H*] = K[H] this will yield the result.

Since H* is finite, it clearly suffices by Lemma 17.6 of [2] to
show that if S is a finitely generated subgroup of G with S 2 H*
then JK[H*] S JK[S]. Now by definition [S:Cs(h)] < - so since
Cs(h) clearly normalizes H* we have [S: Ny(H*)] < «. Let N denote
the core of Ny(H*) in S, that is the intersection of all conjugates of
Ny(H*). Then [S: N] < « and N<]S. Since H* = SN H S and
SN HZ Ny(H*) we have H* < SN H< N and clearly H* <{ N. By
Lemma 19.4 of [2], JK[H*] S JK[N] and by Theorem 16.6 of [2],
JK[N]1 < JK[S]. Thus JK[H*] & JK][S] and the result follows.

We can now prove our main theorem.

Proof of the Theorem. Let G be an L-linear group. Suppose first
that there exists an element & € &7(G) of order p with [G: Cy(h)] = L1.
Then by Lemmas 1.3 and 4.4 we have JK[G] N K[ (G)] # 0 and

hence JK[G] =+ 0.
Conversely let us assume that JK[G] = 0. There are three cases

to consider.
Case 1. 0,(G) = (1.

By definition, .&2(G) = 47(G) here and by Proposition 2.3, JK[G]
is nilpotent. Thus by Theorem 20.2 there exists an element 4 € 4°(G)
of order p. Since he4?(G) we have [G:C,(h)] < «~ and hence
[G: Ci(h)] = 1.1

Case 2. G has a finite normal nonidentity p-subgroup.

Let this subgroup be Q. Then @  0,(G) so Q = 4(0,(G)) & Z(G).
Let & be an element of order p in Q. Then again ke 4(G) implies
that [G: C,(h)] < c and hence [G: Cy(h)] = 1.1,
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Case 3. P = 0,(G) = (1) and G has no finite normal nonidentity
p-subgroups.

Set G* = D,(P). Since JK[G] = 0 and P is nilpotent by Lemma
1.1 (i), it follows from results of [5], that JK[G] N K[G*] = 0. Thus
we may choose acJK[G]N K[G*] with 1eSuppa. We set T =
p-Supp & N £ (G).

Since P is nilpotent and P = (1) we have 4(P) = (1) and hence
by assumption 4(P) is infinite. On the other hand, Lemma 1.2 (i)
implies that [4(P): (4(P) N Z(G*))] < . Thus we can choose 7h,¢
A4(P) N Z(G*) to be an element of order p. We show now that in
the notation of [3]

G =V Cshy) vy V' Colh)

Let v € G and suppose first that xG*/G* has infinite order. We
consider the group G = (G*, ) and show that it satisfies condition
(*). First we have the normal series

G2G*24P) 22

where Z = 4(P) N Z(G*). By assumption G/G* is generated by #G*/G*
and is therefore infinite cyclic. This yields condition (1). Now
G* N P = 4(P), and since G/G* is infinite cyclic we have GNP =
G*N P = 4(P). Thus since G/P is an L-linear group by Lemma 1.1
(ii) so is @/A(P) = (?P/Pg G/P. Again since G‘/G* is infinite cyeclic,
0,(G) = 0,(G*) <] G 50 0,(G) = PNG = 4(P) and therefore 0,(G/4(P)) =
{1) so condition (2) is satisfied. Moreover, Lemma 1.2 (i) clearly yields
(4). Finally 4(P) has a center of finite index so by Lemma 2.1 of [2],
A(P)’ is finite. Then this is a finite normal p-subgroup of G so by
assumption 4(P) = (1), 4(P) is abelian and condition (3) holds.

Thus G satisfies (*). Now aeJK|[G] N K[G] < JK[G] by Lemma
16.9 of [2] so Proposition 4.3 implies that there exists i e p-Suppa
and an integer m =1 such that «" centralizes » and h4(P)/4(P)e
4°(G*/4(P)). Note that the latter condition really says that 7 € <2(G).
Thus e T and

ze U VCh) &V Cilhy) UL V' Cy(h) -

Now let xe€ G with xG*/G* of finite order. Then 2" ¢ G* for some
# = 1 and hence by the choice of %, 2"¢€ C,(h,). Therefore, in this
case also we have

2 eV Coll) S VT U U VT -

Thus we have show that
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Therefore, since G is a linear group, Proposition 7 of [3] implies that
for some ge{h}UT we have [G:Cyg)] =1£f. Now by definition
{h UT S £(G) and hence g = 1 is an element of <~ (G) of order
a power of p. Finally if 4 is an element of order p in {g), then
he ¥ (G) and Cy(h) 2 Cx(g) so [G: C,(h)] = 1.f. and the theorem is
proved.

5. Comments. The preceding proof is complicated by having
to handle a number of small details. In each case if our knowledge
of the situation was only a little more complete, a simplification of
the proof would occur. For example, the unpleasantness of the place
argument in Proposition 2.5 could be avoided if we knew that JK[G]
was a nil ideal. In addition much of the work in § 3 would be sim-
pler if we could assume that P & 4(W) or in other words if we knew
that for an L-linear group G, 4(P) & 4(G*) where P = 0,(G) and
G* = DP).

Actually even a greater simplification would occur if only we
could handle the equation

G=UVvEUUGNT)

where the H; are centralizer subgroups of G and the 7T; are proper
L-subspaces of LG where G is an L-linear group. We would of course
want to conclude from the above that either [G: H;] = 1L.f. for some
1 or else that some subgroup of finite index has smaller linear span
than G. However, this does not appear to be true at least in this
generality. For example we have

ExAmMPLE 5.1. Consider the 2 x 2 linear group over the complex
numbers C given by

it

Then G has a normal subgroup H

a,beC and b is a root of unity} .

-

i M

isomorphic to C*, the additive group of C. ~No‘ce that C* has no
proper subgroups of ﬁnite index and thus if G is a sul)group of G
of finite index then G 2 H and it follows easily that CG = CG.

Let

aeC}
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o

a d

Then T is a proper C-subspace of CG and H< 7. Now suppose

zeG— H. Then z = [1 0] for some b = 1 and thus clearly the
a b

matrix o is similar to [1 2] Since b is a root of unity, this implies
0

that & has finite order and hence certainly xe1/C,(g) where

It 0]
=10 -1]°
We have therefore shown that

G=vVCi(U(GNT)

and certainly [G:C,(g9)] is not locally finite since C,(9) N H = <{1).
Thus we see that we cannot conclude from such a decomposition of
G what we would like to.

T =

%deq.

Finally it would appear from the main result here and also the
result for solvable groups given in [5] (or see [3] for a description
of this fact) that JK[G] # 0 must imply in general that G has a
nonidentity normal 4-subgroup. However, this is unfortunately not
the case as we see below.

Let p be a prime and let A = Z, be the cyclic group of order p
ifp>2and A=2Z,if p= 2.

LEMMA 5.2. Let H be an infinite p-group and let G be the
Wreath product G = AV H. If N is a normal 4-subgroup of G then
N is contained in the mormal abelian subgroup of G which in FA.

Proof. Write G = WH where W = YA is the direct sum of copies
of A, one for each element of H. If N& W choose xe N — W with
2*e W. Then N2 (z, W) but we see easily since H is infinite that
[(x, W): C,,w(x)] = o, a contradiction.

ExAMPLE 5.3. Let G, be an infinite locally finite p-group and
define G, &€ G, = G, & --- inductively by G,.., = A1 G,. Then G =
U:-. G, is a locally finite p-group. If N = (1) is a normal 4-sub-
group of G choose n so that NN G, #<1). Then NNG,,, is a
normal 4-subgroup of G,,, = A!1G, not contained in YA, a con-
tradiction by the above lemma.

Thus G has no nonidentity normal 4-subgroup. On the other
hand, if K is a field of characteristic p then JK[G] is the augmenta-
tion ideal of K[G], since G is a locally finite p-group. Therefore,
JK[G] = 0.
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ERGODICITY IN VON NEUMANN ALGEBRAS

CHARLES RADIN

We investigate the ergodicity of elements of a von Neumann
algebra 2 under the action of an arbitrary cyclic group of
inner *-automorphisms of 9. A simple corollary of our results
is the following characterization: A von Neumann algebra
is finite if and only if for each A € and inner *-automorphism
a of %, there exists A such that 1/N S ¥=la"(A) —A

N-ooo
in the weak operator topology.

1. Introduction. Our purpose is to explore in a new direction
the ergodic theory of von Neumann algebras presented by Kovics
and Sziies [2]. In [2] the essential contribution was the introduction
of a certain restriction (called G-finiteness) on a group of *-automor-
phisms of a von Neumann algebra, fashioned so that all elements of
the algebra behave ergodicly with respect to the group. Instead we
consider the action of a natural class of (cyclic) groups of *-automor-
phisms, namely the inner ones, and investigate which elements of the
algebra behave ergodicly with respect to all such groups.

2. Behavior of infinite projections. From the ergodic theory
developed in [2], we note the following simple consequence.

THEOREM 0. (Kovacs and Sziics). Let U be a finite von Neuwmann
algebra. For each Ac and each inner *-automorphism « of U,
there exists AeA such that 1/N >\ a”(A)ﬁ;;»A i the strong

operator topology.

Our first result is a complement to this and provides a new
characterization of finiteness for von Neumann algebras.

THEOREM 1. Let U be a von Neumann algebra. For each nonzero
infinite projection Pe there exists an infinite projection e,
g < P, and a unitary Uc U, such that 1/N Y2 U6 U does not con-
verge in the weak operator topology.

First we need the following lemma.

LEMMA. There exists a mnonzero properly infinite projection
P <P

Proof. Let S be the set of all central projections £ of % such

235
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that EP is finite. 0e S so S is not empty. Let {E,} be an orthogonal
family of elementsof S. If 3, E.P~ Q< 3, E,P(where ~ is the usual
equivalence relation for projections in ), then E,P ~ F,Q < E,P so
that E,Q = E,P and therefore @ = >, E.Q = >, E.P. Therefore, Q —
. E.P and 3, E,P is finite. It follows easily that there exists a
(unique) maximal element F' in S. From [1, II1.2.3.5] it follows that
(I—F)P is nonzero and infinite. Assume it is not properly infinite.
Then from [1, II1.2.5.9] there exists a central projection G such
that 0% G(I— F)P is finite. But then from [1, II[.2.3.5] F<F +
G(I — F') € S, which contradiction proves our lemma with P’ = (I — F)P.

Proof of Theorem 1. From [1, I11.8.6.2] there exists a set
{P, | neZ} of nonzero projections P, e? such that P,P, = 4,,,P, and
P, ~ P, for all m,neZ, and such that 3, .<nP. - in the

strong operator topology. Therefore, there exist V,e W such that
V,*V,= P, and V,V,* = P,,, for all neZ, so that P,,,V,= V,P,
and P, V,* = V,*P,., for all n e Z, Define for each f e 5~ (the Hilbert
space of definition of ),

Uf = (norm lim V.P.f) + (I — P)f,

m—eo |n|Zm

where the limit exists since ||V, P.f|| = | P.f|l and V,P.f = P, V.f
so that {V,P,.f|ne Z} are pairwise orthogonal and

SUVPFIE= S PSS IPFIE

In fact U is clearly a linear and norm preserving surjection, and
therefore unitary. Now since

(Z VkPk>norm lim 3\ P,.f= 3 V.P.f

ikl=l m—ooe |n|2m Inisi

it follows that U;=1 — P’ + Z VkPk has U as a strong operator limit

as [— co, Therefore, Uec?l. It also follows that UP, U™ = P,,, for
all neZ, and so by induction U"P, U™ = P,., for all m,necZ.
Now define g: N — {0, 1} by

if 3™ < n <3 for some meN

g(n) :#( .
l if 3t < n <3 for some meN.

Then define @ as the strong operator limit as
K— — o of 30.x g(—m)P,, ,

and let +» be a unit vector in P,.2#. Now consider
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<q;f, 1/N:§:]—: U6 U—w> - l/Nng <¢, U U 0¢>

N—1

= 1/N glm g(—m)<«/r, Pn+me>

=0 m=—

- 1/N:§1 g(n) .

It is easy to see that for all Me N, 1/3+ S¥¥+ 1 g(n) = 2/3 yet
1/32+2 St () <1/3, and the theorem is proven.
Using Theorem 0, we have immediately,

COROLLARY 1 (resp.2). A wvon Neumann algebra U is finite if
and o'n_ly if for each Ac and inner *-augomoaﬂphism a of U, there
exists A € W such that 1/N SV a™(A) ﬁ(;»A in the weak (resp. strong)

operator topology.

3. Finite elements. Theorem 1 raises the question of the ergodic
behavior, under arbitrary inner *-automorphisms, of “finite elements”
of infinite von Neumann algebras. The following theorem gives some
information in this direction.

THEOREM 2. Let U be a von Neumann algebra and v a faithful
normal semi-finite trace on WAt invariant under the *-automorphism
a of U. Then for each A c U such that T(A*A) < oo, there exists A e
such that 1/N >t a™(A) oo A in the strong operator topology.

Proof. First we define the following (standard) objects: see e.g.
[1, 1.6.2.2]

Il lz: Ae A — [c(A*A)]"
A" ={AcU|[[Afl, < o}

Let L, be the abstract completion of _#~ in the norm || ||,, and extend
I| 1l to L, in the usual way. Let ¢ be the isometric embedding of
4" into L, L, is a Hilbert space with the obvious addition and
scalar multiplication, and inner product <, > defined as the extension
to L, x L, of

T:A X Be 4" X A4 —>(A*B).
We note the simple inequalities

|AB|, < ||A||||B|. for all Be 4", AeX
I|AB|, < || Al.||B]|  for all Be 4", Bedl.
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We then define the C*-representation = of % on L, by
n(A)i(B) = 1(AB)

and noting that ||w(4)i(B)|, = || AB|. < || A||||B|l. so that 7(A) ex-
tends uniquely to L, by continuity. It is easy to see that x is faithful
and normal and that

U: i(B) — i(a[B]) for Be 1+~
extends to a unitary operator on L,. Defining, for Be ¥,

B, = %Nz—‘f a™(B), we know by von Neumann’s
n=0

mean ergodic theorem that for each Ae._#", i(Ay) is || |.-Cauchy.
Define for each Be 77,

D,: i(B) — norm lim 7(A4,)#(B)
N—ooo

which limit exists since
| m(Ay — Ay)i(B) ||, = || Ay — Ay |l 1| Bl -
D, is obviously linear. Furthermore,

1 D4i(B) [l = lim || 2(Ay)i(B) |l = | A[| [ Blls

so D, extends uniquely to a bounded operator on L, by continuity.
It is easy to see that m(A,) converges to D, in the strong operator
topology. Since 7 is normal, 7(2) is strong operator closed [1, 1.4.3.2]
so there exists Ae¥ such that D, = w(4). Since m is faithful,
Ay K;?A_ in the strong operator topology [1, 1.4.3.1].

COROLLARY 1. Let U be a countably decomposable von Neumann
algebra. For each finite projection Pe N and inner *-automorphism
a of A, there exists Pe A such that

N—1 —
% > a*(P) Noo P inm the strong operator topology .
M=0 —00

Proof. Let
Aeglf-——’Al@Aze%@%z

be the canonical decomposition of 2 into its countably decomposable
semi-finite and purely infinite components. From [1, 1.6.7.9] we know
that any finite countably decomposable von Neumann algebra has a
faithful, normal, tracial state. Inserting this fact into the proof of
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[3, 2.5.3], we see that there exists a countable faithful family
{r.| n € N} of normal semi-finite traces on 9] with pairwise orthogonal
supports such that 7,(P,) < « for all ne N. Define

o = 3 o,/leP) + 2J°

on A ; it is faithful, normal and semi-finite. Since « is also inner
for 9, and therefore leaves 7’ invariant, we may apply Theorem 2 to
N,. Since P, = 0 from [1, II1.2.4.8], we are finished.

In the countably decomposable case, Theorem 2 gives us an es-
sentially different proof of Theorem 0, namely

COROLLARY 2. Let U be a finite countably decomposable wvon
Neumann algebra. For each AcW and inner x-automorphism o of U,
there exists A e U such that

N—1 — .
Nﬂ% a"(A) TV:;A in the strong operator topology .

Proof. Just combine the existence of a faithful finite normal
trace on A+ [1, 1.6.7.9] with Theorem 2.
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ON THE SINGULARITIES OF THE FUNCTION
GENERATED BY THE BERGMAN OPERATOR
OF THE SECOND KIND

P. ROSENTHAL

Let v (2, y) = P(f) be Bergman’s integral operator of
the second kind with domain of definition

W={@ 9372 <y, 20, y>0}.

Let f(q)=(q— A AcW. In this paper it is shown
that 7(1, y) has singular points z =24, 241 — w), where
w=A"12 and z =2 + 7y.

Let
dt
vV1i-=¢
be Bergman’s integral operator of the second kind. P,(f) maps

functions f analytic in one variable in the neighborhood of the origin
into solutions of the linear partial differential equation

V2 = P(f) = | B, 0 (£0- 1)

qzr,,*+N<z';z*)(¢,+¢,,):0, z=N+1y, 2*=\-—1y,
N\ = —@1/120)@ + b(—N)**+ ---) is analytic for —o <A <0 and
singular at » = 0. E(z, 2%, t), called the generating function of the
operator, is analytic in the three variables z, z*, and ¢ providing
[z + 2% | < |tz ], | is some rectifiable Jordan curve in the upper com-
plex t-plane connecting the points —1 and 1, [1], [3].

