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In this paper, the simple N-groups are classified for which
¢=3 and 2¢r,. This latter condition means that a Sylow
2-subgroup contains a normal elementary abelian subgroup of
order 8 and does not normalize any nonidentity odd order
subgroup.

As in III, the proofs rely heavily on the fact that many sub-
groups of odd order are contained in just one maximal subgroup.
The numbering of the sections is a continuation of III. The biblio-
graphical references are to be found at the end of I. The predecessors
to this paper are: Nonsolvable Finite Groups all of whose Local
Subgroups are solvable, I, II, IIl: Bull A. M. 8., 74 (1968), 383-437;
Pacific J. Math., 33 (1970), 451-536; Pacific J. Math., 39 (1971),
483-534.

13. The case 2¢m,; first reduction.

THEOREM 13.1.

(a) If pem, then &7 (p)S . Z7*(®). (7 (p) is defined in Defini-
tion 2.10, and _Z*(®) is defined in Definition 2.7.)

(b)) If pem, L is a S,-subgroup of & and MM is the unique ele-
ment of 7. () which contains B, then

(i) P&,

(ii) for each G in & — M, S,-subgroups of M N M* are of order
1 or p.

Proof. Theorem 10.7 implies (a); (b)(i) is a consequence of (a)
and a standard transfer theorem; (b)(ii) can be established by imitating
the proof of Theorem 0.25.6.

Lemma 18.1. If X is non identity 2-subgroup of O, then
0, (NX) = 1.

Proof. Set N = N(X) and let T be a S,-subgroup of N. Suppose
by way of contradiction that 0, (RN) = 1. First, suppose [X]| = 2. Let
B be a minimal normal subgroup of i of odd order. Thus, B is a
p-group for some odd prime p. Let © be a maximal 2, p-subgroup
of & which contains TL. Let $,, H, be a Sylow system of $ with
TE Do, PE D5

First, suppose 0,(9) = 1. Let & = 0,(9). By the B x Q-lemma,
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P is faithfully represented on Cy(X). But [, Co(X)] S [B, RIS B, so
B centralizes Cy(%X).

We may assume that 0,(9) = 1. Suppose 0,(9) = 1. By Lemma
6.6, we get 2¢m,, against our basic assumption of this section. So
we may assume that 0,(9) = 1. Since £ is a S,-subgroup of N, Lemma
5.38 (a)(ii) implies that T contains an element U of Z/(2). By Lemma
6.1 (b), U centralizes every element of WU(U; 2). In particular, U
centralizes 0,(9). This is also impossible, since 0,(9) = F(9).

We may assume that [X]| > 2. Let 9 be a subgroup of order 2
in ¥N Z(%). By the first part of the proof, 0,(N) =1, where
N, = N@@). Hence, 0,,(N) is faithfully represented on 0,(N) N C(X), by
the P x QO-lemma. Since

[02'(%)7 Oz(gﬁl) N C(X)] S 02(%1) N 02'(%) =1,
we get 0, (N) = 1.

THEOREM 13.2. Let I be a solvable subgroup of & and let I,
be a S,-subgroup of IN. Then either N(IN,) ZIM or M, contains an
tnvolution I such that C(I) & M.

Proof. Suppose false. Then I, is a S,-subgroup of & and I
contains the centralizer of each of its involutions. By Lemma 5.35,
M has just one class of involutions. By Lemma 5.40, 9% has 2-length
1. Since 2¢rx, we get M, <JM. Thus, M contains exactly 1 S,-
subgroup of ®, and every involution of I, is central. This implies
that I, is a T.1I. set in ®. By a fundamental result of Suzuki [36],
we have ®& = Uyq), Sz(q), Ly(q), for some g = 2" > 2. Since U,(q) is
not an N-group, we get that & satisfies the conclusions of the main
theorem. The proof is complete.

The next lemma begins to pinpoint some of the difficulties of this
section.

LEMMA 13.2. Let < be a S,-subgroup of . Suppose e _27*(®).
Let M be the unique element of 7.7 (8) which contains T. Then
there is a 2, 3-subgroup © of & such that

(a) SEZI.

(b) NI contains a S;-subgroup O, of 9.

(c) 049 =1.

(d) 9, contains an involution I such that

(i) Cy(I) is a S;-subgroup of Cy(I).
(i1) Cg,(I) contains an element of Z (2).
(iii)) C(I) &L M.
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(e) If £,=MSM, and ., s not a S;-subgroup of WM, then
M, e AZ*(®).

Proof. Let % be the set of all 1 in % (2) with WS M. Let
% be the set of all involutions I of N such that

() Cyp(I) contains an element of Z~ .

(B CI) L.

We first show that % % ¢@. Suppose false. Choose U,e Z (T), and
set T, = C;(1N,). Since U, 7, it follows that C(I)<= I for all e 3.
On the other hand, since Te _Z*(®), we have NE)= M, so by
Theorem 13.2, there is an involution J, of I such that C(J,) & .
Let MM, be a Sg-subgrourL of Cy(J,). Choose M in I such that M ST,
and set J = J¥. Thus, imi= I is a S,-subgroup of Cy(J) and C(J) &L
M. Hence, J¢ZT, and M, contains no element of %, since J¢& _%.
By Lemma 5.38 (a)(ii), C(J) contains an element of % (2). Hence,
M, is not a S,-subgroup of C(J). Let M, be a 2-subgroup of C(J)
with |, M,| = 2. Choose Xe M, — M, so that X ¢ M. Hence, C(X)
contains no element of . On ths other hand, D(Eﬁz) =%, so D(EINTEZ) =1.
Since M, N T, is of index 2 in W, it follows that C(X) N D, = <.
Hence, 5)722 is a four-group. This implies that £ is of maximal class,
against 2ew,. We conclude that 4 = @&.

Let . be the set of all 2-subgroups &, of IM with the following
properties:

(1) Z,¢ . Z2%O).

(2) There is at least one involution T of _%4 such that T, con-
tains a S,-subgroup of Cy(T).

We argue that 9 # @. Namely, choose Ie._%, and let &, be a
S,-subgroup of Cy(I). Since C(I)Z IR, we get that L, e 7.

Let £, be an element of .7~ of maximal order. Since Te _Z*(®),
it follows that 9, is not a S,-subgroup of M. By maximality of 9,,
(e) holds. Let & ={8|9,&Cec ¥ ¥ (®),SLM}. By definition
g, we have & #= . If &e.9”, the maximality of §, guarantees
that 9, is a S,-subgroup of &. Let 7 = {p|p is an odd prime, .&*
contains a 2, p-group}. Thus, 7 # @. Choose pex and let § be a
2, p-subgroup of & which is contained in ¢, and is maximal with
this property. Thus, $ is a maximal 2, p-subgroup of & which is
not a S, ,-subgroup of ©.

By definition of .77, there is T in .4 such that Cy,(T) is a S;-
subgroup of Cy(T). By definition of _%, we get that §, contains an
element U of Z/. Thus, (d) holds.

By Lemma 6.6, either 0,(9) = 1, or 0,(9) = 1. By Lemma 6.1 (b),
1 centralizes 0,(9), s0 0,(9) = 1. We thus get 0,(9) =1, so if p = 3,
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we are done. Suppose p = 5. Then by [43], we have

9 = C(Z(£))N;(J(D,)) -

Since | Ny(R) | > |9D.]| for & = Z($,) and for & = J(£,), the maximality
of ©, forces $ = M, against our construction. The proof is complete.

For each odd prime p, let e(p) be the largest integer » such that
U(E; 2) is non trivial for some elementary subgroup & of & of order
p". Let

e = ¢(G) = max {e(p)} ,

where p ranges over all odd primes. Since & is simple, there is a
2-subgroup A of & such that Ay®) is not a 2-group, by Theorem
14.4.7 of [21]. Hence, ¢ = 1.

Hypothesis 13.1. ¢ = 3.
LEMMA 13.8 through 13.38 are proved under Hypothesis 13.1.

We use the following notation: 7, denotes an odd prime such that
for some elementary subgroup R, of & of order »}, U(R,; 2) is non
trivial; ¥, is a maximal element of U(NR,; 2).

LEmMmA 13.3. 7 (1) & Z*(G).

Proof. If r,em, we may apply Theorem 13.1. Thus, we may
assume that 7, ¢ 7,. Since R, is elementary of order i, we conclude
that ren,. If r,=5, we may apply Lemma 10.6. Thus, we may
assume that r, = 3.

By Lemma 13.1, R, acts faithfully on O,(N(Z,)). Thus, 0,(N(ZT,))
containg a non cyclic abelian group of order 8. Since R, is elementary
of order 3%, we get 2~ 3. If the center of a S,-subgroup of & is
non cyclic, then @ = E,(8), by Theorem 8.1. If the center of a S,-
subgroup of & is cyclic, then & = S(8), by Theorem 9.1. Since & is
an N-group, both of these possibilities are excluded. The proof is
complete.

We now set MM = MR,). Let ¢ ={p|pen,Ur, DM contains a
S,-subgroup of &}. Thus, €0, and if pex, then peo if and only
if M contains an element of .o~ (p). Choose p in ¢ and let P be a
S,-subgroup of M permutable with the S,-subgroup T of M.

LEMMmA 13.4. O, (BT) = 1.

Proof. If ¥ is a S,-subgroup of &, we are done, since 2¢ z,.
We may assume that £ is not a S,-subgroup of ®&.
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Since Pe _7*(®), PT is a maximal 2, p-subgroup of &. Suppose
0,(PIT) = 1, 0,(PIT) = 1. Then Lemma 6.6 (iii) yields a contradiction.
Thus, proceeding by way of contradiction, we may assume that
0,(PIT) = 1, 0,(PI) = 1. Since 0,(PY) = 1, it follows from Lemma 6.1
that T contains no element of % (2). We will show that this is
false. Since R, e _Z*(®), it follows that N(T,) S M, and that N(Z)=M
for every non identity characteristic subgroup £, of €,. Since M con-
tains no element of Zr (2), it follows that ¥, is elementary.

Since N, is elementary of order #}, we can choose a subgroup R,
of N, of order # such that T, N CR,)) == 1. Let I be an involution in
T, N C(R,). By Lemma 5.38 (a)(ii), C(I) contains an element of 2~ (2).
Since N, S C(I) and since N, .o (r), it follows from Lemma 13.2
that C(I)S M. This contradiction completes the proof.

LeEMmmA 13.5.

(a) If &, is a S,-subgroup of & which contains T, then T con-
tains every element of Zz (&,).

(b) O,(M) = 1.

(c¢) O0,(M) =1.

Proof. Let T* = 0,(PT). Since N(T*) & M, it follows that Z(G,) =
T. Since 0,(PT) = 1, it follows that Z(S,) =<T*. Hence, N(T*) con-
tains every element of 7 (&,), proving (a). Lemma 6.1 together with
(a) yield (b).

Since © is an N-group, Me _~7.&” (®), and 0,(IN) = 1, it follows
that I = N(O,(N)). Thus, Lemma 13.1 implies that (¢) holds.

In Lemmas 13.6 through 13.38, we use the following notation: <
is a S,-subgroup of M, L = Q,(R,(M)), B* = V(cely (B); ). Also, ¢
has its previous meaning. We also introduce the set .# of all involu-
tions I of M such that C,(I)e _#Z*(®). This set plays an important
role in much of the following discussion.

By Lemma 5.9 (iii), ¥ is 2-reducible in IX.

LeMMA 13.6.
(a) If |B] > 2, then C(B) =M for every hyperplane B, of V.
(b) Omne of the following holds:

(1) [B]=2.

(iiy If B, is a subgroup of index 2 in B and I is an tnvolu-
tion of M such that Cy(I) = By, then [V, I[1 = {J) is of order 2, and
Je 7.

(e) If |B| > 2, then B contains a mon cyclic subgroup X such
that & 7.

Proof. Let G be an elementary subgroup of IN of order p°, p<a.
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Assume that || > 2. Since B <] M, there is a subgroup €, of & of
order p* such that C(&) NV = % is non cyclic. This proves (c), since
G e #*(®). Let B, be of index 2 in B. Then BN %=1, and
C(B,) = C(B, N %), proving (a).

In proving (b), we may assume that |B| > 2. Let B play the
role of & in Lemma 5.21. We conclude that Cy([8B, I]) contains an
element of .o (¢q) for some geo. This yields (b).

LEMMmA 13.7. B S Z(B*).

Proof. Suppose false. Thus, || > 2. Choose G in & such that
X =BST, ¥LC(EB), and define d by 2¢ = [X: N C(BV)|, so that d = 1.
Let I = M/C(V), and let £ = XC(BV)/C(B) = ¥/X N C(B). Since B is 2-
reducible in 9, Lemma 5.34 implies that M contains a subgroup
A=A x +o» X Ay, where U, is of odd prime order p;, admits X, and
such that X is faithfully represented on L.

Let B, = [B, %], £, = £ n C,), and let %, be the inverse image in
X of £,, Thus, |%:%|=|%:%,|=2 1<:=d.

By construction, we see that 9, is faithfully represented on %,
and that B; admits AX. Let Bf = ¥, N C(F,). By Lemma 3.7 of [20],
U, is faithfully represented on B}, so in particular, ¥ does not cen-
tralize Bf. Choose V; in B} — Bf N C(X). By Lemma 13.6(a) applied
to M°, we get C(X,) S M. Hence, V;€ M’ By Lemma 13.6(b) applied
to M%, we get C([%X, Vi]) = Cype([%, Vi) € 2Z*(®). Choose W, in [%X, V ]
Then C(W,) < M. Since W;€B and BV is abelian, we get V< MC.
Hence, [B, ¥] =%, since ¥ <{ M In particular, [B;, £,] is centralized
by %, so [B;, ;] is centralized by ;. As 2; has no fixed points on
Bi, we conclude that [L,, ;] = 1. Since B, admits 2, we conclude
that (|7 + ©) = A’ centralizes B;, and in particular centralizes ;.
Now 2t = &/C(B) for a suitable subgroup & of I, so ¥ centralizes
W,. Since C(W;) < I’ we conclude that [3, X] = [, ¥]=X. Thus,
[8, ]S C(B). Hence, A’ is centralized by X. By construction, we
conclude that d = 1, that is, |X: X N C(B)| = 2.

Since B M? and [V, X] = 1, we conclude by symmetry that
[B:BNCE)Y =2. Choose Vin B—CENB, X in - CB)NZX
Thus, [V, X] is an involution and is a generator for [B, X] = [V, %].
We may apply Lemma 13.6 (b) twice to conclude that It = MM Thus,
L = X = BY which is absurd. The proof is complete.

Lemma 13.8.

(a) M= C(BV).Ny(T*).

(b) One of the following holds:
(i) For each V in B Cy(V) e _#Z%O), that 1s TFFE_~.
(il) Ng(B*) e _2Z2*O0).
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(e) % is a S;-subgroup of ©.

Proof. By Lemma 138.7, B* = C(B). Since B* is weakly closed
in TN CE), (a) holds.

Let B be a S,-subgroup of M, peo. Suppose PN CEB) is non
cyclie. Since PN C(B) < B, it follows that PN C(B) contains an ele-
ment of .o (p). Thus, in this case, (b)(i) holds. Suppose LT N C(BV)
is cyelic. In this case, the argument of Theorem 0.24.9 shows that
N, (T*) contains an element of .o~ (p), so that (b) (ii) holds.

Let ®, be a S,-subgroup of & which contains £. Since 0,.(IM) = 1,
it follows that 2,(Z(&,)) =B, by Lemma 5.40. If (b)(i) holds, then
we may choose V in 2,(Z(®,)) and conclude that T = &,. If (b)(ii)
holds, then N(B*)S M, so that T = @, since B* is weakly closed in
%. The proof is complete.

LemMmA 13.9. N(Z) < M.

Proof. Choose N in N(%). First, suppose (b)(i) of Lemma 13.8
holds. Choose Zin Q(Z(X))NY. Then Z¥=Z ¢ Z(T). Since 2,(Z(T))ST,
we conclude that Z,€B. Since (b)(i) holds, Cu(Z) = Cy(Z) e _Z*(S),
C(Z) = Cy(Z)e Z*(®). But C(Z)= CZ)", so M =M Nei.
Suppose (b)(ii) holds. Then N(T*)<& M. Since N normalizes B*, the
proof is complete.

LEmMMA 13.10. Suppose U is a four-subgroup of M, AN CEB) =1
and CEH NV con{ains a subgroup B with |B:B| = 4. Then for each
element V of B — X8, there is an element A in W such that C([V, A]) = k.

Proof. For each subset & of M, let & = SC(BV)/C(V). Thus,
9 = Y. By Lemma 5.34, we may choose a subgroup B = B, x B, of
M such that B; is of prime order p,;, B; admits A, 7 = 0, 1, and such
that A is faithfully represented on B. Let 2; be the subgroup of
9 such that A; = C(B;) N A. Thus, || = 2,7 = 0,1, and A = A, x A

Let ¥, =[98, B;]; thus, B; has no fixed points on L, and the
dihedral group B,Y; is faithfully represented on %, 4,5 = 0,1, 7 = 4.
Thus, |B;| = 2%, where d; is an integer. Also, [C(Q;) N B;| = 2%,
Suppose d; = 2. Since A centralizes B, it follows that d, = 2, and
that C) NY; = BN B;. Since B; N CEL) admits B,Y;, and since
B N B, does not admit B, it follows that B; N C(L,) properly contains
B N B,. The only possibility is that 9, centralizes B;,. But since B
is of index 4 in B, we have B = BB, so ¥, = C(BV), against the hy-
pothesis that AN C(B) = 1. We conclude that d; = 1.

Since |B;]| = 4, it follows that B = B, x B, x %, where ¥ = Co(B).
Furthermore, since ¥ is of index 4 in B, it follows that 8 = B, x
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B, x X, where B, = BN B, is of order 2. Let A, = (4;>. Then
BNCA) =% x B, x B, is of index 2 in B, and so by Lemma 5.21,
we conclude that C,([A4;, B]) contains an element of .o (g;) for some
¢; in 0. Suppose now that VeB — B. Then V = V,V,X, where
V,e®;, Xe%. Since Ve¢B, there is an index ¢ such that V,¢%..
Hence, [4;, V] = [4;, V], where 7 # 4, so that C([4;, V.)& M, as
required.

LEMMA 13.11. Omne of the following holds:
(a) [B]=4.
(b) CEB)=S M for every subgroup B, of B[ of index 4.

Proof. We may assume that |B| = 8. Let & be an elementary
subgroup of M of order p* peo, and let B, be a subgroup of index
4 in B such that C(B,) £ M. Hence, B,LN A2 = O,

Let B =2, x «++ X B;, where each B; is an irreducible E-group.
Let G, = &N C(B,). Since @, is non cyclic, it follows that Vi . ~.
Hence, B, NGB, =1, 1 <1< f. Since |BV:B,| =4, it follows that
1B;| =4, 1=i=f.

Clearly, & does not centralize 8. Suppose [L;| = 2 for some 1.
Choose j so that |B;]| > 2. Then (8,8, .7, against {LL,N A = O,
We conclude that LN C(E) = 1, and that € is of order 3% Let U =
(BB,) N B,. Thus, |A| =4, since |B:B,] = 4. Since ANYB; =1, i =
1, 2, it follows that || = 4. Let &* be a complement to & NG, in
@, Thus, |E*| =3 and &* is faithfully represented on B,%,. By
Lemma 5.31, &* has a subgroup &} of order 8 which normalizes 2.
Thus, <€, NG, &< N). Since <€, NG, ) e o7 (8) it follows that
NEA) = M. Since C(B,) S CQN S N =M, we have the desired con-
tradiction. The proof is complete.

LEMMA 13.12. Suppose € is an elementary subgroup of Ag(B)
of order 8. Then B does not contain any subgroup X of index 2 such
that [X, €] is of order 2.

Proof. In accordance with Lemma 5.34, choose B< A4(V) such
that B =B, X B, X B,, where B, is of prime order p;, B; admits €,
and CB)NE=1. Let €, =€ NCEB,), sothat |€:€;|=2,71=1,2,3.

Let X be a subgroup of B of index 2 such that [%,€] =9 is of
order 2. Let €, be any subgroup of € of order 2. ThenB =2, X --- X L,
where each %B; is an indecomposable €-group. Thus, |B;| 4,1
i<s Suppose |B;|=4,1=1,2,38. Let 8=, x B, x B, and let
B, =x%NRB. Thus, |V =2 Since [BNCE,)| =2, it follows that
[[B,, €] = 2%, against [T, €] =Y. We conclude that there are at most
2 values of ¢ such that |B;|=4,1<7=<s.
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On the other hand, € contains an element C which inverts 9.
Since |B| = p,p.p, and since B is faithfully represented on LB, it fol-
lows that |[®B, B]| = 2°. Thus, the preceding argument with €, = {C>
yields the desired contradiction.

LEMMA 13.18. One of the following holds:

(a) B =4 '

(b)) If Ge® and |B*: BN M| < 2, then BES I,

(¢) |B] =2 and Ay(B) contains a subgroup of index at most
2 which is 1somorphic to X; X X,

Proof. Suppose neither (a) nor (b) holds. Choose G in & such
that B9 BN M| <2 and BEL M. Set X = BN M, so that ¥ is of
index 2 in B¢ Let %X, = ¥ N C(B), and let Y be a complement to %,
in X. Suppose |Y| < 2. Then %, is of index at most 4 in B°. Since
|B| = 8, it follows from Lemma 13.11 that C(%X,) S IR°. In particular,
B M By Lemma 18.7 applied to IM% we get [B, B?] = 1. This
yields B<S C(B) < N(B) = M, against our choice of G. We conclude
that (P = 2* = 4.

Since B is 2-reducible in M, P acts faithfully on O,.(IM/C(V)). By
Lemma 5.34, we can find abelian subgroup 2 of F(M/C(V)) such that
=9 % -+ x A, A is of prime order p,, U, admits 9,1 <1 =y,
and such that 9 acts faithfully on 2. Let ¥; = Cy(;), so that
19: 9] = 2. Let B, = [B, A, Bf =B, n CD))-

Suppose B} contains a four-subgroup B such that 3N C®) = 1.
We will derive a contradiction from this assumption.

Since 9,X, centralizes B} and since 9%, is of index 4 in B it
follows that B =M% by Lemma 13.10 applied to I In particular,
&M In Lemma 13.10, let the pair (8, I°) play the role of (A, IM).
Now 3NCEY) =1, since 3NCH) =1 and PSB%.  Also, 3 cen-
tralizes 9,X,, a subgroup of B of index 4. Choose Y in ¥ — 9%,
Then by Lemma 13.10, we can find Z in 3 such that C([Y, Z]) < IM°.
But [Y, Z]€ B, so we get LS M. Thus, Lemma 13.7 implies that
[B, BC] =1, against our choice of G. We conclude that 8 is not available.

Let Y; be an element of 9 — 9,. Since BF N CY) = B N C(Y,),
it follows that B} N C(Y,) is of index 2 in Bf. Since Y, inverts U,
we can find an element A; of M such that A, = (4;,C(B)>, and such
that Y; inverts A;. Since A; has no fixed points on B, it follows
that |87 | = 4.

