
Pacific Journal of
Mathematics

IDEALIZERS AND NONSINGULAR RINGS

KENNETH R. GOODEARL

Vol. 48, No. 2 April 1973



PACIFIC JOURNAL OF MATHEMATICS
Vol. 48, No. 2, 1973

IDEALIZERS AND NONSINGULAR RINGS

K. R. GOODEARL

This paper deals with the relationship between a ring T
and the idealizer R of a right ideal M of T. [The ring R
is the largest subring of T which contains f a s a two-sided
ideal.] Assuming M to be a finite intersection of maximal
right ideals of T, the properties of T and R are shown to
be very similar. The main theorem of the first section shows
that under these hypotheses the right global dimensions of
T and R almost always coincide. In the second section,
where T is assumed to be a nonsingular ring, the major
theorem asserts that the singular submodule of every R-
module is a direct summand if and only if the correspond-
ing property holds for ^-modules.

We assume throughout the paper that all rings are associative
with identity, and that all modules are unitary. Unless otherwise
noted, all modules are right modules.

1* Xdealizers* This section is concerned with idealizers in arbi-
trary rings, and is based on the work of J. C. Robson in [7].

Given a ring T and a right ideal M of T, the idealizer of M in
T is the set R = {te T\tM g M}, which is easily seen to be the
largest subring of T which contains M as a two-sided ideal. The
aim of this investigation is to discover properties of T which carry
over to R (and vice versa).

We shall mainly consider the case when M is a finite intersection
of maximal right ideals of T; following [7], we say in this case that
M is a semimaximal right ideal of T. Equivalently, M is a semimaxi-
mal right ideal of T if T/M is a semisimple right T-module, i.e., a
module which is a sum of simple submodules. In accordance with
this terminology, we use the term "semisimple ring" to refer to a
ring which is semisimple as a module over itself, rather than a ring
whose Jacobson radical is zero.

The concept of the idealizer of M is of course not needed if M
is already a two-sided ideal of T, i.e., if TM = M. When M is
maximal, the only other possibility is TM — T, and in general this
condition seems to be required for some proofs. Fortunately, [7,
Proposition 1.7] allows us to assume it without loss of generality:
Assuming that If is a semimaximal right ideal of T, then there is
another semimaximal right ideal Mf, containing M, such that TM' = T
and the idealizers of M and M' coincide.
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Thus we assume throughout this section that M is a semimaximal
right ideal of T satisfying TM = T.

PROPOSITION l [Robson] (a) R/M is a semisίmple ring.
(b) T/R is a semίsimple right R-module.
(c) T is a finitely generated projective right R-module.
(d) The natural map T(&R T—+T is an isomorphism.

Proof, (b), (c), and (d) are contained in Corollary 1.5 and
Lemma 2.1 of [7], while (a) follows from the observation [7, Proposi-
tion 1.1] that R/M is isomorphic to the endomorphism ring of the
right T-module T/M.

A simple consequence of (d) is that for any modules Aτ and TB,
the natural map A (g)̂  B —> A(ξ$τ B is an isomorphism, from which we
infer that the following maps are also isomorphisms: A(&RT—+ A,
T®RB-*By A—>A®RT, B->T®RB. Then for any modules Aτ

and Cτ we conclude using the isomorphisms A—+ A®βT and C —•
C®RT that Hom^ (A, C) — HomΓ (A, C). Given these observations
and the projectivity of TR, a straightforward induction establishes
the following results:

PROPOSITION 2. (a) Torf (A, B) ~ Tor£ (A, B) for all Aτ, TB and
all n > 0.

(b) Ext I (A, C) = Ext n

τ (A, C) for all Aτ, Cτ and all n > 0.

These results suggest comparing the global dimensions of R and
T, which is done in [7, Theorem 2.9] for the case when T is right
noetherian: Provided that R Φ T, then

r. gl. dim. (R) — max {1, r. gl. dim. (T)} .

In Theorem 5 we shall remove the noetherian restriction on this
theorem, but first two intermediate results, are needed.

The key to the next two propositions is a consideration of the
module JT/J, where J is a right ideal of R. There is an epimorphism
/: F—>JT/J for some direct sum i^of copies of T/R, and we see from
Proposition 1 that F is a semisimple right ϋ?-module, hence Jeer f
must be a summand of F. Thus JT/J is isomorphic to a summand
of a direct sum of copies of T/R. For the proof of Theorem 10, we
must notice that this same conclusion follows when J is an J5-sub-
module of a right T-module.