In a previous paper [7] we obtained some results on the singu-
larities of P,f) where f is meromorphic and 2z, z* were treated as
independent complx variables. In this paper we let 2* = Z (conjugate
of z2) and N(\) = —1/12x (Tricomi case). With these assumptions,

v Y) = Sl_l E(u)r/_{—%)?dt , where wu= _2%. ,
z=x+1,

E(u) = HM(F P (u) + F @ (u)), F®(w) = Cu™°F\(1/6, 2/3, 1/3, 1/w),
F®w) = CuFy(5/6, 4/3, 5/3; 1/u), F; is the hypergeometric function
j=1,2, H\) = C\"%, C; are constants, 7 =1,2,8, (\,y)e W=
{,y) 132N <y, A=0, y >0},

241
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! (the path of integration = {t|¢ = ¢*,0 = ¢ < 7}, [4, p. 107].

THEOREM. Let f(@)=(A—¢)™", A=Nn+1y,eW, MA=w=
s+1i0, z=n+1y, S, = {(w,?) |2 = 24, )2z argw = a,, T/2>a,>r/3,
0<o,=|w|=1/4—0, 1/4>0,,0.>0, 1/4 > 6, + 03},

S; = {(w, 2) |z = 2A(1 — w), same conditions on w as in S},

S:={(0,2y)}. Let T=8S,US.US,, Then T is a singular set for
at least one of the branches of +(w, 2) defined in ().

Proof. We consider first the case where E(w) = HM\F “(u).

Domain considerations. (3), (4) imply +(w, 2) is analytic function
of the two complex variables w, z for disc neighborhoods satisfying
0<|w|<1/4, |A/2] <|z|<|A|, where we have extended A to the
complex variable Aw. Note (1) implies we must specify branch cuts
in our definition of +(w, z). Since z = A + iy (see (1)), we must also
consider the extension of A, ¥ to complex values subject to the above
inequalities. Thus we can also obtain nonempty neighborhoods N;(\),
N,(y) such that (), %) is an analytic function in A, y, where \, ¥
now have been extended to complex values.

In what follows we treat «+(w, z) as an analytic function in 2z for
fixed w.

Consider the function obtained from (1) where we have used the
series definition for F(u),

(2) f()\,, y) = Sl iw_ i(ziAy’(l _ tz)pt—lls.‘/ dt ,

—1 =0 Pad =0 11t

a, = (I'(p + 1/6)I"(p + 2/3)/(p + 1/8)(p + 1)), I' is the Gamma
function, |z| < A4, |2\] < |z]|. From (2) we obtain two series,

S (Sa(L) e — o) (&)
8 (B (B ormia e (2))
2l <|Al, |2n] < |z].

(3)

|

We will limit ourselves to the first series in (8) for our analysis of
the singularities of P,(f). When |N|Z|A/2] -6, |2| < |4A]— 6,
|A/2| >8>0, the operations of summation and integration (with
respect to t) can be interchanged in the first series of (3), our inte-
grals are in the improper Riemann sense. Integrating the first part
of (3) by parts, then using the formula,



ON THE SINGULARITIES OF THE FUNCTION 243

R 241 a1 iy T(13) (v + 2/3)
/ 1 — +16 MY 1 _ ! ,
L -y = — g 0 — ey EERCRT
[2, p. 83], we obtain the function
S EAY
(4) fiw,2) = 3 8,00 ()
where

= . Ik + 18Ik + p + 1/2)
(5) o) = 2 At Ay = I'(k + 1/3)"(k + 1I'(p + 5/6)

(5) can be rewritten as

a = TAS)I1/2 + p)
T T3 (56 + )

(6) Br(w) = a,e,(w) ,

c,(w) = Fy(1/6,1/2 + p, 1/3; w), F, a hypergeometric function. Using
the asymptotic formula for F, for large p [6, pp. 235, 241 (23)], we
can write ¢,(w) as

¢(w) = a, (W)™ R, + a,w)(L — w)rR,,
() ) = (r(3)) r(%)wwr,

o

p sufficiently large, weT ={w|0<d S |w|=1/4~0,, 1/4> b,
0, >0, 1/4>6, + 0, w/2=argw = a,, 7/2 > a, > 7/3},

Ri(p, w) =1+ R (p, w) ,

lim,... pR{(p, w) = h;(w) = 0 uniformly for we T, j =1, 2. Using
(6), (7), we can rewrite (4) as

=py=1 oo o
£, 2 = "3 e, (Z) + 2o, wm+ T apw,
( 8 ) »=0 2A p=py+1 P=py+1
z - %
] = =y == 1 —_ 1z y
Y z=(1-w 24

and
(9) alp, w) = a,a,(we*R,,  c(p, w) = a,a,(w)(l — w) PR, ,

see (6) for the definition of a,, (7) for a,(w).
From (9) we obtain

(10) o = lim [cy(p, w) [7* =1,
p—roo
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the radius of convergence of the second and third series in (8), and
—e < argc;(p, w) < e, 0<e< w2 p sufficiently large, we T, 7 =1,
2,

Proof of (10). From (7) we obtain
1+52|R](p,W)|;1—8>0,

1>¢>0, p sufficiently large, we T,. So we can take the pth root
(say principle branch) of ¢;(p, w), 7 = 1, 2, ef (9).

Using the asymptotic formula (I'(p + A)/I'(p + B))~p*" %, we
conclude the first part of (10). Since lim,_., (1 + R?(p, w) = 1, we T,
see (7), the second part of (10) follows.

(11) z2=2A and z=2401-w), weT,
are singular points of (8).

Proof of (11). (10) satisfies the hypotheses of a theorem of
Dienes [5, p. 227]. From this theorem we conclude z = 24 and z =
2A(1 — w) are singular points respectively of the second and third
series in (8). Further, c¢;(p = & = pe®¥, w) (see (9)) is an analytic
function in & in the half-plane 2, = 1, & = «a, + 1¥,, and

le,1 + pe¥, w) [ < e?, >0,

and arbitrarily small, o > 0 and sufficiently large, and —7/2 < < 7/2,
weT, =1, 2. This follows from a definition of the remainder
term R{’ (p, w) of (7), see [6, p. 235]. Hence by a theorem of Le Roy
and Lindelof [5, p. 340], we conclude the only possible singular points
of the second series in (8) are the points on the ray @ = @, @, =
arg 24, joining 2A to infinity and the only possible singular points
of the third series in (8) are the points on the ray o =4,
0, = arg 2A(1 — w), we T, joining 2A(1 — w) to infinity. Further,
arg 24 =+ arg (2A(l — w)), we T.. Hence the singular points z = 24,
z=2A0 — w), weT,, of the second and third series respectively
are not removed upon addition of these two series in (8). This com-
pletes the proof of (11).

12) (0, 2y,) is a singular point of r(w, z) .

Proof. Let w=NA=x=0. (3) then reduces to the first
series, and (4) reduces to the hypergeometric function F,(1, 1/2, 5/6;
(/2y,)) times a constant. F, is singular at the point y = 2y,, so (12)
holds.

From (11), (12) we conclude T is a singular set (see Theorem for
the definition of T) of «(w, 2) for the case F,.
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Proof. We note the second series in (3) when integrated with
respect to t gives rise to a function f.,(w, 2) which is regular at the
points in 7.

For the case F, (see (1)) we use the formula

! —5/3 42\ 156 dt — _1_ —2xif3) I(=1/3)I"(v + 4/3)
g—1t (=% vVii—g 2(1 ) I'iv+1)

[2, p. 33].

Proceeding as above, we then conclude T — {(0, 2y,)} is a singular
set for the case F, (1) thus can be written as the sum of two
functions,

(13) (w, 2) = W (9(w, 2) = 2*°P(w, 2) + Py(w, 2)) ,
where P; is singular at the points in 7 — {(0, 2¢,)}, 7 = 1, 2. This
follows from the linearity of the operator P,(f).

At least one of the branches of g(w, z) of (15) is

(14) . C L
singular for points in 7 — {(0, 2y,)} .

Proof of (14). #*® can be one of the three branches,
o, = R2i3gi2i30 , Ay = R23gi2/30+2/37) , Q= R2/36i<2/30+4/3x)’ T>60> —1.

We form the sum
ﬁ (w, 2) = zaP(w 2) -+ 3Py(w, 2) .

We note 3, a,P(w,2) =0, |w|<1/4; [A)2| < |z]| <]|4A]| (see (3)).
So if all the branches of +(w, z) in (13) were regular at the points
in T — {(0, 2y,)}, then P,(w, z) would be regular at the same points,
a contradiction. For w = \/A = ), =0, P50, 2) = 0, hence (0, 2y,) is
a singular point for all branches (13) (see (12)). This completes the
proof of our Theorem.
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MULTIPLICATIONS ON HOMOGENEOUS SPACES,
NONASSOCIATIVE ALGEBRAS AND
CONNECTIONS

A. A. SAGLE AND J. R. ScHUMI

In this paper we show how nonassociative algebras over
the real numbers arise from multiplications on certain homo-
geneous spaces; that is, an analytic function p: M <X M — M.
Then these algebras are used to obtain an invariant con-
nection / on the homogeneous space and we give some appli-
cations of nonassociative algebras to these topics. Conversely
every finite dimensional nonassociative algebra over the real
numbers arises from an invariant connection and a local mul-
tiplication on a homogeneous space. Thus, analogous to the
theory of Lie groups and Lie algebras, much of the basic
theory of nonassociative algebras can be formulated in terms
of multiplications and connections and conversely.

1. Introduction. Let G be a connected Lie group with Lie algebra
g and let H be a closed subgroup with Lie algebra . Then the pair
(G, H) or (g, h) is called a reductive pair if there exists a subspace
m of g so that g = m + h (subspace direct sum) and (Ad H)(m)C m.
The corresponding homogeneous space G/H is called a reductive homo-
geneous space which is an analytic manifold. An analytic function

u:G/H x GIH— G/H

such that u(e,e) = e = eH is called a multiplication on G/H; for
example, Lie groups, Moufang loops and certain H-spaces are reductive
homogeneous spaces with a multiplication.

The nonassociative algebras arise from studying the local behavior
of a multiplication ¢ on G/H which we now consider. Thus let x:
G — G/H be the natural projection and let ¢ =m + A be a fixed
(reductive) decomposition. From [1, p. 113] we know that for the
map + = exp | m there exists a neighborhood U of 0 in m which is
mapped homeomorphically into G under + and such that 7 maps (U)
homeomorphically onto a neighborhood N* of & in G/H. Thus by the
analyticity of ¢ and mer there exists a neighborhood D of 0 in m
contained in U so that for all X, Ye D

rmexp X, mexpY) = wexp F(X, V)

is in N* where F: D x D— U is a function which is analytic at § =
(0, 0) e m x m. Thus ¢t is determined locally by F' which has the Taylor’s
series expansion [5] F(X, Y) = F(0) + F{0}(X, Y) + 1/2F*(0)(X, Y)* +

247
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.+« for X, Ye D. We will show that F(f) = 0 and the function
a(X, Y) = F*0)[(X, 0), (0, Y)]

is bilinear. Therefore the multiplication p# on G/H determines a
nonassociative algebra with linear space m and composition a:m X
m — m and we denote this algebra by (m, a).

Next we require that for all v € H the mappings

t(u): G/H — G/H: yH — uyH

are automorphisms of the multiplication # on G/H, and call the pair
(G/H, ) with t(H) C Aut (G/H, pt) a multiplicative system. We show
that 7(H) C Aut (G/H, p) implies Ad H is in the automorphism group
of the algebra (m, ) and this allows us to use the result [6] which
gives a bijective correspondence between G-invariant connections / on
G/H and nonassociative algebras (m, ) with Ad HC Aut (m, ). Thus
a multiplicative system (G/H, ) induces a G-invariant connection via
the algebra (m,a). Conversely, we show that every such algebra
comes from a local multiplicative system. In particular, any finite
dimensional nonassociative algebra A over R can be regarded as an
algebra (g, a) for a Lie algebra g of suitable dimension and conse-
quently A arises from a local multiplicative system defined on G and
also from a G-invariant connection defined on G.

The above multiplicative systems (G/H, ¢t) are too general and
not particularly related to the action of G on G/H. We will now
describe an “invariance” restriction for the multiplicative system (G/H,
2. The multiplication g defines a function #(y, X): G/H— T(G/H)
from G/H to the tangent bundle of G/H as follows; (see [9] for the
case of Lie groups). Let T(G/H, @) denote the tangent space at a e
G/H; thus T(G/H, €) = m. Let T denote the differential of a function,
then for each Xem we set

2(¢, X)(@) = [Tr(@, )](0, X) for (0, X) e T(G/H, @) X m .

That is, #(¢, X)(@) is the differential of p evaluated at (@, &) on (0,
X). The function ~(y¢, X) is a vector field if and only if (G/H, p)
has & as a right identity element; also the vector field is analytic and
depends linearly on X. For I" a subset of 7(G) containing 7(e), whose
precise definition will be given in §4, we say that p is ["-invariant
if for all Xem, (¢, X) is a vector field invariant under all the maps
(a): G/H— G/H: T — aZ% for all t(a)el’. That is, for all r(a)erl,
and all Xem, 7(¢, X) satisfies

Tr(a)(e)s (¢, X)(e) = #(¢, X)(z(a)e) .
In particular if (G, ¢) is a Lie group, then I" can be taken to be
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L(G)y = {L(a): € G} and #(y, X) is the usual left invariant vector
field generated by X, so our results are consistent with Lie theory.
In the case of a I" invariant multiplication y, we obtain the connection
induced by g is given by the algebra (m, @) with a(X, Y) = F*@0)[(X,
0), (0, V)] = 1/2[X QY] where Q is the endomorphism of m given by
Q:m—-m:Y— F' )0, Y). Although we have used a global multipli-
cation in the above discussion, most of the results concern the algebra
(m, «), thus it suffices to consider local multiplications on G/H. However
the globalization of these local results present many topological pro-
blems. For example, every sphere is a reductive homogeneous space
G/H and consequently has in a suitable neighborhood of ¢ =e¢H a
local multiplication with ¢ as an identity element. Thus any sphere
is a local H-space but only S?, S° and S” are global H-spaces.

2. Multiplications. Using the notations of §1 we have for X,
Y in a suitable neighborhood D of 0 in m that

ptirexp X, wexpY) =mwexp F(X, Y)

where F: D x D— U is analytic at § = (0,00 em x m and UC D is
a neighborhood 0 in m for which woexp = 7oy is a diffeomorphism.
Thus analogous to local Lie groups we have a local multiplication system
(U, F).

We now consider the Taylor’s series for F' near the origin 6 =
0,0)em x m. Thus for Z=(X, Y)em xXxm and Z* = (Z, +-+, Z)
k-times we have for ¢ in a suitable interval (— 4, 6) C R that

F(tX,tY) = F(6) + tFN0)Z* + t2F*0)Z* + -+

where F*(0) = D*F(0) is the kth derivative of F' at 6 and is regarded
as a symmetric k-linear function on (m x m)* into m [5]. In particular
since p(e,e) = ¢, F(d) = F(0,0) = 0. Next writing Z = (X, 0) + (0,
Y) we see that
DF(0)Z = DF©O)[(X, 0) + (0, Y)]
= [DF(@)I(X, 0) + [DF(6)](0, Y)
= PX 4+ QY

where [DF(6)](X, 0) is regarded as a linear function of X and denoted
by PX with P an endomorphism of m and similarly [DF(6)](0, Y) =
QY.

Using the symmetric bilinearity of D*F'(0) we obtain for Z = (X, Y)
12[F%6)I(Z, Z) = 1)2F*(0)[(X, 0) + (0, Y), Z]
= 12F*(0)[(X, 0), (X, 0)] + 1/2F*6)[(0, Y), (0, Y)]

@.1)
+ F*(O)[(X, 0), (0, Y)] .
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Now we note that for X, Yem
a(X, Y) = F*(0)[(X, 0), (0, Y)]

defines a bilinear function & on m X m into m as follows. Forac R
and X, Y, Zem

a(aX + Z, Y) = FO)[(aX + Z, 0), (0, Y)]
= F0)[(@X, 0) + (Z, 0), (0, Y)]
= F*(0)l(aX, 0), (0, Y)] + F*6)[(Z, 0), (0, Y)]
=aa(X, Y) + a(Z, V)

and similarly e is right-linear. Thus m with the bilinear function
o becomes a nonassociative algebra denoted by (m, ).

Note that the converse is true locally. Thus given a nonassocia-
tive algebra (m, a) we can find a neighborhood D of 0 in m so that
prexp X, mexpY) =mwexp(X + Y+ a(X, Y)) defines a local multipli-
cative system on some neighborhood N* of &; this is analogous to
formal Lie groups. Furthermore note that this multiplicative system
has & as a two-sided identity and for FI(X, ¥V) = X + Y + a(X, Y) we
have 1/2F*60)(X, Y)* = a(X, Y).

If the multiplicative system (G/H, ) has ¢ = ¢H as a right identity
(¢#(@, ) = a), then in the above notation

P =1 and F*O)(X, 0" =0.
For if t is in a suitable interval (— 0, 6) of R we have for X € m that
mexptX = pu(rexptX, rexp0) = wexp F(tX, 0)

and since woexp suitably restricted to m is a diffeomorphism as pre-
viously discussed we have

t X =F(tX,0) =tPX+ —’g-Fz(ﬁ)(X, 0+ ---

for ¢t in a suitable interval about 0 in R. Differentiating this formula
at t = 0 gives the results. A similar result holds if (G/H, pt) has e
as a left identity. Thus if (G/H, ) is an H-space; that is, € is a two-
sided identity, then F(X, Y) =X+ Y+ a(X, Y) + ---.