We next argue that B} < B,. By construction, BF = LB;, so suppose
by way of contradiction that LF = B,. Then Lemma 5.20 implies that
C(X)= M for all XeBi In particular, C([BF, Y;]) =M. But BF cen-
tralizes %,9);, so Bf < M¥. This yields [B}, Y,] = B4, so we get B= M,
against our choice of G.
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We next show that |B;| = 2‘ Since B} cB,, it follows that
[%B,] = 2. Suppose by way of contradiction that |B;| > 2.

Set €, =B} NCHR) =3, NCY) =2B,N CX), so that |€,| =2. Also,
set D, = B; N N(B?, so that D, 2LB¥. Since [D,;, B = B¢, it follows
that [D, 2] =B, NV =B, N C(X) =€, and so [D;, X] = €;. By Lemma
13.12 applied to IM°, it follows that |D;: €;| < 4.

By Lemma 13.6(c), B¢ contains a four-group 3 such that C(Z) = Im¢
for all Z in 3% Hence, X contains an element X with C(X)< IN°.
Hence, C(X) N B, =D;, so that (C(X)N B,)BF has order at most 8.
First, suppose X € X,9);. Since |B,;]| > 2¢, it follows that |C(X) N B;| = 8.
Since C(X)N B; admits A;, we get |C(X) N B;| = 2:. We have just
seen that this is not the case. Suppose X ¢ %,9);. Since X does not
centralize B}, and since BF=D;, it follows that |C(X) N B;| < 4.
This is impossible, since |®B;| > 2% Both possibilities yield contradic-
tion, so we conclude that [L;,|=2% 1 <7 <y. Notice that among
other things, we get that 2 is an elementary of order 3%, since ¥; is
faithfully represented on the four-group L.

Suppose by way of contradiction that y = 2. Since we have
already shown that y = 2, we get that y = 3.

Let & = 0,,(M). Since Y is is faithfully represented on U, a
3-group, it follows that YN & = 1. Thus, 9 is faithfully represented
on O, ,(M)/R. By Lemma 5.34, O, (M) contains an elementary sub-
group of order 3?, and so 3eo.

Now o = &/C(B) for some subgroup & of M. Since €, = B, N B°
is of order 2 and since C(€;) £ M it follows that C(V) has cyclic S;-
subgroups. Thus, a S,-subgroup ¥ of & has a cyclic normal subgroup
2, N C(B) such that the factor group &,/%% N C(B) = A is elementary
of order 8. It follows that each non cyclic subgroup of £ of order
9 is contained in . (3).

Since CE,)Z M, it follows that |Cy(€,)]| <£8,1 <7 =<y. Since
[B;] = 2%, we have also |2: Cy(€,)| < 3% We conclude that |Cy(B,)| = 8,
[ Cu(B)| = 3% y = 3.

Since 9 acts faithfully on 2, the only subgroups of 2% of order
3 which admit ¥ are 2, %, &;. Thus, we may assume that notation
is chosen so that 2, = Cy(B)). Thus, A, does not centralize B,. Sup-
pose B, N CAL) = 1. Then B, N CQL) and [B,, Ay] are both non trivial
and both admit €. Thus, LB, N CH) is non cyclic, since B, is the
direct product of LT, N C@QL) and [B,, U]. This is impossible, since
1€1=21=Z7=y. Hence, LN CQL) = 1. Since |B,| = 2, we con-
clude that B, = LB,. By symmetry, we have B, = B, = LB,. This is
absurd, since 2, centralizes B,. We conclude that y = 2.

We next show that 3e€o. Suppose false. Let $ be a S,-subgroup
of M. Since $ has no elementary subgroup of order 33 it follows
from Lemma 0.8.5 that $ has a normal 3-complement. Let ©, be a
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S,-subgroup of §. Since A <J<] M/C(BV), we have AZ H,C(V)/C(V).
Let peo, and let §, be a S,-subgroup of $ permutable with ..
Thus, 9, < 9:9,.

By construction, A< F(P/C(B)). Thus, $,C(B)/C(B) centralizes
A. In particular, $, normalizes B,. Hence, £, N C(BV,) contains an
element of & (p). This is impossible, since C(€,) £ M. Hence, 3 € 0.

Let 83 =3 N CH). Since 30, it follows that C(Z)= M for all
Z in B%. Since C(X,) 2, it follows that C(%X,) £ M. Hence, X, N 3° =1.
This implies that |3| < 8, since |V": %,| = 8.

We next show that LB, = B,. Suppose false. Since [B,| = |B,| = 24,
and since B, admits I,, it follows that B, N C(¥,) = 1. Since B, N C(Y) =
€, is of order 2, it follows that %, centralizes 8B,. Hence, B, N Y, = 1.

Since B, N Y, = 1, it follows that TLLYB, = B, x B, = [B, A]. Thus,
L =B, x B, x 3. Let D= 0, (FEM/C(V))). We will show that D
centralizes B,,7 = 1,2. Since |L,| = 2% and since D centralizes %I,
we may assume by way of contradiction that |D: DN CEB)| = 5.
Since /D N C(VB,) admits P, there is an element Y in ¢ which cen-
tralizes ®/D N C(B,). Thus, D normalizes B, N C(Y). Since Y acts
faithfully on %, it follows that |8, N C(Y)| < 2%, so that D centralizes
B, N C(Y). Hence, © centralizes B;, 7 =1,2. Since F(N/C(V)) is
faithfully represented on B, it follows that O, (F(IR/C(L))) is faithfully
represented on 3. Hence, O, (F(I/C(B))) =1 or 7, since |[Z|=<8. In
particular, O, (F(/C(L))) is cyclic. Since 3ea,3 ) |MM: |, This
implies that a S,-subgroup of IM/C(L) centralizes O, (F(IM/C(L))).

Let © = 0,(M/C(B)) 2, and let H, = Ny (). Thus, 9, admits 2.
Hence, % N C(9,) admits . Suppose AN C(H,) < A. Since A, A, are
the only subgroups of 2 of order 3 which admit ¥, we may assume
notation is chosen so that 9 N C(9H,) = .. Hence, §, normalizes T,.
Since 9, centralizes ¥, and since C(B) N D, <] Do, it follows that
[, D& C). But [, 9] = A, since U = CD)N A This is
absurd, since U, does not centralize B,. Hence, , centralizes A. Sup-
pose 9, containg an elementary subgroup ¥* of order 3% We may
assume that A< U* and that Y* admits ¥). Let 2, be a subgroup
of A* of order 3 which admits §) and is a complement to U in A*.
If 9, is not centralized by 9, then by replacing ¥ by another subgroup
of order 9 which contains 2, and on which 9 acts faithfully, we see
that we get [%, U] = 2'. Thus, 2, centralizes either B, or B,. But
in this case, A* N C(B,) or A* N C(B,) is of order 9. This is impossible,
since 3eo0. Hence, 9 centralizes ;. Since |€;| =2,7=1,2, it fol-
lows that 9, centralizes €, and €,. Thus, Cy(€,) or C,(€,) containg
an element of .o~ (8). This is impossible, since C(€,) & M. It follows
that 9, contains no elementary subgroup of order 3% Since A<= Z(9,),
it follows that U = Q2.(9,) char $,. Hence, H, = , which implies that
A I M/CEB). Also, since |B;| = 2% i =1, 2, it follows that U; is not
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contained in any cyclic subgroup of § of order 9. This in turn implies
that % = .

Let B* be a S,-subgroup of M/C(B). As we have already shown,
B* centralizes O, (F(M/C(BV))). Now U, o, are the only subgroups 11
of % of order 3 which satisfy |[8, I1}| = 2*. Hence, B* centralizes
. Thus, B* centralizes F(IM/C(B)), so B* = A.

Since U is a S;-subgroup of M/C(L), and since 3eo, it follows
that C(B) contains a non trivial cyclic S;-subgroup. This implies that
the inverse image of %, in I contains a non cyclic S,-subgroup, so
contains an element of .o~ (8). This violates C(€,) £ M. We conclude
that B, = LB,.

Suppose U <] M, NESDB, and (U] <8 We will show that U = 1.
Suppose false. Since || < 8, C,() contains an element of &7 (3),
so W& . 7.

Case 1. || = 2.

Since C(X) = M°, we get US ME. Since C) = M, we get U S M.
Hence, U< X. Since C(U%) = M we get U ELX,. Thus, we may
assume that 1S Y. Thus, either 1% = ), or ¢ = Y,. Suppose nota-
tion has been chosen so that ¢ = 9),. Then 1’ does not centralize
B = B, N CY). But B < MY since C(X,Y,) < M¢ This contradiction
shows that this case does not occur.

Case 2. 1| = 4.

Since % normalizes 1, ¥ contains a subgroup % of index 2 such
that U N C(F) is non cyclic. Since C&)< M?, we get NN CE&) < M°.
Since 11N C(%) is non cyclic, we can choose an involution U in U N C(&)
such that C(U) N U° is non cyclic. Hence, ¥ N 119 is non cyclic. Since
X, N U =1, we may assume that 9 =X N1U° Then since L < IMF,
we get €, = [P, BF] = 1° This gives C(€,) & M?, which forces T < IM°.
This contradiction shows that this case does not occur, and completes
a proof that 11 = 1.

Suppose B, is a subgroup of F(IN/C(B)) of order 3 which admits
9 and is not centralized by 9. Let 9, = Cy(B,) so that |Y,| = 2.
Since 9, is faithfully represented on O,(M/C(B)), 9, is faithfully repre-
sented on C(B,) N O,(IM/C(BV)). Thus, B, is contained in a subgroup
B of F(M/C(B)) of order 9 on which 9 acts faithfully. Replacing %
by B, we see that [[B,, B]| = 2.

Set & = O,(D/C(V)). Suppose B, is a subgroup of ' N Z(H) of
order 3 which admits 9. If [B,, 9] = 1, then T = [T, B] x B N C(B,)
and $ normalizes both [, B,] and B N C(WB,). Since |[T, By]| = 24, &’
centralizes [B, B,]. This is absurd, since B, does not contralize [T, B].
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Suppose [B,, Y] = 1. Since B, = Z(9), B, centralizes B, so B, normalizes
L,. Hence, B, centralizes B, N C®) = €,, and so B, centralizes B
and Bf. Since (Bf, BVF> = 8, B, centralizes L,. Since |[B, By]| =8,
it follows that &’ centralizes [®8,B,]. This is also a contradiction.
Thus, B, does not exist. This implies that § is abelian. Since |B| < 27,
it follows that either ¥ = § or 9 is elementary of order 3°.

Now % = 8/C(B) for some subgroup & of M. We argue that &
contains an element of .o~ (3). If § = 2, then a S,-subgroup of € is
normalized by some S;-subgroup of MM, so we are done. Suppose A C 9,
so that © is elementary of order 3°. If 3 t |C(L)|, we are done.
We may assume that a S,-subgroup of C(®) is a non identity cyclic
group. Thus, a S;,-subgroup 2 of £ has a cyclic normal subgroup
£, N CE) with /¢ N C(B) elementary of order 3°. It follows that
every non cyclic subgroup of &, of order 9 is in % (3). To obtain this
conclusion, we have used the fact that 9 acts faithfully on .

We next show that 8 = 1. Suppose false. Let |3] =2°,1 <2 < 3.
Since M contains no non identity normal subgroup 11 of order =< 8,
it follows that z = 2, |B| = 2°.

Since A centralizes 3, we see that {(Z)< M for all Z in 3.
Since |3| = 4 and since 9 normalizes 3, we can find a subgroup % of
index 2 in ¥ which centralizes 8. Since C(F)<= M’ we get 3= ME.
Since (B}, B> = M¢, it follows that BN M is of order 2°. By all
the previous argument with (8 N M M in the role of (X, I), we
conclude that BN M N C(B®) is of index 4 in TL N M°. Now €, = G,
since B, = B,. Hence, |{BF, Bi): €| = 4. Hence,

BN M= B NI N CEBY), B, B .

Choose Z in B°. Then Z = CV with Ce®8B N C(B°), Ve B} V;. Hence,
[%, Z] = [X, V] =9Q,. Since X normalizes 3, we get [Z,X]S 8, N3 = 1.
Hence, 3 centralizes X. Since 3 N C(V¥) = 1, 8 is faithfully represented
on 0, (INF/C(LB). This is impossible, since 3 is a four-group which
centralizes a hyperplane X of B°. We conclude that 8 = 1.

Since 3 =1, we have 8 = B, of order 2‘. Since Aut (B) has no
element of order 8, it follows that a S,-subgroup MM, of M/C(Y) is of
exponent 2 or 4. Since MM, is isomorphic to a subgroup of Aut (),
it follows that I, is either a four-group or a dihedral group of order
8. In any case, IM/C(V) has a subgroup of index at most 2 which
is isomorphic to 3; x 3,. The proof is complete.

LEMMA 13.14. If (B| = 2!, then for each V in B, B 0,(C(V)).

Proof. Suppose false, and V in B* is chosen so that 8 Z 0,(C(V)).
In particular, we have C(V)Z M. Let & be an elementary subgroup
of M of order p* peo. Let A =C®) NE. Since C(V)ZM, A is
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cyclic. Thus, || = 8, since |B| = 2. Since C(B) has cyclic S,-sub-
groups, it follows that if P is a S,-subgroup of M which contains &,
then ¢ = 2,(P). Hence, every non cyclic 3-subgroup of ® is in _Z*(®).
This implies that if & is a solvable subgroup of & which contains
9% and also contains non cyclic S,-subgroups, then < M. Namely,
since CR)S M, we get that £ N P has non cyclic S,-subgroups,
whence < .

Let &, be a complement to ¥ in . Thus, with a suitable choice
of notation, &, = ¢, x §, B = B, x B,, and B = B, x B, = 4, x A,.
There are exactly 3 orbits of ¥ under the action of @, namely,
B, BE, and BViBVE. Clearly, Ve BEBE. Furthermore, BEBE is a conjugacy
class of M, since C(V)Z M. This implies that each element of BiBE
is centralized by a S,-subgroup of I%. Let § be a S,;-subgroup of
C,(V) which contains 2, and let §* be a S;;-subgroup of C(V) con-
taining $. Since C(A) = M and since S;-subgroups of C(V) are cyclic,
it follows that = $*. Since B L 0,(C(V)), there are a prime p =5
and a S,-subgroup €, of € = C(V) such that €, is permutable with
H and such that BZL 0,(9€,). Let ., $;, be Sylow subgroups of
which are permutable with €,. We assume without loss of generality
that A< 9,. Since 9, is eyclic, we have €, <] H:€,. Let D be a sub-
group of $, which is permutable with §, and with £, and is minimal
subject to B Z0,(HD). Let F = 0,(9D). Since BLF, and since
0,(99) =1, it follows that 8 acts non trivially on O,,(9D)/F.
Minimality of © forces D£0,,(9%). Hence, D < HD.

Choose Ie ¥ — F. Since |B| =2, we have BN F| = 2% Since
p =5, Ve Z(€), and B <] BFY, it follows that p = 5 and that [FD, I]ND
has order 5, while |8 NF| =2 Thus, I, F/Fe Z(9./F), and so
I, BIFE Z(H/F), since 9, centralizes B. Thus, [FD, I] admits 9,
and so |®D| = 5. This implies that £, centralizes ®, so DS C) & M.
This is false, since by construction, D Z M. The proof is complete.

LeEmMA 138.15. Efither (a) or (b) of Lemma 13.13 holds.

Proof. Suppose false. Then by (c), |B]| =2 Choose G in ®
such that £ = M N B® is of order 8. Let X, = £ N C(B). Thus, (%] = 2.
Also, CX)NY = € is of order 2. Thus, € is in the center of a S,-
subgroup of M. Since B N M is also of order 8, it follows that €
is in the center of a S,-subgroup of M By Lemma 13.14, we have
B = 0,(C(C)), B¢ < 0,(C(€)). Since C(C) contains a S,-subgroup of MM,
we have 0,(C(€)) = M. Hence, V<=M, against [V X| = 2.

LEMMA 13.16. Omne of the following holds:
(a) [B]=4.
(b) NEB*)cM.
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(c) M = Ny(B*) - Nup(B,), where B, = Z(W,)) and W, 1s the sub-
group of T generated by its subgroups U with the property that for
some G in &, 0 is a subgroup of BE of indew at most 2.

Proof. Suppose neither (a) nor (b) holds. Since (b) does not hold,
it follows that (b)(i) of Lemma 13.8 holds. Suppose that (c) fails,
too. By Lemma 0.7.7, it follows that for some odd prime ¢, M con-
tains a ¢-group Q with the properties that

(i) L is permutable with %,

(i) ZQ # Nyo(BF) N (o),

(iii) the 2-length of TLX is at most 2.

We assume that notation is chosen so that & is of minimal order
subject to (i), (ii), (iii). Let § = 0,(TQ). Thus, HQ < TQ, and HQ/
HD(Q) is a chief factor of TQ.

Since T, <] L, it follows that N, (W,) = TY,, where Q, = QN
N(T,). Also, Nyo(B*) = TQ,, where Q, = Q N N(B*). Since $Q/HD{Q)
is a chief factor of TL, it follows that T, Q, = D). This is so
since $Q,D(Q) <]TLQ, i1 =0, 1.

Let B¢ = 9) be a conjugate of B with Y=, YL H. Thus, P acts
non trivially on $Q/9D(). Let OF be a subgroup of Q which is
minimal subject to

(i) 9 normalizes HQ*,

(i) [927F, I £ D).

Since ¥ is an elementary 2-group, Q* is cyclic. Let € = $Q*Y, and
let & = 0,(¥). Thus, [$9:%| =2. Let Y be an element of ¥ — &,.
Thus, Y inverts some S,-subgroup of 2, so we assume without loss
of generality that Y inverts Q*. Let 9, =% NY so that ¥, is a
hyperplane of B9 = ¢). Let & = 9= %. Since 8, ST, and since &,
is generated by conjugates of 9, it follows that {L S W,.. Let € =
C..(%), so that ¥ normalizes €. Since € centralizes ¥),, it follows
that €= M. Thus, € is a subgroup of INY which centralizes the
hyperplane 9, of B¢ and so |€: € N CEB% | < 2. Thus, Y centralizes
a subgroup of € of index 2. Hence, Q* centralizes a subgroup of €
of index at most 4. Now T, &€, since & S W,. Since V¥ Z D(Q),
it follows that ©* does not centralize ¥,. Hence, [€, Q*] = €* is a
four-group, ¢ = 3, and D(Q*) centralizes €. Let €F = [€*, Y] so that
€] =2, CFr=B% Let @ be a generator for Q*. Then €F¢ < B,
and €< C*. By Lemma 13.8 (b)(i), it follows that 9,<& M. By
Lemma 13.15,we get LY< M. Hence, [BY, B] =1, by Lemma 13.7
applied to B%. In particular, [Y, Y9 = 1. This is not the case,
since [Y, Y? = @*. The proof is complete.

LEMMA 13.17. One of the following holds:
(a) [B]l=4.
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(b) There is V in Bf such that C(V)Z IN.
(e¢) If Ge® and BN M # 1 then BLES M.

Proof. Suppose (a) and (b) fail. Choose G in & such that B¢ n
M~1. Let X = BN M. We must show that ¥ = B¢ Choose X in X*.
Since C(X) < M, it follows that BT N M = 1. Choose V in (B N M%),
Since |[BY| = 8, it follows that LN C(V) is not cyclic. C(V)= M,
it follows that X is non cyclic. Let %X, X, be distinct subgroups of
X of order 2, and let X, = (X,>,7=1,2. Let X, = X X,. For each
1=1,2,3, let L, =BNCX,). Thus, B;S M Suppose by way of
contradiction that X == B¢, Let X, = X N C(B). Suppose X, = 1. Then
C(X,) = M, so B M. By Lemma 13.7, we get [B, B = 1, so BSIM,
against X C B¢ Hence, X, = 1. Since [%;, T;,] =B N B9, it follows that
[%;,8,] =1,1 <14,5 <3. This is clearly impossible since X,%, is faith-
fully represented on O, (I/C(B)). The proof is complete.

LEMMA 13.18. Omne of the following holds:
(a) [B]=4.
(b) Te 7Z*©).

Proof. Suppose false. Let © be a solvable subgroup of & which
contains ¥ and is minimal subject to $Z M. Thus, § = TQ where
L is a g-group for some odd prime ¢g. Let 9, = 0,(9). Minimality
of Q yields H0 <] 9, and also implies that D{Q) = QN M, while
H:2/9.D(Q) is a chief factor of 9.

Suppose B* L H,. Let VY = be a conjugate of L such that
DEZ, DL H.. Let QO be a subgroup of O which is minimal subject to

(i) 9 normalizes £,Q%,

(i)  [9.2%, DI £ HDQ).

Since 9 is an elementary 2-group, Q* is cyclic. Let 9, = 9 N 0,(Y),
where & = ,*%9. Thus, 9), is a hyperplane of ¥. Let @ be a generator
for Q*. Then P S 0,() =T =M, so by Lemma 13.15, we get YP° < M.
Thus, (9, 9 =M. Since <Y, P> contains a S,-subgroup of &, we
have = M. This violates D(Q) = QN M. We conclude that B* = §,.
Hence, B* < 9.

Since LM, and since B* <|H, we conclude that N(LB*)ZL M.
By Lemma 18.8, we get C(V)S MM for all V in B. Thus, (¢) of
Lemma 138.16 holds. We conclude that N(Z3,) contains an element of
7 (p) for some p in g, so N(B,) & M. Since T, char T,, we conclude
that 2, Z 9,. By definition of W,, there is an element G in & such
that B¢ N W, is of index at most 2 in BY, and such that BN W, £ ..
Let 9§ =L NW,. Since B* = §,, it follows that [B%: Y| = 2.

Let Q* be a subgroup of Q which is minimal subject to

(i) 9 normalizes Q*9,,
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(i) [£:2%, DI £ DD(Q).
Thus, Q% is cyclic. Let ©, = 0.(9.2*Y). Thus, [9: 9N .| =2 and
H =T, Since |B| =8, we have YN H, = 1. Let @ be a generator
for £*. Then PN HY)? =+ 1, and PN HI)SH. TS M. Thus, by
Lemma 13.17, we get B IM. In particular, <, P> = IN. Since
DY = (90, D, DO, we get QL¥*S M, against QN M = D). The
proof is complete.

We can at last obtain some important information about 8.

LEmma 13.19. |8 < 4.

Proof. Suppose |B|=8. Then by Lemma 13.18, we get N{B*)= .
Let 77 be the set of 2-subgroups of 9% which contain 2.

We will show that 7 & _#Z*(®). Suppose false, and 2 is an ele-
ment of ¥ — _#Z*(®) of maximal order. Let § be a solvable sub-
group of & of minimal order subject to

(i) A=,

(i) HELM.

By maximality of |%|, A is a S,-subgroup of . By minimality of
9, O = AL where Q is a ¢-group for some odd prime gq.

Let e zr (), NS U; U exists since BT, Q(Z(F)) SV and | V| = 4.
Then 1l centralizes 0,(9), so 0,(9) S N(1). Since TS NU), we get
0,(9) =M, by Lemma 13.18. By minimality of §, we get

0,5(9) = 0,9) X 0(9) .

Let WW* = V(cely (B); A). If W* S 0,(9H), then maximality of U
forces 2 to be a S,-subgroup of &. This violates Lemma 183.18.
Hence, 28* £ 0,(9).