PROPOSITION 3. T is a flat left R-module.
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Proof. The natural maps R ®R T -> T ®R T -> T and
are both isomorphisms; hence R(&RT-+TφRT is an isomorphism.
Inasmuch as TR is protective, it follows that Torf (T/R, T) = 0. Now
given any right ideal J of R, JT/J is isomorphic to a summand of a
direct sum of copies of T/R, from which we infer that Torf (JT/J, T) = 0.
According to Proposition 2 we also have Tor^ (T/JTy T) = 0, whence
Torf (T/J, T) = 0. Thus J ®R T-> T®RTis injective, hence J®R T->
22 (g)̂  Γ must be injective.

We shall use the notation pdR(A) to stand for the protective
dimension of an 22-module A.

PROPOSITION 4. If J is any right ideal of R, then pdR(J) —
pdτ(JT).

Proof. Since RT is flat, the tensor product of T with any pro-
jective resolution of JR yields a protective resolution of (J®RT)T;
thus pdτ(J(&RT) ^ pdR(J). The flatness of RT also implies that
J®RT = JT; hence we get pdτ(JT) ^ pdR(J).

In view of the projectivity of TR and i?^, pdR(T/R) ^ 1. Inasmuch
as JT/J is isomorphic to a summand of a direct sum of copies of
T/R, we obtain pdR(JT/J) ^ 1. Examining the long exact sequence
of Ext, we infer from this that pdR(J) ^ pdR(JT). Recalling again
that TR is protective, we see that any protective resolution of {JT)T

is also a protective resolution of (JT)R, from which we conclude that
pdR(JT) ^ pdτ(JT). Thus pdR(J) ^ pdτ(JT).

[After the preparation of this paper, Professor Robson informed
the author that he too had obtained the following theorem, which
appears in [8, Theorem 2.8].]

THEOREM 5. If RΦ T, then r. gl. dim. (R) = max {1, r.gl. dim. (T)}.

Proof. If r. gl. dim. (R) > 0, then from Proposition 4 we obtain
r. gl. dim. (22) = 1 + sup {pdR(J) \ J £ RR} ̂  1 + sup {pdτ{K) \K^TT} =
max{l, r. gl. dim. (T)}. On the other hand, it is immediate from
Proposition 2 that r. gl. dim. (T) ^ r. gl. dim. (R). Thus it only remains
to prove that r. gl. dim. (R) :> 1.

In view of the assumption R Φ T, we see that M cannot be a
two-sided ideal of T; hence 1 g M and M < R. Inasmuch as TM = T,
it follows that the map RφR(R/M) —>T($ξ)R(R/M) is not injective,
from which we conclude that R{R/M) is not flat. Thus GWΌ(R) > 0;
hence r. gl. dim. (R) > 0.

For weak dimension, the proofs of Proposition 4 and Theorem 5
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can be used, mutatis mutandis, to prove the following theorem:

THEOREM 6. If R Φ T, then GΨΌ(R) = max{l, GWD(Γ)}.

2* Nonsingular rings* In this section we shall assume that T
is a nonsingular ring and then investigate the relationship between
singular and nonsingular modules over T and R. First we recall the
relevant definitions: Letting £f(T) denote the collection of essential
right ideals of T, then the singular submodule of a right Γ-module
A is the set ZT{A) = {x e A \ xl = 0 for some IeS^(T)}. We say that
A is singular [nonsingular] provided ZT{A) — A [ZT(A) = 0]. The
singular submodule of Tτ is a two-sided ideal of T, called the right
singular ideal of T and denoted Zr(T); T is a right nonsingular ring
if Zr{T) = 0. Analogous definitions and notations hold for R and its
modules.

Throughout this section, we assume that T is a right nonsingular
ring and that M is an essential right ideal of T, and we investigate
the idealizer R of M. For all but the next two propositions, we
make the additional assumptions that M is a semimaximal right ideal
of T and that TM = T.

PROPOSITION 7. (a) S^(T) = {K ^ Tτ\KnRe
(b) £S(R) = {J ^ RR\ JMe <9*(T)}.
(c) ZT(A) = ZR(A) for all Aτ.
(d) Zr(22) = ZΛ(T) = 0 .