3. Automorphisms. From the bijective correspondence between
G-invariant affine connections on G/H and nonassociative algebras
(m, @) [6, 8] we see that Ad H must be in the automorphism group,
Aut (m, ), of the algebra (m, ®). We shall show in this section that
this condition is implied by z(H)c Aut (G/H, p); thus we want to
consider multiplicative systems (G/H, t) with 7(H) < Aut (G/H, ).
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DEFINITION. An analytic diffeomorphism #: G/H — G/H is an
automorphism of (G/H, p) if n(e) = e and =, ¥) = p(n%, ny) for all
Z,y € G/H. We denote the set of such automorphisms by Aut (G/H,
). An endomorphisms Se GL(m) is an automorphism of the algebra
(m, a) if Sa(X, Y)=a(SX, SY) for all X, Yem. We denote the set
of such automorphisms by Aut (m, @).

For »e Aut (G/H, ) and for X em sufficiently near 0 in m we
can write

3.1) n(mexp X) = 7 exp (P(X))

where ®:m —m is analytic at 0em and #(0) = 0. Thus for X, Y
sufficiently near 0 in m we can also write

71z exp X, wexp Y) = 7z exp F(X, Y)) = wexp (PF(X, Y))
and

u(n(rw exp X), n(rexp Y)) = p(wexp (PX), wexp (PY))
=rnexp F(pX, 9Y).

But since 7 e Aut (G/H, ¢t) we can conclude for X, Y sufficiently near
0in m
PF(X, Y) = F(PX, PY)

that is, ® is an automorphism of a suitable local multiplicative system
(U, F).

We shall now expand ® and F in their Taylor’s series to find
conditions on e Aut (G/H, #) so that the differential (T%)(¢) is in
Aut (m, @). First we note from (3.1) and the chain rule we have for
Xem
TnEe)(X) = [T(moexpep)(0)}(X)

= [Tn(e)o T exp (0)o TP(0)[(X)
= Tp(0)(X)
= PH0)(X)

because Texp (0) is the identity on g and Trw(e) is the identity on m.
From the Taylor’s series

(*%)

F(X,Y) = PX+ QY + %@LX’, Yy + -

and
P(X) = P0) X + @Xz L.,

we have for X, Y sufficiently near 0 in m
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PEX, Y)) = P (OF(X, Y) + 129 (0)0(F(X, Y), F(X, Y)) + «--
= @' (0)(PX + QY + 1/2F*0)(X, Y)* + +-+)
+ 120 (0)(PX + QY + «++, PX + QY + +++) + «--
= P(0PX + ' (0)QY
+ 129 (0 F*(0)(X, Y)* + 1/29%(0)(PX + QY, PX + QY)
+ &

where ¢, is of order three. Also

F@X,2Y) = Pp(X) + QP(Y) + 1/2F0) (X, PY)* + «--
= P(P(0X + 122 (0)X* + -++) + Q(P'(0)Y + 1/2¢%0) Y*
+ ees)
+ 12F(0)(PH(0)X 4 «oe, PHO)Y 4+ eoe)® 4 onn
= Pp'(0)X + Q9Y(0)Y + 1/2P9*0)X* + 1/2Q9*0) Y*
+ 12F*@0)(P(0)X, PO Y)* + &5 .
Since pF(X, Y) = F(¢X, #Y) we compare terms of the same degree
to obtain

[#'(0), P] = [#'(0), Q] = 0
and

12910 F*(0)(X, Y)* + 1/29°(0)(PX + QY, PX + QY)
= 1/2P9*(0)X* + 1/2Q9*Y*
+ 1/2F*0)(P'(0) X, (0) Y)* .

From (2.1) and this last equation we obtain by considering the ex-
pressions in both X and Y (i.e. replacing X by sX and Y by tY):

POFO(X, 0), (0, Y)] — F*O)[(#(0)X, 0), (0, '(0) )]
= — P(0)(PX, QY) .

Recalling (X, Y) = F*9)[(X, 0)(0, Y)] and equation (**) and by definition
Tn(e) is nonsingular we obtain the following.

LeMMA 3.1. Let (G/H, tt) be a multiplicative system given locally
by p(rexp X, mexpY) =mexp F(X, Y) where F(X, Y) = PX+ QY +
12F40)(X, Y)*+ « -« and let n € Aut(G/H, ) given locally by 7(wexp X) =
wexp (P(X)). Then

(1) [P, Tn(e)] = [Q, Tn(@)] =0

(2) Tne) e Aut (m, a) if and only if P(0)(PX,QY) =10 for all
X, Yem.

Now for u e H and for x € G with 7mx = xH e G/H we have
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T(w)w(x) = ueH = ueu" (uH) = wo(u)(x)

where g(u): G — G: x — uau ' is the inner automorphism of the group
G defined by u. Next recall [1] that [To(u)](¢) = Adu and for an
automorphism ¢ of G that o {(exp X) = exp (To(e)X). So we assume
for v € H that 7 = t(u) € Aut (G/H, ). Then the local representation
gives

7 exp (P(X)) = n(z exp X)
= (t(u)om)(exp X)
= woo(u)(exp X)
= exp 7 ([T o(u)(e)|(X))
= 7w exp (Ad u(X)) .

Since (G, H) is a reductive pair we have Ad H(m) C m and consequently
for all X in a suitable neighborhood of 0 in m we have

P(X) = Adu(X) .

Thus since » = Adw is linear we have from this equation, and (**)
applied to 7 = 7(u) that

(3.2) Tr(w)(@) = Te(0) = Adu .

Since @ = Adu is linear, its second derivative is zero; that is,
®*0) = 0. This and Lemma 3.1 yield the following.

ProprosITION 3.2. Let (G/H, 1) be a multiplicative system so that
T(H) < Aut (G/H, tt). Let pt be given locally by u(rexp X, mexpY) =
wexp F(X, Y) where F(X, Y) = PX + QY + 1/2F*00)(X, Y)* + -+ and
let (m, @) be the algebra determined by F*(0). Then

(1) [P, Adu] =]Q, Adu] =0 oll uec H.

(2) Ad Hc Aut (m, a).

(8) The algebra (m, o) defines a G-tnvariant affine connection
on G/H.

4. Invariant multiplications. Let (G/H, tt) be a multiplicative
system defined on the reductive space G/H and let ¢ = m + h be the
corresponding fixed decomposition. For Xem and for T(G/H) the
tangent bundle of G/H define functions

(¢, X): G/H — T(G/H): a — [(T)(a, €)](0, X)
and

(¢, X): G/H — T(G/H): a — [(Tp)(e, )](X, 0)
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where Ty is the differential of the function p: G/H x G/H— G/H
which is evaluated, for example, at (@, ) and acting on tangent
vectors (0, X) e T(G/H, &) x T(G/H, &).

Next note #(z¢ X)(resp..(, X)) is a vector field if and only if
M@, €) = a(resp. n(e, @) = @). For if ~(y, X) is a vector field and
u(@, &) = b, then #(u, X)(@) e T(G/H, b) which is the tangent space of
G/H at b. But #(, X) being a vector field means

@ =idy (@) = posipy, X)@ = b

where p: T(G/H) — G/H is the corresponding projection map. Con-
versely u(a@, e) = @ easily implies pos(yt, X) = idy; that is, #(¢, X) is
a vector field. Similarly for .(y, X).

Also it is not difficult to see that in this case <(#¢, X) and .(g¢, X)
are analytic vector fields which depend linearly on the parameter X.
Since the results for .(g, X) are similar to those for s{z, X), we
restrict ourselves to ~(u, X).

We now define the concept of an invariant multiplication which
reduces to the familiar notion in Lie groups. Recall [4] if X: M —
T(M) is an analytic vector field on a manifold M where T(M) is the
tangent bundle over M and if f: M- M is an analytic diffeomorphism,
then X is f-invariant if

Tf(p)(X(p) = X(f(p)

for all pe M where Tf(p}: T(M, p) — T{M, f(p)) is the differential of
fatp.

DEriNiTION. Let (G, H) be a reductive pair with g = & + m the
corresponding decomposition for g and let G/H be the homogeneous space
of left cosets. Let (G/H, 1) be a multiplicative system with (H)C
Aut (G/H, ¢ty and let I" = {t{exp A): A € O,)} where O,, is a neighborhood
of 0 in m on which exp is one-to-one and (exp O,) N H = {e}; [1, p. 113].
Let & = ¢H be a right identity for (G/H, 1); that is, ;(@, €) = @, then
1 is called IM-invariant if for all X em the vector fields ~(x«, X) are
invariant relative to the functions in /7 as follows:

Tz(exp A)(e)- {1, X){e} = 7(p, X){t{exp A)e)
for all 4 in O,,.

REMARK. (1) Before considering the general case we first consider
the system (G, ). In this case I” can be replaced by all of L(G) =
{L{a): a € G} where L(a): G — G: x — ax, the multiplication in the group
G. In particular we see that if ¢ is a right identity of (G, p), then
the vector field #(X) is I"-invariant if and only if TL(a)(p)-/(tt, X)(p) =
(¢, X)(L{a)p); that is, the ["-invariance at ¢ is actually global. Also
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it should be noted that when g is the Lie group multiplication in G,
then the L(G)-invariant vector field ~(X) equals the usual left G-
invariant X; note remark (3) below.

ExaMpLE 1. Let f:G— G be an analytic function on the Lie
group G so that f(e) = ¢, then the multiplication

w@, y) = m, f(y)) = zf(y)

is L(G)-invariant where m is the Lie group multiplication in G. First
Mz, e) = xf(e) =2 for all xe G so that (¢, X) is a vector field on
G. From remark (1) we have m is a L{(G)-invariant multiplication
so that

[(Tm)(a, 910, U) = #(m, U)e) = TL(a)(e)[(Tm)(e, ¢)-(0, U)] -
Thus noting p(x, y) = [me(idy x f)](z, y) we have using the chain rule

21, X)(a) = [(T)(a, e)](0, X)
= [T(m~(idy X f))(a, ¢)}(0, X)
= [T m(a, e)o(T idy(a) x Tf ()10, X)
= [T m(a, e)}(T idy(a)-0, Tf(e)- X)
= [T m(a, ¢)](0, Tf(e)- X)
= T L(@)(@)[T mf(e, )-(T'idy(e)-0, Tf(e)- X)]
T L{a)(e)[T(mo(idy x f))e, ¢)-(0, X)]
= T L@)(©)[(Tp)(e, ¢)- (0, X)]
= T L(a)(e)(, X)(e)

Il

so that g is left L(G)-invariant. Other examples can easily be con-
structed where the multiplication need not have the “separation of
variable property”. Thus locally an L(exp g)-invariant multiplication
t can be given by mexp X, expY) = exp F(X, Y) where

F(X, Y) = CX, f(X, Y))

with f:¢ x g — g analytic at (0, 0), and f(X,0) =0, and C(X, Y) =
X+ Y+ 1/2[XY] + --. is the Campbell-Hausdorff formula. We leave
it as an open problem to see if this is the most general way of obtain-
ing the local expression for an L(G)-invariant multiplication on G.

REMARKS. We shall soon give the local formula for a I"-invariant
multiplication on G/H. But first we give a few remarks and formulas.
(2) If (G/H, ) is a Lie group; i.e. H normal, then since ()T =
axH we have u(@, ) = L(@)%Z. Thus locally g is L(G/H)-invariant
(as a group) if and only if ¢ is /'-invariant (as a homogeneous space).
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Also when H is a normal subgroup with 2@, b) = abH, then 7(H)C
Aut (G/H, pt) because for u € H we have

T(u)p(@, b) = uabH
= (wau"'ubu")H
= uau'H-ubuH
= trw)a, <w)b) .
(8) Let (G/H, p) be a multiplicative system with ¢ given locally by
FX,Y) =X+ QY+ a(X,Y) + 1/2F*0)(0, Y)* + .-

as in §2, where 6 = (0,0) and a(X, Y) = F*(0)[(X, 0), (0, Y)]. Then
the vector field #(y¢, X) satisfies

7(1, X)(e) = QX .

For from p(moexp X, woexp Y) = mwoexp F(X, Y) we obtain po(roexp x
moexp) = moexpeF. Using T(woexp)(0) = idy on m and the chain rule
we obtain

(1, X)(e) = [(T)(e, )](0, X)
= T[(woexp-F')(0, 0)](0, X)
= T(mwoexp)(0)(0 + QX)
= QX

recalling [(TF)(0, OI(U, V) = U + QV.

(4) We must restrict ourselves to the set I" = {t(exp A): A€
0,.} and not the group generated by z(exp O,) because this group is
frequently G since m frequently generates g. For example, if ¢ is
simple, then m + [m m] is an ideal of ¢ and therefore equals g.

However if for the system (G/H, i) we have u is 7(G)-invariant,
then it is v(H)-invariant. This with 7(H)c Aut (G/H, p) yield the
following computations which indicate that 7(G)-invariance is too strong
of a condition. With g given by F(X,Y) =X+ QY + --- as in
remark (3) we see from Proposition 3.2 that ©(H)C (G/H, pt) implies
[Adu, Q] = 0 for all we H. From p being 7(H) invariant we have

Te()(@)- (2, X)(@) = «(1t, X)c@)a) = (¢, X)(@) -

But from formula (3.2) we have T7(u)(¢) = Ad % and from remark (3)
we have #(y¢, X)(e) = QX; thus

(Adu)(QX) = QX .

This gives, since [Adwu, @] = 0 that Q(Adw — I)X =0 for all ue H
and X e m. Thus for w =exp U with Ue h and using Ad (exp U) = ¢**
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we obtain
0 = (Qoad U)(X) = (ad U-Q)(X) .

If @ is nonsingular we obtain (ad k)(m) = 0 so that » is an ideal in
g; this is usually not the case.

We now obtain sufficient information concerning the multiplication
¢ from the Taylor’s series for F(X, Y); note the converse statement
in Proposition 4.7.

THEOREM 4.6. Let (G, H) be a reductive pair with (G/H, pt) a
multiplicative system with ©(H)C Aut (G/H, tt). Let p be I'-invariant
and for X, Yem in a suitable neighborhood of 0 in m let p be given
locally by p{mexp X, wexpY) = wexp F(X, Y) where F is given by the
Taylor’s series

F(X,Y) =X+ QY + a(X, Y) + 1/2F*6)(0, Y)*
+ 23 n! F*(0)(X, Y)" .
Then

(1) a(X,Y)=12X-QY(=1/2[XQY],)
(2) If o' = Tr(e) and if

Fn = Fn(U’ V) = F”(ﬁ)[(U, 0), M) (U3 O)’ (O; V)]

where (U, 0) occurs (n — 1)-times and n > 2, then for F, = F(X,Y) =
QY we have

0 = n'[p(n, OF, + p(n, Dad X(F,_) + ---
+ pn, k)@d X)5(F,_) + -+ + p(n, n — 1)(ad X)"'F]

where p(n, k) = (— D¥/(k + 1)1 (n — &k — 1)]. Thus we have an iterative
formula for part of the Taylor’s series for F which is the best possible
obtainadble from the I'-invariance condition.

(8) For each ue H and n =2,3, --.

(Adw)- F~(0)(X, Y)" = F"(0)(Adu-X, Adu-Y)" .
In particular (Adw)-F,(X,Y)=F,(Adu-X, Adu, Y).

Proof. We have t(a)emr = woL(a) and from remark (3)
[#to(m X T)o(exp X exp)|(X,'Y) = [roexp-F(X, Y) .

Using this equation and the chain rule we obtain for @ = 7 exp X and
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¢ = wexp 0 that
[(Te)(@, 8)]0, Y) = [T(woexpeF)(X, 0)](0, Y)

which is used in the fifth equality below.
From [1, p. 95] we have for A in a suitable neighborhood of 0 in
g that

I . e-—-adA

T[L(exp(— A))oexpl(d) = ——>

where (I — ¢ 7)/P = >\ (— P)*/(k + 1)!. Also from z(a™")o7(a) = idy
on G/H we obtain

Tr(a~)(@)o Tr(a)(8) = I

which gives the inverse for Tz(a)(e).
We now use the above formulas and the chain rule to obtain for
X, Y in a suitable neighborhood of 0 in m and a = exp X,

QY = #(1, Y)(e)
= [Tr(@)(@)]7#(¢, Y)(@)
= Tr(@™)(@)-[(Te)(a, 2)}(0, Y)
= [T(z(@™))(a, 2)](0, Y)
= [T(z(a ) omoexpo F) (X, 0)](0, Y)
= Tr(e)- T(L(exp (— X))oexp)(X)-[(TF)(X, 0)](0, )

- Tn(e)-i—g&—ﬁ.wm(x, 0](0, )

where
F'= [(TF)(X, 0)](0Y)
= lim %[F(X, tY) — F(X, 0)]

—1lim L[X + QY + ta(X, Y) + t/2F*0)(0, Y)* + -+ — X]
QY+ X, V) + 3, —1 _F.(X, 7).
=3 (n — 1)!

To see this last equality just note that by induction we have

FYO)(X, tY)" = Fr(0)(X, 0)" + ntF.(X, Y) + o(t?)
= ntF (X, Y) + o®)

using F"(0)(X, 0)* = 0 since (G/H, tt) has € as a right identity.
From the series for (I — ¢**%)/ad X we obtain



MULTIPLICATIONS ON HOMOGENEOUS SPACES 259
& ((—ad X)*
vy =3 (200
< ,?;0 (k + 1)! (&)

’ ’ dX ’ ('—ad.X)k 13
—plp 3L LB A) e
”[ ar - U T T ]

- n’[QYJr a(X, Y) + i F.Jn — 1)
— 1/2(ad X)(QY +alX, ¥) + 3, F, /(0 — 1)1)
o+ C2 Doy 40X, v) + S R0 - 1) + o ]

(k + 1)!
=7[QY + a(X, V) — 1/2@d X)(QY) + -.-]

- QY + Ta(X, Y) — %’(adX)(QY) Foeen

Thus since QY and «a(X, Y) are in m and 7’| m is the identity, we
obtain

(X, Y) = g—'<ad X)QY)

- %(X-Qm [(XQY],)

Il

1
—X.-QY .
2 Q

(Recall [UV], is the component of [UV] which is in k). Similarly by
noting F(X, Y) is homogeneous in X of degree k¥ — 1 we combine
those terms of degree n — 1 in X to obtain

_ A _F. 1 F,_ (= D*ad X)*F,
0= ”[(n_l)z 2(adX)(n— 2! o - (k + Dln — k — 1)!