Let B¢ = 9 be a conjugate of L such that Y= A, PZ 0,(9). By
minimality of §, we have 0,(9)X <] 9D, QN M = D). Let QF be a
subgroup of & which is minimal subject to

(i) 9 normalizes 0,()L*,

(i) [0.D)2%, DI £ 0,(9)D{Q).

Thus, Q* is cyclic and 9, = P N O,(L) is of index 2 in ¥, where L, =
0,(H)Q*Y). Let @ be a generator for O*. Then P S ¥, so by Lemma
13.15, we get 9= M. Since L, = (0,(9), D, P9, we get Q*S= M,
against QN M = D(Q). This contradiction shows that 7" < _Z*(®).

We next show that if LN I = 1, then Ge IN. Namely, if Ve B,
then C(V)S M, since BLe 7°. Hence, (¢) of Lemma 13.17 holds. Since
BN IM =1, we have B M. Since B e _#*(G), we have M = IN°,
Ge M.

Let I be an involution of M. We will show that C(I) = IN. Let
2% be a S,-subgroup of Cy(I), and let 2* be a S,-subgroup of C(I)
which contains 9. Suppose A < A*. Choose A€ W* N NQR) — A. Then



528 JOHN G. THOMPSON

1==3BNASIMN M, so M = N4, Ae M. Thus, A = A*., By Lemma
13.1, 0,(C(I)) = 1. Let ¥, = 0,(C(I)). It suffices to show that NQ)S
. Now A, NV # 1, since Z(,) = Cy(A,). Hence, if Ne N(,), then
W, NBVS MY, so that M = MY, Ne M. This completes a proof that
C(I) & M for every involution I of M. Now Lemma 13.9 and Theorem
13.2 are in conflict. The proof is complete.

LEMMA 13.20. Suppose Ne 2.7 (B) and the following hold:
(a) 02/(%) =1,
(b) NNM contains a S,-subgroup of N.
(c) 9= I
Then N does not contain an elementary subgroup of order p* for any
odd prime p.

Proof. Suppose false. Let p be an odd prime such that R con-
tains an elementary subgroup % of order p®. Hence, it = M(F). Let
Ly, = 2(R,N)). By Lemma 13.8 (¢) applied to 0N, N contains a S,-
subgroup of &, so by (b), N M contains a S,~subgroup T* of G.
By Lemma 13.19 applied to M, we get |{B,| < 4. By Lemma 5.7,
BNB,202,(Z(T*). Choose Z in BN BV Since Cp(Z) contains an
element of .o (q) for all ¢ in o, we get C(Z)S M. Since Cy(Z) is
non cyclic, we also get Cy(Z)e _~*(®). Hence, M = N, against (c).
The proof is complete.

Let 7 be the set of all odd primes ge z(M) — o such that Cu(Q) <
#*(®) for all elements @ of M of order q.

LEmMMA 13.21. Suppose ge 7 and Q 18 a S,-subgroup of M. Then
one of the following holds:

(a) Q s cyclic, gem, and N(Q) = M.

(b) qemn and Q,e Z*(8) for every mon cyclic g-subgroup T
of &.

Proof. Suppose Q is cyclic. Choose @ in & of order g. Then
C(Q)S M, since Cyu(Q)e .Z*(S). Hence, L is a S,-subgroup of ©.
Choose Ne N(X). Then <C(Q), N) is solvable, so <C(), N> S I,
and (a) holds.

Suppose Q is non cyclic. Let Q* be a S,-subgroup of & which
contains Q. Choose @ in Q of order ¢, Z in Z(*) of order g. Since
C(Q) =M, we have Ze M. Since C(Z)< M, we have Q = Q*. Since
q ¢ o, it follows that ge m,. Let £ be any non eyclic g-subgroup of
®. Then Q< M¢ for some G in ®. Let Q be a S,-subgroup of &
which contains £. Then Q< M¢, as above. Let R be a subgroup
of O of type (¢, ¢). Then C(R)< M? for all R in R?, so every element
of UR; ¢') is contained in ME. Let QS He .7 (®). Thus 0,.(9) =
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e, and § N INY contains a S,-subgroup H, of  with @gséq. Let
B, = $,N0,,,(9), so that § = 0,.(9) - Ny(H,). Choose Ne N,(,), and
let H be an element of §, of order ¢. Then C(H)< M¢, C(H™) < M7,
and C(H)e _#*(®). Hence, M = M, Ne M*, and so Qe 7*G).
The proof is complete.

LeMmA 13.22. Suppose g€ w(IN) — 0, q s an odd prime, and for
some p 11 0, an S,-subgroup P of I does not centralize every element
of Up(B; q). Then qem,NT.

Proof. Let Q be a S,-subgroup of I permutable with B, and
let Q, = 0,($L). Thus, L, is a S,-subgroup of 0,(M) and P does
not centralize Q,, as O, is a maximal element of Y, (B; ¢). Since Pe
A*®), Q is a S-subgroup of N(Q,). Since q¢ o, FE . 47,(Q) = @.
Since P IV, so also P <= N(L,)', since M = O0,.(M) - N(Q,). By Lemma
10.6, we have

(1) 202 &,

(ii) L is a S,-subgroup of &,

(ill) g€ m.

Let 8 = 2,()/D(2,(Q)), so that T is of order ¢°. Since each element
of B induces a linear transformation of W of determinant 1, it fol-
lows that N C(Q(Q)) is non eyclic. Since P N CR,(Q)) <]V, we get
BN CREQY)Ye Z*(@). Choose Q< 2,(Q). Then Cu(Q) contains an
element of .o (p), so Cyu(Q) € _Z*{G). This gives g€ 7 and completes
the proof.

LeMMma 13.23. Suppose peo Ut and & is a 2, p-subgroup of ©.
If €N W contains a non cyclic p-group, then L= M.

Proof. 1f pec, then by Lemma 13.21 (b), we get & N M e £ *(®)
and we are done. Suppose pea.

We assume without loss of generality that € is a maximal 2, p-
subgroup of S.

By Lemma 6.6 (iii), either O0,(8) =1 or 0,¢) =1. Let 2, be a
S,-subgroup of € which contains a S,-subgroup 2, of &N M. By
hypothesis, &, is non cyclic. Since pe o, it follows that Nu(&,) con-
tains an element of .o~ (p). Hence, Nu(@,)e_~*@®). This implies
that &, = 2,. We may assume that 2, contains no element of .97 (p).
Thus, ¥, contains a cyclic subgroup of index p, so that the p-length
of € is 1.

If 0,(8) =1, then &, <]% As ¥ is a maximal 2, p-subgroup of
S, we get that &, is a S,-subgroup of &, against peco. Hence,
0,(%) # 1, so that 0,3) = 1.

Let & = 0,(8), B = 2,(¥,). Since B¢ .7 (p), there is an element
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B, of B such that C(B,) does not contain an elementary subgroup of
order p°. Thus, if P is a S,-subgroup of C(B,) which contains B,
then B = 2(P). By Lemma 5.25, if &e¢ ¥ (G), BESS, then
every element of Y(B; p’) is in 0, (S). Let P* be a S,-subgroup of ©
which contains . Then P = (B,> x T, where %, is cyclic and B, =2
2(Z($*)). It follows that N,.(L) permutes transitively the subgroups
of B of order p distinet from Q2,(Z(3*)}. Thus, if XeB — Q2,(Z(V*)),
then L is a S,-subgroup of C(X).

Since B is faithfully represented on &, 2,(Z(¢*)) does not centralize
K. Since & = (Cy(B)|BeB*, it follows that for some X in B —
Q(Z(P*)), Co(X) & C(2,(Z(P¥))). Thus, Cy(X) = 0,(S), where S=C(X).
Hence, 1 is not the only element of Y(PB;2). Let &, be a maximal
element of K(B; 2) which contains a S,-subgroup of 0,.(8), and let &,
be a maximal element of (B;2) which contains £,. Since &, is a
S,-subgroup of 0, (N(®)) and since N, () SO0, (N(R)), we get that
K = K. Hence, P normalizes some maximal element &£, of Y(B; 2)
which is not centralized by Q (Z(BF))-

Let B = {X!Xe% Cy(X) # 1},?13 = {X[Xe®¥, C,(X) =+ 1}. Thus
dLQ (Z(BH)), Bs Z 2{Z(%*)). Since N,.(PB) permutes transitively the
subgroups of B of order p distinct from Q,(Z(P*)), we can choose P
in Nu.(P) such that BN 530 # @. By Lemma 6.3, & and &, are con-
jugate by an element of C(B). Hence, N(®) contains an S,-subgroup
of C(®B). Thus, we may choose 4 in C(B) such that &, 2P“. Replacing
B* by P**, we may assume that €, 2. If €, 5%, then €, is a S,-
subgroup of N(¥), so contains an element of .o~ (p). This is not the
case, so &, = .

Suppose Cy(2,(Z(P*))) == 1. Since N(P) S N(Q,(Z(P*))), it follows
from Lemma 6.3 that P is not a S,-subgroup of N(&). Since & is a
S,,,-subgroup of N(), this is impossible. Hence, Co(2,(Z($*))) = 1.
Hence, & = (C,(B*) [B* is of order p, B* B, B* = Q,(Z(P*))>. Since
B acts faithfully on &, there are B, B, B, = B, of order p in B such
that Co(3B;) # 1,7 =1,2. We can then choose P in N,(3) such that
B = B,. Hence, Co(B,) = 1, Cer(B,) = 1. Hence, & = KT“ for some
C in C(P). Hence, P is not a S,-subgroup of N(&). This contradic-
tion completes the proof.

For each p in g, let Sﬁlp = {P|{Pe W, P is of order p, Cy(P) con-
tains an elementary subgroup of order p°}, and for each p in 7, let
M, = {P|Pe M, P is of order p}.

LeMmmA 13.24. Suppese peo U, and X, is an elementary sub-
group of M of order 8. Then (X, Pyyec 2Z*(®) for all PyeIN,.

Proof. Let & be a S, ,-subgroup of (%, P,y, and suppose by way
of contradiction that (%, P) e _Z*(®). Since L= (%, Py, it follows
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that ¢ _#Z*(®). In addition, ¥ contains an elementary subgroup %
of order 8 and an element P of M,.

Let #"={N|Ne L Fr (@), L& NREL M}, sothat 4"+ @. Among
all elements of 47, let ! be chosen so that [N N M|, is maximal,
and with this restriction, []| is minimal.

Case 1. I is a 2, p-group.

Let ., be a S,-subgroup of M NN and let N, N, be a Sylow
system of ! with N, SN, Pe N,. If N, is non eyclic, so is N, N C(P),
so by Lemma 13.23, we get NS M. This is not the case, so N, is
cyclic. In particular, S,-subgroups of (%, P, are cyclic. Since P,
is of order p, S,~subgroups of (¥X,, P,> are of order p. Hence, N, = (P),
by minimality of |%|.

Let & = 0,(N). Thus, N = & N,(W,), since [N, = p. Also, 5,/&
is faithfully represented on £,/&, so /& is cyclic. Since 9, L IN
and N,) S M, it follows that RZ M. Let K = KN M K. Since
¥ is non cyclic, and since 28 2%, it follows that & = 1. Let &
be a S, ,-subgroup of N(R,) which contains N,(K;,). Since Ny (&) <Z M,
we have &Z M. By Lemma 13.23, S,-subgroups of & are cyclic.
Let &, be a S, ,-subgroup of N(®, which contains 5?2%1, and also con-
tains a S, ,-subgroup of Ny(&,). Since N, =S N S,, there is A in
N(®) N NR,) such that & = S . Since A e NI, = D, we have S, ZIMN.
By maximality of |3t N M|, it follows that S, NP, = [N M.
Hence, %, is a S.-subgroup of &, N M. Hence, & is a maximal ele-
ment of Yu(¥,; 2). In particular, £ 20,(M). Let & be any sub-
group of & with 0,(M) S K, = K. Since C(0,(IN)) = Z(0,(IN)), it follows
that Z(8) S Z(0,(M)).

Let 3, = 0,.(P). Since K, is a maximal element of Y,((W,; 2},
it follows that M, N K, is a S,-subgroup of MW,. Let B, = Q,(R(IM,)),
so that B, is 2-reducible in I,. Let I, = C,(B,). We will show
that M, & M,. Suppose false. Let K, =K N M, so that K, =20,(M)
and &, is a S,-subgroup of M,. By Lemma 5.10, B[L,L,x2 2,(Z(8)). In
particular, B,22/(Z(®)). Since M, <M, and M, LM, it follows
that p||MM,|. Hence, p|M, N C(2(Z(R)))|. Let R be a S, ,-subgroup
of N(2.(Z(&))) which contains 9. Thus, RZ I, so by Lemma 13.23,
S,-subgroups of N are cyclic. Let P, be a subgroup of M, N C(2(Z(R])))
of order p, so that B, & N(2,(Z(R))). We can choose B in N(Q2,(Z(R))),
so that N, = P&. Hence, N, =M N M. Since N(N,) =M, we get
that one of the following holds:

(i) S,-subgroups of I N IM? are non cyclic.

(ii) S,-subgroups of M are cyclic.

If () holds, Lemma 13.23 implies that IN = M, so that Be WM. If
(ii) holds, then per. But then Lemma 13.21 implies that Be It.
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Hence, Be M, so that N, = M,. Since S,-subgroups of I, are cyclic,
it follows that ¢, is contained in a S,-subgroup T* of M which is
permutable with %,. Since &, is 2 maximal element of W, (N,; 2), it
follows that &, 2 0,(T*N,). Hence, & = O0,(T*MN,), since O,(T*N,) is a
maximal element of U,., (%,; 2). Hence, TN, = N(R,). Since S< N(&),
we can choose C in N(&,) N N(N,) such that 8°22T*. Since Ce N(R,)=
M, we get that & contains a S,-subgroup of M. This is not the
case since S Z M. We conclude that IM, = IM,. Hence, O,(I mod I,) =
M, since M, = 0,,(M) and O,(IM mod M) is a normal p’-subgroup of
M. Since B, is 2-reducible in M, this implies that O0,(IM mod M,) =
M, so that B, is 2-reducible in M. Hence, B,=B. On the other
hand, B, 202.,(Z(R)), since & N M, is a S,-subgroup of IM,. Since
B . 7, we get & M. This contradiction shows that this case does
not arise.

Case 2. I is not a 2, p-group.

Let 5t be a S, ,-subgroup of 9% which contains 8. Let %, N, be
a Sylow system for it with Pe R,. Choose ge(N), g # 2, p, and let
Q be a S,-subgroup of M which is permutable with :, and with %,
such that QZ M. Such a choice of ¢ is possible since NZL M. By
minimality of [R|, we have R = N, Q.

Suppose Ge® and = M Then Pe M. Since Pe Eﬁ?p, it fol-
lows that I = M°, against NZ M. We conclude that N is contained
in no conjugate of M.

We next show that R, = (P)>. This is clear if RN, is cyclic, by
minimality of |R|. Suppose by way of contradiction that 9, is non
cyclic. By Lemma 13.21, we get p¢7, so by construction, we have
peo. Since N, ¢ .7 (p), it follows that N, contains a cyclic subgroup
of index p. Hence, the p-length of N is 1. By minimality of |%|,
we get N, = 2(N,), since Pe 2,(N,). Since N, ¢ .7 (p), it follows that
RN, contains an element P, such that Cu(P,) contains no elementary
subgroup of order p®. Hence, N, = (P> X (P,), since Pe Em,,. This
implies that N,(N,) permutes transitively the subgroups of i, of order
p distinet from <{P). Hence, (P> <] Ny(M,). But N (N, contains
an element of .o (p), and so N(M,) & M. Since N = 0,.(N) - N,(N,),
it follows that R.(P>Q is a group, so by minimality of |N|, we get
N = N(PYQ. This contradiction shows that N, = {(P).

Since N(N,) & M, and since N Z M, it follows that N, 4 N. Hence,
0,M) =1, since [N|, = »p.

Suppose by way of contradiction that 0,() = 1. Since O,(N) =1,
it follows that F(M) = 0,MN). Thus, X is faithfully represented on
0,(N), so by Lemma 5.11, & . 4#;(0,N)) #+ @. Hence, ge 7, U 7,
Also, 2 ~ g, since X is a non cyclic abelian group of order 8. Hence,
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(@) S 7 *(®), either by virtue of g€z, or by virtue of ¢ = 5, ger,.
Here we are once again invoking Theorems 8.1 and 9.1 to conclude
that if ¢ =3, then gem,. Let IM* = M(M). Thus, IM* = M. By
maximality of |3 NN}, it follows that I, is a S,-subgroup of IM*.
Let M} be a S,-subgroup of IM* permutable with N,. By Lemma
6.6, either O(M;I,) =1 or O,(LIM7) = 1. Suppose O,(M;N,) = 1.
Since X & M,, it follows that for some X in ¥, O,(M;N,) N C(X) con-
tains an element of &7 (¢). Hence, C(X)= M*. By Lemma 13.1,
0,(C(X)) =1. This is impossible since O, (M}I,) N C(X) < 0..(C(X)).
Hence, 0.(M;MN,) = 1. Hence, N{O,(M;I)) < D*, so that PM* contains
an element U* of %/(2). Hence, O,(M*) = 1, by Lemma 6.1. Hence,
M* = N(0,(M*)), since M*e 7 .& (®). By Lemma 13.1, we get
0, (M*) =1. Hence, Uyp-(; 2) is trivial. This violates 0,(N) e
Uu(Jz; 2'). We conclude that 0,(M) == 1. By maximality of |9t N M|,
together with the fact that Case 1 does not hold, 9 is a S,-subgroup
of N(0,(M)). This implies that 0,(N) = 1, by Lemma 13.1. By Lemma
13.20, we get & A45(Q) = T.

Let * be a S,-subgroup of M which contains N,. By maximality
of |N,], it follows that Z(T*) SN, and so Z(T*) S Z(0,N)). Hence,
Q does not centralize Z(0,(91)), since Q(Z(T*) ST 7.

By minimality of ||, 9%t N I is a maximal subgroup of . Since
IN,| = p, and N(R,) S M, it follows that O,N)Q <{N. Hence, M NN =
NN,D(Q), and 0,Q/0,(I)D(Q) is a chief factor of . Since
L& AN5(Q) = @, (0.3.4) implies that either Q is abelian or is a non
abelian group of order ¢° and exponent ¢. Since [Q, N,] = 1, we get
g = 1 (mod p), so ¢ = 5.

Let 2 be a minimal normal 2-subgroup of 9t which is not cen-
tralized by Q; L exists since 1 = [R,(MN), Q] <IN, Let N, = Cy(W).
Thus, R, S ILN,DQ), and so N, S ILD(Q), since O = [Q, N,]. Since
¢ =5, Theorem 1 of [43] implies that 94,0 = C(Z(I)). Ny (JEL)).
Since C(Z(M,)) = M, and since M N Q = D(Q), it follows that O normal-
izes J(I,), so that J,) S 0, (N) = 0,(N). It follows that J(I,) <] N, so
by maximality of |9t N I}, we conclude that N, is a S,-subgroup of
M. Clearly, T N Z¥L,) = 1. Since W N Z(I,) &, and since D)=,
it follows that D(Q) centralizes TN Z(%,). Since W is a minimal
normal subgroup of N, we get [D(Q), W] = 1. Let N = /N, and for
any subset 9 of N, let 9 be the image of 9 in N. Thus, Q is a
normal abelian subgroup of % and [Q, N,] = 1. Let W, = WN Z(Ny).
Since N, is a S,-subgroup of M, we have W, =B, by Lemma 5.10.
Thus, || < 4, by Lemma 13.19. By Lemma 5.46, we get |I5,| = 4,
whence L8, = 8. But T <], against Lemma 5.46. This contradic-
tion completes the proof of this lemma.

Let &, be the set of all the normal elementary 2-subgroups of
M of order = 8. Thus, &, is partially ordered by inclusion. Let
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% be the set of all minimal elements of ...

Hypothesis 13.2.

(a) Hypothesis 13.1 is satisfied.

(b) Fi+ @.

Let & be an element of &#~. Choose & such that /& is a chief
factor of M. Let M, = Cyu(®), € = Cp(F), D = 0,(M, mod €). This
notation is preserved in Lemmas 13.25 through 13.38.

LEMMmA 13.25.
(a) |€G]=4.
(b) &=1.

Proof. Since Fe &, (a) holds. If & =1, then ¥ is 2-reducible
in M, against Lemma 13.19 and Lemma 5.9 (i).

LemMmaA 13.26. .
(a) If I is an tmvolution of M and Cu(I) NI, = & for some
peoUrt, then I[e 7.
(b) &= 7.
(¢) One of the following holds:
(i) Fs~2.
(ii)  is generated by subgroups A of order 16 such that W< 7.

Proof. Since 2¢ 7, it follows that Cy(I) contains an elementary
subgroup of order 8. Thus, (a) is a consequence of Lemma 13.24.
Since |&] < 4, (b) is a consequence of (a). If |¥| =8, then (a) yields
(c)(i), so suppose |F| = 16.

Choose peo and let B be an elementary subgroup of I of order
p. Let F=F X B X -++ X F,, where each F; is an irreducible B-
group, 1 <1=<s, and F = Cy(B). Let B, = Cu(F), Bi; = B; N B;.
Thus, B;; # 1. By Lemma 13.24, it follows that B FF)ic.”. If
s =<1, then B is not faithful on &, and so F*& .7, so that (c)(ii)
follows. If s =2, then |FE:F,;| =16 for 1 <1 < j < s. Since FHd:ds
is generated by its subgroups of order 16, (c)(ii) holds and the proof
is complete.

LEMMA 13.27. Suppose T, 1s a subgroup of F of index 2 and U
is an elementary 2-subgroup of M such that

(a) ANCE) =1.

(b) C;QR) = Foe
Then [:AND] <L 2.

Proof. First, suppose that U does not centralize &. Choose
Ec@ — CE). By (b), we get F =% X (&>. By (a), no element of
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A* centralizes . Thus, U is faithfully represented as automorphisms
of &, a four-group. Hence, || < 2, and we are done. We may as-
sume that €= %, so that A = ..

Let %, be a complement for AND in U, and let || = 2°. We
must show that ¢ < 1. Since U, N D = 1, no element of U, stabilizes
the chain : §>E 21, Since 3, centralizes &, it follows that no
element of % centralizes W = F/E. Let W, = Fy/E, so that Ty, is a
hyperplane of 2, and W, = Cx(A4) for all A in . Since Ai,/Cy (W)
has no normal 2-subgroup and is solvable, we conclude that |%,| < 2.

LEMMA 13.28. Omne of the following holds:
(a) s
(b) Cyu(®) is a (o UT)-group.

Proof. Suppose (b) does not hold. If Cu(®) is not a z’'-group,
then (a) holds by Lemma 138.24, together with the fact that for each
pin 7, fDA%p contains every element of I8 of order p. Suppose pe€ g,
and p}|Cx(®) |- Let B be a S,-subgroup of C(F), and let P* be a
S,-subgroup of M which contains L. Then 1P = LH N CEH) < B~
Since P <] PB*, P contains an element of Sﬁﬁ,, so (a) holds by Lemma
13.24. The proof is complete.

