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VALUE DISTRIBUTION OF LINEAR COMBINATIONS
OF AXISYMMETRIC HARMONIC POLYNOMIALS

AND THEIR DERIVATIVES

PETER A. MCCOY

In this paper the geometry of the value distribution of
linear combinations of axisymmetric harmonic polynomials
(AHP) and their derivatives is studied using the Bergman
integral operator method and methods from the analytic theory
of polynomials. For a given AHP, zero free cones in Es can
be determined which are stationary for specified classes of
these linear combinations in the sense that the given AHP
describes cones which have an empty intersection with the
level sets of all linear combinations from each class.

In addition to these results, an AHP analog to the classical
theorem of Lucas' is obtained. The above results are extended to
generalized axisymmetric harmonic polynomials by an operator due
to R. P. Gilbert.

The study of the value distribution of AHP by the Bergman
method was initiated by Morris Harden [4]. In that paper, the
Bergman method [1] was used to transform polynomials of one complex
variable into AHP. Methods from the analytic theory of polynomials
were used with operator to obtain theorems on the location of sets
in E$ where an AHP omits a given complex value. These results
were specified in terms of a pair of cones in E3 which were functions
of the convex hull of the zero set of a polynomial of one complex
variable associated with the AHP by the Bergman operator.

Let (a?, y, z) be rectangular coordinates and (a?, p, φ) be cylindrical
coordinates with

P2 — y2 + z\y = p cos φ, z = p sin φ .

A function is said to be axisymmetric if it is independent of φ.
Every AHP can be represented by the Bergman method as the

integral transform of a polynomial of one complex variable (see [4])
which shall be referred to as the associate of the AHP. That is, if
H{x, p) is an AHP then there is a unique polynomial h(ζ) of the complex
variable ζ such that

1 f2jrH(x, p) = — \ h(x + ip cos t)dt.
2ττ Jo

In addition, each AHP can be represented in the form (see [3])
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, p)=Σ, WhPk (cos θ)
k0

where Pk(v) is the Legendre polynomial of degree k in v and (r, θ, φ)
are the spherical coordinates

p = r sin θ and x = r cos #

Let C denote the complex plane, JKΓ a compact subset of C, JΓ the
reflection of K in the ίc-axis and g(?\K\ the convex hull of K. The
points on the #-axis to the right and left of S^\K U K] for which
£έf\K U K] subtends a given angle 2Θ, 0 < 0 ^ ττ/2, are denoted by
α0 = αo(ίΓ) and αx = a^K) respectively. The sectors defined by

jπ - θ < arg (ζ - a3) < θ + jπ, 0 ^ i ^ 1

are denoted by SΛ(JBΓ, 0) and SL(K, θ) respectively and the sectors
opposite these, S°L(K, θ) and S%(K, θ), are determined by a rotation
of SL(K, θ) and SB(K, θ) about their vertices thru an angle of π.

Let 0 < 7, δ < π/2 and CR{K, 7) represent the cone

(1) 0 ^ ^ < (x - aQ) tan 7

and (^(iΓ, δ) the cone

(2) 0 ^ ^ < (a, - x) tan δ .

For K real and 0 < β ^ TΓ, let SU/3) denote the sector

The points at which a polynomial of one complex variable assumes
the complex value a shall be referred to as the a points of the
polynomial. We shall deal with AHP having degree at least 2.

THEOREM 1. Let aeC, H be an AHP of degree n and K denote
the convex hull of the oc points of the associate of H. Then for each
X =, {χlf . . . , \p} c SL(K, π/2n) Π Sπ(π/2n) with 1 ^ p ^ n the AHP

GP(X)H=(l - v | _

omits a in CB(K, π\2ri). For each μ = {μl9 , μp} c SS(K, π/2ri) f]
SQ(π/2ri), the AHP

GMH = (l - ft^Xl - Λ^ ) (l - p£

omits a in CL{K, π/2ri).
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Proof. Let the associate of H be h and

{Xlf , λp} c SL(K, π/2n) Π Sπ(π/2n) .

Consider the AHP,

which may be written in terms of its associate as

(3) GP(X)H = — \2πg(x + ir cos t)dt
2π Jo

with

By a theorem of Takagi [5, p. 83], the zero set of g(z) — a lies
in the convex hull of the region A swept out by translating the zero
set of h(z) — a, K, by amounts nXu nX2, and nXp. But {n\, nX2, ,
nXp} c SL(K, π/2n) Γ) Sπ(π/2n) which implies that A c S°R(K, π/2n).