4o 2D 09 X)n—lpl]
n!

where F, = QY.

Equation (3) in the theorem follows from Proposition 3.2 and the
remarks preceding it. Thus for »e Aut(G/H, ¢t) we wrote locally
n(mexp X) = wexp (¢{X)) and showed ¢F (X, Y) = F(¢X, $Y). In par-
ticular for » = 7{(u) we showed ¢ = Adw for u ¢ H so that from the
Taylor’s series for F' and the linearity of ¢ = Ad « we obtain (3).

ExAMPLE 2. These formulas can also be used to construct examples
locally. Thus let G be nilpotent so that ad X is nilpotent for all
Xeg; that is, there exists # so that for all Xeg, (ad X)» = 0.
Let the function F, be given by the iteration formulas: F, =
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X, F\(X, V)=QY, 0=n'[p(2, 0)F,+ (2, 1)ad XF'], etc. Set K(X, Y) =
S Fiu(X, Y)/E! which is a finite sum by nilpotency of G. Note that
K is analytic and for the k-th derivative K*@#)(X, YV)* = F (X, Y) =
K.(X, Y). Thus K has the above Taylor’s series and we can define
locally p(mexp X, mexpY) = wexp K(X, Y). This is (locally) I-in-
variant because K, in terms of its Taylor’s series, satisfies the iteration
equations of the theorem and the process of the proof is reversable.

Next by induction using the iteration equation we also obtain
F (X, Y)=F,(¢X, ¢Y) for ¢ = Adu with v € H. This uses Proposition
3.2 as follows: ¢F(X,Y) = Adu QY = QAduY) = F(X, ¢Y) = F(¢X,
8Y) since “X” does not occur in the formula for F,. Also reductivity of
the pair (G, H)is used to commute 7’ and Ad «: for Yem, (x’cAdu)(Y) =
Adu(Y) = (Adu-m’)(Y). Thussince K(X, Y) = >, F,(X, Y)/k! we have
¢K(X, Y) = K(¢X, ¢Y) so that using the results of §3 and the definition
of ¢ by t(u)(mrexp X) = wexp(¢X) we have locally (H) < Aut(G/H, 1)
as follows:

twpmexp X, mexp YY) = t(u)(wexp K(X, Y))
= mexp ($K(X, Y))
=7mexp K(pX, ¢Y)

and

t(t(u)(w exp X), r(u)(wexp Y)) = p(wrexp (¢Y), rexp (3Y))
=rwexp KX, ¢Y).

We extend the above notions in the following result to obtain
a converse to Theorem 4.6.

PROPOSITION 4.7. Let (G, H) be a reductive pair with fived de-
composition g=m-+h. Let Fi: mxm—m for k=1,2, ... be a sequence
of multilinear functions which satisfy the iterative equation (2) and
equation (3) of Theorem 4.6; that is, for all we H, (Adu)-F (X, Y) =
F,(Adu-X, Adu-Y). Then for all X, Y in a suitable meighborhood
of 0 in m the series X + .o, 1/k! F (X, Y) converges absolutely and
uniformly to a function K(X, Y) which is analytic at 6 = (0, 0) e m X
m and the multiplication pn(wexp X, mexpY) = wexp K(X, Y) defines
a local multiplicative system (G/H, pt) so that pt is locally I'-invariant.

Proof. Using the obvious extension of the results in example
(2) above, it suffices to prove the series converges to an analytic
function K so that the derivatives K*(6)(X, Y)* = F (X, Y). To show
that the series converges absolutely and uniformally for X, Y in a
suitable neighborhood of 0 in m, we let B, = F,.,/k! fork =1,2, «--
and let S =7" and T = ad X. Then from the iteration formula we
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obtain F, = SQY and

B =5 TFI

B =STp _ ﬂiﬂ

_STp _ST'p .

ST3F
3! 4!

1

B,

B, = S_TB%N1 — STan_Z 4 eee + &ST%F

3! (n + 1)!
Now let || || denote either the operator or the Euclidean norm, then
we have ||S}| = 1. Let r =1 and let ¢ be a fixed number with ¢ >
5 ¢ where ¢ = 2,71 .... Then for F, = SQY with Xe. v = {Xem:

llad X[ <rjand Ye & ={Yem:||QY || <1} we have || T|| = |[ad X || <
r = 1and || B, = 1/2||STF,|| < 1/2{|S||- | T||-]| F\]] < 1/2 < ¢. Assume
for all k¥ < » that X2 || B;|| < ¢, then for ¥ = n we have from the
equations for the B’s

SIB| = |3 R
+ |12, - S;,"F
N
+ S;FBH ~ %Tv—z-Bn_z + . ((n‘ 1) 5 =D g, “
<usn(UZL Uy (”JTF i‘)v)” |

N ||STHCZ—1”B”) 1|ST21|(;,,B,,)

+ oo+ BT gy
n!
2 T'IL
=(g+ +"'+m)
r n—1
+2— +3-—,-0+ n!C

using the induction hypothesis and || T'|| <». Butif d(k,r) =3 r/(:+1)!,
then
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dk,”) +1+r=1+r+ 2 e ‘
rdk,v) + 1+ 7 = |7+§+'°'+m<6
since » = 1. Thus d{k, r) < (2.8 — 2)/1 = .8. Therefore >~ || B;|| <
.8+ .8¢=.8(1+c¢)<c because ¢>5e. Thus the series 3 B,(X,Y) converges
absolutely for all (X, Y) with Xe.c7 and Ye &% to a function k(X, Y).
Since || B.||/k + 1 < || B, || we see that >, B,/(k + 1) converges absolutely
to a function k(X, Y).
Thig series converges uniformly on .o x 7 to k(X, Y) as follows.
On o7 x &% the partial sums >.%_, B, are bounded by ¢ > 5¢. Thus
since 1/k +1— 0 we have from a standard result that the series
> B,/k + 1 converges uniformly on &7 x .2 But B,k +1 = F,../
(k + D! so that X + 3, F (X, Y)/k! converges uniformly on o7 x &
to K(X, Y). Using this we see from [2, §8] that K is analytic at
6 = (0,0) and K*0)(X, ¥)* = F (X, Y) as desired.

=€

5. Connections and holonomy. From [6] there is a bijective
correspondence between G-invariant connections on the reductive space
G/H and non-associative algebras (m, ) with Ad H < Aut (m, «). Thus
if this algebra (m, ) is induced by a multiplicative system (G/H, p)
we obtain a connection “induced by p” and we discuss such connec-
tions and the corresponding holonomy algebra (Lie algebra of the
holonomy group). Thus for X, YV, Zem let

a(X)y:m—m:Y—a{X,Y) and RX, Y):m—m: Z— R(Y, Y)Z

where R(X, Y)Z7 = (X, (Y, Z)) — (Y, a(X, Z)) — a(XY, Z) — [W(X,
Y)Z] is the curvature evaluated at @ = ¢H in G/H [6]; recall that

Y =[XY], (resp. (X, Y) = [XY],) is the projection of [XY] in ¢
into m(resp. h). From [7] the holonomy algebra, denoted by hol (), is
the smallest Lie algebra hol (o) of endomorphisms of m so that R(X,
Y) ehol (@) and [a(X), hol ()] < hol (&) for all X, Yem.

We shall say that the holonomy group acts irreducibly on G/H
in case hol (o) act irreducibly on m. This can be stated in terms of
the algebra (m, a) as follows. A left ideal of the algebra (m, o) is
a subspace % of m such that a(m,n) Cn. Thus from the formula
for R(X, Y)Z we see that a left ideal n which is invariant under
ad hi{m, m) = {ad (X, Y): X, Yem} is hol (w)-invariant. Therefore the
holonomy irreducibility of G/H implies {m, ) has no left ideals which
are ad i{m, m)-invariant.

We now consider the connection of the first kind which is a well
behaved, easy to construct connection. From [6] we see that on the
reductive space G/H there exists a unique G-invariant connection
which has zero torsion tensor and such that a l-parameter subgroup
x(t) = exptX of G generated by X € m projects by 7: G — G/H: »(t) —
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Z(t) into a geodesic Z(¢) in G/H. In this case a(X, Y) = 1/2XY and
the connection is called the connection of the first kind relative to a
fixed decomposition g = m + h.

Thus since this multiplication a(X, Y) = 1/2XY is anti-commuta-
tive, a left ideal is a two sided ideal; therefore holonomy irreducibility
implies (m, «) has no ideals invariant under ad i(m, m). But using
the Jacobi identity, ad A(m, m) is contained in the derivation algebra
of (m, @) so that the algebra (m, &) must contain no proper ideals or
mm = 0; that is, the holonomy irreducibility implies (m, «) is the zero
algebra or simple. This uses a result in [8] which states if a finite
dimensional nonassociative algebra over R which is not the zero algebra
has a proper ideal, then it has a proper ideal invariant under its
derivation algebra.

If the connection on G/H induced by (m, «) is pseudo-Riemannian,
then from [6] there exists a nondegenerate symmetric bilinear form
C:m X m — R satisfying

C@dU.-X,Y)+ C(X,adU-Y) =0
and
Ca(Z2)- X, Y)+ CX,a{Z)-Y)=0

for all X, Y, Z in m and U in h; that is, the endomorphisms ad U
and a(Z) are C-skew symmetric. Also for this connection we have
[6], 0 =Tor(X,Y) =a(X, Y) — a(X, Y) — XY and the multiplication
function « is determined by

6.1) 20Z aX,Y)=CZ XY)+CZX,Y)+ CX,ZY).

We shall denote the algebra m with multiplication w(X, ¥) = 1/2XY
by (m, 1/2XY) and we shall denote the algebra (m, ) with a non-
degenerate from C inducing a pseudo-Riemannian connection (i.e.
satisfying the above equations) by (m, a, C). In particular, if C is
positive definite so that it induces a Riemannian connection, then
from the deRham decomposition [4] the original connection is built up
from its irreducible components.

We next use the algebra (m, @) obtained from a multiplication
to obtain a connection. Thus let (G/H, 1) be a multiplicative system
as before and let

urexp X, wexpY) =rwexp F(X, Y)
where we have
FX,Y)=PX+ QY+ alX,Y)+ ---

with a(X, Y) = F*0)[(X, 0), (0, Y)] a bilinear multiplication on m so
that Ad Hc Aut (m, @). For a I"-invariant multiplication we obtained
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in §4 (using the notation XY = X.7Y)
a(X, Y) =1/2X-QY
thus if L(X):m —m:Y— XY we have for all Xem and Ueh that
a(X) = 1/2L(X)°Q and [ad U, Q] = 0

using the results of §3.

LemmA 5.1. Let (G/H, ) be a multiplicative system as above and
let ¢ be I'-invariant. Then the kernel of @ is an ad h-invariant left

ideal of (m, o).

Proof. Let m = ker Q, then since [ad 2, Q] = 0 we see that n is
ad k-invariant. Also a(m, n) = 1/2m-Qn = 0 so that a(m, n) C n; that
is, » is a left ideal.

LemMA 5.2. Let (G/H, 1) be a multiplicative system as before
which induces a nonzero algebra (m, a) and a corresponding connection
on G/H. Let p be I'-invariant and let hol (&) be irreducible, then Q
18 nonsingular.

Proof. Suppose ¢ is I'-invariant and hol (@) is irreducible. Then
from the remarks at the beginning of this section, the algebra (m, @)
has no left ideals which are ad h(m, m)-invariant. But from Lemma
5.1, the kernel of @ is such an ideal. Thus the kernel of @ is zero
since we are assuming a(X, Y) = 1/2X.QY is not identically zero.

We use these lemmas in the next two results where we compare
an irreducible connection induced by a multiplication with the irreducible
connection of the first kind.

THEOREM 5.3. Let (G, H) be a reductive pair so that for the
decomposition g =m + h we have [m,m],# 0. Let (G/H, tt) be a
multiplicative system as before so that p is I'~invariant and let the
conmnection induced by p via the algebra (m, ) be a holonomy irreducible
pseudo-Riemannian connection. If the algebra (m, 1/2XY) is simple,
then a(X, Y) = 1/2XY; thus the connection by p is of the first kind.

Proof. First assume g is ['-invariant, then from «a(X, Y) =
1/2X.-QY and

0=Tor(X,Y)=aX,Y) — a(¥,X) - XY
=1/2X.-QY — 1/2-QX — XY

we obtain
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L(X)oQ = LW2I — Q)X) .
Thus from a(X)Y = a(X, Y),
(5.3) 2a0(X) = L(X)Q = L({(2] — @X) .

Next by Lemma 5.2 and the hypothesis of irreducibility we see that
@ is nonsingular. From this we obtain 21 — @ is nonsingular as
follows. If (21 — Q)A = 0, then using (5.3)L(A)-Q = 0. But since
@ is nonsingular, L(4) = 0. Thus if 4 # 0, this means that the one
dimensional subspace RA is an ideal in the simple algebra (m, XY);
consequently A=0. Since 2] — @ is nonsingular, (2] — Q)m =m and from
formula (5.3) we obtain a(m) = L(m). Next recall that the elements
of a(m) are C-skew so that the elements of L(m) are also C-skew; thus

C(ZX, Y) + C(X, ZY) = 0.

But from formula (5.1) which uniquely determines & in terms of C
and (m, XY) we obtain

20(Z, a(X, Y)) = C(Z, XY)

that is, a(X, Y) = 1/2XY. Since (m, XY) is simple, this also implies
Q=1

COROLLARY 5.4. Let the reductive pair (G, H) and the multipli-
cative system (G/H, pt) be as in Theorem 5.3. If the corresponding
Lie algebra g is simple and h 1is semi-simple and g = m + h where
m = h* the orthogonal complement relative to the Killing form, then
the conmection induced by p is of the first kind.

Proof. This uses the result from [8] that if ¢ = m + & as above
and [m m], = 0, then the algebra (m, 1/2XY) is simple.
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EXISTENCE OF DIRICHLET FINITE BIHARMONIC
FUNCTIONS ON THE POINCARE 3-BALL

LEO SARIO AND CECILIA WANG

In an earlier study we discussed the existence of quasi-
harmonic functions, i.e., solutions of du =1. We showed,
in particular, that there exist Dirichlet finite quasiharmonic
functions on the Poincaré 3-ball

Ba{lzl <1l,ds=(1—|z|D*|dz]}

if and only if ac€(—38/5,1). We now ask: Is the existence
of these functions entailed by that of Dirichlet biharmonic
functions? This is known to be the case for dimension 2.
We shall show that, perhaps somewhat unexpectedly, it is
no longer true for dimension 3.

For preparation we first solve the problem, of significance in its
own right, of the existence of Dirichlet finite biharmonic funections.
In the notation of No. 1 below, we give the complete characterization

B,e0, — a> _%.

The problem also offers considerable technical interest, as the gener-
ating harmonic functions can not be presented in a closed form, but
only by means of expansions at the regular singular point of the
related differential equation. This makes the estimates somewhat
delicate. Also, the four cases a>1, @¢e(—8/5,1), a < —38/5, and
a = —3/5 must be treated separately, each with its own approach.
To deduce the above result (Theorem 1), we first expand a
harmonic function on B, in terms of spherical harmonics with respect
to our non-Euclidean metric (Theorem 2). As important applications
of Theorem 1 to the classification theory we obtain a decomposition
of the totality of Riemannian 3-manifolds into three disjoint nonempty
subclasses induced by Ogp and O,,, (Theorem 3), and establish the
existence of paraboli¢ 3-manifolds which carry H2D-functions and of
hyperbolic 3-manifolds which do not carry H:D-functions (Theorem 4).
An interesting open problem is whether B,¢ O , if and only if

a > —3/(N + 2).

H2D

1. A function w is harmonic or biharmonic according as it satisfies
4 = 0 or Liu = 0, where 4, is the Laplace-Beltrami operator 4, =
dd + od with respect to the metric ds = Mx) |dx|. Denote by H? the
family of nonharmonic biharmonic functions, by D the family of

267
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functions f with finite Dirichlet integrals D(f) = Sdf N *df < oo,

and set H:D = H*N D. Let Oy, be the class of Riemannian manifolds
which do not carry H2D-functions. We assert:

THEOREM 1. B, ¢ Opzp=a > —3/5.
The proof will be given in Nos. 2-T.

2. We start by expanding a harmonic function on B, in spherical
harmonics. We recall that a function S,(¢', 6%, in polar coordinates
(r, 6", 6%, is called a spherical harmonic of degree n if »"S,(¢", ¢°) is
harmonic with respect to the Euclidean metric. Every such function
is a unique linear combination of 2% + 1 linearly independent funda-
mental spherical harmonics S,, of degree n. The class {S,.;n =
0,1,2,-+e;m=1,2 +-+,2n + 1} is not only an orthogonal system

with respect to the inner product (f, 9) = g fgdS, with @ the 2-sphere

and dS the surface element, but also a complete system with respect
to the family of L*functions. For every harmonic function 4 in B,,
we have a Fourier expansion

(1) W, 0) = 35S d,n(r)S,n(6)

with 6 = (6", 6?).
By virtue of

A(F0)Sum®) = —N0) + (24 X)) = nin + Drtf0))S,u0)

and M\t = —2ar(l — %)™, the function f(r)S,.(d) is harmonic on B,
if and only if f(r) satisfies the differential equation
(2) r*(L — r)f"(r) + r[2(1 — *) — 20r*] f'(7)
—an+ DA —rf@r) =0.
We shall denote the solution of equation (2) for each » by f.(r).
Since all coefficients in (2) can be expanded into power series of 7,

the point 0 is a regular singular point of the equation. Thus there
exists at least one solution of (2) in the form

(3) Fur) = e Seart

C.o # 0. On substituting in (2) we have
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(4) 2 (@ + 4 = D(pn +9) + 2(py + %) = n(n + D]esrt™

- g{(pn + 14— 8)(p, + 17— 2) + (2+ 20)(p, + 17— 2)
—n(n + Djc,, ;™" =0.