The next lemma is the heart of the matter.

LEMMA 13.29. Suppose J is an inwvelution of I — Cyu(F). Let
T = C5(J), 27 = |F: ol
(a) If LR, then [F,J]N A = 0.
{b) Suppose € = B..
(i) If f£2, then [§,JfS. 7.
Gy If f=8 and G, is a subgroup of T of index 2 which
contains To, then [Ty, J] N A #= @.

Proof. By Lemma 13.28, we may assume that C(3) is a (o U 7)'-
group, since the conclusions of this lemma are obvious if F <. 7.

If L%, then we get [F, J]2]CE, J]>1. Thus, (a) holds, by
Lemma 18.26(b). For the remainder of the proof, we assume that

(13.1) =R, Je,.

For each subset & of M, let & = 6D/D. Let & be the set of
all K in M, such that [K, J]eD, so that 2D, and & = C5 (J).

Since F/€ is a chief factor of M which is centralized by 9, we
may view F/C as a module for #R,. Hence, & normalizes [F, J]C.

Suppose X is a subgroup of & such that for each p in 6 U7,
every element of ¥ of order p is in Eﬁép and such that |X], .+ 1,3, 7.
Since & normalizes [F, JIE, so does X. Since
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[, JIC€/C = [3, JUIS, JI N E,

it follows that |[3F, J]E: €] = 2%, where a < 3. Hence, for some p in
o U7, some element of ¥ N I, centralizes [T, J]E, and we are done.
We may assume that no such subgroups ¥ exist.

Case 1. I, contains a subgroup R such that

(a) ROD, | N:D|=9p",peocUr.

(B) J normalizes R.

(v) Every element of R of order p is in Eﬁkp.

(6) One of the following holds:

(1) p=3,r =3, R/D is elementary.

(ii) p=3,r=4.

(i) p=17r=3.

(iv) p =17, R contains an element R of order 7 which is in-
verted by J and such that for some prime ¢ in ¢ — {7}, Cy (R) con-
tains an element of .o (q).

(v) p=+3,7, p >5.

Let ft = (R, J) and let &, ®,, &,, X be the images in 4g () of R, R,
D, J respectively. If (0)(i) or (0)(il) holds, then we may apply Lemma
5.48 or Lemma 5.49 with § in the role of the F,&-module M. Trans-
lating the conclusions of these lemmas to the present situation, and
then using (v) and Lemma 13.24 yields this lemma. Suppose (0) (iii)
holds. If J inverts a subgroup of R/€ of order 7%, then there is a sub-
group B of R/C(F) N R of order 7> which is inverted by J, by Lemma
5.36. In this case, [, B] = & is a free F,¢J)-module, and since f < 3,
we get |F| = 20, Also, P is represented faithfully on §. Thus, <J, B>
is isomorphic to a subgroup of GL(2,6). This is impossible since
GL(6, 2) has S,-subgroups of order 7* and also has elements of order
7 which are not real.

Let Ry/D = Cyn(J). Thus, R, normalizes [F, J]E. Since R, cen-
tralizes @ and since f <3, we get |R: R, N C(F, JI€/E)| =1 or 7.
If |R;: D] > 7, then R, contains an element of order 7 which centralizes
[, J] and we are done. On the other hand, R, DD, since J does not
invert R/®. Hence, |R,;: D| = 7. Since J inverts no subgroup of R/D
of order 7%, and since |R:D| = 7, it follows that R/D is a non abelian
group of order 7 and exponent 7, and that J inverts the Frattini
quotient group of M/D. This is impossible, since f < 8.

Suppose (9)(iv) holds. Let § =[®, R]. Thus, |§| =2°, f = 3.
Let 9 be an element of .o~ (q) which centralizes ®. Then § admits
A, and since ¢ # 2, 7, it follows that 9 centralizes . But 213, J1,
so we are done.

Suppose (0){v) holds. Again, let RNy/D = Cy(J). Then R, nor-
malizes [F, J]€, so a S,-subgroup of R, centralizes [, J]C, since
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HE, J]€:E| <2 and p=3,7. If R, 0D, we are done, so suppose J
inverts R/D. Since p" > 5, we get f = 4. Thus, if any of the above
possibilities occur, we are done.

Let £/ be the Fitting subgroup of I,/®. Thus, &/D is of odd
order. Let 2, be a S, .-subgroups of £, so that € =~ 2. Let p be
the largest prime in o, and let  be a S,-subgroup of M. Since
B P, P centralizes every cyclic factor of M.

Case 2. p = 5.

Since neither (8)(i) nor (d)(ii) hold, either the S,-subgroup of Z,
contains no elementary subgroup of order 3° or 3¢o. If 3¢o, then
B centralizes every chief 3-factor of I, since I has no elementary
subgroup of order 3°. If 3€¢, then we still get that L centralizes
the S,-subgroup of %, since |%,[; < 3% and ¥, contains no elementary
subgroup of order 3°.

Suppose ¢ is a prime such that ¥ does not centralize the S,-
subgroup of ¥. We will show that ¢ = p. If ¢ # p, we get q +# 3,
and by Lemma 13.22, we have geo U 7. Since p is the largest prime
in ¢, and p = 5, it follows that one of (6)(iii}, (iv), (v) is satisfied for
a suitable subgroup R/D of L. We may assume that P centralizes
the S,-subgroup of 2. Hence, P centralizes 0,.(M,/D), from which
we conclude that £/® contains an elementary subgroup of order p°.
It follows that one of (9)(iii), (iv), (v) holds for a suitable p-subgroup
of L.

Case 3. p = 3.

In this case, we get o = {3}. If {5 does not centralize the S,-
subgroup of X, then one of (5)(iv), (v) holds and we are done. We
may assume that P centralizes the S,-subgroup of Z.

Let 3, = BN L, so that P, is the S;-subgroup of L. First, suppose
that B, contains an element P of order 3 which is not in .. Choose
Nez(P) and let P, = Cy (W). Thus, P, = Pi(P). Since (0)(i), (ii)
fail, it follows that || < 3° and B, contains no elementary subgroup
of order 3°. Hence, Il = Q,(P,). Suppose in addition that B, containg
a non cyclic characteristic abelian subgroup. In this case, we get U
char §,, so that 1 is a factor of M. But then [U, B,] is a chief factor
of I so that PD centralizes every chief 3-factor of N which is between
D and 8. This forces BN M, = B, and alsc gives PD < M. Since
J normalizes B, (6)(i) is satisfied for a suitable subgroup R of PD.
We may assume that every characteristic abelian subgroup of T3, is
cyclic, and that ©P ¢ M. This forces 2,(PB,) to be non abelian of
order 3% Since P does not centralize 2,(PR,)/D(2.(L,)), owing to PD < Ik,
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we get that all elements of B, of order 3 are in ..

It remains now to consider the case where every element of %,
of order 3 is in M,. As (6)(i), (6)(dii) do not hold, P, is of order at
most 3* and if |B,| = 3%, P, is not an elementary. Since DP ¢ M, it
follows that 3, is non abelian of order 3° and P = Z, § Z..

We next show that & = ,. Suppose false. Let » be the largest
prime divisor of ||, so that » > 5. Let R be a S,-subgroup of .
Then R centralizes the S,-subgroup of €, and so R &8 By definition
of 7, together with ¢ = {3}, we get rez. Suppose » % 7. Then
|R| = 5, since otherwise (8)(v) holds. If J inverts R, then I has an
element R of order 5 inverted by J, and [F, R] = § is of order 2.
But §C <] M, against the presence of P, together with the fact that
X/C is a chief factor of M. If J centralizes R, then R normalizes
[T, JI€, so that a S,-subgroup of M centralizes [F, J]. This is im-
possible, since 93% contains every element of I of order 5.

Suppose » = 7. If J inverts some element of RD of order 7, we
are done, since (9)(iv) holds. We may assume that J centralizes R.
Hence, RD normalizes [F, J]E, so we may assume that |R| = 7. Hence,
Q is the direct product of P, and R. Now F/E is a chief factor of
MM, so P, and R have no non trivial fixed points on F/E. Since J
does not centralize %, it follows that |F: &| = 2% owing to f < 3.
But no element of GL (6,2) of order 7 centralizes any extra special
subgroup of order 3°. Hence, & = %, from which we get that M is
a 2, 3-group.

We now get DB, <] M. Let M, = M P. Since M/, is 3-closed,
we get I, <JI;, | M: M,| < 2. Also, 0,(M,/D) =1, and the 3-length
of M/D is 2. If Je€O0,,(M mod D), then since S,-subgroups of
0,,.(IM, mod D)/ are quaternion, it follows that J normalizes PD. This
is impossible since (o)(ii) does not hold. Hence, we may assume that
J ¢ 0,.(M, mod D). In this case, S,-subgroups of M,/¢ are isomorphic
to S,-subgroups of GL (2, 3). Every involution of GL (2, 3) normalizes
some S;-subgroup of GL (2, 3), and so J normalizes some S;-subgroup
of M,/D, against the fact that (0)(ii) does not hold. The proof is
complete.

LEMMA 13.30. Suppose Ge® and FCS M. Then F°<=C.

Proof. Let §* = F°, M* = M, §* = @, D* = DY, C* = €, 7* =
7% Since § is abelian, we may assume that G ¢ M, so that M = JM*,
Hence, .~ N..7* = ©@.

First, suppose F<.7. Then F*¥=.7*. Let F, = C4(F*), and
suppose by way of contradiction that F, CF. Let F./F, be a chief
factor of FIF* with F =E. Choose FeF, — F. Since |F| = |F*|, we
get || <|¥*|. Hence, there is F'* in §* — {1} such that [F, F/*] = 1.
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Since F*e #*, we get F e M*. Hence, 1 = [F, T =F N T*, against
NI = 0.

We may now assume that *Z._#. By Lemma 13.26 (¢), it fol-
lows that if ¥ is any subgroup of $* of index at most 8, then
CEFH < M*. We will show that F* centralizes €. Let Hif = Cu(©),
so that |§*: §7| < 2. Suppose |F*: % = 2. Choose E in €& — C(F*).
Thus, Ec M*. We may apply Lemma 13.29 (¢), with E in the role
of J, M* in the role of M, FF in the role of F,. We get [§*, FP & 7.
But [§*, EIf= .7, against .~ N .7* = . Hence, F* centralizes C.

Suppose F*ES D, but F*LE. Choose F in § — CF*), and let
T = Cy(F). Then [F*: 85| <4, since [F,T*]=C. Hence, FeI*.
Hence, [¢*, FISENE* =1, so §*=FF. By Lemma 13.29 (b)(i), we
get [®¥*, FIPS 7%, against 1C [§*, F]=S6.

Thus, in proving this lemma we may assume that §* = M, F*ZED.
Let PB/D be a subgroup of M/P of odd prime order p which admits
%* and is not centralized by F*. We will exploit B/ to show that
F S WM*, introducing a powerful symmetry.

Namely, let JF = Co(P/D), so that |F*: & = 2. Let § = F/6,
and ¥, = $/C be a subgroup of ¥ which admits (B, T*> and is minimal
subject to [F,, B] = 1. Then FiD centralizes F and F* does not.
Choose F' in %, such that $* does not centralize GF. Let §Ff = %' N
C(F). Since [§, FF1SE, we get [T Bl = 2°, with a < 2. Hence,
|5*: Bl =8, so that C(F) S M*. Hence, F e IM*.

Since Fe M*, we get [F,E*|=FNE*. If §NE* -1, then F<
C(% N G&*) = M*, as we are trying to show. So suppose TN E* = 1.
In this case G* =g

If o =2, we apply Lemma 13.29 (b)(ii) with F in the role of J,
M* in the role of M, FF in the role of F, T in the role of F,. We
get [§F, F1N7* = @, against 1C[8F, F1&@®. If a <1, we apply
Lemma 13.29(b)(i) and get [F*, FI*&._7*. Thus, “*NF+* @ in
both cases, so that §<& D™,

We now define the integer b by 2° = [F*: F* N D|. As we have
seen, b= 1. Let M, = MyD. Thus, § is a FM-module. Since
TS M*, we get [F, 4, Bl =1 for all A, BeF*. Let ¥/D be a sub-
group of 9, which admits §*D/D, such that ¥/D = /D X -+ X /D,
where each %; admits §* and C,. (/D) = §* N D, and where [X;: D] = p;,
a prime. We can then choose elements F*, ... F* of §*, such that
FF inverts %,/® and centralizes %;/® for j= 4. Thus, * =F*ND x
(FFy X oo X (F¥y. Also, since F;* inverts X,/®, ¥, contains an ele-
ment X, of odd order which is inverted by F* and satisfies ¥, = (9, X>.
Let ¥, = %,/6 be an irreducible subgroup of ¥ as F,(¥, §*>-module
such that ¥ does not centralize ¥.,; ¥, exists since X/ acts faithfully
on ¥ and b =1, and since § is a completely reducible ¥/D-group.

Suppose ¥,/D centralizes F, for some i. Then X, stabilizes F, O
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E>o1, so since X, has odd order, X; centralizes $,. On the other
hand, we can choose j such that X,/ does not centralize %,. Thus,
letting X,/ play the role of R/ in the first part of the lemma, it
follows that %, N .7* -~ ¢@. Thus, X,eM*. This is absurd, since
F¥* inverts X;, while §* <{I*. We conclude that X,/ has no non
trivial fixed points on §,, 1 <7 < b.

By Lemma 5.47 with (%, §*, ®)/D in the role of &, F, in the role
of 9N and with k£ = F,, we conclude that b = 1.

By symmetry, we get [§: TN D*|=2. Also, [FND* F NDs
ENE* =1, so FND* F*ND) is abelian.

We next show that C*=F* N D. Suppose false and E* e E* —
FFND. Since FS M*, we get |F: C;(E*)| = 2. By Lemma 13.29(a)
with E* in the role of J, we get [§, E*Jf<.#. This is impossible,
since [§, E*] S E*. Hence, G*=F* N D. By symmetry, ESD* N Y.

Since E* =D N F*, we get [§, E¥]<E. Since [F, E*| =E*, we
conclude that ©* centralizes §. By symmetry, & centralizes §*.

Choose F el — 3N D*. Then F centralizes G*. Let §* = F* N
C(F). Since [F*ND, F]SE, it follows that |F*: §*| < 8. Suppose
[&*: %75’*[ = 8. By Lemma 13.29(b)(ii) with F" in the role of J, I* in
the role of M, F* in the role of F, F* ND in the role of F,, we get
[B*ND, FlN.*+# @. This is impossible, since [§*N D, F]<G.
If |¥*: &*| = 4, then Lemma 13.29(b)(i) yields a contradiction, since
[*ND, F]l+1. Hence, we may assume that F*NDEE, since
otherwise, [§*, FIf&.7*, against 1C[F* N D, F]<E.

Now F' centralizes a hyperplane of $*. Choose F*eF* — F* N D.
Then by symmetry F'* centralizes a hyperplane of §. Hence, [F, §*] =
[F, %% =[S, F*] = {(F, F*]) is of order 2, so by two applications of
Lemma 13.29(b)(i), we get [F, F*le. . N.#*. This contradiction
completes the proof.

LemmA 13.31. Omne of the following holds:
(a) Fe 7.
(b) C(F)ES M for every subgroup FH, of index 16 in F.

Proof. Suppose (a) fails. Choose p € o, and let P be an elementary
subgroup of I of order p°. Thus, P is represented faithfully on F,
by Lemma 13.28. Let =%, x X, x --- x X,, where X, = Cy(P) and
%, +++, X, are irreducible PL-groups. Thus, XXX = 7 for all 7,7,
so we may assume that XXX, NF =1 for all 4,5,1<i<j<s.
Since |F,%;] = 16 whenever 1 <1< j<s, wegetp =3,% =1, |%;| =
4,1 £ i < s. Since P acts faithfully on ¥, s = 3. Let Ul = &, N ¥.X.X,,
so that [U|=4. If UNX%XX;, =1, for some 4,7, we are done. Hence,
we may assume that U= (U, U,), where U, = X;; X, X,;, X;; € %;, X;;#1,
1=<7<3,7=1,2. Since U, U,¢ %%, for all 1, j, we get X, = <U;, U;>.
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Now L=, x By X By, where [B;|=3and [V, %] =1,7=7,1=1¢, 53,
We can therefore choose P; in 3, such that P7'X P, = X,;, 1 <1 < 3.
Let P = P,P,P,. Then U? = U,, U = U, U,, so that P normalizes 1I.
Hence, C(%,) S C) S NW) <M, the last containment holding by
Lemma 13.24.

LeMmA 18.832. Omne of the following holds:
(a) s 7.
(b)Y If Ge® and |F:F N M| < 2, then FF= M.

Proof. Suppose (a) and (b) fail. Choose G in & such that
IS FEN P =2, Let M* = M9, F* = ¢, and let §F = F* N IP. By
Lemma 18.80, we get FLM*. Hence, S+ *NT =@, 7 NF = 0.

Let § = FNIM* so that T F. Choose FeF — F,. Let FF =
CF)NGFand let 27 = |§F§F|. If f <3, then |§*: %] = 16, so that
by Lemma 13.31, C(%5) S IM*, against F¢ I*. Hence, f = 4. In
particular, ¥ £ D, since F F. Also, we get CSI*, so that
[TF, E1=8* N E =1, the equality holding since .7 N F* = .

Let R/D be a subgroup of M,/D of odd prime order which admits
%5 and is not centralized by $F. Let Fr = FF N CH/D) so that
|%i: F5| = 2. Let &,/€ be a subgroup of %/€ which admits RFF and
is minimal subject to [F, R} ZLE. Then [FF, F]1SE, and F does not
centralize ,/6. Choose F' in ¥, such that GF is not centralized by
S5 Since [FF, F]SE, it follows that §F = F5 N C(F) is of index at
most 4 in {F, so is of index at most 16 in F*. Hence, C(F) = ¥,
so that F'e M*. Hence, [FF, F]ISENF* =1, so that FF = FF. Now
Fe* and F*NCEF)2FF, so that |FF*NCF) <4, On the
other hand, €<= IN*, so that &* = E°< M. Hence, E* =FF, so that
[G*, F1=E N G* = 1; that is, E* S By

By Lemma 13.29(b)(i) applied with F in the role of J, IN* in the
role of M, F¥ in the role of F,, F* in the role of F, we get [F*, F] &
Z*. In particular, [FF, Fl] &..#*. But 1C[F, F]1S%, so we get
NG %~ @, This contradiction completes the proof.

LeEmMA 13.33. F=._~.

Proof. Suppose false. By Lemma 13.28, C{%) is a (o U 7)’-group.
Let B = V{ccly(F); ), where T is a S,-subgroup of M. By Lemma
13.30, W= Cp(B) = €, 50 Nu(W) contains a S, ..-subgroup of M. Hence,
N S N, since Ny(W) e _.7*(S).

Since §*Z .7, we can choose F e ' — 7. Hence, Cy(F) ¢ _7*(®).
Let ¥, be a S,-subgroup of Cy(F'). Thus, T,¢ 2*(®). Let 9 =
{%,|Z, is a 2-subgroup of M, T, 2 for some M in M, T, ¢ _Z*(©)}.
Thus, 9 = @, as ;€. 9. Let ¥, be a maximal element of 7.
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Since .7 = 9 for all M in M, we assume without loss of generality
that T, =%. Since F& T, every element of 7 contains F.

Choose e 7)), T,=6,& = M. Since F&S, we can choose
a four-group § of § with F*<.#. Hence,

0,(%) = <0,(3) N C(F) | Fef,

and so 0,(&) = M. In particular, § centralizes 0,(S), and so 0,(&) = 1.
Since S e _#Z.&7(®), we have & = N(0,(S)), and so by Lemma 13.1, we
have 0,(8) = 1.

By maximality of £,, it follows that T, is a S,-subgroup of &.
Let B, = V(ccly(B); ). Since F&S W, we have W, = 1. We argue
that N(B,) S M. This is clear if £, < &, since in this case, N (W) >
T, so that maximality of T, forces N(W)=M. If <, =1, then
W, = W, and again we have N(TB,) = M, by the first paragraph of the
proof.

Let & be a subgroup of & which is permutable with £, and is
minimal subject to QZ M. Then Q is a g-group for some odd prime
¢, and B, < VT, = &, say. By minimality of Q, it follows that the
g-length of &, is 1, and that 0,(&)Q/0.(6,)D(L) is a chief factor of &,.

Since W, £ 0,(8,), we can choose G in & such that F° =F =2,
TF*ZL 0,(&,). Let Q, be a subgroup of O which is minimal subject to

(a) 0,(8)Q, admits F*, '

(b) [Q, F1EM.

Since Q satisfies (a) and (b), owing to QN W = D), O, exists. By
minimality of Q,, 0.(8,)Q/0,(S)(Q, N D(Q)) is an irreducible F*-group.
Since F* is an elementary, we get that [Qy: O, N D(Q)| = ¢, so that Q,
is cyclic. Hence, if Ff = Cip(0,(8)Q,/0,(8,)), then F} is of index 2
in §*. Let @ be a generator for Q, Since Ff0,(S,) < 0,(&)QF*,
we get FrPS M. Hence, |F%FeN M| < 2. By Lemma 13.32, we
get FUS M. Hence, <% T - 0,(8,) =M. But since

2 S <B4, D0

we have a contradiction, since Q, % M. The proof is complete.
Again, let W = V(cely(B); T), T being a S,-subgroup of IM. Let
B* = (V(cels(Fo); DIF: Bl = 2>, and let £ = 2,(Z(W*)).

LEMMA 13.34. Omne of the following holds:
(a) Nyp(®)e 72*(®).
(b) NxpX)e 7*®).

Proof Let § = O,(M), & = F(M mod H). Let L be a S, -subgroup
of & so that L is nilpotent. We first show that there is a subgroup
B of Q such that
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(i) P is a p-group of exponent p for some prime peo U <.

(ii) B is non eyclic.

(i) P,

iv) OB M.

Namely, for each prime p in ¢ U7, let Q, be the S,-subgroup of Q.
Suppose L, contains a non cyclic characteristic abelian subgroup %B.
Take P = 2,(B). Then (i), (ii), (iv) are satisfied. If pez, so is (iii)
since every element of IN of order p is in Eﬁl,,. If peo, then (iii)
holds if m(B) = 3, while if m(P) = 2, then C(P) contains an elementary
subgroup of order p°, so again (iii) holds.