Proof, (a) Suppose that Ke^(T) and A ^ ^ such that
A n (if n i?) = 0. Then AM n if = 0, whence AM = 0 [because AM
is a right ideal of Γ and Ke^(T)]. Thus A ^ Zr(T) = 0 and so

Now let K ^ Tτ and assume that if n ^ e 6^{R). If A g Tτ and
A n if = 0, then from (A n R) Π (if Π R) = 0 we obtain A n -K = 0,
hence A n AT = 0. Thus A - 0 and so if e &>(T).

(b) If J ^ i ί ^ and JMeS^{T), then J M e ^ ( i 2 ) by (a), whence
Je^(R).

Now consider any j € ^ ( 2 ί ) . Inasmuch as J l ί e y ( Γ ) and
Zr(Γ) = 0, the left annihilator of M in T is zero. In particular, it
follows that every nonzero element of J has a nonzero right multiple
in JM. Thus JM is an essential jK-submodule of J, hence JMe S^(R)f

and then JMeS^(T) by (a).
(c) follows directly from (a) and (b).
(d) According to (c), ZR(T) = Zr(T) = 0, and then Zr(R) = 0

also.
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Let Q denote the maximal right quotient ring of T. From [3,
Theorem 1 + 2, p. 69] we obtain the following information: Qτ is
an injective hull for Tτ, Q is a von Neumann regular ring, and
QQ is injective. Note that T n ZT(Q) = Zr(T) = 0, from which we
obtain ZT{Q) = 0.

PROPOSITION 8. Q is also the maximal right quotient ring of Rβ

Proof. We first show that Q is a right quotient ring of R, i.e.,
that QR is a rational extension of RR. (See [3, pp. 58, 64] for the
definitionso) Inasmuch as Zr(R) = 0, [3, Proposition 5, p. 59] says
that it suffices to prove that QR is an essential extension of RB.
Thus consider any A ^ QR such that A n R = 0. Then AM Π M = 0.
Since M is an essential right ideal of T, it must be an essential
Γ-submodule of Q, so that we obtain AM = 0 and A ^ ZT(Q) — 0.
Therefore, Q is a right quotient ring of R; hence we may assume
that Q is a subring of the maximal right quotient ring P of R. The
injectivity of QQ implies that PQ = Q 0 B for some 5. Then from
finB-Owe infer that B = 0 and P = Q.

In view of Proposition 8, we may refer to [3, Theorem 1 + 2,
p. 69] again and conclude that QR is an injective hull for RR. Now
we obtain from [5, Proposition 1, p. 427] the following alternate
description of the singular submodule of a right lu-module A: ZR(A) =
Π {ker/l/GHom^ (A, Q)}. In particular, A is singular if and only if
Hom^ (A, Q) — 0, from which we conclude that any extension of a
singular module by a singular module is singular.

N.B.—From this point on, the assumption that Mis a semimaxi-
mal right ideal of T satisfying TM = T will hold.

It follows from Proposition 7 that every nonsingular right T-
module is also a nonsingular right l?-module. A partial converse is
provided in the next proposition: Any nonsingular right i?-module
can be canonically embedded in a nonsingular right T-module.

PROPOSITION 9. If AR is nonsingular, then the natural map
A-*A(&RT is injective and (A®RT)T is nonsingular.

Proof. In view of the discussion following Proposition 8, the
intersection of the kernels of the homomorphisms from A into QR

must be zero. Thus we may assume that A is a submodule of some
direct product B of copies of Q.

Since Q is a nonsingular right T-module, so is B. We now get a
natural map A ξξ)R T —> B ® R T —> B, and the composition A —> A <g)Λ T —* B
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is just the inclusion map, whence A —» A (g)̂  T must be in jective.
Also, we see from the flatness of RT that A <&R T—* B ® Λ T is in jective.
Since BQRT—*B is an isomorphism, we infer that A(^RT ~ AT;
hence (A φ ^ T) r is nonsingular.

We say that R is a splitting ring provided that for any right
iϋ-module A, ZR(A) is a direct summand of A. It is noted in [1,
Proposition 1.12] that R is a splitting ring if and only if Ext^ (A, C) = 0
for all nonsingular A* and all singular CR.