To determine p, we equate to 0 the coefficient of »?» and obtain
the indicial equation

which gives p, =n or p, = —(n + 1). Since 0¢ B,, p, can not be
negative, and therefore p, = n.

We then equate to 0 the coefficient 2(n + 1)e¢,, of »*»** and obtain
C = 0.

To find ¢,;, © = 2, we equate to 0 the coefficient of »?»"%:

=[(®0, +9— 2P, + 17— 1+ 20) — n(n + Dc,.,

On letting p, = n and ¢,, = 1 we have

(5) =] B2 D002 1420 — min £ 1)
=1 (n+ 2)(n + 25 + 1) — n(n + 1)

for 1 =1, and ¢, 5., = 0 for 7 = 0.

The limit of f,(r) = 3.20¢..7" as r — 1 exists since the ¢,y
are of constant sign as soon as 7 is sufficiently large. Furthermore,
this limit can not be zero, for otherwise lim,_, f,S,, = 0, and conse-
quently f, = 0, contrary to ¢,, = 1. In a similar fashion we see that
fu(r) = 0 for 0 < r < 1. Hence for arbitrary but fixed », 0 < 7, < 1,
there exist constants a,, such that a,,f.(")S.n = Fun(?)S.m, and

(6) 3.8 00 fu0)5,m0)

is a series of functions harmonic on B, which converges absolutely
and uniformly to h(r,, ) on the 2-sphere of radius 7, Now let
r, < 7 < 1; then by the same argument there exist constants a,
such that

(1) 35 dnfa)S0l®)

n=0

converges to A on the ball of radius . Hence (6) and (7) are identical
on the ball of radius », so that a,, = a,, for all (n, m).

We have proved:
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THEOREM. FEwvery harmonic function h(r, 6, 6*) on the Poincaré ball
B, has the expamnsion in terms of the fundamental spherical harmonics

Snm?

(8) hr, 6,69 = 305 tun S Cant™ 58S, 0(6, 6)
=0

n=0 m=1

where the c,,.; are given by (5).

3. After this preparation, we proceed with the proof of Theorem
1. An essential aspect of the proof is that the cases ¢ =1, ae
(—8/5,1), « < —38/5, and @ = —3/5 all require a different treatment.
We first establish the following crucial estimate:

LEmMMA 1. If a =1, then
Sir) = i CL? ™t = O0((L — 1)) as r— 1.

Proof. By (5),

_ & = D@+ 2m) — 2
Q2+ D@2 —2

_pAtee—1 21+ 2 —3)/@+2a—1)

Ci,2;

3= 25 27 +3
We claim that
(9) Coes < I Zt+2a—1
J=1 2j
or, equivalently,
27 — 3
10 4—- = _° >0,
10) 2] + 2a — 1 -

In the case @ = 1 under consideration this is clearly so for all 7 = 1.
Consequently

filr)y <7+ i <]l[ 2j + 2?_:}_)7&% .

i=1 \j=1 ]

We compare this with the expansion

r(l —r)™ =r + i <H Jr20—1 2,“ — 1)7*“”'

=1 \j=1 J
>,r+i<ﬁ 2 ‘|‘2f5_ 1>1,.1+2i
i=1 \j=1 2]

and obtain the lemma.
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4, We shall make use of Lemma 1 to prove:
LEMMA 2. B, ¢ Oy for a = 1.

Proof. A necessary and sufficient condition for the existence of
an H?D-function u is that the Laplacian 4u = h satisfies

11) [(h, P)| = KV D(®)
for all @ e Cy and some constant K independent of @ (Nakai-Sario [5]).
Let h = f,(r)S, = fi(r) cos §*, and take any @ € C(B,). By Lemma 1
and the Fourier expansion
oo 2m-+1
P = %2:% mz14=1 bnm(/r)snm(gly 02) ’

we obtain

|, @) = |const | bu(IRI@L — redr
< const S 15,0 | (L — )7dr .
By Schwarz’s inequality, v

|(h, @) ! < const S 1 — r)edr - g B ) (1 — r)edr
(12) lo 0
= const g bu(ry( — rydr.
On the other hand,
D(®)

) = S |grad # *dV = const S 31 — rz)”z"‘(%)zrz(l — By
Ba

a

> const g )L — r)°dr .
0

5. Denote by @ the class of quasiharmonic functions u, charac-
terized by 4u = 1. We recall (Sario-Wang [9]) that B, ¢ O,, if and
only if a¢e(—3/5,1). Since QD < H*D, we have trivially:

LeMMA 3. B.¢ Ogep of ae(—3/5,1).
6. Next we consider the case o < —3/5.
LemMA 4. B,e Oy if @ < —3/5.

Proof. Suppose there exists an H:D-function w on B,, that is,
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du = h satisfies (11). By Theorem 2, % has the expansion

8

o 2n+1 i
h=23>> Qoo™ 58S
n=0 m=1 0

k3

i

If a,,#=0 for some (n, m), choose for our testing functions o,
0<ts1l,

P, 0) = 00O, 00) = o( 1L,

where g(r) is a fixed nonnegative C;-function with suppg < (8, V),
0 < pB<7v<1l. Since lim,_, f,(r) = 0,

Slﬁﬂt O(r)ydr =t S; g(rydr ,

1=t

and (1 — 9% > 22*(1 — #)* = 2*(v{)*® for a < 0, we have for sufficiently
small ¢,

[k, P) | = constl g::f (1) 0,(r)yr (L — ) dr
(14) -
= const (1 — 7)*(vt)™ S 0:(r)dr = const #+ .
=7t

On the other hand,
D(p) = | lerado,av

- Sz:f: (1 - TZ)AZ’X(Cl({O'(T))z -+ 02’)“~2[02(1ﬂ))/)~2(1 _ ,},.2)3zxdr

(15) -
<eonst (9 | " (@@ ) + e
= dt*" + dytet < dert,

a < 0, where d,, d,, and d are independent of ¢. If & < —3/5, then
(11) is violated as ¢ — 0, a contradiction. Thus B, € Oy, for a < —3/5.

7. It remains to consider the case a = —3/5.

LEMMA 5. B_;;€ Ogep.

Proof. We choose a decreasing sequence of real numbers ¢; € (0, 1]
tending to 0 such that 1 — p¢; <1 — 7t;., and (14) is satisfied for

each t;, Set ¢; =t j~'-sign (h,9,) and take for the testing
functions @, = 3.7-, ¢;7.,. We obtain by (14)

[y @) | = | 3L ast, @] > const 3357



EXISTENCE OF DIRICHLET FINITE BIHARMONIC FUNCTIONS 273
and by (15)

D(p,) = i ¢:D(9.;) < const 3, 773(t7°*) .
=1 i=1

For « = —3/5, we have D(®,) < const >." 7% which stays bounded as
n — oo whereas |(k, ®,)|— co. Thus (11) is violated, and we con-
clude that B_y;€ Opzy.

The proof of Theorem 1 is herewith complete.

8. Since B, ¢ Oy, if and only if a@e(—3/5,1), Theorem 1 has the
followiNng applications to the classification of Riemannian manifolds,
with O standing for the complement of O:

THEOREM 3. The totality of Riemanwnian 3-manifolds has the
decomposition

{R} = O42p U (Ogp N 61121)) U écm

anto three disjoint nomempty subclasses.

THEOREM 4. There exist parabolic Riemannian 3-manifolds which
carry H:D-functions, and hyperbolic Riemannian 3-manifolds which
do mot carry H:D-functions.

For dimension 2, this was shown in Nakai-Sario [5], but for
higher dimensions it has been an open problem.

For the proof of Theorem 4, let O, be the class of parabolic
Riemannian manifolds. It was proved in Sario-Wang [9] that B,<c O,
if and only if @« = 1. As a consequence,

BanGﬂﬁHzl,:»agl,

B,cO0,NOyp —a < — =2,

We shall return to the -classification of higher dimensional
Riemannian manifolds in further studies.

We are indebted to Mr. Dennis Hada, who preused the manusecript
and made his valued comments.
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ON A GENERALIZATION OF MARTINGALES DUE TO
BLAKE

R. SUBRAMANIAN

It is shown that any uniformly integrable fairer with time
game (stochastic process) converges in L;.

1. Introduction. Let(2,%, P) be a probability space and {Z/,},-.
an increasing family of sub o-algebras of Z/. Let {X.,}..: be a sto-
chastic process adapted to {Z.}.z, (see, [2, p. 65]). Following Blake [1]
we refer to {X,}.:;, as a game and define

DEFINITION. The game {X,},.; will be said to become fairer with
time if for every ¢ > 0

Pl|EX,/z"m) — X, | > ¢e]—0

as n, m— o with n = m. Any martingale is, trivially, a fairer with
time game and thus this concept generalizes that of martingales.
Blake, in [1], gave a set of sufficient conditions under which any
uniformly integrable fairer with time game {X,},.. is convergent in
L,. We show that these sufficient conditions are not needed; in fact,
we show that any uniformly integrable, fairer with time game con-
verges in L.

2. THEOREM 2.1. Any uniformly integrable fairer with time
game {X,},», converges in L.

Proof. To facilitate understanding, we break up the proof into
a few important steps numbered (S1) through (S5). For every m and
n = m define Y, , = E(X,/%,). Let I" stand for the family {Y, .,
for all m and n = m}.

(S1) I is uniformly integrable.

Since {X,},z; is uniformly integrable there exists a function f
defined on the nonnegative real axis which is positive, increasing
and convex, such that
imf® = 4 o

t

t—oo

and sup, E[feo | X,|] < . (See [2, II T 22].) Now,
Elfe|Ynall = Elf o | E(X,/ %) |]
< E|fo. E(X.,|/% )] (since f is nondecreasing)
= ELE(f o | Xo |/ Za)]
= E[f-|X.1].
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Therefore,
sup E[f | Y,,[] S sup Elf o | X,]] < oo .

Ym,n€

Another application of II T 22 of [2] ensures that 7" is uniformly
integrable. Hence (S1).

(S2) Given & > 0, there exists M such that for all m = M, one
has

E(|X,—Y,.) <2 forall n=m.

Since I" is uniformly integrable given & > 0 there exists 6 > 0
such that P(4) <6 implies g | Y,..|dP < ¢/2, forall Y, .eI'. Choose
4

M so large that m = M and n = m implies P[| X,, — E(X,/U,)| >¢] <é.
Then, it is not difficult to see that

E[\X, —Y,.]1=22 forall m=M and n=m.

(S3) For every fixed m, the sequence {Y,,. converges in L, to
an %/, measurable random variable Z,.

Let m<n <.

Ell Ynn— Youll = Bl E(Xo/Z0) — E(Xu|Z )]
= Bl E(X, — X.[%,) ]
= E[| E(E(X, — Xo|ZZ )} %) |]
=S E[E({| B(X, — X[Z%0) [} 7,)]
= E[| B(X, — X, [%,)|]
= B[ X, — Yaull-

Now from (S2) it follows that given & > 0 for all sufficiently large
n and n’

Bl Yy — You ll £ E[[(X, — Vo)l = 26

Hence, for m fixed, the sequence {Y,,} is Cauchy in the L,-norm.
So, there exists, an integrable random variable Z,, such that,

Ym’”,fTLSZ”‘ Without loss of generality we can take Z, to be %,

measurable. (Note that each Y, ., is %, measurable and there is a
subsequence {Y,,.} converging almost surely to Z,.)

(84) {Z,., Z n}m=1 is a uniformly integrable martingale.

The fact that {Z,}..: is uniformly integrable follows trivially
because the closure in L, of a uniformly integrable collection is
uniformly integrable. (See, [2, IT T20].) To show {Z,, %} is a mart-
ingale it is enough to show that for every m, E(Z,../%,) = Z, a.S.
Since
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El| E(Y pirnl % w) — E(Zpsi] %) ]
= E[| B{(Yui1n — Zn+1)/ %} |]
S EE{|(Yoiin — Zint) || Z0}]
= E[| Yosis = Zpi:l] — 0 as n——> oo,

there exists a subsequence n' of {n:n = m} such that

B(Y sy | Zw) ~2s BT | %) -

We can assume (— if necessary, by choosing a further subsequence, —)
that Y, . 25, Z.. Now,

E(Zm+1//2/m) = lim E( Ym-)—l.n'/%m) a.8.

n!—co

= lim B({B(X,|Z p+ )}/ %)  8.5.

N’ oo

= lim E(X, /%) a.s.

n’—co

= lim Y,,. a.s.

n'—oco

=L, a.8.

Hence (S4). (85) {X,}.», converges in L..
Since {Z,, Zu}az: is an uniformly integrable martingale, there

exists an integrable random variable Z. such that Z,,;%—::OZN. We

shall show that Xng_%;Zw. From (S3) and (82) it is easy to check
that given &€ > 0 there exists M such that for all m = M

ngm—ZmIdP§2e.
Therefore, for sufficiently large m,
S}Xm—— Z.|dP < g | X, — Z, | dP + Sizm— Z.|dP < 3¢,

say. Hence (S5) and the theorem.

Since any game (stochastic process) {X,},., converging in L, can
be taken to be a game fairer with time, by setting %, = % in n,
we get the following corollary.

COROLLARY 2.1. Let {X,},:: be a game. It converges in L, if
and only if it is uniformly integrable and fairer with time with
respect to some increasing family of sub o-algebras {Z,}ns to which
it is adapted.

Let p > 1.
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THEOREM 2.2. Let {X,}.. be a fairer with time game with
{| X, 1P} nzr uniformly integrable. Then {X,},», converges in Lp.

Proof. Noting that the function f defined on the nonnegative
real axis by f(f) = t* is positive, increasing and convex and
lim,_., (f(£)/t) = + oo, in view of II T 22 of [2], it is clear that {X,}..,
is uniformly integrable. Hence by Theorem 2.1 it converges in L;;
in particular, {X,},., converges in probability. Therefore, {X,}.s:
converges in L,. (See Proposition II 6.1 of [3].)

COROLLARY 2.2. The game {X,}.». converges in L, if and only
if {| X, 1%zt ts uniformly integradble and {X.}.», is fairer with time
with respect to some increasing family of sub og-algebras {Z/,}.z: t0
which it is adapted.

ReMARK. In view of our Theorem 2.1, the second convergence
theorem of Blake in [1] becomes redundant.
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ON STRONGLY NONLINEAR ELLIPTIC
VARIATIONAL INEQUALITIES

Bur AN Ton

The existence of bounded solutions of nonlinear elliptic
variational inequalities is shown. The nonlinear second order
elliptic operator involved has at most an exponential growth in
% and a polynomial growth in Du. The regularity of the
solutions is studied.

Let K be a closed convex subset of a reflexive Banach space V
and let A be a pseudo-monotone coercive operator from V into V*.
Then for any f in V* it is known that there exists w in K such that:

Au — f,v—u) =0 for all » in K.

The existence of solutions of nonlinear elliptic variational inequal-
ities has been shown by Brezis [1], Browder [4], Lions-Stampacchia
[10] and others. The regularity of the solutions when A is a linear
second order elliptic operator written in divergence form has been
studied by Brezis [2], Lewy-Stampacchia [8], Lions [9] and an abstract
regularity result has been obtained by Brezis-Stampacchia [3] when
A is nonlinear.

It is the purpose of this paper to show the existence of bounded
solutions of nonlinear variational inequalities when A is a pseudo-
monotone coercive operator defined on V' N L=(G) and mapping V N L=(G)
into V*. V is a given closed subspace of W-?(G) with Wi *(G) cV
W'?(F). The nonlinear elliptic operator A may have an exponential
growth in u and a polynomial growth in Du. Abstract existence
theorems are proved in §2. The applications and the regularity of
the solutions are studied in §3. The notations and the basic assum-
ptions are given in §1.

1. Let @G be a bounded open subset of B* with a smooth boundary
0G. Set: D; =0d/ox;,5j =1, ---,n and

W (G) = {u:u in L°(G), D;u in L*G),j=1,---,n}.

W »(G) is a real reflexive separable Banach space with the norm:
n i/p
lwlhs = {llullte + 2 Duliraf 52<p < o .

Wie(G) is the completion of C3(G), the family of all infinitely differen-
tiable functions with compact support in G, in the ||-||,, norm.

279
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Let V be a closed linear subspace of W*?(G) with Wi ?(G) cV C
W? and let H = L*G). The pairing between V and its dual V* is
denoted by (-, -).

Let W be a closed linear subspace of W'?**(G) with Wi *(G) c
W< Wretn(G). The Sobolev imbedding theorem gives W < C(cl G).
The pairing between W and W* is denoted by ((-, -)). Throughout
the paper we shall agsume:

@ WcV.

(b) If w is in W then |u|u is also in W for all s with 2 <
8 < co. The assumption is verified if V = Wy*(G), W = Wi*(G) and
if V.= Wh(G) with W= W*»(G).

C*(G),0< a< 1, is the family of all functions u which are
Holder-continuous with exponent o on any compact subset of G.

Set:

F=VnLG).