We may therefore assume that if p € 0 U 7, then every characteristic
abelian subgroup of Q, is cyclic. Hence, Q, = 3,2.(Q,), where 3, =
Z(2,), and 2,(X,) is either extra special or of order at most p. If
[2,(2,) | > p°, we take B =2,(2,). In this case, for each Pe ¥, Cy(P)
contains an elementary subgroup of order ° since |2,(Q,)] = p°
Thus, EB*‘gEﬁ?p, and (i)-(iv) hold. Suppose [2/(Q,)] = p*. If pe, we
may take 2,(Q,) = P, since all elements of M of order p are in iﬁ?p.
Thus, in our search for %3, we may assume that for each p in 7, Q,
is cyclic, while if peo, then Q, is either cyclic or is the central
product of a cyclic group and an extra special group of order p°.
Let p be the largest prime in o. Since Q, is cyclic for all gez, it
follows that a S,-subgroup MM, of M centralizes $,/H, as WM, = I,
By definition of 7 and Lemma 13.22, it follows that I, centralizes
92,/9 for all r¢o. If geo,q+ p, then p > ¢q, so IM, centralizes
$2,/9, by the special shape of Q,. Since I, =M, it follows that
IR, centralizes $2,/92,(L,) and also centralizes $2,(Q,)'/9, both these
factors being cyclic. Hence, 2,/Q, is faithfully represented on
H2(Q,)[902,(2,). Furthermore, the chain $02,(Q,) C $2,(L,) must
be part of a chief series for I¢, since otherwise I, centralizes every
chief factor of M between $ and £, which in turn forces M, S &,
which is false. Since |2,(Q,): 2(2,) | = p’, we get p = 3. Since
P = D)/ D02,(L,) is a chief factor of M, the four subgroups of
9 of order 3 are permuted transitively by Ay(9), so that 91(&)*;9333.
Thus, in all cases, {5 is available satisfying (i)-(iv).

If we now choose 3 of least order satisfying (i)-(iv), it follows
that 9B is either elementary or extra special. So we assume in addi-
tion to (i)-(iv) that P satisfies

(v) P is either elementary or extra special.

Let € = $PWX, and for each subset & of &, let & = &9/9. If
C:(B) # 1, then Ny(TW)e _2Z*(®), since Ny(T) contains an element of
R, in this case. So we may assume that

(13.2) Ci(B) =1.

We may in addition assume that
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(13.3) BNCE) =1,

since otherwise (b) holds.

Let & = {F°|Ge®, FSW, [ PIZLY). By (13.2), & = 0.

The first task is to show that if §*e &, then |F*: F* N H| = 2.
Since §*e &, there is Ge ® such that F* = F° Let B, be a sub-
group of P of order p such that P, admits XF* and [, F*]| <L . Note
that since X centralizes 28, X%* is an elementary, so that 9B, exists. Let
B = Cy(PB) so that FF is a hyperplane of F*. Let X, = C.(P), so
that |%:%,] < 2. Let 9 be the normal closure of ¥ in HB,F*X.
Since (13.3) 9T <] SV.F*X, we get P=IT. Hence, 9 is generated by
conjugates of FF, so Y= W*. Hence, X centralizes ¥. If X, C %, then
C() contains B,. But F¥=._7% so that C(Y)<= M This is impos-
sible, since [§*, B.] is not a 2-group. Hence, ¥, = %.

Let €* = C(®) N 9Fi¥%, so that €* is a normal 2-subgroup of
HTFXP, which contains X. Also, €* = MF, since FF #= 1, and ¥ A °.
Choose FeF* — %F. Then F inverts an element P of HF*XP, of order
p. Let © = (P, F'), so that ® is dihedral of order 2p. Let €f =
[€*, {P>], so that D normalizes €7, and €F = M*. Let €F = [C}, F].
Since (13.3) holds, we have € = 1, and so € = 1. Since €} = M, we get
Cr =R Since €* N F¢ = 1, it follows that C(E*) = M, as F* <. ~7°.
Let 1 = C(€*) N HFX, so that © normalizes U, FF=PY<S U, and NS
M. Let U* = [U, <P>], so that U* %= 1, since P, M. Let U} =
[U*, F']. Since U*/D1*) is a free F,{F')-module, it follows that
n* = U, . Now UF is a normal elementary subgroup of 11*
contained in ¥*, so U* = WU, U = [UF, 1= J*. Since F cen-
tralizes %*, we get that F centralizes U*’, so P centralizes *'. Since
n* < F*, we get U =1, so that 0* = UF x Ur”.

Since P centralizes U/U*, we get U = U*Cy(P), W* N CP) = 1.
Since F’ normalizes Cy(P) and since P ¢ ¢ we get

[F, Cu(P)ISC(P)N T =1.

Choose F'*e %F. Then F* = AB, where Ae Cy(P), Be 1*. Since
F centralizes F'* and A, we get Be Cp(F) = 1¥. Hence, AcF¥, so
that A =1, as P¢ M. Thus, UFf = FSU* = [U, P]|S H, so we get
the desired conclusion:

(13.4) Xe o implies |FEFNH| =2.
Retaining our notation ¥* = F¢e .7, let
B = (Vieels (F); 9)1F: Tl = 2>

Thus, < ®* and Fr=F*NHS W, since Fr e cely($8,) for some sub-
group %, of index 2 in .
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Since W <] M, so also L <] HPWE = & Now %*gﬁﬁ?m so that
BN IMF =1. Hence, CE(SlNS) is a 2-group with X;Cﬁ(fﬁ’). Let 9 =
C(B), so that P <18, and Y= M?. Let B, be a subgroup of P of order
p% B, is available by our construction of 3. Choose FeF — N H.
For each A in ¥, we get C3;(4) N T = 1, since A ¢ M°.

Now 9= M and § centralizes the hyperplane §; of §° Further-
more, [, F1e )N Fr. But P centralizes B and Fr= W, so YN Fr <
2(Z(®)). Hence, F centralizes 9/2,(Z2(§)), and since § centralizes the
hyperplane ¢ of §°, F' centralizes D(§)). By (13.2), it follows that P
centralizes §/2.(Z(9)) and D). Thus, P is faithfully represented
on 2(Z®)) = U, say.

Let P be an element of HPIWX of order p inverted by F. Thus,
setting € = {Xec QPW|P* = P or P}, we see that € normalizes
B = [%, P] and € contains F. Let B, be a minimal normal subgroup of
€ with 8,=9B. Thus, (P) is faithfully represented on 9,, as P has no
non trivial fixed points on B. Hence, B, is a free F,(F>-module, so
B, N T = 1. Hence, a S,-subgroup of € is non eyclic and is faithfully
represented on B,. By minimality of B, § N € centralizes B,, and so
Az (D) is p-closed. Let F, be the image of F in A3z (%)) and let B, be
a S,-subgroup of 45(B,). Thus, F, normalizes B, and B, is non cyclic.
Suppose By N C(F) = By, = 1. Then P, is faithfully represented on
Cy (Fy), by the P x Q-lemma. But C,(F) = [8, F]SM? Since
= 7Y, it follows that N(C, (F)) S M“. Since HP N M7 is a 2-group,
we have P, = 1. Hence, F, inverts L,. Choose P,e ;. Then B, N
C(P) admits F,. Since B N IMN¢ is a 2-group, it follows that B, N
C(P)NF =1. Since [B, N C(P,), F1=F°, it follows that F' centralizes
B, N C(FP,). Since B, =B, N C(P,)| P, B, it follows that F centralizes
B,. This is not the case, since B, is a free F,{(F >-module. The proof
is complete.

LEMMA 13.35. Suppose the fellowing hold for some G in &;
(a) [F"F NI = 2.
(b) BN WD centralizes a hyperplane of F.
Then one of the following holds:
(i) I1%l=8.
(i) |¥] =16, |€| = 4.

Proof. Let A= NI, T =F N CW, so that F, contains a
hyperplane of §. If F< IN° then by Lemma 13.30 applied to INF,
we get S CEY), and so FS M, against our assumption. Hence,
BEL MY and so B, is hyperplane of F. Since C(X)= M’ for every
X in §%, it follows that §, = Ci(X) for every Xec 2’ By Lemma
13.22, | AN D] < 2. Since AN D acts faithfully on F and stabilizes
the chain o0& D1, we get |AN D] < |E|, whence
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IF6] = 2| <2 AN D] < 206G .

Since |§| £ 2%, the proof is complete.
LeMMA 13.36. If T=E@e F7.F(®), then FE= 0,(8).

Proof. Suppose false, and that & is a minimal counterexample.
Thus, & = TQ for some g-group Q. By Lemma 13.20, &% 45(Q) = Q.
Let $=0,(3). By minimality of &, we get 92 <&, and F < 0.(TD(Q)),
while $Q/9D(Q) is a chief factor of &.

First, suppose that Q is eyclic. In this case, $/9 is cyclic and
FNHO =%, is of index 2 in F. Choose FeF — Fp. Then we may
assume that F inverts a generator Q for Q. Since F= 0,(TDQ)),
we get |Q| = q.

Let §, = [9, Q]. Thus, 9/D(9,) is a free F,{F)-module. Let
9, = [9,, F], so that 9, = §,-9¢, and 9, &8. Hence, § = [, 971
is centralized by F, so is centralized by Q. Since @ ¢ M, and F*'= .7,
it follows that §; = 1.

Let §. = Cy(Q), so that © = £.9,, $.N Y, = 1. Since [9,, F]<
£, NE =1, the equality holding since @e¢M and F'S.”, we get
that for each F, in &, F, = AB, where A€ ,, B $,. Since F cen-
tralizes F, and A, F' centralizes B, so Be §, = C;(F), which then
gives AeH,NEF =1. Hence, F, = 9, is a hyperplane of §F. Let
B = H?, so that F*N M = B, and B centralizes the hyperplane H, of
%. By Lemma 13.35, it follows that {F| < 16.

Suppose |%| =8. Here, we get |9, =16,9H, = 9, x $?, and
|©.| =4. Hence, ¢ =8 or 5. Let §, = $,N C(H,). Then H; < 6S.
If §, +1, then 9,N Z(L) #+ 1, against Q(ZR))f<. 7, and Q¢ M.
Hence, §, = 1. Since Q centralizes £,, it follows that §, is faithfully
represented on .. Hence, |9, <2, as [H.] =4. If ¢ =3, we get
|| < 64. Since 0,(M) =1 and M contains an elementary subgroup
of order p* for some odd prime p, we get T = O,(IM), » =3, and T
is an elementary. This is clearly not the case, since ,(&) =2. If ¢=35,
then &, is an irreducible Q-group, so §, = 1. Again, we get [T|
64, a contradiction.

Suppose |F| = 16. Here we get ¢ = 3 or 7, since |9,| = 64, and
since £ has no non trivial fixed points on .. If ¢ =7, then £, is
a minimal normal subgroup of &, so that &, =1, [¥| = 128. Since
M has an elementary subgroup P of order p* for some odd prime p,
and since P is represented faithfully on O,(IR), it follows that either
0,(M) is an elementary of order 64, or 0,(IM) = L. The first case yields
0,(M) = 0,(3), against SL M. The second case is impossible since
T = 9, is of order 8.

It remains to treat the case || =16,¢ =3. Here we get T =
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HLF >, Since 9, is faithfully represented on $,, and since $ N C(F) =
£.9., it follows that § = ©, X (F) is a self-centralizing normal sub-
group of . Consider O,(M). Since |F| = 4, and F/C is a chief factor
of M, it follows that [, 0,(M)] = E. Since I contains an elementary
subgroup of order p* for some odd prime p, it follows that I contains
a subgroup P of order p which centralizes . Hence, [0.(IN), B| =
CE NOLM) =F, so B stabilizes 0,(M) >F>1. This is impossible
since O, (M) = 1.

We may now assume that {Q is non eyelic. Let &, be a subgroup

of & of order ¢ such that $Q, admits F and [F, Q)L H. Let &, =

HAF, O = 0,8), and FH =TNH. Then |F: .| =2. Choose Fe
F — B.. We assume without loss of generahty that F' inverts a
generator @ of Q.. Let §, = [, Q], & = [D,, F1. Then §, = §, x
8?2, §, =%, and @ $.9,, where &, = C3(Qy). As in the earlier part
of the proof, we have §, = H.. Since F [, Q] = [H, Q.], it follows
that $.<9, 9 = H. Hence, FH/$ is a central subgroup of I/ of
order 2. Since HQ/HD(Q) is a chief factor of &, it follows that F
inverts 9L /OD(Q). Since F centralizes $D(Q)/H, it follows that O
is either non cyclic of order ¢* or extra special of order ¢° and ex-
ponent gq.

Suppose QO is abelian. In this case, since F inverts HQ/9H, we
may assume that F inverts L. Thus, Cy(@,) admits F for all @, € C.
Since &N I = 1, it follows that F N Cy(Q) = 1 for all @, € L. Henes,
[Co(Q), F1ISTF N Co(Q) = 1. Since § = (Cy(Q) |Q, € 1), we get that
F centralizes ©. This is not the case, so Q is extraspecial.

Let €, = C~(Ml, Thus, S,-subgroups of €, are of order ¢°. Also,
G, normalizes §, = [, Q] = [9, Q.]. Let O, be a S-subgroup of €.
Thus, F normalizes $Q,, and F centralizes $,/9T,. We may assume
that notation is chosen so that Q, & . Then Sz =Q, x &/. Thus,
I centralizes $Q//9. We will show that Q'S . Namely, HQ/EFD
normalizes 550 Let $, be a minimal normal subgroup of QV{(F)
with 5;}0 CSZ)O Since C;O(F> %, we are done in case Q' centralizes
'S/:)ooy so suppose that [D.,, Q'] = 1. Since $PQUF) is 2-closed, we get
'@oo ZiQLFY), s0 DS, Since Fe s, we get Ni9w) &M, so
Q'S IR, as required.

Suppose ¢ = 7. Here we get |5, = 8, |F] = 16, || =4, by Lemma
13.35. Thus, 44(%) is a 2, 3-group, so L centralizes . Hence, T
centralizes §,. This is not the case, since $, = [D, Q] and Q is an
extra spzecial group which acts faithfully on $. Hence, ¢ = 3 or 5.
If ¢ =5, we get |F.] =4, 9, =16, so that Q' centralizes ©,. This
is impossible, since 9, = [D, L] and Q is represented faithfully on
$. Hence, ¢ = 3.

Let & = [9, Q'], so that & <{&. Since Q is represented faithfully
on &/D(R), and L’ has no fixed points on & — D), it follows that
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|f: D& = 2%, with k= 1. If k= 2, we get that
&, QuID&): D®)| = 2°,

against |9, < 2°. Hence, k =1. Since |[R, QID®): DR)| = 2, it
follows that |§ N D(R)| < 2. Hence, Q' centralizes D(R]), since other-
wise [[Q,, D(R)|D(DR)): DIR))| = 2. Suppose D) + 1. Since L/
is a S,-subgroup of M N S, it follows that C(D®) N Q = L. Since
DQ/OD(L) is a chief factor of &, it follows that $ - F is a square in
T/$. This implies that | D{K): D(®) N C(F')| = 4, so that |[D(®), F]| = 4,
against |[D®) NF| < 2. Hence, D(®) = 1. Hence, |FN K| =4, so
that § centralizes a subgroup of §/f of index at most 2. This implies
that Q centralizes 9/K, so that § = &K,, where &, centralizes &, so
H =8 x &. Since K NE =1, and & ]S, we get & = 1.

We next argue that 3¢o. Suppose false. Then since [Qf = 3°
and O is of exponent 3, we get Qe.27 (3). Hence, QL& ML) = IM°
for some G in &, the equality holding by Lemma 13.20. Since & I,
we have It = IM° On the other hand, we have already shown that
L' M, and so S;-subgroups of Cyu(LY) are not cyelic. This violates
Theorem 13.1. Hence, 3¢ 0. Since ¢ # @, it follows that

|0,(IM): D{O,(M)) | = 2° .

Since § = & is of order 2%, and since /9 acts faithfully on $Q/9,
it follows that every subgroup of ¥ can be generated by 6 elements.
This contradiction completes the proof.

LEMMA 13.37. Suppose &,€ .7 < (®) and the following hold:
(a) 0,@) = 1.
(b) FTES0(8,).
(¢) TNG, =6, is a Sy-subgroup of &,
(d) If 1c & <&, then either N(®) S M or &, is a S,-subgroup
of N(&).
Then &,= M.

Proof. Suppose false. Let & be a subgroup of &, which contains
&, and is minimal subject to SZ M. By (a), 0.() =1. By mini-
mality of &, we have & = &,Q for some ¢g-group Q, and I N O = D(Q),
while if & = 0,(), then $Q/HD{Q) is a chief factor of &. Suppose
Ge® and NS, is non cyclic. We will show that N S,= 9.
Suppose false. Then G ¢ IN, since F< 0,(&). Let F* = F°N S..

Let &, be a subgroup of L minimal subject to (a) &, & D(Q),
(b)) 92, admits F*, (¢) [Q, F1ZH. Then Q, is cyclic. Let &, =
QQF*, O, = 0,(8,), and let FF = F* N 9. Thus, F is of index 2 in
$*, so is not 1. Since Q, LM, O, does not centralize Z(9,). Choose
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Fr*e®* — %F. We assume without loss of generality that F'* inverts
a generator @ of Q,. Now Z(9)<S C(EH) S M Since L, does not
centralize Z(9,), neither does F'*, so [Z(9)), F*] == 1. Hence, Z($) N
{7 =1, so H, = M°.

Let  =[9,Q], & =H. N CQ), & =[R, F*]. Then 9, = KK,
and & NF° =1, so that F* centralizes &,. Also, £ = & x & is
elementary. On the other hand, IS H <= D, so F= M. By Lemma
13.30, [F, §°] = 1. Hence, F<= &&K,.. Since |F| = |F°| > |R.], it follows
that § N &, = 1. Since Q, centralizes &, we get Q,& M, contrary
to our contruction.

By the previous argument, we get V{cely(%,); &,) <{S for all non
cyclic subgroups %, of §. By (d), we get that &, = T. Hence, both
B and W* are normal in &. Since ¥ = Q,(Z(W*)), we get ¥ <] S.
By Lemma 13.34, we get &< IN, against our construction.

LEMMA 13.38. If Ge®, then one of the following holds:

(a) NI =1.

(b) F°NM is of index 2 in F° and F° N WM centralizes a hyper-
plane of .

(¢) F&M.

‘Proof. Suppose LCF NMCF. SetF* =T, FFr =T NM, F, =
FNME. Since FS 7 and FH¥S 7% we get FNF=1. If Fre
%, then [FF, C(FH)] ST N F* = 1, while if F, e i, then [F,, Co(F)] &
FNFE* =1. Since F*ZL M, so also FZL M by Lemma 13.30. Let
& = N(BBH), B = Np(BIS), so that FOF, & D&,  Choose
F,e @, — §.. Then [Fy, BF1= B, and C(F,) N FF =1. Hence [B.] = T
By symmetry, we get [Ff|=|[F.l, so [&] =Bl Let & =JFF =
B X Bi. Let &, & * be the chains § D%, 21, & D FF D1, respectively.
Then §./%. maps isomorphically into 44(%7) and E/EF maps isomor-
phically into 4,(&”*), and if F,€F, — B, then the map #(F.): §F — B,
given by F*— [F,, F'*] is an isomorphism of %/ onto %,. Since N(9) is
solvable, it follows that |F: & | =%l =2 If FL =F, we are
done, so suppose FHhCH. Let B, = F x (Foy. Choose F in F — Fe
with [F, F 1< $.. Since F does not normalize F.F, we can choose
Fr e such that [F, F*]¢&. Hence, [F, F*] = F,F, with F,e${,.
Let Fi* be the largest subgroup of ¥ such that [F, Fi*1 = E.. Hence,
i = Bi* X (FF>. Since |Fi| = 4, we have F¥* = 1. Choose F*e
¥, By the Jacobi identity, [F, F*, F¥*|[F**, F, F*] =1, since
[F*, Fi**] = 1. This is not the case, since [F, F'*, F'**| = [F,, F**] #1,
while [F*, F]e$,, so that [F*, F, F*] = 1. The proof is complete.

THEOREM 13.3. Hypothests 18.2 1s not satisfied.



550 JOHN G. THOMPSON

Proof. Suppose false. If $&£6,€ &< (®), then by Lemma
13.36, &, satisfies the hypotheses of Lemma 13.37, so &, IR, that
is, Te _#Z*(®). Thus, we may apply Lemma 13.2. Let £ be the group
given in Lemma 13.2. We may then choose M in I such that $ N T
is a S,-subgroup of $¥. Thus, we may assume at the outset that
HNIT =9, is a S;-subgroup of . Let I be an involution of M such
that C;(I) = %, is a S,-subgroup of Cy(I).

Let 9=6e 7Z.5(®). By Lemma 13.2, £ contains an element
N of Zr (2), s0 0,(&) + 1. By Lemma 13.1, we get 0,(8) =1, since
& = N(0,(®)). By Lemma 13.20, & has no elementary subgroup of
order p® for any odd prime p.

By Lemma 13.2, = £,Q, where Q is a 3-group. By the preceding
paragraph, & 45(Q) = @. We assume without loss of generality
that if $.&£9,C9, then $, =M. Hence, M N QO = D) and if
0,(9H) = &, then KQ/KD(Q) is a chief factor of H.

Let B =8%NH, & =N =FNK. By Lemma 13.37, F CF.
We argue that §, < .. For suppose F = Fo. Let F/T. be a chief
factor of {9, with F.EF. Then [&, FIJEF = TE R, so that F. &
N(®). Since £, is a S,-subgroup of N(®), we get %S H.N T = & = Bo
against §, = T F.. Hence, F < F. = -

Since Cy(I) is non cyclic, and since 9, contains a S,-subgroup of
Cu(I), it follows that %, is non cyclic.

Now FR/& <] 9./R, so that K[Q, F]DEQ) < H. Since KQ/KD(Q)
is a chief factor of ©, we get & = &]Q, FJDQ), so that KD =
[Q, Fol- Since D) &M, it follows that [DQ), F] ST N KDQ) =
FNR =F. By Lemma 0.8.7, D(Q) = Z(X). This implies that Q is
of exponent 3, and either |Q| < 8% or O is non abelian of order 3%
If © is non abelian, then each element of g, induces an automorphism
of 8Q/SD(Q) of determinant 1, since T, centralizes RD(Q)/K. In this
case, we get |Bo B:.] = 2. The same equality clearly holds if |Q] = 8.
Suppose || = 3% Then ¥, contains an element F, such that F), inverts
8O/R, and we assume without loss of generality that F, inverts Q.
If QeQ, then Cy(Q) admits Fi, so [Co(Q), F]&F N Co(Q) = 1. Hence,
F, centralizes (Cy(Q)| Qe L% = &, against F,¢ & We conclude that
Q] =3 or 3° and that |F.: F.| = 2.

Choose F,e€ %, — %,. Then &, inverts a subgroup L, of Q& of
order 3, and we may assume that O, & Q. Let & =[&], Q], & =
[R, Fy], & = Co(Q,). Thus, & SF, so that & = K, x &, where Q is
a generator for Q,. Since & NF =1, we get F = & # 1. Suppose
| = 2% In this case, it follows that J($.,) & &, so that J(9.) <] 9.
This is not the case, since | N(J(9.)) . > |9.|. Hence, |8,| = 2 |B,] =
2! %] = 2. This in turn implies that [Q]=3,Q =2, and so
H =8 x RUFY, with KOFy = I,

Since no non identity characteristic subgroup of £, is contained
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in &, it follows that D(f, is elementary and central in &, Thus,
D(©,) = D®) X F. Choose Xe Ni(9.) — $.. Then Z(&) N C(X) =1,
since 9, is a S,-subgroup of N(¥) for every non identity normal sub-
group ¥ of $. Hence, |[DR)| £2 |Z(&)|<2. Now X normalizes
9. N CF) = & x F. Hence, & is elementary, so |K,] <2. If & =1,
then §, is dihedral of order 2°, against the presence of I. So suppose
(8] = 2. In this case, 9, has exactly 2 elementary subgroups of order
23, namely, & X %, and K. Since X normalizes &, x F,, X also nor-
malizes & This contradiction completes the proof.

