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Let G be an upper semicontinuous decomposition of E3

whose only nondegenerate elements are countably many
dendrites. It has been asked by Armentrout whether it is
sufficient that each dendrite be tame in E3 in order that the
decomposition space E3\G be homeomorphic to E3. In Theorem
3 the sufficiency of the tameness condition is shown as well
as the sufficiency of the weaker condition that each dendrite
be flexible in E3. Theorem 2 states that if A and B are
flexible dendrites in E* whose intersection is a point, then
A u B is a flexible dendrite. This result is used to construct
flexible dendrites in E3 which are not tame.

An upper semicontinuous decomposition G of a topological space
X is a collection of disjoint subsets of X such that X is the union
of elements of G and such that for every g e G and for every open
set U in X containing g, there is an open set V in X such that
gaVaU and V is the union of elements of G. The decomposition
space of X associated with G, denoted X/G, is the set G with the
topology defined by the condition that a subset W of G is open in
X/G if and only if the union of the elements of W is open in X. A
dendrite is a locally connected continuum which contains no simple
closed curve. A tree is a finite 1-dimensional simplicial complex
whose geometric realization is a dendrite. If M is an ^-manifold
with or without boundary, Int M denotes the set consisting of all
points of M which have a neighborhood homeomorphic to En, and
Bd M denotes M — Int M. If U is a subset of the space X, then Cl U
denotes the closure of U in X.

DEFINITION. A dendrite K in E3 is tame if there is a homeo-
morphism h of E3 onto itself such that h(K) is a subset of the xy-
plane.

DEFINITION. A dendrite K in Ez is flexible if given two sub-
continua Kt and K2 such that K — KY\J K2 and given two open sets
Ui and U2 in Ez such that Ki c US — 1, 2), then there is a homeomor-
phism / of E3 onto itself such that f(K) c U2 and / is the identity
on Ez - U,.

REMARK. Observe that if iΓ is a dendrite in E3 and if h is a
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homeomorphism of E3 onto itself, then K is flexible if and only if
h(K) is flexible.

LEMMA 1. Let D be a disk contained in the xy-plane P of E3.
If U is an open set in E3 containing D and if g is a homeomorphism
of D onto itself which is the identity on Bd D, then there is a homeo-
morphism f of E3 onto itself such that f equals g on D and f is the
identity on (E3 - U) U (P - D).

Proof. Let h be a homeomorphism of E3 onto itself such that
h(D) = {(x, y, z) e Eh xz + y2 ̂  1 and z = 0}. Since h(U) contains h(D),
there is a positive number ε such that the suspension S of h(D) with
respect to the points (0, 0, ε) and (0, 0, — ε) is contained in h{U).
Let k be the homeomorphism of E3 onto itself which equals the sus-
pension of h g h~x\ h(D) on S and which equals the identity elsewhere.
Then / equal to h~^koh is the required homeomorphism.

THEOREM 1. If K is a tame dendrite in E3, then K is flexible.

Proof. Since flexibility is invariant under homeomorphisms of E3

onto itself, we may assume that if is a subset of the αψ-plane P in
E3. Let Kx and K2 be subcontinua of K such that K = Kt U K2 and
let Ux and U2 be open sets in E3 such that Kt c Ut (i = 1, 2). Let

ε = min {dist (Ku E
3 - UJ, dist (K2, E

3 - U2)}

and let T be a triangulation of P of mesh less than ε such that the
O-skeleton on T misses K. Since K does not separate P, there is a
polyhedral disk D in P such that K c Int D, D misses the O-skeleton
of T, and Bd D is in general position with the 1-skeleton of T in
P. Hence if s is a closed 2-simplex of T, then the components of
s Π D consist of finitely many disjoint polyhedral disks. Let {A}?=i
be the set of disks in P such that for each i(l ^ i ^ n) there is a
closed 2-simplex s in T such that A is a component of s f] D and
Di Π K Φ 0. Hence {A}Γ=i is a set of polyhedral disks in P such
that:

(1) diam A < e (1 ̂  i ^ w),
(2) if A n A ^ 0 , then A Π A is an arc for i Φ j , and
(3) the nerve of {A}£=i is a tree.

