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Let / be L-integrable and periodic with period 2π, and let
CO

(1.1) Σ n(bn cos nx — an sin nx)

be the derived Fourier series of the function / with partial
sums s'n(x). We write

* Λ W 4sin*/2

In this paper, the following theorems are established.

THEOREM 1. Let A = (amn) be a regular infinite matrix of
real numbers. Then, for every xe[— π, π] for which gs(t) is
of bounded variation on [0,π],

oo

if and only if

(1.3) lim Σ » « sin (n+l/2)t = 0 for all t e [0, π] .

THEOREM 2. Let A = (amn) be an almost regular infinite
matrix of real numbers. Then, for each x e [— π, π] for which
gx(t) is of bounded variation on [0, π]9

1 p~ι ,
lim — V tm+j(x) = gx(0 +)
p-*oo p +T0

uniformly in m if and only if

lim — Σ Σ α^+i»« s i n (n + 1 / 2 ) ί = ° f o r a 1 1 t e [°» *] »

uniformly in m, where

2 .

(2.1)

Proof of Theorem

7Γ Jo

1

= I. +

1.

• ! . '

π

We have

')(Σ Λ sin

\ sin (% -|
Jo

in (n + 1/2) t
2 sin ί/2

- l/2)tdgx(t) ,
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where

(2.2) LL g Λ ) ^ p t ;
π Jo tan ί/2

(2.3) Σ α..β:(aj) = Σ α.,1. + -?• (*L.(ί)dff.(ί) ,
w=i w=i 7Γ Jo

where

(2.4) Lm(t) = Σ amn sin (n + l/2)ί .

Since #,,.(*) is of bounded variation on [0, π] and tends to gx(0 +) as
t —> 0, ^.(ί) cos ί/2 has the same properties; so, by Jordan's convergence
criterion for Fourier series,

(2.5) In > gx(0 + ) as n > oo .

By the regularity of our method of summation, it follows that

(2.6)

Hence we have to show that, if (1.3) holds, then

(2.7) lim \'Lm(t)dg.(t) = 0 ,
m-*oo JO

and conversely.
By a theorem on the weak convergence of sequences in the Banach

space of all continuous functions defined on a finite closed interval
(see Banach [1], pp. 134-135), it follows that (2.7) holds if and only if

(2.8) I Lm(t) I ̂  K for all m and for all t e [0, π]

and (1.3) holds, where K is a constant.
Since (2.8) is automatically satisfied by one of the regularity

conditions on A, it follows that (2.7) holds if and only if (1.3) holds.
Thus the proof of the theorem is completed.

REMARKS, (a) We observe that, for each gQ(t) of bounded varia-
tion on [0, π], we have a corresponding odd function feL [— π, π]
given by

f(t) = l/2ψo(t) = 2go(t).smt/2 on [0, π] .

(b) If amn = 1/m for n ^ m and zero for n > m, then the condition
(1.3) is obviously satisfied.
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3* Note* A bounded sequence {sn} is said to be almost con-
vergent to s if

(3.1) limsn + sn+1+ - . + w - i = s

p^co p

uniformly in n (see Lorentz [4]).
It is easy to see that a convergent sequence is almost convergent

and the limits are the same.
Let A — (amn) be an infinite matrix of real numbers. A bounded

sequence {sn} is said to be almost A-summable to s if the A-transform
of {sn} is almost convergent to s, and the matrix A is said to be almost
regular if sn—>s implies that the sequence {tm} of the A-transforms
of {sn} is almost convergent to s.

Necessary and sufficient conditions for the matrix A to be almost
regular are as follows (see King [3]):

(3.2) sup ( Σ -
n+ p—1

Σ ain ) < M(m = 1, 2, •; M = a constant)

I m + p-i

(3.3) l i m — Σ ajn = 0 u n i f o r m l y in m {n — 1, 2, •••)
p->oo p j=m

1 m + p—1 oo

(3.4) lim — Σ Σ ajn — 1 uniformly in m .
p-+oa p j=m n = l

We establish the following

THEOREM 2. Let A — (amn) be an almost regular infinite matrix
of real numbers. Then, for every xe[ — π,π] for which gx{t) is of
bounded variation on [0, π],

(3.5) lim ^ £ C + » = 0x(O+)
p-+oo p j = 0

uniformly in m if and only if

(3.6) lim — Σ Σ a™+i>n sin (n + l/2)ί - 0 /or all t e [0, π] ,
p->oo p j=0 w-l

uniformly in m, where

) being the partial sum of the derived Fourier series (1.1) of / .

Proof. We have, by (2.1),
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p i o i

(3.7)

say.

= _1_ £ | , am+j)Jn + 2_ f T l ^ am+jt% s i n ( n + ι/2)t\dgβ(t)
P i=θn=l π JoLp j=0»=l J

= «/i + e/2 >

By (2.5), A being almost regular,

(3.8) Ji > gx(0 +) uniformly in m as p —

So we have to show that (3.6) holds if and only if

J2 > 0 uniformly in m as p >

Now,

— Σ Σ ^m+ό,n sin {% -j
V 3=0»=1

(3.9)
— Σsin(π + l/2)ίΣ^

1 ^

^> » = !.
sin (π + 1/2) ί

i=o

p-1

ί=0
< ikί for all p and m, by (3.2) .

Hence the remainder of the proof is similar to that of Theorem 1.

I thank Professor A. Meir for his useful comments in the pre-
paration of this paper.
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