REMARK. Theorem 13.3 is one of the watersheds of this work.
While there is still a great deal to be done, we are now reduced to
examining a succession of explicit groups. The “generic case” is com-
pleted.

HypoTHESIS 13.3.

(a) ©e #Z (®).

(b) 0.(©) =1.

(¢) m@®) =<2 for every normal abelian subgroup A of &.

(d) ©& contains a non cyclic normal abelian subgroup B such
that C(B)=© for all B in B%

Lemmas 13.39 through 13.53 are proved under Hypothesis 13.3.
We use the following notation: ¥ is a normal abelian subgroup of
& which contains B and is maximal with this restriction, and B, =
2,(8). By (c) and (d), we get m(¥) = m(B) = 2, so that 2,(B) =,
is a four-group. Since Se (@), S = N(B,). Let T be a S,-sub-
group of &.

LeMMA 13.39. T 4s a Sr-subgroup of & and N(ZT)E=S.

Proof. Let B = 2,(Z(%}). Since 0,(8) =1, we get 3Z 0,E).
Thus, (8, By S<B, Z(0,(8))>, and the group on the right is a normal
abelian 2-subgroup of &. Hence, 3%, by Hypothesis 13.3 (¢). If
3 =%, then we get & = N(3), and we are done. Suppose 3L,
so that |B3| = 2. Hence, N(3) = C(8)= &, by (d), and we are done.

LEMmA 13.40. B s a T.I. set in O.

Proof. Suppose false. Then there is G in @ — S such that
BN V7~ 1. Let V be an involution of T N BV By Hypothesis 13.3(d),
cCVyesene-.

Case 1. C(V) contains an S,-subgroup T* of ®. Since T*=SN S,
we get I*7'C &, Hence, IT* = I*% for some S in &. Hence,
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SG e N(Z*). By Lemma 13.39, we get N(T*) =&. Hence, Ge S7'& =&,
against our choice of G.

Case 2. C(V) does not contain a S,-subgroup of &.

Let £, be a S,-subgroup of C(V), so that T,&&. Let T* be a
S;-subgroup of & which contains ¥,. Since Ve B, <{T* it follows
that [T*: %, =2, and that I, = Co(V) = Co(By). Since V is not
contained in the center of any S,-subgroup of &, & does not permute
Bt transitively. Hence, T*/T, maps onto A4,(L,). Hence, Cy(V) =
C(V)=Ce(V) (S, &, against S 7 .57 (®). The proof is complete.

LEMMA 13.41. Suppose Ge® and B =S, Then [B, B°] = 1.

Proof. Let 8 = 8N C(®°, and suppose by way of contradiction
that 8 cB. Let %1/% be a chief factor of L -B¢ with VL, =& B. Since
(8| < |B°], and since [B,, B =B, it follows that there is V in B
such that 8B, < C(V). By Hypothesis 13.3 (d), B, g@j , so that [B,, B?l<

BNBY By Lemma 13.40, BN BV° =1, so B,iEYW, against our con-
struction.

LEMMA 13.42. Suppose Ge® and [V BN S| < 2. Then one of
the following holds:

(a) BS@.

(b) B is a four-group.

(c¢) B s of type 2,4) and BN S is a four-group.

Proof. Suppose |B¢: BN S| = 2. Let B be of type (27, 2°) with
1<a=5b Wemust show that ¢ = 1,5 < 2, and that if b = 2, then
BN & is a four-group.

Let B* = B¢ BFf =V* NS, Let B, =B N CEH. If B, = B, then
B &% so0 by Lemma 13.41 applied to &%, we get [8Y, LB] = 1. Thus,
LS &, against our assumption. Hence, B, c B. Let B,/B, be a chief
factor of LYV} with B, =LB. Choose V,e B, — B, If BN CV,) #= 1,
then V,e®&° so that [V,, B} <V N LB = 1. This is not the case, by
definition of LB, so BF N C(V,) = 1. Sinece [V, B} = BV,, we get |B,| =
[BF| = [B|/2. Hence, B, = B, and |B: B,| = 2.

Let © = BB =B, x B, Since VLS, we get B, =BV S,
For each V in 8 — B,, we see that V normalizes L N BF’, since
VieB, S C®By). If BNV =1, choose V* an involution of BF N
B N C(V), and conclude that Ve C(V*) =& against &NV = B,.
So BN V" =1. Since |V | = |V | = |B,], it follows that

H =B x B’ .
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Since Ve B, =9, we have
Vi=X*. X", X*, X*eBr.
Hence, V? = V¥ = X*. X*" = X*". X*, so that
X* e X = (X* XYW eBrnB =1,
whence
X* = Xr, Vi=X*. X* = X*[X* V].
Since V* and [X*, V] are in V, we get
X*eVnVr=1.

Hence, V* =1, and V = X*7'V'X*. Since B, is of index 2 in ¥,V
is generated by 8 — B, and so b <2. If b =1, then a =1 and we
are done. We may assume that b = 2.

Case 1. a =1.

Here we must show that LB is a four-group. Since [B,| = 4,
and B, = B4, it follows that some V of B! centralizes 2,(B¢). Hence,
QB S C(V)SS. Since & N B = B, we get B = 2,(TVY).

Case 2. a = 2.

In this case, it follows that for suitable V, We L, 8 = (V) X W),
B, =<V x (W). For each X in B}, we get V¥ =V.V*W?, for
suitable =z, y. Since X centralizes V? we get y = 2z for suitable
integral z. Thus, B stabilizes B8 2 B, 51 and also stabilizes BL > B, > 1.
As the intersection of the two stability groups is of order 4, LB} does
not act faithfully on B. This contradiction completes the proof.

LEMMA 13.43. Suppose T&Ne L7 F(®) and NLS. Then N
contains no elementary subgroup of order p* for any odd prime p.

Proof. Suppose € is an elementary subgroup of N of order p% p
an odd prime. Since 2€m, we get 0,(N) =1, so 0,(N) == 1. Hence,
U(E; 2) is not trivial, so e(p) = 3. Hence, Hypothesis 13.1 is satisfied.

Let % = M(G) 2N. Let 3= 2,(R.(N*)). By Lemma 13.19, | 3| =4.
Hence, &N C(8)e . (p). Let Z be an involution of 3 N Z(¥). Thus,
Zc'B,. By Hypothesis 13.3 (d), we get C(Z)=S. Hence, €N C(Z2)&S.
Since €N C(Z)e #7*(®), we get SSN*. Since S e #Z.57(G), we have
& = N* 2N, against our assumption that REZL S. The proof is com-
plete.
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LEMMA 18.44. If TSNe &F P2 (®), then B S 0,(N).

Proof. Suppose false. Then NZS. We assume without loss of
generality that if T &N, <N, then B< 0,(N,). Hence, ! = TQ, where
L2 is a g-group for some odd prime ¢. By Lemma 13.43,

FE N =D

Let § = 0,(). By minimality of %, we get $Q <{N, and W =
SQ/HD(Q) is a chief factor of N. Let X, =BV N H, so that X, V.
Let X%,/%, be a chief factor of & with ¥,=%8. Choose Ve¥%, — X,.
Since W is a chief factor of ¢ on which B acts non trivially, and
since §V is central in T/9, it follows that [DE), V]S 0(TDR)) N
D) = 9. Let £ = $9/9. Thus, V inverts Q/D(Q) and V cen-
tralizes D(). This implies that D(Q) < Z(Q), and that Q is of ex-
ponent ¢. Thus, |Q] < ¢% or else QO is extra special of order ¢

Let § = $/D(9). We will show that B/%, is elementary. Suppose
false. Let V,e® satisfy Vie¢¥%, VieZX,. Since [T, V), V] =1, the
minimal polynomial of V; on § divides (x — 1)?, so B! centralizes H.
This is impossible, since V¢ . Hence, B/%, is elementary.

We next show that |®8: %,] = 2. Suppose false. Since B is abelian,
m(B) =2 and B/X, is elementary, we may assume that B/X, is of
order 4.

Let £, be a subgroup of O = 90/ of order ¢ which admits B
and is not centralized by 8. Let 8 = 8n C&,), so that |B: B| = 2.
Let O, = 9Q,/9, where Q,=9Q, and let Q be a generator for Q,.
Then $°< 0,(9QV)=ITSS. Suppose LS S. Then

DB = (0,(92B), B, BH <SS,

so that 0, &&. Hence, [T, Q]S B N O, S 9, against our choice of
Qo So B2LS. By Lemma 13.41, we get that B is of type (2,2%)
where b < 2. Since |B:%8,| =4, and since Z(T)< 0,(9), it follows
that %, = 1, so that |8| = 2°. Hence, b = 2. By Lemma 13.42 (b), (c),
B is a four-group.

On the other hand, B/X, is faithfully represented on £, so we
can choose &, above, with additional property that 2,(8) does not
centralize .. In this case, ¥ is necessarily cyclic, against Lemma
13.42 (c). We conclude that |B:%,| = 2.

Recall that Ve 8B — %,. Choose Q€ Qf such that §V inverts HQ.
Hence, Q¢ S, so that B°N S = X%¢ is of index 2 in B?. By Lemma
13.42, we get that L is of type (2, 2% with b < 2.

Case 1. b=1.

In this case, [B,T]<=X,, a group of order 2. Since B does not
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centralize 9, we get [, ] = X, so that X, = Z(T), the equality holding
since by construction, Z(X)= V. If X, D{Y), then V centralizes
O = 9/D(9), against BZ 9. Hence, X, £ D(9). Since X, is the only
minimal normal subgroup of T, we get D) = 1.

Since V centralizes, a hypsrplane of 9, and since V also inverts
HL/ODR), it follows that |[Q]=38,[2:9]|=2,T = HV ). Since
X, = Z(%), it follows that < is dihedral of order 2%, against 2¢ z,.

Case 2. b =2, and © is not elementary.

Let $.=D®)+1, and let ¥, =9, NV = H, N X,. Since HN
Z(I) =V, we get X, = 1. If ¥, = %, then we get that [D, V]S HN
B =% =% DY), against Ve 9. Hence, |X,| = 2, since %, is a four-
group and 1 C X, CX,.

Let ©, = [, VID(&)/D(9) S %.D(9)/D(H), so that §, is of order 2.
Since V centralizes a hyperplane of $ and V inverts $Q/QD(Q), we
again get |Q] = 3,% = H<KV).

Let §, =[9, Q]. Since N = HYN(Q), we get O, <{N. Let 9, =
Cy(Q), so that $ = 9.9, and 9, N . S D(D,).

First, suppose , is not elementary. In this case, we get D($,) N
B =X, of order 2, and V centralizes a hyperplane of 9,/D{9,). The
only possibility is that ©, is a quaternion group. Hence, X, = D{9,)<]I,
against C(¥,) = &.

We may therefore assume that §, is elementary. Let §, = $,N
C(91). Then Ny(9y) 2<{Ds, O, M)y = N. If §, # 1, then $, NV =+ 1,
so that QS C(V) =& for some V, in T, This is not the case, so
9, = 1. If $, is a minimal normal subgroup of N, then $, centralizes
D1, 80 O, = O, =1 and T is dihedral of order 2°. This is not the case
since $ is not elementary. Hence, $, is not a minimal normal sub-
group of M.

Since [9,, V]=¥,, it follows that [9,]| = 2!, §, = X, X X¢, where
Q is a generator for Q. Since , = 1, it follows that |9, < 2. Since,
9 is not elementary, we get |9,| = 2. Hence, |T|=2° Let 9,29, D1
be a composition series for §, as N-module. Thus, [, $.] = $.. By
Hypothesis 13.3 (¢), we have T &. Let & = IR, where R is a S,-
subgroup of &. Suppose T <]S. Since UV is of type (2,4), R centralizes
V. Since R is faithfully represented on T/T', R is also faithfully
represented on T/T'V. By the preceding paragraph, T’V 2(Y, $.),
a group of order 2'. Hence, |T'V| = 2¢, and T/T'V is a four-group.
Hence, |R|=38. Since R centralizes BV and normalizes T'V, R cen-
tralizes 'V. Thus, TV = C;(R). Let T, = [T, R] <{Z. Thus, I, is
a quaternion group, and T = T T, where T, = C,(N) = V. Hence,
TNCE) 2B, Ty, since T,N L, = I is of order 2. Hence, | A4,(B)| = 2.
This is not the case, since C; (V) =%, and |9,| = 2!, Hence, T 4 &.
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Let & = 0,(®), so that L= R. Since R centralizes B and R is
faithfully represented on &, we get |®| = 2°, |[R| = 3. Let & = [R], R].
Since every normal abelian subgroup of & is generated by 2 elements,
it follows that &, is a quaternion group. Let R, = Cy(R), so that
& =88, & NEK = K. Hence, & = B, since BS C,(R) = K, and since
[B| = R ]| =2° Since & =B, and &, centralizes &, we get | 44(B) | = 2.
This is not the case, since C; (V) = ¥%,, and |9,| = 2.

Case 3. b =2 and  is elementary.

We will show that |Q]| =8 or 5. Namely, [, B]=X, so ¢ =3
or 5. Hence, it suffices to show that |Q| =q. Suppose Q is ele-
mentary. Then V inverts $Q/9, so if Qe QF, C4(Q) admits V. Since
QNS =1, it follows that [Cy(Q), V]IS C,(Q@ NV =1. If Q]| =4,
we get that § = (C,(Q)| Qe Q¥ = C(V), against V¢ H. Hence, if Q
is elementary, then |Q| = ¢q. Suppose Q is not elementary, so that
Q is extra special of order ¢°. Since LB centralizes HQ'/9, it follows
that Q' normalizes [9, B] = X,. Hence, Q'=S, since B is a T. 1. set
in @. Since B is of type (2,4), Q' centralizes B, in particular cen-
tralizes X,.

Let ©, = [9, Q']. Since Q'+ 1, §,+ 1. Since X,& C(Q’), we get
9. N %, = 1. Hence, H, N Z(T) =1, since Z(T)=B. This is impossible
since 9, <]ZT. We conclude that |Q| =3 or 5.

Since Cy(Q) <IN, and since Cy(L) N L =1, it follows that Cy(V) = 1.
Since [B, $]=B, and B, is a four-group, it follows that |H| = 2%
Hence, |$|=2° with 5<a<6. If a =5 we get €< &, since
|T:B| = 4 and a S,-subgroup &, of & is represented faithfully on
0,(®). But 9 is the only subgroup of £ of its isomorphism type, so
9 <! S. This is impossible, by Hypothesis 13.3(c), so we get a = 6.
Thus, |Q] =5, and /9 is cyclic of order 4.

Suppose S 0,(S). Since $ is the only subgroup of T of its
isomorphism class, we get § <] S, against Hypothesis 13.3 (¢c). Thus,
O Z 0,(3). This implies that |0.(8)| = 2°. Let &, be a S,-subgroup
of &, so that |&, | =3. Let J be an element of § — 0,(5). We may
assume that J inverts a generator S of &,. Thus, £, = [0,(©), &,]
admits J. Since [T, J]EZ, N 9, it follows that T, is not a quaternion
group. Since [T,: T, N C(S,)| < 4, it follows that &, is a four-group.
This is impossible, since ¥, <] &, and since &, centralizes T2 Z(T).
The proof is complete.

Let & = 0,(&), and let § = K N C(B). Since B is a normal abelian
subgroup of & of maximal order, it follows that ¥ = Z(9). Let ¢ be
the class of nilpotency of . If ¢ > 2, then C,_,(9) is abelian, so that
BC,_,(P) is a normal abelian subgroup of & which contains L properly.
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This is impossible by maximality of B, so ¢ < 2. Let &, be a S,-
subgroup of &.

LEMMA 13.45.
(a) /B is elementary.
(b) &, 1s faithfully represented on $.

Proof. Since ¢ = 2, /% is abelian of typs (2%, +++,2%), a, =< a, <
oo Za,. Supposea, =a = 2. Let §, = 0 (OmodB¥) >V, If H, H, e
9, then

[lea——l’ sza—I] — [lea, sza~2] — 1 ,

since H*eB. Thus, 9, is abelian, against the maximality of 2.
This establishes (a).

Let 8 = © - Ci(9), so that & <{&. Thus, 0.(8) S 0,(©) = & Hence,
9 is the S,-subgroup of &. Thus, & = § x 0,(8), since 4,(9) = I(D).
Since 2¢ex,, 0,,(3) =1, so 0,(8) = 1, establishing (b).

LEMMA 13.46. Suppose B H, C H and [D: D.| = 2. Then every
wmvolution of Cs(9.) s contained in §.

Proof. Suppose X is an involution of C.($,) — & Then & con-
tains an element Q of odd prime order which is inverted by X, by
Lemma 5.36. Let © =<Q, X), 8 = HD. Let H* = [9,<Q}], $F =
C Q). Thus, * and HF admit D, and B HF. Since Q) is repre-
sented faithfully on ©, we get $* ¢ 1. Thus, * N H, is of index 2
in $*, asis §* N 92 Since (X, X9 = D centralizes $* N H, N 9, it
follows that @ centralizes a subgroup of $* of index 4. Since @ has
no non identity fixed points on */D(H*), it follows that £* is either
a four-group or a quaternion group. If $* is quaternion, then Cu(X)
is of order 2, as is well known. Hence, $* is a four-group. On the
other hand, $* <19, so 9 = O* x O}, which gives D* = Z(9) = L,
against BLE HF. The proof is complete.

The next easy lemma is important, and perhaps will admit of
interesting generalization in later work, since it involves the explicit
construction of non solvable local subgroups.

LevMMmA 13.47. If Ge® — &, then one of the following holds:
(a) BE 95
(b) BFLO.

Proof. Suppose false. Let 9 = (B, BE>. Thus, B, <9, B <19,
since DS H N H° Since B is a T.1. set in &, we get I = B, x B,
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an elementary group of order 2‘. Since the normal closure of 9 in &
is a subgroup of $, Hypothesis 13.3 (¢) implies that ° is non abelian.
Choose S in & such that <9, 9°> is non abelian.

Since D(Q) =T = Z(9), it follows that H'=B, = 2,(B). Thus,
2 <1<Y, 95> and P’ stabilizes the chain :P>2>B,>1. Choose Ae
BI* <= Y. Suppose C(4) N BE = 1. Then A € &°, by Hypothesis 13.1(d).
Hence, [Bf, A]SBF N B, =1, so that A centralizes 9. If B =B,
then GSe N(@B,) = &, so that Ge&. This is not the case, so BN
LB, = 1. This implies that BFS centralizes . Since Y5 = B x B,
we get that <9, 95> is abelian, against our construction. Hence,
CANBS =1 for all AecBi¥. Let B = Ay(&) 2 AB(Z).

Similarly, let €* be the chain Y>85 51. We can choose S* in
&% such that (9, 9% is not abelian. Hence, ¥;* stabilizes & * and
does not centralize 9. It follows that A4(¥) is non solvable. This
contradiction completes the proof.

LeEMMA 13.48. Suppose Ge® and the following hold:
(a) VNS =1
(b) BELEG.

Then B = B,.

Proof. Let X=2°N&, so that ¥ = 1. Suppose XeX* and
BNCX)|=4. Since CX)=6% we get BTN CX)=S&C Since
BN CX)| =4, we can choose V in L N C(X) N C(BS)*. Hence, BF =
C(V)< &, against (b). Hence, |X] = 2 and |Cy(X)| = 2. This implies
that BX is of maximal class, forcing B = LB,.

LEMMA 13.49. Assume that Ge® — & and the following hold:

(a) BISZT.

(b) BENY =%, is of order 2.

(c) &, =C;X) is of index 2 in .

(d) The normal closure of B in T is abelian.
Set & = 0,,(8)/0,(), B¢ =X, x X, where ¥, = <X,> is of order 2.
Then the following hold:

(i) If R s any subgroup of L imverted by X, then [&| =1

or 3.
(ii) If Q is any non identity element of & of odd order which

is tnverted by X, then [, {Q>] = H* contains X, and is the central
product of 2 quaternion groups. Furthermore, = H*Cy(9*), and
C:(9%) & C(TY).

(iii) B = T,

Proof. Let @ and $* be as above. Let £} = $*N $,. Since
C(X) =% we get [9F, X]=HNTBF =%,. Since {Q) =L has no
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non identity fixed points on $*/D{©*), it follows that £*/D($*) is a
free F,{X>-module. Let ¢ = [$*, X]. By (d), € is elementary, and
by the preceding remark, we get $* = (§, G, since (E, E¢> covers
O*/D(D¥).

First, suppose & is of order 2. In this case, |H*: D(OH*)| = 4,
and since $* is generated by involutions, we get that * is a four-
group. Since * = [9, V] <19, we get H* = Z(H) = B. On the other
hand, B¥L = C(X,) = &% so that [B¢ B] = 1, by Lemma 13.41 applied to
&% Thus, X, centralizes ¥, so Q also centralizes B. This contradic-
tion show that |€| = 4. In particalar, since [9}, X|]S X, we get
that |9*: 97| = 2, and [9F, X|] = X,. Hence, $* contains Z%,.

Let € =G N9*. If |G E | L2, then (9% 9| = 4, against our
previous argument. Hence, |E: € | = 4. Let € = §, x &, where X, €
@,; €, is available since X, ¢ $*" and X, e @, while € is elementary.

Choose He * — $F. Thus, {[H, X|], X,y covers /€, and so
i&,| = 4. Hence, |9*: D(©*)| = 24, since (§,, €2 = $*. Since } c H*,
it follows that ©* is non abelian. Let § be a subgroup of $*' of
index 2. Then €%/% is elementary of order 8, and so $*/F is the
central product of 2 quaternion groups. Hence, Aut (9*/5F) is a 2, 3-
group whose S,-subgroups are elementary, and so @ has order 3.

Since @ has no fixed points on * — $*', it follows that for each
He $*, H-H°- H® ¢ *'. This implies that for each involution I of
O I, Il =1. Let G, = <(X) x (Y. Then $* = (€, € and

[Xo, XOQ] = [Yo, YOQ] = [XoYo, (XOYO)Q] =1,

so that & = ([X,, Y¢]> is of order 2, so that ¥ = 1.

Since BN H* = ', it follows that © stabilizes H* D H* 1.
Hence, C,(Q) centralizes $*, and Cy(Q) = C;(D*), $ = $*C,(9*). Since
C(9*) S C(X,)) =%, we get [Cy(D*), Bl =X, N C(H*) = 1. This estab-
lishes (ii).

Set X = X¢. Thus, @ normalizes (X,, X¢ $*>, an elementary
group of order 8. Since @ does not centralize (X,, X, §*">, it follows
that [X|, X{] # 1. Thus, Xfe C(X)E6&% but VELES, this last
relation holding since [B¢, X;*] & B, while BF = B¢, this final inequality
holding since X, inverts @. By Lemma 13.48 with &%’ in the role of
& and our present G in the role of G, we get B = B,; so (iii) holds.