We factor g(z) — a as

g(z) -a = An(X) fl{z- ξ3 (X))
3=1

and choose x = xQ and p = poas the equations of a circle in CB(K, π/2ri).
Then the vector z = z(t) = x0 + ip0 cos t terminates in SR(K, π/2ri) for
0 ^ t < 2ττ. As

we find that for 0 ^ ί ^ 2π and 1 ^ i ^ w,

- τr/2^ < arg (z(t) - ξ3 (X)) < π/2n

which implies that

arg An(X) - π/2 < arg (g(z(t)) - α ) < arg An(λ) + ττ/2 for 0 ^ ί ^ 2ττ .

The integrand of (3) considered as the limit of a sum of vectors
terminating in an open half plane with boundary through the origin
cannot vanish, thus GP(X)H Φ a in CR(K, π/2n) as was to be proved.
The remaining case is shown in a similar manner.

COROLLARY 1.1. Let aeC, H be an AHP of degree n and K
denote the convex hull of the a points of its associate. Let 1 ^ k ^
n and
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Gk{v)H = Σ c(fc, j)(- 1)V(J-)Ή, c(k, 3) = kl/jl(k - j)l .
3=o \ dx 1

Then for each η e SL(K, π/2ri) Π Sπ(π/2ri),

Gk(η)H Φa,l^k^n

in CR(K, π/2n) and for each v e SR(K, π/2n) Π S0(π/2ri),

Gk(v) Φa,l<>k<>n

in CL{K, π/2n).

Proof. We observe that Theorem 1.1 may be applied to

Gk(X)H - a = (l - V-PΪΦ ~ α)
\ dx J

w i t h λ - {η, •••,57}.

COROLLARY 1.2. Lei a e C9 H be an AHP of degree n and K be
the convex hull of the a points of its associate. Let

with 1 g p + fc ̂  n and v — {ŷ  v2, , j;w}. Γ/ιe?ι /or each X — {Xlf ,
Xp} c SL(J8Γ, π/2w) Π Sx(πf2n),

Gk(X)(H -a)^0,l^p + k^n

in CR{K, π/2n) and for each μ = {μlf , μp] c SS(K, π/2ri) f] S0(π/2n)

Gk{μ){H~a) ΦQ

in CL{K, π/2n).

Proof. We observe that as K is the convex hull of the a points of
the associate of H, h, Lucas' theorem [5, p. 22] implies that K contains
the zeros of (h — a){k) for 1 <̂  k <, n — 1. The result follows by-
applying Theorem 1 to the AHP (d/dx)k(H - a).

Let A c C and 7 e C. The translate of A by the vector 7 shall
be denoted by A(Ύ).

LEMMA 1. Let ace C, f be a polynomial of degree n and K denote
the convex hull of the oc points of f. Let

L3{v)f = f - v2jf2j) 0 ^ j ^ k

where k is the largest integer such that 2k ^ n and v e SB(K, πJ2n) Π
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S0(π/(2n)2). Then for any solution vo to the equation

arg {v - vo) = arg (v) ,

the zero set of Lj(vo)f — oc is contained in

SUΌ K{jnv), π/2n) .

Proof. Let vo be a solution of arg (v — vQ) = arg (v) and g(z) =
f(z) — oc. By a theorem of Takagi [5, p. 83], the zero set of g — vog

r

is contained in Kx = <%?[\J)=0 K(jnv0)]. Let us consider

Lι(vo)g = (g - vog
f) + vo(g - vog')' .

As L1(vo)g is a linear combination of a polynomial of degree n
and its first derivative, Takagi's theorem implies that its zero set
lies in K2 = <%*l\J)=0Ki(- jnvo)]. But K2czS0

n(K1} π/2n). Let us
assume that the zero set of L5{vo)g lies in Kj+1 — <§if[\Jl

m=vKa{— mnvΌ)\
and that Kj+1a S°R(KU π/2n). Consider

Lj+I(vo)g =(g- v'ΐg^) + v'{{g - vϊg^γj) .