THEOREM 10. R is a splitting ring if and only if T is a split-
ting ring.

Proof. Suppose that R is a splitting ring. Given a nonsingular
right T-module A and a singular right T-module C, it follows from
Proposition 7 that AR is nonsingular and CB is singular. Thus
Ext^ (A, C) = 0; hence from Proposition 2 we obtain Exty (A, C) = 0.

Now assume that T is a splitting ring. Given a nonsingular
module AR and a singular module CB, we must show that Ext^ (A, C) =
0. It suffices to prove that Ext^ (A, C/CM) = 0 and Ext^ (A, CM) = 0.
Inasmuch as ikf2 = MTM = ikf JΓ = ikί, we may thus assume without
loss of generality that either CM = 0 or CM = C.

Case I. Cikf = 0. We first show that Tor?(A, R/M) = 0.
According to Proposition 9, we may assume that A is an jβ-sub-

module of a nonsingular right Γ-module B. The natural map JΓ®^ M—»
T(g)RR-+T is in jective because Tβ is pro jective; hence in view of
the condition TM — Γ we see that TφRM—>T is an isomorphism.
Thus A T ® Γ Γ (g^ ikf —• A ϊ1 (g)Γ T is an isomorphism equivalently,
AT®RM—* AT is an isomorphism.

Inasmuch as the natural map RφR M-* T®RM-+T is in jective,
R®RM—*T(&RM must be in jective. In light of the projectivity of
TRy we obtain from this that Torf (T/R, M) = 0. Now since AT IA is
isomorphic to a summand of a direct sum of copies of T/R, we must
have Torf (A T/A, M) = 0. Therefore, the map A ®R M-> A T®RM-+ A T
is in jective, hence A(&RM-+A(&RR is in jective. Thus Torf (A,R/M) = 0.

Now consider any short exact sequence E:0—>C—>J5—>A—>0.
Since Torf (A, i2/Λf) = 0, we obtain another exact sequence E*: 0—*
C->jB/jBM->A/Aikί->0. The sequence #* splits because R/M is a
semisimple ring, hence £7 splits.

II. CM = C. Here C ~ P/J for some direct sum P of copies
of M and some iϋ-submodule J of P. To prove that Ext^ (A, C) = 0,
it suffices to show that Ext^ (A, P/JM) = 0 and Ext2* (A, J/JM) = 0.

Inasmuch as Me £f(R), J/JM is a singular right i?-module. Choos-
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ing an exact sequence 0—>iΓ—>F-+ A-+0 with FR free, we have
Έxt2

R(A,J/JM)~ΈxtR(K9J/JM). Since Zr(E) = 0, .P and thus i£
are nonsingular; hence Ext* (iΓ, J/JM) = 0 by Case I. Therefore,
Ext^ (A, J/JM) = 0.

All that remains is to show that Ext# (A, D) = 0, where D =
P/JM. Inasmuch as P is a right T-module and JM is a T-submodule
of P, JD is a right T-module. Since P/J and J/JM are both singular
iϋ-modules, it follows from the discussion after Proposition 8 that DR

must be singular. Thus from Propositions 7 and 9 we obtain that
Dτ is singular and (A ® Λ T)τ is nonsingular.

Given any exact sequence 0—> Z) —>B—>A—> 0, we get a com-
mutative diagram with exact rows as follows:

0 > D > B > A > 0

0 > D ®R T > B ®BT > A ®R T > 0 .

The bottom row splits because T is a splitting ring; hence the top
row splits. Therefore, Ext^ (A, D) = 0.

One special case of Theorem 10 has been proved in [4]. The
authors start with a left and right principal ideal domain C such
that C is a simple ring but not a division ring, and such that every
simple right C-module is injective. (Examples of such rings are con-
structed in [2].) Then they choose a maximal right ideal Mof Cand
prove that the idealizer I of M in C is a splitting ring [Lemma 2].

It is not hard to prove that every singular right C-module is
semisimple, and hence that every singular right C-module is injective.
(Details may be found in [6, Chapter 3].) Thus C is certainly a
splitting ring. The right ideal M is nonzero because C is not a divi-
sion ring; hence from the simplicity of C we obtain CM = C. Also,
C is a right Ore domain, from which it follows easily that M is an
essential right ideal of C. Thus it now also follows from Theorem
10 that / is a splitting ring.
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