It remains to prove (i). Since @ has order 3, it follows that &,
is an elementary 3-group. Since X, inverts %, it follows that & =
N0,(©)/0,(&), where U is a 3-group inverted by X,. We assume
without loss of generality that @e 2. Thus, * admits . Since
C..(X) is elementary of order 2°, X, interchanges the 2 quaternion
subgroups of $*. If || =3’ we can choose A in U such that
C{A) N $* is a quaternion group. Since C(A) N * admits X,, we have
a contradiction. Thus, [2] = 3, and (i) holds.
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LEMMA 13.50. Assume that Ge® — & and the following hold:
(a) 9°NZ is of indexr 2 in HC.
(b) BE<X.
(¢) BENH =%, is of order 2.
(d) 9, = CyZ%,) is of index 2 in 9.
(e) The normal closure of B in T is abelian.
Set R=9°NET, R =RNK. Then
(i) R, <R, and R/R, contains no abelian subgroup of order 2°.
(i) 8 = 0,,(®) contains no elementary subgroup of order 3.

Proof. Since & <|S, so also R, <]R. Suppose (i) is false. For
each subset &, of &, let S, = S&/R. Thus, R and R/R, are incident,
so R contains a subgroup R, DR, such that R, is abelian of order 2°.

Since the hypotheses of this lemma are stronger than those of
Lemma 13.49, we get B = B,. Hence, § is of exponent 4, so R is of
exponent at most 4. Hence, R, is either elementary or of type (2, 4).
We assume without loss of generality that X = B <R, This assump-
tion is permissible, since X is a central subgroup of R of order 4.
Let R, = Q,(R, mod R,), so that R, 2 2,(R,) oX,. Here we have written
X =%, X %,, where %X, = (X,) is of order 2, and %, is given in (c).

Let 8, = F(&mod 0,(®)). By Lemma 13.49, [&,, £.] is a 3-group.
We first show that [&, R,] is a 3-group. Suppose false. Let Q be a
subgroup of €, of order 3 such that £ admits R, and such that %,
does not centralize Q. We assume without loss of generality that
X, inverts a generator @ of Q.

Let 9* =[9, ], so that by Lemma 13.49, $* is the central
product of 2 quaternion groups. Since &, is nilpotent C,(Q) contains
a S, -subgroup ® of &. Hence, D centralizes $*, since Aut (*)
is a 2, 3-group. Since X, $*, we ge DS S% so that [R, D= HN
2, S R. Hence, [J, R,] is a 3-group.

We next show that if &, is a S,-subgroup of 2,, then

FEN() #= D .

Suppose false. Then Aut (2;) does not contain any non cyclic abelian
subgroup of order 8, against the fact that R, acts faithfully on 2.
Hence, &% 4;(%) # @. In particular, Hypothesis 13.1 is satisfied.

We next observe that since (R,, &) is supersolvable, &, contains
an elementary subgroup 9 of order 38® such that ¥ admits R, and
such that R, acts faithfully on ¥. We may assume that X, inverts
the element @ of 9! Hence, H* = [, <@>] admits A, so Cy(H*) # 1.
Choose Ae U N C(H*). Since X, € H*, we get Ae &% Since C(4) =
C.(4) e #Z*(®), it follows that &,-subgroups of & N &° are non cyclic.
This violates Theorem 13.1 (b)(ii) with & in the role of M. The proof
of (i) is complete.
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Suppose ¥ contains an elementary subgroup of order 3. Since
2 < &, 8 contains a S;-subgroup P which is permutable with £. Thus,
X, normalizes . By Lemma 13.49, X, centralizes a S,-subgroup of
Q, so X, does not centralize . Hence, P contains an elementary
subgroup € of order 3° such that X, normalizes € and X, does not
centralize &. Let 8, = KCE(X,)>. We assume without loss of gener-
ality that X, inverts Qe &. Let $* = [9, (@>]. Thus, <, X;)> nor-
malizes $*. By Lemma 13.49, Cy(9*) = G, = 1. Since X,c H*, we
get = &°. Since C(E,) 2€, we get Co(€,) € _Z*(®). Hence, C:e(E)=S.
Hence, S;-subgroups of & N &¢ are non cyclic, against Theorem 13.1
(b)(ii). The proof is complete.

LeEMMA 13.51. Assume the hypotheses of Lemma 13.50 hold. Then
the following hold:

(a) [, %] is of order 3.

(b) R/R, is elementary of order 2'*°, where e = 0 or 1.

(c) 9 contains a subgroup H* such that * is the central pro-
duct of 2 quaternion groups, § = D*Cy(H*), and |Cx(H*)| < 24

(d) $nNH° is elementary and {8, $ N % is of index at most
2% in 9.

Proof. The difficult step is to show that if Q is a non abelian
subgroup of 0,,(&) of order 3* and exponent 3, and X, normalizes &Q,
then [Q, %] S R. Suppose this assertion is false. Let Q = {Q|QeQ,
X, inverts 8Q}, and let 0, ={Q[Qe Q, [X,, Q] &}. Thus, QN Q= @.
Since © is non abelian, Q, = 1. Since [Q, X||Z &, QC O, and so
|Qet = 3. If Q, + L, then Q* = [Q, X|]® N Q is elementary of order
32 and X, inverts Q*R/RK, against Lemma 13.49 (i). Hence, Q, = Q,
and X, inverts 8Q/RQ).

Let & =[9, Q]=I[K, L], the second equality holding since |[&: §| = 2.
Let § = $Q%,, so that § <, Q <, and § = 0,). Let & be
the set of subgroups of ¥ of order 3 which are inverted by X,. We
will show that & contains elements Q', Q? such that (Q! Q% is a
S,-subgroup of ¥. Suppose this too is false.

For each %e &, let () = [§, Al. By Lemma 13.49, H(2) is the
central product of 2 quaternion groups. Since X, inverts $Q/8LY, it
follows that if 90, 9, are elements of & whose images in ¥/H are
distinet, then (2, A,> contains a S,-subgroup of F. Hence,

S, S = 9,
since (L), DY I H and (WU, W) centralizes H/<HAL), HA)).

Hence,  is the product of 4 or fewer quaternion groups. On the
other hand, (U, contains [D, X,], by Lemma 18.49, and [9, %] is
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elementary of order 2. Hence, [H(%)N PEL)| = 2%, so that || <
2" = 2°+3, Since Q is faithfully represented on $H/D(®), it follows
that § is extra special of order 2.

Choose a fixed element 2 of 7 and choose notation so that 2 c Q.
Let § = §(2)-B, where B =H N 0(55(91)). Thus, B is non abelian of
order 8. Let ® = N; (L), where §, = H%,. Thus, |[D|=42and HND= &
is of order 2. Choose De® — §. Then D = X,H with He $. Hence,

HPXAXH=A"<Q,

so that He B. Now C,(2) = % x L/, so L’ normalizes B = H N C).
Since £’ has no non trivial fixed points on §/D(®), it follows that
B is a quaternion group. By Lemma 13.49, X, centralizes B. Let @
be a generator for Q. We will show that [X,, Q]e®B. Namely,
5&’/@ is a central factor of %, so D centralizes @, and X,QX, = QH,
with H, e 65 Since D = X,H, we get Q = H'QH,H, or equivalently,
H, = Q*HQH™. Since He®B, and Q normalizes B, we get H,ecWB.
Hence, & = BQ/(X,> is a group. Thus,

BXYy =B xE=B-C;®B) 5.

Since B’ x {X,) = 2,(BLX,)), it follows that @ centralizes X,. Hence,
Q@ centralizes H, so He 5’, which gives X, €®. We have therefore
succeeded in showing that X, lies in a systemizer of .

Since 'S C(X)), it follows that Q' normalizes BS. Hence, Qf
centralizes Bf since L stabilizes X D%, D 1. This is impossible, since
X, is a non central element of $ and $ N C(Q') = Z($). This estab-
lishes the first reduction of the proof.

We turn to (a). Let £ =[%,%]® and suppose [{,|== 3. “We
already know that |Z,| is a power of 3, so suppose |2,| > 3. By Lemma
13.49, &, is non abelian. Let &, be a subgroup of ¥, such that £,>
C5 (X)), | &, C;(X)| =3 Let 2 =1, %], so that |Q: DQ,)| = 3¢,
and X, centralizes D(). By Lemma 13.49, &, is non abelian, so &,
is of exponent 3 and order 3% against the first part of the proof.
This establishes (a).

Since DR) S % = B, it follows that DR)=X,.. By (a), £, is not
a square in R, so DR) =1. By Lemma 13.50, (b) follows.

We let © = <(Q) be a subgroup of £, of order 3 inverted by X,,
and we define $* = [, Q). By Lemma 13.49, § = £*C,(9*), so it suf-
fices to show that |Cy(D*)| < 2'. Let $F = Cy(9*). Thus, Z(D}) =
6 = Z(9) is of order 4. By (b), we have |R,| = |H|-27%° = |H]|-27.
Let R, = Gy (B) =R, N Y, so that R, = [H[-27°. Now DR)ESBN
B¢ =1, and %, centralizes R,, while R, %) =R, X X,. Hence, H°
contains an elementary subgroup of index at most 8, so $ contains
an elementary subgroup & with |9:¢| < 8, B E. Since H* is extra



NONSOLVABLE FINITE GROUPS 563

special of order 2°, we get that $*F is of index at most 2in §. Let
8 = 9%, so that $*E/3 is an elementary subgroup of $/8 of index
at most 2. First, suppose $*CE = H. In this case, D(O) = 3, so that
9 = § x 8., where |8,]= 2, 8. B. Since Z(H) =BV, we get 9 is extra
special, so the width of 35 is at most 3, since ¢ exists. The proof
is complete in this case. We may assume that $*¢ < . This implies
that |(9* N E| = 8§, since [O*| =2° and [H: E| < 8. Hence, $* NCc
L A7 (H*). Hence, ES(9* N E)HF, so that [H7: OF NE| < 2; the
inequality holding since |9: (9* N &)HF| = 4. Suppose |Hi| = 2° > 2%,
Since Z(9F) = B, and since H; stabilizes the chain H NEDODV D1,
and since |9 OF N E| = 2, we get that b = 5, and that 9 contains
exactly 1 elementary subgroup of order 2%, namely, £ N &. Hence,
|&] = 2°, every elementary subgroup of £ of order 2° is contained in
H*E, and H*E is generated by such subgroups. Hence, 9*E char
9, against m(Z(H*E)) = 4. The proof is complete.

LEMMA 13.52. The hypotheses of Lemma 13.50 are not satisfied.

Proof. Suppose false. Let L = {@> be a subgroup of ¥, of order
3 inverted by X,, and let B be a S,-subgroup of ¢, which contains
Q. By Lemma 13.51, [3, %] = £, and so & is a direct factor of
B = Q. Hence, P =Q x B, for a suitable subgroup B, of L. Since
B has no elementary subgroup of order 3% a S,-subgroup of B, is
cyclic.

Let $* =[9,Q], and let B be the S,-subgroup of P. Since
Aut (9*) is a 2, 3-group, B centralizes $*. Since |Cy(H*)| < 2* and
since L S C;(H*), it follows that B centralizes Cy(H*). Hence, B cen-
tralizes § = H*Cy(H*). Since |R: | < 2, B centralizes K, so B =1,
as 0,(©) = 1.

Since a S;-subgroup of Aut (9*) is elementary of order 32, T )
centralizes ©* and since |Cy(D*)| = 2¢, O'(P) also centralizes C,(9H*),
hence centralizes  and &, so that 0"(B) = 1. Hence, P is elementary
of order 3 or 3%

First, suppose |3| = 3. By definition of ¥, and by 0.3.3, we get
S =8X,. Let =R, N Y so that [Rp R, | 2. Since DAR)=SXEN
B =1, it follows that (RN, %> is an elementary subgroup of £ of
index 2'*°, where 2° = |, RN,|. Since * is extra special of order 2°,
we get a = 1. Thus, § has an elementary subgroup & of index 4,
so = 9*C. This implies that C,(9*) is elementary, so Cy($*) = L,
since T = Z(Cy(H*)). Let W = C(Q), so that W is dihedral of order
8and & = YW, H N W = L. Since W admits X, and X, centralizes
B, it follows that [T, X]S Z() = $*'. Choose WeB — B with
W2 =1. If W induces an inner automorphism of $*, then I cen-
tralizes £*, since $* N C(W) admits Q. But in this case, <B, X, X&
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is a normal elementary subgroup of & of order 16. Hence, W does
not induce an inner automorphism of *. Let

O ={H|[W, H]e %, He "} .

Since & = 9 - R,, it follows that X, . Thus, §F is not a quater-
nion group, and §; admits Q. The only possibility is that $F is ele-
mentary of order 8. Thus, § <&, again a contradiction.

It remains to treat the case |PB| = 3% We first show that [D, L] =
$*. Suppose false. Set 9} = C,(9*), 95 = [DF, P], so that HF =1,

FS9F. Since [B,P] =1, BS9F, |97 B| <4, and Z(9)) =B, it
follows that §;F is a quaternion group. If = $} x $*, then 2,(9) =
9F x O*, so that  has no elementary subgroup of index 8. If
D+ DF x *, then HFH* <9, so that H7H* is the central product
of 3 quaternion groups, and $ = $;9* x 8, for some subgroup 3 of
B of order 2. Again, we see that § has no elementary subgroup of
index 8. Thus, Lemma 13.51 (d) yields a contradiction.

Now & = & - No(B), and since $* = [, B] = [], B, we get $*<]S.
Since $*P permutes transitively the non central involutions of $*,
it follows that <9*', X,)> is normal in some S;-subgroup T* of &, with
X IT*. Thus, T* = H* - C(X,). Thus, [T*, X,] S §*, since [C:.(Xy), .S
%y, due to Cu(X,) =£&° Thus, X, is a central subgroup of T* of order
2. Hence, O admits £*. This implies that &* is elementary of order
20 with b £ 2, which in turn implies that & = T*B. Hence, D(T*) = R,
and since D(T*) obviously centralizes B, we even get D(T*) < §.

We next show that L is weakly closed in §. For suppose Ye
S — & and B H. Let A, A4, A; be the involutions of B¥. Thus,
A; = A, A, where A, € 9%, A, € Cx(9*). Since [Cy(4,), B']=B' NBY=1,
we get Cy(A;) = Cy(BY), 1 =1,2,3. Since H* is extra special, it fol-
lows that $* < Cy(B¥), that is, B < C,(H*). Since |C4,(9*)| < 16, we
C.(9*) =B x B, against Z(Cy(H*)) = B. 8o B is weakly closed in H.

Let € be a S,-subgroup of &¢ which contains a S,-subgroup of
Co(X). Thus, 8cE. If B DX), we get B $°, since D) < §°.
Hence, B = B, since B¢ is weakly closed in H% This is absurd, so
B D®). In particular, B L D(Cy(%X,)). Now Cy(¥X,) is the direct pro-
duct of (X;> and a dihedral group of order 8. Hence, $* < C..(X))'".
This implies that $* = D(Cy(X,)). Let §F = Cy(H*) C Ce(X,). Thus,
DO = H*. Hence, ¥ = 8 x 5, where |3 =2, 8 =18 x $*, and
D(HF) = H*'. Hence, Y = *9F x 3. Since Z(9) = B, $*9;F is extra
special of width 2 or 3.

Since $* =[9, B], we get [®, B] = [®, T]. Let T, = N;(P), so
that & = $*PL,. We can thus choose S, in ¥, such that X, = H*S,
with H* e §*. Since Q <] Ns(P), it follows that both X, and S, nor-
malize Q. Hence, H*¢ * N N(Q) = $*'. Hence, X, normalizes PB.
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Let P = O x O, where 2y = Cy(X,)). Thus, Q, & C(X,)=B%, so Q,
centralizes B¢ Hence, X,€ C.(Q;). This is impossible, since the
centralizer in * of every non identity element of ¥ is contained in
a quaternion subgroup of $*. The proof is complete.

LEMMA 13.53. ZTe _Z*(®).

Proof. Suppose false, and T cNe &< (®), NS, We assume
without loss of generality that if TE&N, <N, then N, =S. Hence,
N = TLX, where Q is a ¢g-group for some odd prime gq.

By Lemma 13.44, LS 0,(N) = N,, say. Since N, ST &S, it fol-
lows from Lemma 13.41 that LB¥ is abelian. Thus, for each G in 3N,
the normal closure of LY in T is abelian.

By minimality of 3, 9.0 <]N, and N,Q/N.D(Q) is a chief factor
of N. Suppose Y =N,. By Lemma 13.45(b), we get C(H) = Z(9) = T.
Hence, Z(N) =B. By Lemma 13.40, B is a T.1. set in &, so that
N<&. This is not the case, and so YL N,. Since H <]ZT, we get
RO = N[Q, §], and since D(Q) =S, we get [DQ), DISNDR) N O <
.. By Lemma 0.8.7, D(Q) S Z(L), and so L is of exponent ¢.

Since $ NN, 2B, and since H/BV is elementary, it follows that
O/, = H/O NN, = H/B/H N H./B is elementary. Hence, O contains
a subgroup Q, of order ¢ such that £ normalizes 3.Q, and $ does
not centralize 94,Q,/M,. Let & = NQ,H, &, = 0,(¥), $, = $ N 8. Thus,
[9: 9.0 =2, and Q, = (@), with @* = 1.

Let B = 2,(Z(8)) <{¥ Then W2,(Z(T)), so that WNV = 1.
Hence, L2, does not centralize T. Let B, = Cx(LX,). Suppose T, = 1.
Then W, <| &, and so W, N C(©) = 1. But Z(9H) = L = C(9), against
Q. Z&. Hence, Cx(Q) = 1.

Suppose |T| > 4. Let &, = £,9, &, = &,/ = $/9,, so that | &,| = 2.
Since T is a free F,Q-module, we get | N C(L,)| = 4. Hence, BN
C(®,) = 2,(B) and |W| = 2*. By Lemma 13.46, we get W= H. Thus,
B H, B = 9, or equivalently, BYS §, B, < H°. This violates Lemma
13.47. Hence, |W| = 4,q = 3.

By Lemma 13.47, either BYZL H or B, Z H Replacing Q by @
if necessary, we may assume that B¢ Z 9.

We now let @ play the role of G in Lemma 18.50, and proceed
to verify the hypotheses of that lemma. TFirst, §, is of index 2 in
9, and ,=8,. Hence, $!=2, =%, If 2=, then &, H, 99 is a
subgroup of ¥, against <%, 9, 9> = &. Hence, (a) is satisfied. Since
LS 0,(N), we get VLS 0,N) =2, so (b) holds. By our construction,
BENH VY. By Lemma 13.46, W= H. Since Cyx(P) = BN W is of
order 2, we get (LZLL,N WS P, so that (¢) holds. By construction,
(d) holds, and we have shown that (e) holds, in the first part of the
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proof. Now we have a contradiction with Lemma 13.52, completing
the proof.

THEOREM 13.4. Hypothesis 18.3 is not satisfied.

Proof. Suppose false. By Lemma 13.53, £e Z*(®). Let § be
the subgroup given in Lemma 13.2. Let , =3 N 9, and let 9, be
a S,-subgroup of 9, so that § = 9,9..

Since 0,(9) = 1, it follows that Z(T) = Z(0,(9)). Hence, 9, con-
tains every element of %/ (%), so 9, contains B,. Let

A = V(cely (By); ©.) = 1.

Thus, % 4 9, since 9, is a S,-subgroup of N(B) for every non identity
normal subgroup B of 9.

We assume without loss of generality that if §, =9, 9, then
. =S. Thus, with 9, = 0,9), we get that 9,Q/9.D(Q) is a chief
factor of  and D(Q) = QN EG.

Choose G in @ such that B =X= 9, XZ H,. Let Q, be a sub-
group of © minimal subject to (a) ¥ normalizes 9,2, (b) [Qy, X1 Z ..
Since %X is elementary, Q, is cyclic. Let €& = $,0,%. Let £, = 0,3),
X, =%N%, sothat |%,| = 2. Let 9 = [2(Z(R,)), O] Since 2,(Z(%)) &
Q2(Z(%,)), it follows that 9 = 1. We assume without loss of generality
that £ = %, X %, %; = <X}, and that X, inverts a generator @ of Q,.
Since X, centralizes 9, we get [9), X,]1=%,. Hence, |9 =4,[9, X\] =
X,. Hence, [, X|] = ¥%,, since &[S C(X)=S° Thus, @ centralizes
2, so Q*c &% Since X, inverts, @?, we get @° = 1. Hence, [, Q] =
[9:, Q] =9, a four-group.

We now look again at §. Let Q, = QN $.[Q, X,]2Q,. Since X,
centralizes a subgroup of ©, of index 2, we get Q,=Q,, so Q, is a
direct factor of Q. Thus, 2,(Z(Q)) is permutable with £, and

DLZ(Q)) £ S -

Hence, O is elementary.

Suppose |Q] = 8°. Then Hypothesis 18.1 is satisfied and &7 (3) &
A*(S). Let M= MQ)=29. Thus, $, is a S,-subgroup of & by
Lemma 13.8(c). Hence, 9, = T, against £e _2*(®). Hence, |Q| = 3°,
with ¢ =1 or 2.

Suppose by way of contradiction that ¢ = 2. Since ¥ admits 2,
we get Q =2, XxQ, where Q,=C,(Y)SCX*,)<S&% Hence, Q,
stabilizes €D%,D51, so Q, centralizes X. Hence, X, & N, () = &,
say.

Since ©.2/9, is a chief factor of §,Q is an irreducible E;-group.
Thus, we can choose T in %, such that QT = Q,. In particular,
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$.X,/9, is not central in §,/9,, so X = B,. Since ¥ may be chosen as
any conjugate of %8B, which lies in §, but not in 9,, we get L, & 9,.
Since a =2, we have Q. =Q, x Qf. Let B = [9,, ] = [D,, Q] X
[9,Q271 =9 x Y7, of order 2. Thus, T does not normalize X. Let
W, = WV < 9. We argue that |W,;: W| < 2. Suppose false. In any
case, W, is abelian. Since W, = W X Cgx (L), it follows that T cen-
tralizes J'(W,) = (V). Hence, B = B,, so that W, = W x V. Let

e = Cy,(Q). Thus, W, =Vand W, N BL=1. Wenowget W, =P x Y" x
B =P XY X BW,. Thus, for each V in B¥, we have V = V,V,W with
V.e9, V,e)", WeB,. If V,=1, then Q, centralizes V, against
QnN&=1. If V,=1, then QF centralizes B, against QNS = 1.
Hence, V; # 1,7 =1,2. Hence, T, = B x P* x W,. This is impossible,
since X, centralizes B x ¥* x BW,. Hence, |W,: W| < 2.

Suppose [, W| = 2. Then W, = W x 3, where 3 = Cx (1) is
of order 2 and is centralized by T,Q = Ny(Q). Since B, = WDB, it
follows that [28,, 9.] = [®B, §.], since W = Y x Y'<= Z(9,). Thus, [BW,, $.]
is a normal subgroup of § of order at most 2, so Q centralizes [T, 9.].
Since W N C(Q) = 1, we get W, = Z(9), 3 Z(D).