The operator Lj+I(vo)g is a linear combination of an %th degree poly-
nomial and its 2J"th derivative. By assumption the zero set of g —
v2o9l2J) is in S°B(Kl9π/2ri). Applying this assumption to Lj+I(vo)h with
h = g — v2og{23), we find that the zero set of Lj+ι{vo)g is in S%(Kl9 π/2n)
as was to be proved. The following observation completes the proof

S°R(Klf π/2n) c S°R(U K{jnv), π/2n) .
i=o

We shall now consider the following application of this lemma.

THEOREM 2. Let aeC, H be an AHP of degree n and K the
convex hull of the a points of its associate. Let

H v ( 4
\dx

where k is the largest integer such that 2k ^ n and

v e SB(K, πβn) n S0(π/(2n)2) .

Then for any solution vQ to the equation arg (v — vo) = arg (v),

^fs(vo)H Φ a

in CR(\JU K(jn v), πβn) for 0 ̂  s ^ k.

Proof. Let h be the associate of H and g = h — a. Then
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3f.(Vo)H - « = 7Γ- \*'{g(v>) - tfgιtβ)

2π Jo

with u = x + ip cost. Let l(z) = 0(2) — V2

OV2S)(2) and factor l(z)9

By Lemma 1,

ίC.(rt")} U
1

If x = χx and p — p1 are the equations of a circle in C 5 ( |JUo K(mnv),
π/2n), then for 0 ^ t ^ 2ττ the vector

1

i(*) = a?i + ip! cost G S^ (U K(jnv), π/2ri) .
3=0

By considering

2π Jo

as the limit of a sum of vectors terminating in an open half plane
with boundary through the origin, as in Theorem 1, we find that
the integral cannot vanish, and thus

in CR (\Jln^oK(mnv)f π/2n) as was to be proved.
We remark that a similar result holds for left zero free cones.

COROLLARY 2.1. Under the hypothesis of Theorem 2, for each
solution vo of arg (v — vo) = arg (y),

d fe( i* a ) Φ 0 , l ^ s ^ w
dxk

in CR (Um=o K(mnv), π/2n) where k ^ n — 1 and w is the largest integer
such, that 2W <̂  n — k.

Proof. We need only observe that the zeros of the associate of
dk(H — ά)/dxk are in the convex hull of the zeros of the associate of
H — α and apply Theorem 2. We shall consider the following applica-
tion of Lemma 1.

LEMMA 2. Let αeC, f be α polynomial of degree n and K the
convex hull of the a points of / . Let
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Gj(v)f = f - v/ (1) + v2f{2) + (- i)^+v^/(^-i)

for 1 ̂  j ^ k where k is the largest integer such that 2k <̂  n and v e
SB(K, π/2ri) Π S0(π/(2n)2). Then for every solution v0 of the equation
arg (v — Vo) = arg {v), the zero set of Gs(vo)f — a lies in S°R (\Jι

m=0 K{mnv),
π/2n) for l ^ s ^ k .

Proof. If s — 1, the result holds by Takagi's theorem cited in
Lemma 1. For s = 2 with h — f — a

G2(vo)f - a = h- voh
a) + vT - vlh{3)

- (h-voh
{ι)) + vl(h~voh

{1)y2) .

We set g = h — vo^
(1) and apply Lemma 1 to find that the zero set

of G2(vo)f — a is in S%{\J)={)K{jnv), π/2n). Assume that the zero set of
gι = Gι-ι{vo)f - a is contained in SQ

R{\J)=QK{jnv), π/2n). The proof
is completed by noting that by assumption the zero set of

g^iz) = h(z) - voh
[ι){z) + . . . + ( - iγι'\voy

ι'1-^ι"1^{z)

is in S*R{\J)={>K{jnv),πl2n) and applying Lemma 1 with

Gι{vo)f -a = g/_, + vt\g/-rι~l))

to find that the zero set of Gt{v)f — a is in

SQ

R(\JK(jnv),π/2n) .
3=0

The following theorem can be formulated in terms of left zero free
cones. This formulation is left to the reader.

THEOREM 3. Let aeC, H be an AHP of degree n and K denote
the convex hull of the set of points for which its associate assumes the
value a. Let

VMH = H-vd-f + v'ψί- + (- l ^ + V ' - 1 ! ^ '
dx ox2 ox23"1

for 1 ̂  j ^ k where k is the largest integer such that 2k ^ n and
v e SR(K, π/2n) Π SQ(π/(2n)2). Then for each solution vQ if the equation
arg (v — Vo) = arg (v) and for 1 < j g k,

in CR (Um=n K{mn v), π/2n).