In this paper nonlinear operators A(u, v) mapping F'X V into V*
satisfying the following assumption are considered.

Assumption (I): (1) A(u,v) maps bounded sets of F X V into
bounded sets of V*.

(i) If w,— u weakly in V, u, — u in the weak*-topology of L=(G)
and lim sup (A(w,, %), U, — %) < 0 then:

lim inf (A(um u’n)y Uy — /U) = (A(u’ u’); U — 1))
for all v in V.

The pseudo-monotone operators from V into V* satisfy all the
conditions of Assumption (I).
Let A(u, v) be the operator defined by:

(A, v), w) = ZS (1 + ¢(@) exp )| Do "Dy wda
i=t Je
+ S b(x)u exp u-wdx
G

% is in F,», w in V, ¢(x) and b(x) are two nonnegative bounded func-
tions on G.A(u, v) is the prototype of operators considered in this
paper. It is not difficult to check that A(u, v) satisfies all the condi-
tions of Assumption (I).

In the proof of the existence theorems we need the following
auxiliary nonlinear monotone operator:

Ap = — 3 D(|Dpw|r*Dw) + v.
j=1
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2. In this section the existence of bounded solutions of nonlinear
elliptic variational inequalities is shown.

The following theorem gives a generalization of a result of Browder
[4], Hartman-Stampacchia [6] and others when V is a closed linear
subspace of W*?(G).

THEOREM 1. Let A(u, v) be a nonlinear operator mapping F X
V into V* and satisfying Assumption (I). Let K be a closed convex
subset of V with 0€ K and let B be the penalty operator associated
with K. Suppose that:

(i) (A(u, w), u) > cllully for all w in F.

(ii) (A, w), |u]"u) > c||u]lise for all w in W and all s with
2 s < . The positive constant ¢ is independent of s.

(iii) (Bw), |u"u) =0 for all w in Wand all 5,2 < s < o. Then
for any f in L=(G) there exists u in F N K such that:

Au,u) — f,bv—u) =0 for all v in K.

THEOREM 2. Let A(u,w) be as in Theorem 1 and let K be a
closed convex subset of both V and W with 0€ K. Let B be the penalty
operator associated with K considered as a subset of W. Suppose all
the hypotheses of Theorem 1 are satisfied with (iii) replaced by:

(Bw), Wh/l|wlly — + = as ||wlly — + oo .
Then for any f in L=(G) there exists u in F N K such that:
(Au,u) — f,v—u) >0 for all v in K.

For a smaller class of nonlinear operators A(u, v) we have the
following theorem which extends a result of Dubinskii [5].

THEOREM 3. Let A(u, v) be a nonlinear operator mapping bounded
sets of L=(G) XV into bounded sets of V*. Suppose that:

(i) (A(w, v) — A(u, w), v — w = 0 for all w in L>(G) and all v, w
wmn V.

(ii) For fized u in L>(G), A(u, <) is continuous from the strong
topology of V to the weak topology of V*.

(iii) For fized v in V, tf u,—u a.e. on G and u,—u in the
weak*-topology of L=(G) then: A(u,, v)— A(u,v) in V*.

(iv) (A(wu|""w, u), u) > c||ul]lz for all w in W and all s with 1 <
8§ < oo,

(v) (AQw|"w, w), |w|"u) > c||u|[jriczee for all w in W with
1<s< o and 2<r < . The constant ¢ is independent of r.

Then for any f in L™(G) there exists u in L=(G) with |u|**u in
V such that:
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A, |u|*"w) = f .
a 18 any number with 1 < a < .

Proof of Theorem 1. (1) Let 0 < np< e <1 and let .o7(u, v) be
the nonlinear operator:

7 (u, v) = A + Au, uw) + e7'BW) .

& (u, v) maps bounded sets of W x W into bounded sets of W*
and is coercive. Being the sum of a monotone operator and a pseudo-
monotone operator, .& is a pseudo-monotone operator from W into
wW*. It follows from the theory of coercive pseudo-monotone operators
that there exists u., in W, solution of the equation:

DAy + Ay, Uer) + € BWy) = f «
It is clear that:
U |15 + [|uglly < C .

C is a constant independent of both ¢ and 7.
Since u., is in W, |u.,|"*u., lies also in W for all s with 2 < s < oo.
Thus:
77((A2us71, [uw}s_zus'])) + (A(us% us’i), Iuwls-—-zuw)
+ S_I(B(uw), [usﬂls—zusv) = (f’ Iusvls—zuev) *

An elementary computation gives:

((Agery |%er P Uey)) = 0 &
From the hypotheses of the theorem, we get:

[Uerllzser < Cll fllz=e »

Since #., is in W hence in L*(G) we may let s — + .
So:

[|Uer |22y < C | S ||z

C is a constant independent of both & and 7.

(2) From the weak compactness of the unit ball in a reflexive
Banach space we obtain by taking subsequences if necessary: ., — u.
weakly in V, u., —u. in the weak*-topology of L*(G), »'**"u.,,— 0
weakly in W, A(u.,, w.,) — g. weakly in V* and B(u.,) — k. weakly in
V* as p—0.

So:

Huelly + ll%ellzoe < C
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Moreover:
g.+¢eh.= f.
We show that g, = A(u., w.) and h, = B(u.).
We have:

lim Sup (A(ue% us’?) + 5_1/8(uw), us’]) < (gs + s_lhe; us) *
7—0

On the other hand:
(A(us’h usﬂ), Uey — us) = (A(uw; ué?) =+ 6—1:8(/”’577)7 Wey — u’a)
- E—I(B(uev) - B(uE)y Uey — ue} - 5—'1(‘3(@65), WUen — ’ME) .
Taking into account the monotonicity of the penalty operator, we get:
(A(ueﬂs u’eﬂ)v Weny — u’s) < (A(u’aﬁ, ue’i) + s_lﬁ(uw); Uep — u5)
- 5—1(18(7’('5)’ Wen — ue) .
Thus:

lim sup (A, Uey), Uy — U) = 0.

p=—0
Assumption (I) gives:
Au., w) = g. .

It is now easy to show that 2. = p(u.).

(8) Again from the weak compactness of the unit ball in a
reflexive Banach space we get by taking subsequences if necessary:
u. — % weakly in V, u, — u in the weak*-topology of L~(G) and A(u,,
%) — g weakly in V* as ¢ — 0.

Since:

Au,, u) + e7Bu) = f
it is clear that
Bu)——0 in V* as e—0.

The penalty operator g is a monotone hemi-continuous operator
from V into V*. A standard argument gives:

Bu) =0 ie., ueK.
We have:

(A(uei ue), U, — %) = (f - 6-1‘8(%5)) U, — ’M/)
= (f’ Ue — ’Ll/) - 6_1(‘8(%5) - B(u)’ U — ’Ll/) .
Thus:
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(A(U/E, us), U, — u) = (f’ U, — u’) .
Hence:

lim sup (A(u., u.), u. — u) < 0.
=0

Assumption (I) gives:
A(u’ u) =4g
and

lim ionf (A(us, ue), Ue — ?)) = (A(u; u)9 U — ,U) .

Let ve K and we have:

(A(usa us) - fs v — us) = - s_l(ﬁ(us): v — u5)
= e7(B(v) — Bud, v — u.) .

So:

(Aw,u) — fLo—u)=>0 for all v in K.
Let ¢ — 0 and we obtain:

(Au,u) — f,v—u) =0 for all v in K.

The theorem is proved.

Proof of Theorem 2. The proof is similar to that of Theorem 1,
we shall not reproduce it.

Proof of Theorem 3. (1) Let 0 < ¢ < 1 and consider the nonlinear
operator .7 (u, v) defined by:

& (u, v) = €A + A(lu|""u, u)

# and v are in W and l/a + 1/’ = 1.

57 is coercive and maps bounded sets of W x W into bounded
sets of W*. Being the sum of a monotone operator and a pseudo-
monotone operator, .&~ is pseudo-monotone. Therefore, there exists
v, in W, solution of the equation:

eAw. + A(v. " v, v) = f .
It is easy to show that:
ellv. |l + llvlly < C.

C is a constant independent of .
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Since v, is in W, |v,|* ™. lies in W for all s with 2 < s < .
Thus:

e((Agv,, [v:[:7%0.)) + (A([v. [, ), [0.[0) = (f, [v.["7"0.)

An elementary computation shows that the first term of the left
hand side of the above equation is positive. It follows from the
hypotheses of the theorem that:

v llf T2 < Cll fllz=w -
Since », is in W we may let s— + . Hence:
Nz < M

M is independent of e.

(2) The weak compactness of the unit ball in a reflexive Banach
space gives by taking subsequences if necessary: v, — v weakly in
V, v.— v in the weak*-topology of L>(G),¢&'/**"v,— 0 weakly in W,
|v.|* v, — h weakly in L*(G) and

A(lv. )" ™,v) — 9 weakly in V* as ¢—0.

Since the injection mapping of V into H is compact, the Lebesgue
convergence theorem yields:

v.— v In L%(G) for any s with 1 <s < .
Thus:
|v ], — [v|¥* v a.e. on G and h=|v]"™.
We have:
lim sup (A(]v.|* ., v.), v.) < (g, ?) .
So:

lim sup (A(|v.|* ., ), v. — ?) < (g, v — @)
for all p in V.

It follows from the hypotheses of the theorem that:
(09— A(v|" ™, 9,v—9) >0 forallpinV.
Hence:
A(lv["7v,0) =g = f -
Set:

u=|v|* .
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Then:
ue L™(G) and v = |u|"uecV.
Moreover:
A, |w|*u) = f .
The theorem is proved.
3. We shall now give some applications of the theorems proved

in the previous section and study the regularity of the solutions.
First consider the case when the constraint is in G.

THEOREM 4. Let V = W?(G), K = {u: u in L*(G), v = 0 a.e. on G}
and let A(u,v) = — >0, DA (e, w, Dv).
Suppose that:
(i) Foreach j, A;(x, u, Dv) is continuous with respect to x, v, Dv.
(i) [A(x, w, Dv)| < C{1 4+ exp (ju]) + [Dv|"™ exp (|u])}.
(i) >, (A, u, Dv) — Az, u, Dw))(D;e — D;w) = 0.
(iv) S Ay, u, DD > ¢ ., | Dyulm,
Then for any f in L™(G) there exists w in KNV N L°(G) such that:
Aw,u) — f,v—u) =0 forall vin VNK.

Moreover:

Au, w) € L=(G) .

Proof. (1) K is a closed convex subset of V and 0e K. Let
By = — [v7|*"*~ where v~ = 0 if v(2) > 0 and v~ = — v(x) otherwise.
It is easy to check that 2 verifies the hypothesis of Theorem 1. Let
0 < n <1 and consider the operator:

A (w, v) = A(u, v) + D .

A (u, v) and 1A 4+ A,(u, v) satisfy all the hypotheses of Theorem 1.
Therefore, from Theorem 1, we get:

77A2us’7 + Al(usm ua’/) + 8'_1[8(%5,7) = f . 0 < 77 < &€ < 1 .
Moreover, from the proof of Theorem 1 we have:
DU 15" + e Iy + 7l llzme < C

C is a constant independent of both & and 7.
Since u,, is in W and hence in C(cl G) we get:

ess sup |u.,| = 0.
G
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It follows from Theorem 7.1 of [7], p. 287 that || u.,||.= is majorized
by |l 4ylly, ¢, the L=(G)-norm of f.
Hence:

% |2 < C' s

C is again a constant independent of both ¢ and 7.
(2) We have:

77((14271/5,], - Iu:’ils_zu;?)) + (Al(uem ue’?)’ - Iue_?[s—zu:v)
-+ 6_1Hus_77”i—:$;iz(a) < Hf”L”(G)Hu;H;;ip__Z(G) .

s is any number with 2 < s < .

It is not difficult to see that the first two expressions of the left
hand side of the above inequality are nonnegative.
Hence:

5-11171537]]{;%—2(0) < N fllz=ion -
Since u;, € L=(G), we may let s— + o and get:
e |uglli=an < C.

C is independent of both ¢ and 7.
(3) Let »— 0 and the proof of Theorem 1 gives:

A(’LLE, M’S) + E_IB(U’E) = f .
Moreover:
ez + %]y + €7 us 2=l < C.

u, is the weak limit in V of u,, as »—0.
Let ¢ — 0 then again the proof of Theorem 1 gives:

Aw,u) — f,v—u) >0 forall vin K V.
Since ¢7'B(u.) — ¢ in the weak*-topology of L=(G), we have:
Aw,w) = f — 9.

The theorem is proved.
With some further hypotheses on A;, we have a regularity result.

THEOREM 5. Let V, K be as in Theorem 4 and let
A, vy = — Ei] D;A(x, w, Dv) .

Suppose that:
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(i) A, u, Dv) is continuously differentiable with respect to ,
u and Dv.

(ii)) @ + [Dul) (14;(, w, Du)| + |[04;/0u] + |Au(x, u, Du)|) +
[0A;/0x,| < C(L + exp (Jul) + [Du|" exp (ul).

A (e, u, Du) = 0A(z, u, Dw)/6(Dyw) . J, k=1, n.

(i) X% Aal@, w, Dv)DwDw > ¢ 3=, (1 + [Du|[") | D
Then for any f in L™(G), there evists u in KNV N L=(G) such
that:

(Atw,u) — f,v—u)=>0 for all v in KV.
Moreover:
ue C(G) N C-YG") N W (G) .

0<a,v<1land G' is any subset of G with clG' CG.

Proof. With the above hypotheses on A;, A(u,v) is a semi-
monotone operator and satisfies all the hypotheses of Theorem 4.
Therefore, there exists w in KNV N L=(G) such that:

(Atw,u) — f,v—u)>0 for all » in V.
Moreover:
A(u,w) = f — ge L=(G) .
From the theory of second order elliptic equations, we get:
ueC"(QG) .

E.g. cf. [7] Theorem 1.1, p. 251.
It has been shown by Dubinskii [5] that the solution of A(u, u) =
f — g is in W*?(@) and moreover:

Z SG,“ + | grad u|)"*| D, Dyuffdy < oo .

J

The above relation together with the Holder-continuity of » gives:
S | gradw [P*°da < oo .
o

G’ is any subset of G with el G’ CG.
It follows from [7] that esssup, |gradu| < o and therefore
Theorem 6.2 of [7], p. 282 gives:

we CH(G") N WG .
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The theorem is proved.
If the principal part of A is linear, stronger results could be obtained.

ProPOSITION 1. Let V and K be as in Theorem 4 with p = 2.
Let:

A(u, v) = — 3, Di(a;(®)Dyv) + uexp (u) .

n
k=1

Suppose that:
(i) a;eC*(cl@).
(i) SFe-epDwDw > e >0, | Dwl*.
Then for any f in L™(G) there exists uw in K NV N W*(G) such that:

(Afw,u) — f,bv—u) >0 forall vin KV.

s 18 any number with 1 < s < oo,

Proof. We may write
A, v) = v + wexp(u) .

A(u, v) satisfies all the hypotheses of Theorem 4. Thus there exists
% in L=(G) N KNV such that:

Aw,u) — f,v—u)=0 for all v in K V.
Moreover:
Yu + uexp(u) = g€ L™(G) .
So:
U =g — uwexp ) e LG .

It follows from the theory of linear elliptic operators that ue
W(G) for any s with 1 < s < oo,

THEOREM 6. Let V = Wi*(G), K ={u:u in V,|gradu| <1 a.e.
on G} and let A(u,v) be as in Theorem 4. Then for any f in L=(G)
and for any N > 0, there exists  in KN L™(G) such that:

(Atu,u) +yvu— f,v—u)>=0  forall vin K.

Proof. K is a closed convex subset of both ¥V and W with 0 ¢ K.
Let

B(v) = — g D,{(1 — | grad v [****)~Dv} .
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B maps bounded sets of W = W{***(G) into bounded sets of W* and
is a monotone hemi-continuous operator. Cf. Lions [9].
Moreover:

((B(), v)) = lIvllF™ — (en + e[ v][F™7) .

It is not difficult to check that g satisfies all the hypotheses of
Theorem 2. Thus the result follows from Theorem 2.
Along the lines of Theorem 2, we may consider the case when

K={uu in Wi*(G),v>0a.e. on G, |gradu| < la.e. on G}.

It suffices to apply Theorem 2 with
B = — o=~ — 3, Dy{(1 — | grad v[>**)~D,v} .
J=1

We shall now consider the case when constraint imposed on the
solution is at the boundary of G.

THEOREM 7. Let V = W"*(G), W=W"G), K ={u:um V,u >
0 a.e. on 0G} and let A(u, v) be as in Theorem 5. Then for any A >0
and for any f in L™(G) there exists u € C**(G) N C**(G’) N K such that:

(Aw,w) — f,o—u) =0 for all v in K.

G' is any subset of G with clG' C G and 0 < a, ¢t < 1.
Proof. (1) Let g be the penalty operator defined by:
(BW), P) = — SGGWP dz , ® in V.

G satisfies all the hypotheses of Theorem 1. Cf. Lions [9]. Let
0 < &< 1, then from Theorem 1 we have:

A(u, u) +vu, = f on G,ou/dv,= —c¢cu; on 0G.
Moreover, from the proof of Theorem 1 we get:
e lly + %=y < C o

C is a constant independent of e.
(2) Let €¢— 0 then:

(Au,u) + v — f,bo—u)y =0 for all ve K.
Moreover:

Aw,u) + = f on G.
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u is the weak limit in V of u, as ¢— 0.
Thus:
A(u, u) = f — zvue L™(G) .
Hence:
ue C"(G) .

A standard argument of the theory of elliptic operators gives:
3 S (1 + | grad w|>) | D,Dyul'ds < o .
Jrk=1 JG’

G' is any subset of G with el G’ c G.
The Holder-continuity of u together with the above relation implies
that:

‘. | grad w|? dx < oo .
JG

Thus:
ueC"*(G") where clG'CcG celG c@G.