By conditions (2) and (3) we have that the union of all elements of
{A}?=i which meet K2 is a disk E and that the union of all elements
of {A}?=i which are not subdisks of E consists of disjoint disks
Fi, , Fm such that for each i (l^i^m) Ft Π E = Bd Fi Π Bd E is
an arc /;. It follows that if Π Bd i^ c J^. By condition (1) and
our choice of ε we have E c U2 and F{ c ϋi (1 ̂  i ^ m). Since
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(K Π Bd Fi) c Ji c E c Z72, there is a homeomorphism & of i ^ onto itself
which is the identity on Bd Ft such that g^K Π Fζ) c £72. The homeomor-
phism Qi is obtained as follows. Choose arcs A* and 5^ in F* such that:

( a ) A i n B d F i = B . n B d F , - BdJ, - Bd A, - BdJ?,,
( b ) the disk on F{ bounded by A{ U<Λ contains K Π i^, and
( c ) the disk on F{ bounded by Bi U J, is contained in U2.

Now let /̂  be an embedding of A{ (J Bd i^ into i^ which is the inclu-
sion on Bd Fi and which takes A^ onto B^ The homeomorphism gi

is an extension of ht to all of F^
Now let Fi, •••, Vm be disjoint open sets in ϋi such that JP4 c F*

(1 <; i ^ m ) . By Lemma 1 there is a homeomorphism /4 of £73 onto
itself such that /* equals g{ on i^ and f4 is the identity on (E3 — Fi) U
(P - F^. If / equals fmofm_to ... ofl9 then f(K) c ?72 and / is the
identity on Ed ~ UΊ. Hence K is flexible.

LEMMA 2. Let K be a flexible dendrίte in E\ If N, CΊ, C2, , Cn

are subcontinua of K and U, Vu V2, , Vn are open sets in E3 such
that:

(1) K=NΌ(\jUCt),
(2) Ncz U and QczVi (1 ̂  i ^ n), and
(3) F,Π Fy- 0 /or i ^ i ,

ίfeew there is a homeomorphism f of EB onto itself such that f(K) c U

and f is the identity on E3 — (U?=i"^)

The proof of Lemma 2 is omitted as it is obtained directly with
an induction argument.

THEOREM 2. If A and B are flexible dendrites in E3 such that
A Π B = {p}, then AuBisa flexible dendrite.

Proof. It is clear that A U B is a dendrite. To show that A{J B
is flexible let Kx and K2 be subcontinua of A U B such that A{jB =
Kγ U K2 and let Z7X and U2 be open sets in E3 such that K{ c Ui
(i — 1,2). We consider separately the cases when p £ K2 and when

Case 1. If p g K2) then K2dAoτK2CL B. Let us say that K2 c A.
Hence B d K,. Using the flexibility of A for the subcontinua iΓ: n A
and Z"2 Π A and for the open sets Uλ and Z72, let g be a homeomor-
phism of JB3 onto itself such that g(A) c U72 and g is the identity on
E3 - U,. Here we used the fact that K{[J A (i = 1, 2) is a dendrite
and thus unicoherent to say that Kid A is a subcontinuum of A.
Let N be a subcontinuum of B such that iV is a neighborhood of p
in B and JVc β Γ 1 ^ ) . Let d , , Cft be the components of Cl (B - N),
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and let Vu , Vn be disjoint open sets in Ut — A such that C< c Vi
(1 <̂  i <; n). By Lemma 2, for the flexible dendrite B, for the sub-
continua N, C19 C2, , Cn, and for the open sets g~ι{U2), V19 V2, , V»,
there is a homeomorphism ft of i£3 onto itself such that h(B)czg~1(U2)
and ft is the identity on Ez - (U?=iV^). If / equals g o ft, then /(A UB)c
ί72 and / is the identity on Ez — E/i.

2. If p e K2, then let JV be a subcontinuum of A U B such
that JV is a neighborhood of K2 in A U B and JVc Z72. Let Cl9 , Cn

be the components of Cl ((A U B) - JV). We assume that the set {C<}?=1

is so numbered that for each i (1 <; ί ^ m) C { c 4 - 5 and for each
i (m + 1 S i ^ n) C* c B — A. Let y i f , F m be disjoint open sets
in U, - B such that Q c V{ (1 ^ i ^ m). By Lemma 2 for the flexible
dendrite A, for the subcontinua JVn A, CΊ, C2, , Cm, and for the
open sets U2, Vu V2, •••, Vm, there is a homeomorphism # of E* onto
itself such that g{A) c C/2 and g is the identity on E3 - (U?=i K)
Let F m + 1 , •••, F n be disjoint open sets in Vι - g{A) such that C^cF*
(m + 1 ^ i ^ w). By Lemma 2 for the flexible B, for the subcontinua
Nf)B, Cw+i, Cm+2, , Cw, and for the open sets U2, Vm+1, F m + 2 , , Vn,
there is a homeomorphism ft of E* onto itself such that h(B) c Ϊ72

and ft is the identity on E* - (U?=m+1Fi) ί f / equals hog, then
/(A U £) c C72 and / is the identity on E3 - £/;.