Proof. The proof of this theorem uses Lemma 2 in a manner
analogous to that of the use of Lemma 1 in Theorem 2.
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COROLLARY 3.1. Under the hypothesis of Theorem 3, for each
solution Vo of arg (v — vo) = arg (y),

a) Φ 0 wίίfc 1 ^ s + fc ^

Proof. This result is proved in the same way as Corollary 2.1.
We shall now consider an AHP analog to the theorem of Lucas

[4, p. 22]. One can easily show that if H is an AHP and K is the
convex hull of the zero set of its associate, then the cones CR{Ky πβn)
and CL(K, πβn) are zero free cones for djH/dxj with 1 ̂  j <; n. This
provides an analog of the classical Lucas theorem which states that
the convex hull of the zero set of a polynomial contains the zeros of
its derivatives.

A sharper analog to the Lucas theorem will be drawn through
the following observation. If ΓQ denotes the convex hull of the zero
set of an nth degree polynomial of one complex variable and Γk

denotes the convex hull of the zero set of its ifcth derivative, Lucas
theorem implies that ΓQ 3 /\ 3 3 Γn. Let Γk denote the comple-
ment of Γk9 then Γo £ Γ1 £ Γn and the fcth derivative of the
polynomial omits zero in Γk.

Given a AHP of degree n, we shall construct a sequence of cones
{Ck}k=o such that Cn 3 Cn-λ 3 3 Co and such that the jΓth. derivative
of the AHP with respect to x has no zeros in Cά.

THEOREM 4. Let

H(x, p) = Σ akr
kPk(cos θ)

and

_ = ^ 1_—akr
k~jPk^j (cos θ) .

0 ^ j <i n - 1 .

Let

3 = \K3 = \zeC \z\< 1 + max
^ kl(n - j)l

Then if x = x0 and p — p0 are the equations of a circle in C(KJ9 n)
CL(Kj9 πβn) Π CR(Kh πβn),
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4 r r ( * o , Po) Φ 0 , 0£j£n-l
dx3

and

C{Kh n) £ C(Ki+ι, n) , 0 ̂  i ^ n - 1 .

Proof. A theorem due to Marden [4, p. 140], implies that H(x,
p) Φ 0 in C(ZQ, w) Applying this result to d3H/dx3\ we find that
djH/dxj Φ 0 in C ^ , n) as was to be proved. Note that

m a x an n\ (k-j)l
^ max -«*-*!• (^-1^1) !

an n\ (k — j — 1)!

with strict inequality holding if ak Φ 0 for some k ^ i
This implies that Kό Ώ Kj+ι and thus C(Kjy n) S C(Kj+ι, n) as was

to be proved.
We shall now consider extensions to generalized axisymmetric

harmonic polynomials (GAHP). Let (xl9 •••, xn) be a point in En and
(a;, p) be generalized cylindrical coordinates with p2 — x\ + + α£.
R. P. Gilbert shows [2, p. 168] that GAHP U(x, p) may be generated
by the operator

U{x, p) = A^ I u(x + i> cos ί)(sin t)2μ~ιdt
Jo

with, 2// = n - 2, ̂  = Γ(μ - l/2)/(πίl2Γ(μ)) and w(ζ) a polynomial of
degree n, ζeC. Let the cones described by equations (1) and (2) be
interpreted with p2 = a£ + + ̂ . As (sin t)2μ~ι > 0 for 0 < t < π,
the proofs of Theorems 1 through 3 are basically unchanged. We cite
the following result as a typical generalization.

THEOREM 5. Let aceC, G be a GAHP having a polynomial of
degree n as its associate. Let K denote the convex hull of the a points
of the associate. Then for each

{Xl9 , λp} c SL(K, πβri) Π Sπ(π/2n) with 1^ p £ n ,

the GAHP

omits aAμβμ in CB(K, πβn). For each {μu •• , μP} c SB(K, πβri) Π
St(π/2n), the GAHP
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S π

(sin t)2μ~~ιdt.
o

It is clear that Theorem 4 has its corresponding extension to
GAHP with Gilbert's operator. We note that the linear combinations
of AHP and GAHP considered in this paper are themselves harmonic.
If corresponding results are considered for the linear combinations of
AHP and GAHP with respect to the radial derivatives, the resulting
linear combinations are no longer harmonic. Also, we point out that
most of the preceding theorems will cover AHP of degree one by-
suitable modifications in the angles described.
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