The theorem is proved.
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A TOPOLOGICAL CHARACTERIZATION OF COMPLETE,
DISCRETELY VALUED FIELDS

SETH WARNER

It is shown that the topology of a topological field F' is
given by a complete, discrete valuation if and only if F is
locally strictly linearly compact. More generally, the topology
of a topological division ring K is given by a complete, discrete
valuation and K is finite dimensional over its center if and
only if K is locally centrally linearly compact, that is, if and
only if K contains an open subring B, the open left ideals
of which form a fundamental system of neighborhoods of
zero, such that B, regarded as a module over its center, is
strictly linearly compact.

In [5], Jacobson showed that the topology of an indiscrete, totally
disconnected, locally compact division ring is given by a discrete
valuation (that is, a valuation whose value group is isomorphic to the
eyclic group of integers). Consequently, an indiscrete topological
division ring K is locally compact and totally disconnected if and only
if its topology is given by a complete, discrete valuation whose residue
field is finite [4, Prop. 2, p. 118, Prop. 1, p. 156]. From this, it follows
rather readily that the center C of K is indiscrete, that K is finite
dimensional over C, and that C is either a finite extension of the
p-adic number field for some prime p or the field of formal power
series over a finite field [4, Theorem 1, p. 158].

Our purpose here is to generalize Jacobson’s theorem by character-
izing those topological fields whose topology is given by a complete,
discrete valuation, and more generally, those topological division rings
K such that K is finite dimensional over its center and the topology
of K is given by a complete, discrete valuation.

For this purpose, we assume some familiarity with basic properties
of linearly compact and strictly linearly compact modules and rings,
as developed in [10] or [3, Exercises 14-22, pp. 108-112]. We recall
that a (left) topological A-module FE (it is not assumed that E is
unitary) is linearly topologized if the open submodules of E form a
fundamental system of neighborhoods of zero; & is linearly compact
if E is Hausdorft, linearly topologized, and every filter base of cosets
of submodules has an adherent point; E is strictly linearly compact
if E is linearly compact and every continuous epimorphism from E
onto a Hausdorff, linearly topologized A-module is open (equivalently,
if E/U is an artinian A-module for every open submodule U of E). A
topological ring A is respectively linearly topologized, linearly compact,
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or strictly linearly compact if the associated left A-module A is.

DEFINITION. A topological ring A is locally strictly linearly compact
if A has an open subring B that is strictly linearly compact for its
induced topology.

To handle the noncommutative case, we need the following defini-
tion:

DEFINITION. A topological ring B is centrally linearly compact
if the open left ideals of B form a fundamental system of neighbor-
hoods of zero and if B, regarded as a module over its center Cj, is a
strictly linearly compact C,-module. A topological ring A is locally
centrally linearly compact if A contains an open subring that is
centrally linearly compact for its induced topology.

Thus a commutative topological ring is (locally) centrally linearly
compact if and only if it is (locally) strictly linearly compact. Note
that if B is a centrally linearly compact ring, then for any subring
B, of B that contains the center C,, B is a strictly linearly compact
B-module (in particular, B is a strictly linearly compact ring); indeed,
since the open left ideals of B form a fundamental system of neigh-
borhoods of zero, B is a linearly topologized B,module, and since a
B,submodule is also a Cp-submodule, every filter base of cosets of
B,-submodules necessarily has an adherent point.

By a topological division ring (field) K we mean a topological ring
that is algebraically a division ring (field); that is, we do not assume
that @+ 2™ is continuous on the set K* of nonzero elements.

LemMMA 1. If B is an open, centrally linearly compact subring
of an indiscrete topological division ring K, then there is an open,
centrally linearly compact subring B, of K that contains 1.

Proof. Let B, be the closure of the subring generated by B and
1. The open left ideals of B then form a fundamental system of
neighborhoods of zero in B,; each open left ideal a of B is a left ideal
of B, for as a is closed, {xe B:xa & a} is a closed subring of B,
containing B and 1 and hence is all of B,.

Since B is open, B == (0); let b be some nonzero element of B,
and let ¢ be its inverse in K. Then, B, = Bbe & B,Be, so B, & Be
since, as we saw above, B is a left ideal of B,. Thus Be¢2 B, 2 B,
so Bc is a linearly topologized Cz-module, where C, is the center of
B. Hence Be is a strictly linearly compact C,-module, as it is the
image of the strictly linearly compact Cy-module B under the con-
tinuous homomorphism x+—xc. Consequently, the closed Cp-submodule
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B, of Be is strictly compact; as C, is contained in the center of B,, B,
is a fortiori strictly linearly compact over its center.

We recall that an element a of a topological ring is topologically
nilpotent if lim a™ = 0.

LEMMA 2. Let K be a Hausdorff topological division ring, let B
be an open subring of K that contains 1, and let v be the radical of
B. If B s strictly linearly compact, then B is a (left) mnoetherian
ring, B/t is a division ring, the topology of B is the r-adic topology,
and t s the set of all topological wmilpotents of B.

Proof. As B is open and as y > yx is a homeomorphism for each
xe K*, Bx is open for every x e K*, and hence every nonzero left ideal
of B is open. Let 8 = [y, t". Assume that 8 = (0). Then 3 is
open, so B/3 is an artinian B-module and hence an artinian ring.
Consequently, its radical r/8 is nilpotent, so there exists n such that
1" = 8. Hence (0) # 1 = "' = ..., in contradiction to [10, Theorem
9]. Therefore, Ny, x" = (0).

Since every nonzero left ideal of B is open and hence closed, B
is a (left) noetherian ring, B/r is an artinian ring, and the topology
of B is its r-adic topology by [13, Theorem 16]. Consequently, every
element of r is a topological nilpotent. Therefore, as B is complete,
B is suitable for building idempotents [11, Lemma 4; 6, Definition 1,
p. 53]. Thus every idempotent of B/r is the coset of r determined by
an idempotent of B [6, Proposition 4, p. 54]. But as K is a division
ring, B has no idempotents other than 0 and 1. Thus B/t is an
artinian, semisimple ring whose only idempotents are 0 and 1. By
the Wedderburn-Artin theorem, therefore, B/r is a division ring. In
particular, if x¢t, then x + 1t is not a nilpotent of B/r, so x is not
a topological nilpotent.

THEOREM 1. If K is an indiscrete, Hausdorff topological field,
then the topology of K is given by a complete, discrete valuation if
and only if K is locally strictly linearly compact.

Proof. Necessity. It is well known that a complete, semilocal noe-
therian ring, equipped with its natural xr-adic topology, is strictly linearly
compact [ef. 13, Corollary of Lemma 2]. In particular, the valuation
ring of a complete discrete valuation is strictly linea’rly compact.

Sufficiency. By Lemma 1, there is an open, strictly linearly
compact subring B of K that contains 1. By Lemma 2, B is a com-
plete, local noetherian domain, and its topology is its natural m-adic
topology, where m is the maximal ideal of B. In particular, B is not
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a field since B is not discrete. Therefore, as B is open in the topological
field K, the topology of K is defined by a complete, discrete valuation
[12, Theorem 6].

THEOREM 2. If K is an indiscrete, Hausdorf topological division
ring, then the topology of K is given by a complete, discrete valuation
and K s finite-dimensional over its center C if and only if K 1is
locally centrally linearly compact; im this case, C 18 inmdiscrete, and
hence its topology is given by a complete, discrete valuation.

Proof. Necessity. As K is finite-dimensional over C, the valuation
induced on C by that of K is not the improper valuation; hence as C
is closed, the topology of C is given by a complete, discrete valuation
v. Let e,--+,e, be a basis of K over C such that ¢ =1, and let
ee; = >p-iie. Let AeC be such that »(A\) = 0 and »(\) = —
min {v(a;;): 1 = 4,5,k <n}. Let fi=1and f, =xe, for 25k = 0.
Let V be the valuation ring of C, and for each m =0 let V,, = {z ¢
Vivix) =z m}. Let B=Vf, + -+ +Vf,, and for each m = 0 let b,, =
Vufi+ +++ + V.f.. Easy calculations establish that B is a ring and
that b,, is an ideal of B for each m = 0. By [2, Theorem 2, p. 18],
Fi(ny, oo, A = D0 NS is a topological isomorphism from the C-
vector space C™ onto the C-vector space K. Hence B is an open subring
of K, and (5,,) .z is a fundamental system of neighborhoeods of zero in B,
each an ideal of B. We saw earlier that V is strictly linearly compact;
hence as B = F(V"), B is a strictly linearly compact V-module and,
a fortiori, is a centrally linearly compact ring.

Sufficiency. By Lemma 1, there is an open, centrally linearly
compact subring B that contains 1. Let r be the radical of B. As
the r-adic topology is the given indiscrete topology of B by Lemma 2,
there exists a nonzero ac B such that lima” = 0. Let K, be the
closed subfield generated by C and a, let B, = K, N B, and let 1, be
the radical of B,. Since the open left ideals of B form a fundamental
system of neighborhoods of zero for B, the open ideals of B, form a
fundamental system of neighborhoods of zero for B,. Moreover, the
center C; of B is simply C N B; indeed, if ¢ce C; and if xe K, then
a™x € B for some n as lima"x = 0, whence (a"x)c = c¢(a™x) = (ca™x =
(a"e)x, so w¢ = cx. Thus C;, =CNB< K,NB =B, so B, is a closed
Cy-submodule of B and hence is a strictly linearly compact C,-module.
Consequently, B, is a strictly linearly compact ring, so by Lemma 2,
the topology of B, is the radic topology, and r and 1, are respectively
the set of topological nilpotents in B and B, whence 1, =1t B,
Hence No- (2B)~ & Np-. " = (0). As the topology of B, is indiscrete,
12 = (0), so 1:B is open as it contains a nonzero left ideal of B. By
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[13, Theorem 10], t,B is a finitely generated B,i-module; let t,.B =
Bg, + +++ + Bgx,. Also as B is a strictly linearly compact C;-module
and as t,B is open, B/r,B is an artinian C,-module, hence an artinian
B,-module; now B/t,B admits the structure of B,/t,-module, and B,/x,
is a field by Lemma 2; consequently B/t,B is an artinian, therefore,
finite-dimensional, and hence noetherian B /r,-vector space; thus B/t,B
is a noetherian B,module. Let %,., ++-,%,€ B be such that B =
B#ne + +++ + B, + t,B. Then B= Bw, + +-- + B,x,. Consequently,
X, +-+,%, is a set of generators of the K -vector space K, for if
ze K, there exists ¢ such that a'z e B, whence a'z = bz, + -+ + b,2,
where b,¢ B, and thus z = (a7'b)x, + <+« + (@%b, )0, € K, + -+ +
Kx,. By [1, Theorem 16], the centralizer K; of K, has degree < =
over C. But K| 2 K, as K, is commutative. Moreover, the topology
of K, is given by a discrete valuation by Theorem 1, as B, is an open,
strictly linearly compact subring. Therefore, as [K,: C] < n, the valua-
tion induced on C is not the improper valuation; hence the topology
of C is given by a complete, discrete valuation. As

[K: C] = [K: K|][K: C] £ #*,

the given topology of K is the only topology for which K is a Hausdorft
topological vector space over C [2, Theorem 2, p. 18]; by valuation
theory, that topology is given by a complete, discrete valuation.

The idea of using [1, Theorem 16] is suggested by Kaplansky’s
treatment of locally compact division rings in [8].

Jacobson’s theorem concerning totally disconnected locally compact
division rings follows at once from Theorem 2. Indeed, if K is an
indiscrete, totally disconnected, locally compact division ring, then
K contains a compact open subring B [9, Lemma 4]; the open ideals
of B form a fundamental system of neighborhoods of zero [7, Lemmas
9 and 10], and therefore the compact ring B is clearly centrally linearly
compact; by Theorem 2, K is finite-dimensional over its center, which
is indiscrete, and the topology of K is given by a complete, discrete
valuation.
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COMMON FIXED POINTS OF TWO MAPPINGS

CHI SoNG WONG

Let S, T be functions on a nonempty complete metric
space (X, d). The main result of this paper is the following.
S or T has a fixed point if there exist decreasing functions
ai, az g @, as of (0, o) into [0, 1) such that (a) 33_ o < 1;
(b) ay1=az Or zg=y, (c) limtlo(a1+6¥2)<1 and limtw (as—l—a4)<1
and (d) for any distinct 2, ¥ in X,

d(S(@), T(¥)) = a:d{w, S(x)) + ad(y, T(y)) + a:d(z, T(y))

+ md(y, S(“’)) + asd(zx, Y,
where a; = «;(d(x, ¥)). A number of related results are ob-
tained.

1. Introduction. Let (X,d) be a nonempty complete metric
space and let S, T be mappings of X into itself which are not neces-
sarily eontinuous nor commuting. Suppose that there are nonnegative
real numbers a,, a,, a;, a,, a; such that

(a) a+a+ 0 +a+a,<1,
(b) a, = a, or a, = q, ,
and for any «, ¥ in X,

(¢) d(S(x), T(y)) = a,d(x, S@)) + Ay, T(y)) + ad(x, T(y))
+ ad(y, S(x)) + ad(z, y) .

It is proved in this paper that each of S, T has a unique fixed point
and these two fixed points coincide. Among others, a generalization
is obtained by replacing a,, a,, a,, a,, @; with nonnegative real-valued
functions on (0, «). This result generalizes the Banach contraction
mapping theorem and some results of G. Hardy and T. Rogers [5],
R. Kannan [7], E. Rakotch [8], S. Reich [9], P. Srivastava, and
V. K. Gupta [10]. It also gives a different proof for these special
cases. Note that even if X =[0,1] and if T,, T, are commuting
continuous functions of X into itself, T, T, need not have a common
fixed point [1], [2], and [6].

2. Basic results.

THEOREM 1. Let S, T be mappings of a complete metric space
(X, d) into itself. Suppose that there ewxist nonnegative real numbers
a,, @y, Qg G, a5 which satisfy (a), (b), and (c). Then each of S, T
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has a unique fized point and these two fixed points coincide.

Proof. Let z,€ X. Define

Lon+1 = S{xm)y Lon+e = T(x2n+1) ’ n = 0, 1, 2, ...
From (c),
d(w;, ) = d(S(x,), T (@)
= (o + ar))d(xo, %) + a.d(x,, x,) + asd(xo, ,)
= (a0 + a)d(®o, @) + a.d(@,, B) + a;(d(®y, @) + d(@, @) .

So

(1) Ao, o) < Dt OB T Ggy y)
1—a,— a

Similarly,

(2) oy, w) = LT BT D gy g
1—a —a,

Let

,r_a1+a3+a5 S_a2+a4+a5

__l—az——as’ Cl—a, —a,
Repeating the above argument, we obtain, for each » = 0,1, 2, -
(3) UBznrty Banso) = T Tgnrr, T2n)

(4) A@sntsy Tonte) S SA(Tans2, Vanss) -

By (3), (4), and induction, we have, for each » =0,1,2, «--,
(5) U@znr1y Tansz) = 7(18) A0, @)

(6) A(Ban iz, Tongs) = (r8)"d(w,, ) -

Since rs < 1 and
20 (@0, To) < (L4 1) 3 (r8)d(w, 2,)

{z,} is Cauchy. By completeness of (X,d), {x,} converges to some
point z in X. We shall now prove that « is a fixed point of S and
T. Let n be given. Then

d(@, S(x) = d(@, Bass) + A(S (@), Tznsa)

(7) — A, Gans) + S @), T (@) -

By (c),
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(8) d(S(x), T (@2nss) = a,d(zx, S(=)) + azd(x2n+1, Ponts) + AA(T, Tnrs)

+ @ d(@sns1, S(®) + d(X, Tonyy) «
Combining (7) and (8) and letting 7 tend to infinity, we obtain
d(z, S(x)) = (o, + a)d(x, S()) .

Since a, + a, < 1, S(x) = 2. Similarly T(z) = . Let y be a fixed
point of 7. Then from d(z,y) = d(S(x), T(y)) and (c), we obtain

d(x, Y) = (a5 + a, + a5)d(x, y) .

Since a; + a, + @, < 1, d(»,y) = 0. So T has a unique fixed point.
Similarly, S has a unque fixed point.

When a,=a¢,=a;=0, S=T and T is continuous (or even
x—d(z, T(x)) is lower semicontinuous) on X, Theorem 1 can be ob-
tained by an earlier result of the author [11, Theorem 1].

From the proof of Theorem 1, we know that S, T still have a
common fixed point if conditions (a), (b) are replaced by the following
conditions:

(9) @ +a+a)a,+a,+a)<l—a —a)l—a —a,),
(10) a +a <1l.

If in addition,

1y a+a +a, <1,

then the common fixed point of S, T is the unique fixed point of S
(and T). Note that conditions (a) and (b) imply (9), but (a) alone
does not. Indeed, for any a,, a, a; in [0, ) with @, + @, and
a, +a,+ a; <1, we can always find a,; @, in [0, =) such that (a)
holds but (9) does not. This can be seen by considering the affine
function f:
f(xy?/):(l—az"x)(l_al_y)_(a1+x+a5)(a2+y+a5)
defined on the compact convex set
K={@el0,1] x[0,1]: ,+ a+o+y+a<1).

f takes its minimum value at one of the extreme points of K.
With some computation, we conclude that

min f(K) = —|a, —a,| (L — a, — @, — @) .