As a result of Cases 1 and 2, we conclude that A U B is flexible.

REMARK. The union of two tame arcs in Ez whose intersection
is a point need not be a tame dendrite [1, Example 1.4]. Hence
there are flexible dendrites in Ez which are not tame.

LEMMA 3. If N is a tree, then the vertexes of N can be numbered
vu , v^ such that for each i (1 <̂  i ^ n — 1), there is a unique integer
s(i) satisfying i < s(i) ^ % and there is a 1-simplex between v4 and

Proof. The proof is by induction on the number of vertexes of
JV. Any numbering works if JV has two vertexes. Assume the lemma
is true if JV has n - 1 (n^S) vertexes, and consider the case when
JV has n vertexes. Let w be a vertex of JV which is the face of
exactly one 1-simplex s in JV. We form a new tree JV' by removing
w and the interior of s from JV. By the induction hypothesis we can
number the vertexes uly , un_λ of N' such that for each i (1 ^ i ^
n - 2), there is a unique integer s(i) satisfying i < s(i) ^ n - 1 and
there is a 1-simplex between u{ and us{i). Now in JV let vt = w and
let ^ = ^_ ! (2 ^ i g n). This numbering satisfies the condition.
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LEMMA 4. Let A be a dendrite and let ε be a positive real
number. Then A is the finite union of continua Al9 ,An of
diameter less then ε such that for each i (1 ̂  i rg n — 1), there is a
unique integer s(i) satisfying i < s(i) ̂  n and Ai lΊ A8ii) Φ 0 .

Proof. The dendrite A can be written as the finite union of
continua Al9 , An of diameter less than ε such that each pair inter-
sects in at most a point and each triplet has empty intersection [3,
p. 302]. It follows that the nerve N of {AJ?=1 is a tree. Using
Lemma 3 we see that the set {Ai}i=1 can be renumbered such that for
each i (1 ̂  i ^ n — 1), there is a unique integer s(i) satisfying
i<s(i) <̂  n and Ai Π As{i) Φ 0 .

THEOREM 3. If G is an upper semicontinuous decomposition of
Ez whose only nondegenerate elements are countably many flexible
dendrites, then E3/G is homeomorphic to E\

Proof. Using the technique of Bing as in [2, Theorem 3], it
suffices to show that if G is an upper semicontinuous decomposition
of E3, ε is a positive real number, A is an element of G which is
a flexible dendrite, and U is an open set containing A, then there is
a homeomorphism / of E3 onto itself such that / is the identity on
Ez — U, diam f(A) < ε, and for each element g of G, either diam
f(g) < ε or f(g) c N(g, ε) where N(g, ε) = {x e E3: dist (x, g) < ε}.

By Lemma 4 the dendrite A is the finite union of continua
A(ΐ)l9 , A(ΐ)n of diameter less than ε such that for each i (1 ̂  i fg
n — 1), there is a unique integer s(i) satisfying i < s(ϊ) ̂  w and
,4(1); Π A(ΐ)s{i) Φ 0 . We may assume that n > 1, otherwise / equals
to the identity on E* would be the required homeomorphism. For
each i (1 ̂  i ^ n) let U(l)i be an open set in E3 such that A{l)i c
U{l)i c U, diam [7(1), < ε, and Cl £7(1), n Cl U(ΐ)j = 0 if and only if
A(l)^ Π A(T)j — 0 . Since A is flexible, for the subcontinua A(l)x and
U?=2 -A(l)ί and for the open sets U(T)1 and (J U ?7(1)̂  there is a
homeomorphism /i of Ez onto itself such that f(A) c U?=2 f/(l)» and f
is the identity on E* - U(l\. Once given {Aij)^, {U(j)i}i=j, and /,-
for fixed j (1 ̂  j ^ n — 2), define for each i (j + l^i^n)

{ J + }i \f{A(j)ΌA(j))) if i =

Also for each i (j + 1 ̂  i ^ n), let U(j + 1); be an open set in Ez

such that:
(1) A(j + 1), c U(j + 1), c C7(i),, and
(2) \JgeG{9s-ffs meets Z7(i + l)i}c:\Jΐ=j+1U(j)k, where ^ denotes
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Condition (2) can be satisfied since /, ° ••• °/i(A) which equals
ULi+i A(j + I)* is an element of the upper semicontinuous decomposi-
tion Gj = {fjo o/;(#): # 6 G) and a subset of the open set {Jk=j+1 ϋΌ")*

Using the flexibility of fso . . o/^A) for the subcontinua A(j + l ) i + ι

and U?=j+2 -4.0" + 1)* and the open sets Z70" + l)y+i and U*=y+2 ̂ 0" + 1)<
obtain a homeomorphism fj+ι of -E*3 onto itself such that

and fj+1 is the identity on E8 — Z70" + l)y+i L e t / equal / ^ o . o/1#

We wish to show that / is the required homeomorphism.
It is clear that / is the identity on E3 — U and diam f(A) < ε.

Hence we show that if geG, then diam f(g) < ε or f(g) c N(g, ε).
Since /L is the identity on E3 — U(ϊ)u ft moves no point of E3 more
than diam ί7(l)i < ε. Hence f^g) aN(g9 ε). Suppose now we have
proven for fixed k (2 ^ k <^ n — 1) that diam gk^ < ε or gk_x c iSΓ(#, ε)
where gk^ denotes fk-i° ••• °fi(g) We show that diam gk < ε or
gkaN(g, ε). If ^_ x does not meet U(k)k9 then gfc equals ^ _ ! Thus diam
gk < ε or gk c JV(flr, ε). If r̂fc_1 meets Z7(Jfc)fc, then gk_t c Ui=& ̂  - l)y
by condition (2). We consider two cases.

Case 1. If gk_γ c £/(& — l)k, then since /fc is the identity on E3 —
U(k)k and Ϊ7(&)4 c i7(fc — ΐ)k, we have ^ c U(k — l)k. Thus diam gk < ε.

2. If #&_! meets (\J*=k U(k — l)y) — U(k — l)k, then gk^ meets
the boundary B of £7(& — l)k as a subset of (Ji=fc ^ί& ~~ l)i Let
yeBπ gk-i We wish to show that yeg. For each i (1 <; i ^ & — 1),
since there is only one integer s(i) such that i < s(ϊ) ^ ^ and A(ί)ί Π
A{i)s[i) Φ 0 , either Cl U(i)i Π Cl EΓ(& - l)fc = 0 or

= 0ci C7(ί), n ( .y + i ci u(k -

Hence for each i (1 ^ i ^ Λ — 1), Cl £/(/£); ί l 5 = 0 , and thus /< is the
identity on 5 . Hence /̂ e g. We now show that gk c iV(#, ε) by prov-
ing if xegk-19 then dist (fk(x), g) < ε. If α e ί7(fc — l)fc, then fk(x) e
U(k - 1),. Hence

dist (fk(x), g) ^ dist (fk(x), y) ^ diam (Cl U(k - 1),) < ε .

If x g C7(& — 1)Λ, then /ft(α?) — x, and we must consider the cases when
diam gk^ < ε and when gk^ c N(g, ε) separately. If diam gk^ < ε,
then

dist (fk(x), g) ^ dist (x, y) ^ diam gk^ < ε .

If gk^c:N(g9ε)9 then
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dist (ΛO), g) = dist (x, g) < ε .

Hence we have shown that gk c N(g, ε).
As a result of Cases 1 and 2, we can conclude by Induction that

if g e G, then diam f(g) < ε or f(g) c N(g, ε). Thus / is the required
homeomorphism.

DEFINITION. A continuum K in E3 is cellular if there is a
sequence of 3-cells {CjΓ̂ i in E3 such that K = ΠΓ=i C* and C m c Int d
for ΐ = 1, 2, .

COROLLARY. If K is a flexible dendrite in E3, then K is cellular.

Proof. Let G be an upper semicontinuous decomposition of E3

into continua with only countably many nondegenerate elements. By
Theorem 2 of [4] if E3JG is homeomorphic to E3, then each element
of G is cellular.

REMARK. For an example of a cellular dendrite which is not
flexible consider the cellular arc A of Example 1.2 in [1]. This arc
has only one wild point, an endpoint. To see that this arc is not
flexible, consider another arc B in E3 — A such that A and B are
equivalently embedded in E3 under a space homeomorphism of E3.
Let J be a tame arc in E3 which joins the locally tame endpoint of
A to the locally tame endpoint of B to form an arc K = A U J U B.
If A is flexible, then by Theorem 2 the arc K is flexible. Hence K
is cellular. However, a cellular arc in E3 cannot have isolated wild
points for its endpoints [5, Theorem 10]. Thus A is not flexible.
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