Since a, + a, + a; > 1, min f(K) < 0 if and only if a, # @,. Thus if
a, # a,, then by continuity of f, there exists a point (a;, @) in
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K\{z,v)eK: a0, +a:+2+y+ a, =1}
such that f(a, a,) < 0. '
CoroLLARY 1. R. Kannan [7, Theorem 1]. Let S be a mapping

of a complete metric space (X,d) into itself. Suppose that there
exists a number r in [0, 1/2) such that

d(S(x), S(¥)) = r(dx + S@)) + d(y, S¥)))
for all z, y in X. Then S has a unique fixed point.
COROLLARY 2. P. Srivastava and V. K. Gupta [10, Theorem 1].

Let S, T be mappings of a complete metric space (X, d) into itself.
Suppose that there exists monnegative real numbers a,, a, such that

(a) a+a <1
and
(b) d(S (), T(y) £ ad(x, S®) + a.d(y, T(y))

for all z, y in X.

Then S, T have a unique common fixed point.

Srivastava and Gupta stated the above result in a more general
form with S, T replaced by S?, T? for some positive integers p, q.
Since the unique fixed point of S* (similarly 79 is the unique fixed
point of S, this result is equivalent to Corollary 2.

For Corollaries 1 and 2, we have the following related result.

PROPOSITION. Let S, T be self-maps of a momempty complete
metric space (X, d). Suppose that there exist nommegative real
numbers a,, a, such that a, + a, < 1 and

(*) d(S(@), T(¥)) < ad(x, S@) + a.d(y, T®), =z, yecX.
Then either (*) is true when all of its S are replaced by T or (*) is

true when all of its T are replaced by S.

The following example proves that our result is actually more
general than that of Srivastava and Gupta.

ExampLE. Let X ={1,2,8}. Let d be the metric for X deter-
mined by

,d1,3) =2,

d1,2) =1, d(2,3) = 7

3}
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Let S, T be the function on X such that
S@) = S@2) = SB) =1;
T =T8) =1, T2 =3.

Let ,=0, @, =0, @, =0, a,=5/7, a; = 0. Then the conditions of
Theorem 1 are satisfied. However, no nonnegative real numbers
a;, @, Qs a; can be chosen such that a, + a, + a; + a; < 1 and for
z,ye X,

ad(S(x), T(y)) < ad(z, S(x)) + a.d(y, T(y)) + a.d(z, T(y)) + ad(x, y) .
For if there exist such a,, a,, a;, a; then

a(S@), T(2) < a,d(3, S3)) + a.d(2, T(2)) + a,d(3, T(2) + a,d(3,2) .
So

%§§ﬂ+ﬂ+——§—,§—(al+az+an)<%,
a contradiction.

COROLLARY 3. G. Hardy and T. Rogers [5, Theorem 1]. Let S be
a mapping of a monempty complete metric space (X, d) into itself.
Suppose that there exist nonnegative real numbers a,, a, a, a, a,
such that

(a) a+ata+at+a<l
and

(b) d(S(@), S(y)) < ad(x, S(x) + a.dy, SW®)) + ad(x, S(y))
+ (hd(y, S(x)) + abd(xy y)
for all , y in X.

Then S has a unique fixed point.

Note that in the above case, we may without loss of generality
assume that o, = a,, a, = a, (replace a,, a,, a; a, as; respectively by

a+a a+a a+a a4+ a,

’ ’ ’ y Qs
2 2 2 2

if necessary). So the above result follows from Theorem 1. The
above example shows that there is no such symmetry (o, = a,, a; = a,)
for the general case. Indeed, we cannot even assume a, = a,. For
if a, = a,, then for the above example, we have
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2 - s, T =20+ Lot at 4a
:%a1+%a2+—%—a3+%—a4+%-a5
5 5
<—7‘(a1+a2+a3+a4+a5)<-7—,

a contradiction.

2. Extensions and some ralated results. The following result
generalizes Theorem 1. Its proof is different from the one we gave
for Theorem 1.

THEOREM 2. Let S, T be functions on a mnonempty complete
metric space (X, d). Suppose that there exist decreasing functions
@, O, @, a, o of (0, ) into [0,1) such that

(a) ;<1

(b) a, = &, 0 & = &y

(e) limg o, + ay) <1 and lim, (@, + a) < 1;

(d) for any distinct x, y in X,

a(S@), T() = ad(x, S@) + ad(y, T®) + ad(z, T(y))
+ a4d(y7 S(x)) + a5d(my y) ’

where a; = a,;(d(z, y)).

Then at least one of S, T has a fived point. If both S and T
have fized points, then each of S, T has o unique fixed point and
these two fixed points coincide.

Proof. Let x,e X. Define for each » =0,1,2, -+,
Tonsr = S(@2n) 5 Tonie = T(@zp41) » b = A@0y Tury) -

We may assume that b, > 0 for each %, for otherwise some 2, is a
fixed point of S or 7. Let

_ o) + as(®) + as(?)
B 0
s(t) = ald) + au(t) + ) > 0.

1- al(t) - Ch(t)
Then #, s are decreasing. From (a) and (c), the limits
ro=limr®), s = lims()
tlo tlo

are nonnegative real numbers. Let
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f@) =r®s) , t>0.

Then f is decreasing and f(f) <1 for each ¢ > 0. As in the proof
of Theorem 1, we have for each n =0,1,2, «..,

(12) b2n+1 é T(bzn)bz'n ’
(13) bopis = s(b2n+1)b2n+1 .
Let n be given. Then

(14 bznss = 7(Donsa) 8(bzns1)bonss
(15) baniz = 8(Donsd) 7(020) bs «
Since 7, s are decreasing,

(16) binss = f(IN {Brn42, b20si})D2ns
1 bonse = f(MiN {Bon41, Den})b2n «

Since f(t) <1 for each ¢t >0, {b.,..}, {b.,} are decreasing sequences.
So {b;n+.}, {b:.} converge respectively to some points ¢, ¢,, We shall
prove that ¢, = 0, ¢, = 0. From (12) and (13),

CL STy Co=SC «

So either both ¢, ¢, are zero or both ¢, ¢, are not zero. Suppose to
the contrary that ¢, = 0, ¢, # 0. Then from (16) and (17),

(18) btz = f(min {Cl, 02})bn ’ n =0, 17 2, .00
By induction,
19) b, < (f(min {e,, &:}))"b, n=0,1,2---.

So ¢, = 0, a contradiction. Therefore, ¢, = ¢, = 0. This proves that
{b,} converges to 0.

Now we shall prove that {x,} is Cauchy. Suppose not. Then
there exist ee (0, <) and sequences {p(n)}, {g(n)} such that for each
n=0,

(20) p(n) > q(n) > n,
(21) AU@otmry Tom) Z € 5
and (by the well-ordering principle),

(22) X pimy—ty Toemy) < €+

Let n = 0 be given, ¢, = d(®y), 4m). Then
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et e,

(23)
= A@pims Toim—) T A @pimr—1, Tyny) < bpimy—r + € &

From ¢, = ¢, = 0, we conclude that {c,} converges to € from the right.
Let

I = {n: p(n), ¢(n) are odd},

I, = {n: p(n) is odd, q(n) is even} .

I, = {n: p(n) is even, q(n) is odd},

I, = {n: p(n), g(n) are even} .

Then at least one of I, I,, I,, I, is infinite. Suppose first that I, is
infinite. Let

d” = d(xp(.n)__l’ .’Eq(”)) s n = 0, 1, 2, e

Since {¢,} converges to ¢ and {b,} converges to 0, we conclude from
(22) that {d,} converges to & from the left. Thus

Jl = {n € I1: Lo(ny—r 7 xq(n)}
is infinite. Let ned,, %, = d(Xpny—1, Lom+)s Then

Cn = A@pinyy Tyim) = A pinyy Tyimysr) + F@yimyrry Toim)

24

@4 < d(S@ins)y T(@aim)) + oo -
From (d),

(25) d(S(mP(n)—-1)7 T(xq(m)) é al(dn)b:v(m—l + az(dn)bq(n) + as(dn)un

+ a(d,)c, + ald,)d, .
From (24) and (25),

Cn é al(dn)bp('n)-—l + a2(dn)bq(n) + as(dn)un + aA(dn)cn

26
(26) + ay(d,)d, + by «

Without loss of generality, we may assume that each «; is continuous
from the left, for we can replace the a;’s by
Bi(t) = lsigla,-(s) , t>0, i=1,23,4,5
and conditions (a), (b), (¢c), and (d) still hold. Thus
lim a;(d,) = a;(e) , 1=1,2,38,4,5.

n—oo

So from (26),
& = (as(8) + au(e) + as(e))e < ¢,
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a contradiction. Now suppose that I, is infinite. By a similar argu-
ment, J, = {n € L,: Tppyy # Tom—) IS infinite. Let n e,

Vo, = d(xp(n)—ly xq(ﬂ)——i) ’ W, = d(xp(n)’ xq(n)-—l) .
Then

Crn = d(s(xp(m—-x), T(‘”q(’n)-—d))

27
BT )b + A bswrs + A + )0y + Q0D -

Since {v,} converges to ¢ (not necessarily from the left or right), we
obtain the same contradiction from (27). The other two cases are
similar to the above two except the roles of S, T interchange. Hence
{z,} is Cauchy. By completeness, {x,} converges to a point x in X.
Since b, >0 for each n, J = {n: & #* @,,,} or K= {n: x # x,,} is
infinite. Suppose that K is infinite. Let ne K,

l'n = d(xy xzn) 1 hn = d(x, x2ﬂ+1) .
Then
d(x, T((B)) é d(m, x2n+1) + d(x2n+1, T(x))
=k + A(S@:), T(@))
< ha + au(la)ben + a(l)d(@, T(@)) + X(la)d(@o0, T(2))
+ aA(l'n)hn + a.‘s(ln)ln
< b + au(l)ben + aa(la)d(@, T(2)) + au(l,)l, + d(@, T(2))]
+ a{(l‘n)hﬂ + aﬂ(l'a)ln .
So

1+ a,(l“) aa(ln) + au(ln)
4w, Tw) = 1— a(l,) — au(ly) i F 1 — ay(l,) — als) "
(28) a,(l,)
1z ax(l,) — a(l,) bun

From (a) and (c), the sequences

1+ a,) (L) + au(ly) a(l,)
1—a(l) — o)’ 1-al)—al)’ 1-—al)—al)

are bounded. So from (28), T(x) = x. Similarly, S@) ==« if J is
infinite. Hence S or T has a fixed point.

The following result follows easily from Theorem 2.

THEOREM 3. With the conditions of Theorem 2, if further,

d(S (@), T(2)) = ald@, S@) + dx, T()], xzeX
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for some a<l0,1), then each of S, T has a unique fixzed point and
these two fixzed points coincide.

We remark that the conditions of Theorem 1 imply the conditions
of Theorem 3. Also, G. Hardy and T. Rogers [5, Theorem 2] gave
a different proof for the case S = T. Their proof cannot be modified
for the general case. To see that the conclusion of Theorem 2 is
best possible, we note that if X = {0, 1} with the usual distance and
if S, T are two distinet functions of X onto X, then S, T satisfy
the conditions of Theorem 2 (and Theorem 3 with a = 1), but one
has two fixed points and the other has none.

THEOREM 4. Let (X,d) be a nonemply compact metric space.
Let S, T be functions of X into itself. Suppose that S or T is
continuous. Suppose further that there exist nonnegative real-valued
decreasing functions a,, &, &, &;, s on (0, ) such that

(a) a,+a,+a;+a,+a; =1,

(b) a, =a, and a, = a,,

(¢) for any distinct x, y in X,

d(S), T(¥) < ad(@, S(@)) + wd@y, T(¥) + ad@, T(y)) +
ad(y, S@)) + ad®, y) ,

where a; = a,(d(x, y)).

Then S or T has a fixed point. If both S and T have fixed points,
then each of S and T has a unique fized point and these two fized
points coincide.

Proof. By symmetry, we may assume that S is continuous.
Let f be the function on X such that
f@) =d@,S@), =zeX.

Then f is continuous (we merely need the fact that f is lower semi-
continuous) on X. So f takes its minimum value at some 2, in X.
We claim that 2z, is a fixed point of S or S(x,) is a fixed point of 7.
Suppose not. Let

2, =8S@®), x=7T®), =23,

by = d(%,, ), b = d(xs, 25), by = Az, X) -
Then b, > 0, b, > 0. From (c), we can prove that
(29) (1 — ax(by) — ay(be))b, < (ar,(by) + a(by) + ay(by))d, -
Let
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p(t) =1 — ) — @), ¢ =a) +ad)+a@, t>0.

From (a) and (b), p(b,) > 0. So

30 b, < 200 g
®0) o(bo)
Similarly,

v(b,) b, ,
&1 b < u(b,)
where

w(t) =1 — a,(t) — a,), v(t) = () + a,(t) + as(t), t>0.
From (30) and (31),

o(b) 9
(2 b < 25 2o

It suffices to prove that (v(b,)q(b,)/u(b)p(b)) < 1, for then, b, < b,, a
contradiction to the minimality of 8, Let b = min {b,, b,}. Then

v(0)q(b) — u(b)p(ds) = v(b)q(b) — u(d)p(d) < 0

ifa,=a;, and o, =a,. S0 S or T has a fixed point. Now suppose
that o is a fixed point of S and y is a fixed point of 7. Then
x = y, otherwise, from (c¢),

d(, y) = d(S), T(y)) < d(x,y) ,

a contradiction.
The following result is stated without proof.

THEOREM 5. Let (X, d) be complete metric space. Let {S,}, {T,}
be sequence of functions of X into X which converge pointwise to
S, T respectively. Suppose that the pairs (S,, T,) satisfy the con-
ditions of Theorem 3 with the same o, o, &, &, &s. Then S, T have a
unique common fized point x and x ts the limit of the sequence {x,}
of the fized points x, of S,.

THEOREM 6. Let (X,d) be a monempty compact metric space.
Let {S,}, {T,} be sequences of functions of X into itself which converge
pointwise to the functions S, T on X respectively. Suppose that for
each m, there exist decreasing functions af, ay, af, ai, ai of (0, «)
into [0, o) such that
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(a) ar+ar+ar+ar+ar<sl,
(b) ar=a? and a? = ar,
(¢) for any distinct x, y in X,

d(S.(®), Ta(v)) < atd(z, S,(x)) + aid(y, TW(y)) + atd(x, T.(y))
+ aid(y, S.(x)) + azd(z, y) ,
where
at = a;(@x, y)) -

Then S or T has a fixed point. Indeed, every cluster point of a
sequence {x,} of fixzed points x, of S, or T, is a fixzed point of S or
T.

Proof. By Theorem 4, for each =, either S, or T, has a fixed
point. By symmetry, we may assume that S, has a fixed point for
infinitely many of n’s. So there is a subsequence {S,} of {S,} such
that each S, has a fixed point, say x,. By compactness, we may
(by taking a subsequence) assume that {x,} converges to some z in
X. We shall prove that z is a fixed point of S or T. If z, s 2 for
only finitely many of k’s, then

S(x) = }cim Soii ()
= 1}2} Sy (@)
= limx,
k—oo

=0 .

So we may assume that x, # x for infinitely many of k’s. By taking
a subsequence, we may assume that x, % x for each k. Let k=1
and b, = d(x, ;). Then

d(x’ T(CL')) é d(x’ xk) + d(xky Tn(k)(x)) + d(Tn(k)(x); T(x))

®8) — d(m, 3) + d(Sun @), Taw@) + ATun(@), T@) -
From (c),
(34) A(Sam(@e), Tau(x)) < af(bk)d(x, Ton(®) + a5 (b)d (@, Tomw(®))

+ af(bpd(x, ) + ag (b, .
Combining (33) and (34) and letting % tend to the infinity, we have
d(x, T(x)) = lim sup (az(by) + az(by))d(z, T(x))

k—oo

(35)
< lirlr}“iup ltigl (@i () + ai(t)d(z, T(x)) .

From (b), ak(t) + af(t) <1/2 for each t >0, k =1,2,--+. So
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(36) lim sup lim (a(t) + a(9) = _;})‘_ )
0

koo t

From (35) and (36), we conclude that T(z) = .
From the proof, we know that the same conclusion holds if in
Theorem 6, we replace (b) by the following weaker conditions:

ar = o; or ay = oy,
lim sup lim (af(t) + ai(t)) < 1,
k—roo tio

and

lim sup lilm (ar®) + az(t)) < 1.
k—oo tlo
We note that, unlike Theorem 5, S, T in Theorem 6 need not
satisfy the condition required for the pairs (S,, T.).

THEOREM 7. Let (X,d) be a monempty compact metric space.
Let {S,} be a sequence of functions of X into itself which converges
pointwise to some function S on X. Suppose that for each n, there
exist decreasing functions ay, az, ai, ai, ar of (0, ) into [0, o)
such that

(a) ar+ay+ar+ar+a; =1,

(b) for any distinct z, y in X,

d(S,(x), S.(¥)) < a.d(x, S.(x)) + a.d(y, S.(¥)) + ad(z, S.(y))
+ ad(y, S.(x)) + ad(x, y) ,

where
a; = a;(d(z, y)) .

Then S has a fived point. Indeed, every cluster point of the sequence
of fized points of S, is a fized point of S.

The above result follows from Theorem 6 by averaging two ap-
plications of condition (b).

We shall now give a simple example to show that the conclusion
of Theorem 7 is best possible. Let X be a star-shaped [4] compact
subset of a normed linear space B. Then there exists a point 2z in
X such that for any y in X, the line segment

{tz + (1 — t)y: tel0, 1]}
is contained in X. For each n, let

Sn(x):%z+<1——71:>x, zeX.
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Then {S,} is a sequence of mappings of X into X which satisfy the
conditions of Theorem 7. {S,} converges pointwise to the identity
funection S on X. Every point of X is a fixed point of S. So unlike
Theorem 5, it is too much to ask that S in Theorem 7 has a unique
fixed point.
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