Let 8 =<Z) and choose Ve®B — ®W. Let B, = WN B = (V.
Furthermore, let 9 =<Y,, Y,» with Y = Y,. Thus, B = (Y,) X
YD X YTy x {YT>. Hence, WNC(,) = V.Y, Y7Y?. Since B, is
a normal subgroup of §, of order 2, we get V,= Y, Y,Y'Y]. Now
V=ZW with We®®. Let W= W, W,, with W,e9, W,e¥". If
W,=1for i=1or ¢=2, then QNS % 1. Hence, W;#1,7=1,2.
Since [X, V] =1, by Lemma 13.41, we have [X,, W] = 1. Hence,
W, = Y,Y,. Since [X¥",8] =1, we get W, = YTY/. Hence, Z = VV,¢
B, against SN QO = 1. We conclude that L .

Again, let 9 =<Y,, Y,) with Y¥1=Y,. SinceB=W N CX) N CE"),
we get LS Y,Y,, YIY)) =W N CEXE) N CXF). But then this contain-
ment is an equality, since |B| = 4. Hence, Y7Y7 e L. Hence, CH") &
C(YTY!)=®, against O, 2C®"),&NQ =1. Hence, a=1,8=9,
Q= Q.

Suppose BE H,. Then by Lemma 13.41, we get B <] H, N CEX) =
C;, (L) x X,. Hence, BN C; (L) # 1, against QLS. Since BEL 9,, we
may assume that L = X. Choose Ue N,(9,) — 9., with U?c §,. Then
U normalizes B, and also normalizes Cy(B,) = C5(Q) X By, If Cy (By)
is not elementary, then N(D(C; (B))) 2 <1, ), against the maximality
of §,. Hence, C;(Q) is elementary and so is central in $,. If
|Cs, (D) = 4, then C(U) N Cy(Q) # 1, and if Ae C(U) N C; (), then
C(A) 2<U, ). This is impossible, by maximality of 9,, so |C; ()| = 2.
If C; (%) = 1, then §, is dihedral of order 8, against 2 ¢ 7,, and Lemma
13.2(d)(i). Hence, |C; ()| = 2. In this case, $, has precisely 2 ele-
mentary subgroups of order 8, namely, §, and C;,(B,). Since U nor-
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malizes C,(B,), U also normalizes 9,. This contradiction completes
the proof of the theorem.

HyroTHESIS 13.4.

(a) Se Z7(O).

(b) 0,©)=1.

(¢) Every normal abelian subgroup of & is cyclie.

(d) © = 0,(©) has a characteristic abelian subgroup 3 of order 8.

Lemmas 18.54 through 138.57 are proved under Hypothesis 13.4.
X denotes a S,-subgroup of &. We observe that if (a), (b), (c) of
Hypothesis 13.4 hold, then 2,(Z(2)) = 2,(Z(0,(®))), so that T is a S,-
subgroup of & and N(Z) & &S.

LeEMMA 13.54. 3 is a cyclic weakly closed subgroup of S.

Proof. By Hypothesis 13.4 (c), § is of symplectic type, so 3 = {Z)
is cyelic. Suppose Ge® — & and 3° = X = (X) & &, where X = Z°.
Let 9 =9n%X. If Y| > 2, then 2(I) = A(DD)) S AUD®)) = Z*,
so X*=27* GeS. Hence, |9 < 2.

Let © = 9.9,, where §, is either cyclic or of maximal class and
9. is extra special, and [9,, 9. = 1. Let 9. be the unique normal
subgroup of 9, of order 4, and let & = $,9; char . Let & = C,(X?),
so that & c & The containment is proper since C¢ (&) = C4(&), this
equality holding since every chief factor of & between § and & is
central. Let &/R, be a chief factor of & with & S &.

Suppose X* centralizes 8. Then [&, X]S% N & = <X*), so that
X stabilizes & D& N <X*> 21. This implies that X* centralizes &,
against our construction. Hence, X acts faithfully on R,. Choose
Ke& — 8. Let X'KX = KK,, where K, ¢ &. Let XK, X = K,K,.
Thus, X*KX*? = KK,K,K, = KK:K,. Since K,c C(X* = N(¥%), we get
K, ed{X*. If K, =1, then X* centralizes K, so centralizes &,. This
is not the case, so K, = X*. Since D) = 2,(Z(®)), we get Kie
2(Z(®)). Hence, X*KX* = X*KK!X‘X* = KK!X*K?X* = K, against
XN C&) =1. This contradiction completes the proof.

LeMMA 13.55. (Z% = B, is weakly in S.

Proof. Suppose Ge® — & and Y%c S, where Y = Z% Since
Aut (8) is elementary, Y* centralizes 3. Hence, 3= C(Y? = &°.
Hence, 3 = 3% since 3¢ is weakly closed in &¢ This yields Ge&.
The proof is complete.

Let Y=2*1=Y*= 7"

LEMMA 13.56. <I) s weakly closed in Cs(Y).
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Proof. Suppose Ge® — Sand I¢ = JeCy(Y). Then YeC{J) =
&°. Since (Y% is weakly closed in &% we get (Y) =<KY%,6 Ge®&.
The proof is complete.

Levmma 13.57. If J is an involution of Ce(8), then C(J) < @.

Proof. Suppose false. Let
N ={RNe L), 32N, 0,N) =1, NLS}.

Thus, C(J)e +", by Lemma 13.1. Choose 9t e _#" such that | N S|,
is maximal. Let T* be a S,-subgroup of X N &S. Thus, 8= T*. Let
€ = N(E*). By Lemma 13.1, 0,(8) = 1. If Z* is not a S,-subgroup
of N, then RL S, so that e 77, 8N &S|, > (8N N|,. This violates
the choice of N, so T* is a S,-subgroup of N. Since I = (I is
weakly closed in &, we have 9Z0,(0). Hence, 0,0 N Y = I,
But 0, =T*=&, so [0.N), BI=0,N) N 3=<I). This implies that
Z*® centralizes 0,(N), so Z* = Y e 0,M). This contradiction completes
the proof.

THEOREM 13.5. Hypothesis 13.4 is not satisfied.

Proof. Suppose false. By a basic result of Glauberman [16],
there is G in & — & such that I° = JeZ. Let ¢ = Cy(J). Thus, €
normalizes 8 and 8% Let G, = Cy(Z), €, = C,(Y ). Suppose & N & = 1.
Choose Fe E,N Ef. By Lemma 13.56, C(E)S©&. Hence, Y%c@.
Since <Y) is weakly closed in &, we get (Y% = <Y), I = I¢ Hence,
G NE =1. Since DE)=E N €, we get that D) = 1. Since

[Aut (8)| = 4, [Aut YD) =2,

we get |E| < 8. Since 2e€x,, we conclude that |E| = 8.

Let * = Cy(Z). Thus, [9* N CWJ)| = 2, since H* N C(J) is faith-
fully represented on (Y ). Hence, $*{J) is of maximal class. Thus,
9* is either of maximal class or is cyclic. Since Ze Z(9*), we get
that ©* is eyclic. This is not the case, since the width of 9 is at
least 1. The proof is complete.

HyproTHESIS 13.5.

(a) Se 7Z77(Q).

(b) 0,®)=1.

(¢) Every normal abelian subgroup of & is cyelic.

(d) £ = 0,®) contains a characteristic subgroup 3 of order 4.
Lemmas 13.58 through 13.60 are proved under Hypothesis 13.5. Set
8=, 1=2%73,=<I). Let £ be a S,-subgroup of &. Let w be
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the width of . Thus, 9 is the central product of 8 and an extra
special group of width w, by Theorem 13.5. Since 2, we have
w = 2, so that m(9) = 2w + 1 = 5.

LEMMA 13.58. If ©, is a subgroup of O of index 2 which con-
tains 3, then for each Ge S — &, LS.

Proof. Suppose false. Let & = $% & = 9F, X = 3%, J = I¢ = X?,
X = (X).

Case 1. J¢ 9.

Since |&: & | = 2, & contains an extra special subgroup &, of width
w— 1. Thus, & N Y = 1, since J is the only minimal normal sub-
group of &,. Let & = 0,,(®), $* = [9, 8]. Thus, $* is extra special
of width w* < w. By Lemma 5.13, we get w < 2. Hence, w = 2,
since 2e 7,. However, &% is the central product of &, and X and
£X is faithfully represented on 2/9. Let & = 9%, where &, is a
S,-subgroup of & Thus, &, is faithfully represented on $*, an extra
special group of width 2. Thus, |2, = 3,5 or 9. This is impossible,
as KX is isomorphic to a subgroup of Aut (&;).

Case 2. Je 9.

Let 9, = Cy(J), so that [H:9,/=2. Let €E=9N&K. Then
DS I>NLI) =1. Thus, |G| < 2, since 2“*' is an upper bound
for the order of every elementary subgroup of . Let |§| = 2°. Since
&/(J) is elementary, so is /€. Thus, &/ is elementary of order
2wt~ Now R/C = 89/9 = &, and &, is represented faithfully on
R =0,,(8)/9. Set f=2w+1—e. Thus, & contains a subgroup
B=%B, X+ x By, such that |B;| = p;, is a prime, B; admits &,,
1=1=f, and Cj, (B) = 1, and where we have chosen B as an abelian
subgroup of 0,,(S) of odd order, such that B = BH/H, B;:=B, B; =
B:9/9.

Let V = §/9’, so that V is elementary of order 2®*!, Let V =
Ve X V,, where V, = C,(B), V, = [V, B]. Thus, 3/9'SV, s0|V,]| = 2°
with a < 2w.

Since e<w + 1, we get fé w. Let %, = (B, 9, &, and let
AU = A4, (V). Thus, A=A, X -+ X U;, where 2, is dihedral of order
2p;, and we choose notation so that ¥, is the image of <%, K;, )
in U, where K;e&. Let Vi= W. Do W,D++-DW,,=1 be a com-
position series for V, as 2-group. Let Wi= W,/W;,,,t =1,2, +++, 5,
and let A = Cy(W?). Since A, --., N, exhaust all the minimal normal
subgroups of U, we get that 2 = A, ;, for some subset J(¢) of {1, -+, f},
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and where we define U, = <Y;|jeJ)> for all J&A{1, ---, f}. Thus,
each W°® is a free F,f-module, where & is a S,-subgroup of /A"
Hence, | Wi| = 2* for all 4, so that | W,| = 2%, where &k = X;., | .
Since [&'| = 2 for each ¢, it follows that if |&] = 2%, then |&| = 2b,.
Hence, 2w = k= 2> b;. Since >, b, = f = w, we conclude that k =
2w, 2b;, = |&'] for all <. Hence, b, = 1 or 2 for each 4. This implies
that B is a 3, 5-group, and that for each 4, a S;,-subgroup of A/A°
is of order 3 or 15.

We can do a little better, however. Namely, % is not represented
faithfully on any proper submodule of V,, as the inequalities show.
Let %(2) be the S,;-subgroup of AN C(W,), so that W2) = 1. Let
B(2) be the preimage of A(2) in B. Then set V, = $*/$’. Hence,
& = Cp(B(2))[97, B(2)], W, = C(B(2))/O" and [9*, B(2)]/9 is a com-
plement W' to W, in V, = W,. Hence, W, = W' x W, as A-module.
Repeating this argument suitably often implies that V, = W' x W?* x

- X We, 9% = §F --- O, where each £ is extra special, admits
HBR, and W = H¥/9’ is an irreducible U-module. Since | Wi| < 24,
it follows that Aut (97) does not have a subgroup of order 15. Hence,
B is a 3-group, and H is the central product of b; quaternion groups,
1 £1¢<s. By the inequalities, we get B = Cy(B), so that

=239 --- 9.

Case 2a. w = 3.

Since f = w and B is elementary of order 3“, we get ¢(3) = 3.
Hence, & (3)& ~2*(®) and so & = M(B). Also, since e = w + 1,
¢ = & N 9 is an elementary subgroup of § such that 3¢ e & (D).
Suppose Ec & — {I> and Cy(E) is non cyclic. Let § = (&, I>. Thus,
C,(F) is non cyclic for each Fe%’. Since (3= 2*(S), we get
CF)S® for all Fe%. By Case 1 applied to &% we get Ic §°.
Hence, & 9¢, and so 9 =<(P°NCF) | FeFH><=S. Hence, HH¢ is
a 2-subgroup of & whose center is contained in 83N 8% = 1. This is
impossible, so no such E exists.

Again, since f = w, it follows that © is the central product of
3 with quaternion groups {,, --+,Q, such that each 2, admits 3.
Let €, =B N CK,), so that [B:€;| =38,1 <1< w. For each subset
Jof {1, w}, let O, = (8, Q;]ieJ). As J ranges over all the
subsets of {1, ---, w}, the groups {Q, range over all the subgroups of
$ which contain 8 and admit B.

Suppose 4, je{1, -+, w}, i = J. Let J = {¢,7},J =1{1, ---, w} — J".
Then €N Q; = I, as we have shown, since
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is non cyclic and centralizes <,. Thus, for each FEe@, K =
EWJ)E(J’), where E(J)eQ,, E(J') €L, , and E(J’)e 8 if and only if
Eec{I). Thus, the map ¢: E— E(J')3 is a homomorphism of & into
Q,./8 with ker @ = {I>. Since |Q,: 3| = 2' we get |E| < 2°. Since
|| = 2***, we have w = 3 or 4.

We next show that & N8B = 1. Namely,

[G°NB, RISHBNL S P -

Since &, has no non trivial fixed points on $B/9, by construction,
we get S°NB = 1. We may rewrite this equation in the equivalent
form Cy(J) = 1. Hence, we have J = Z“Q.@Q, +++ Q,, where Q;€Q,; —
Iy, 1515 w.

Now B = B9/9 = € x D, where X = X inverts € and centralizes
®. Suppose |€] =9. Let € be a subgrgup of B incident with C.
Thus, X normalizes [9, €] =, and 3D = Q, for some J. Since
[9: 9.1 =2, (9. = Ce(J)) we get |©: Co(X)| = 4. Since [9, €}/D is a
free FXX)>/{J>-module, it follows that |€]| =9, and that © is the
central produet of two quaternion groups. Since w = 38,J¢[9, €.
Hence, [X, C3())]=H N J> =1, so that X centralizes a subgroup of
$ of index 2. This is not the case, so |€] < 3.

Since w = f =3, we get (D[ =9. Let © be a subgroup of B
incident with ©. Thus, (X, 9> <{(X, §, D). Hence, DX, H)) =
(X3 9, [9, X]> is normalized by D. Since [, X]S<KX» = {J), it
follows that | D({(X, $>)| < 8. Hence, DN C(J) = 1, against BN S = 1.
This contradiction shows that this case does not occur.

Case 2b. w < 2.

Here we get w = 2, since 2¢ 7,. Hence, |§| = 2, where, as above,
E=9%9nN8K.

Let & = N.(B). Since S/-subgroups of Aut ($*) are of order 9,
it follows that B is a S,-subgroup of & This implies that & = HT,
since Aut () has no elements of order 15, and by hypothesis, & is
solvable. Thus, $* <] &. Since $* has exactly 2 quaternion subgroups,
it follows that T/ is isomorphic to a subgroup of a dihedral group
of order 8. Since K&/9 = K,/€ is a four-group, T/H is dihedral of
order 4 or 8.

Choose generators B, B, for B such that C,(B;) = Q; is a quater-
nion group, ¢ = 1,2. Suppose Je& 39, Then B; centralizes J, so
B;e &% Hence, [®, B] S 9% against the fact that & has no non
trivial fixed points on $B/H. Hence, J¢ 30, U 39,. Let J = Z°H H,,
where H;€Q,. Thus, H, and H, are both of order 4, so H H, is an
involution. Hence, Z°e<I), and replacing H, by Z°H,, we get that
J = HH, with H;e Q;, — {I).
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Since ££,9/9 is a four-group, & contains an element K, such that
K, inverts $8B/9. The coset €K, is uniquely determined by this con-
dition, since K, lies in a uniquely determined coset of  in OR,. Since
K, inverts $B;, 1= 1,2, it follows that K, normalizes Q,, 7 =1, 2.
We can therefore choose L;eQ,; such that (L, L5 = Q, Since
D) = <{J), we get Kle {J).

Let Y = Z¢ We will show that €Y = CK,. Suppose false. In
this case, Y does not invert $B/9. First, suppose Y normalizes Q.
Since Q, and L, are the only quaternion subgroups of §*, Y normal-
izes Q,. If Y induces an inner automorphism of Q,;, then J = Y?
centralizes Q,. This is not the case, so Y induces outer automor-
phisms of both Q, and Q,. Hence, YK, induces an inner automorphism
of Q, and of Q,, so YK, induces an inner automorphism of 9*, so
YK e %, which gives YK, ¢®. We may therefore assume that Y
does not normalize Q,. Let Q, = (H,, H,,), and set H,, = H],,1 =
1,2, so that Q, = {(H,, Hy,y. Thus, H; = HY = H}. We assume
notation is chosen so that H, = H,,, recalling that J = H,H, with
H.c, — {I>. Hence, H,= HZ', and H) = H/ = H,, while H} =
HY = H3'. Since H,H, e C(J), we get [H,H,, Y] {J), as <Y) < &".
But H; H;'Y 'H,H,Y = I¢{J>. We conclude that €Y = K, so
that Y inverts $B/9.

Since Y inverts B/, it follows that Y normalizes Q, and L,
and Y induces an outer automorphism of each. Hence, we can choose
generators H;, H;, of Q; such that H) = H,, ¢« = 1,2. Hence,

C{Y)=<(H.H,, H. H,»

an abelian group of type (2,4). Since [9,, Y] <J), it follows that
C.\Y)=<H,H, H,H,). Since Y centralizes &, we conclude that
GZ H*. Since H, H, 9, we get

[H11H21, Y] =J = Hﬂlﬂnl Y“1H11H21Y - HZTIHJTIHmsz - HuHmHlezz )

an important equality.

Since Cy(Y) = Z, H,H,,, H,,H,,y, and since {I,J)CE, we get
that F = ZH,,H,,e&. Choose Kc &, — G(Y>. Then K does not cen-
tralize FE, since Z(&) = (Y, I). Hence, [E, K] = J, and so Qf = Q..
Also, however, we conclude that £ normalizes & and psrmutes
€ — I, J) transitively.

Let & = (Cy(E), B, Y> = Cy(E). Now Cy(E) = <(E) x $, where
§ is the central produect of 8 and Q,. We can choose He§ such
that HY inverts B,, since Y inverts (85, B1>/85. Hence, (ﬁ Y)e 5 N
C(B) = (EY x {Z). Let H= E*Z'H;H, so that

(HYy = HIY"'HY = HJ - E*Z'H,H;* = JZ?H HLHL H;
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Hence, ¢ + d is odd, which implies that (HY)*= I. Hence, [ is a
fourth-power in C4(E). Let € be a S,-subgroup of C.(E). We argue
that ) = 0%%). Namely, C.(E) does not contain a S;-subgroup of
&, since 8 = Cy(B). Hence, (B, is a S;-subgroup of C.(F). This
implies that £/% N % = £/ normalizes (9, BY/9. So T/T N is
elementary, from which we get E’)”(‘B“)CQ Oz(T)CO”(@) =<I>, as
required. Since {I) = 6)2(?), we get that € is a S.-subgroup of
C(E) = €, say. Hence, {I)® is elementary, since I€ Z(0,(€)). Since
A (€) permutes transitively & — (I, J), it follows that for each Fe
€ — I, J), I is elementary.

We now exploit the symmetry between & and &° Namely,
. =Cy(J) =&°NH is of index 2in § and H. N Y =C, H$*°N H, =
{I,Jy. By all the above applied with the pair (§,, &%) in the role
of the pair (8, &), we get that {J>" is elementary for all Fe & —
I, Jy. This is not the case, since Q,< {(J>““'. The proof is complete.

LEMMA 13.59. <(I) is weakly closed in 9.

Proof. Suppose Ge® — & and J=Ic 9. Let H,= CyJ) so
that |9: §,| = 2, 9, =&° By Lemma 13.58, we get G'e&. This is
not the case, since Ge® — &.

LemMmA 13.60. T e _Z2*(®).

Proof. Suppose false and N is minimal subject to
TSNe FoF(®), NLS.

Thus, as usual, N = TQ, where Q is a ¢g-group for some odd prime
g. Let N, = 0,(N). We argue that 3=N,. Suppose false. Then
BN, =LK =Z(E) and N,Z is central in T/N,. By minimality of
RN, RLO/NDE) is a chief factor of N, and D) = 2 NS. Thus, 7
inverts N,Q/ND(L) and Z centralizes 9,D(Q)/N,. Since

R WNCZ) <2,

we get that [Q] =3, T = 9,3, W = N, (Q) < [, Q], and [9,, Q] is a
fourgroup. Hence, Z(%) is non cyclic. As this statement is false, we
conclude that 3=N,. Let $, =9 NN, 23, so that H/H, = HN/N,
is elementary. If = ©,, then Z(N)= Z(H) = 3, so that NS,
against our choice of 9. Hence, $,C , and we can choose a sub-
group O, of Q such that (a) |Q,] = ¢, (b) § normalizes N,Q,, (¢)
does not centralize ;Q, /%, Let & = NHP, & = 0,(¥), H. =8 N 9,
so that |9: §,| = 2. Clearly Q,Z S, since [Q, §] is not a 2-group.
Let ©, = (@)>. Then 9=, =%, so by Lemma 13.58, @€&. This
contradiction completes the proof.
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THEOREM 13.6. Hypothesis 13.5 is not satisfied.

Proof. Suppose false. By Lemma 13.60, £e _#*(@). Let § be
the subgroup given in Lemma 13.2. Let £, = 9N<Z. Thus Z®)=
Z(0,(9)), so that 3= 9,. Let T = V{ccly(8); .. By maximality of
9,, we get B 4 9. Hence, there is G in & such that ¥ = 3°< 9,,
X Z 04(9).

We assume without loss of generality that if $, 9,9, then
9. =6. Thus, = $.2, Q is a 3-group, SN LQ = D), and if H, =
0,(9), then 9,2/9,D(Q) is a chief factor of 9.

Let ¥ = (X), and let Q, be a subgroup of Q minimal subject to
(a) Q,Z D), (b) X normalizes .22, (c) X does not centralize 0/,
Let € = 9, Q0%, &, = 0,2) and let T, = 2,(Z(8)) 2 2,(Z(T)). Thus, L,
does not centralize B,. Let T be a minimal normal subgroup of £
which is not centralized by Q, Since £.Q,/2,D{Q,) is a chief factor
of £, it follows that C (W) & D(X)). We argue that X*c ¥,. Suppose
false. Then the minimal polynomial of X on 8 is a multiple of
{(x — 1)), Hence, X does not centralize T N C(X*. But

[X, BN CX) <X,

so X*eW= Y. Hence, X?e &, so Q, is eyclic. Since X*e C(W), we
get [BW, X] = KX?, so that W] = 4, D(Q,) & C(X?). Hence, X cen-
tralizes D(Q,), and X inverts £.D(Q)/8,, so |Q,| = 3. Since X*e Z(),
we get [8;, X] = (X*). Hence, 8, = C, () X BW.

Since T is not of maximal class, C,(Qy) # 1. Suppose B < ..
Then since Q, centralizes U(%,), we get Q, = C(I) = &. Hence, 8 Z 9.,
and we may assume that 83 =%X. Hence, Q, =29,9 = 9.0, 9, =
DKZy. Let 08)N H, = AU, and let L be an involution in Z(H). Thus,
9, is a S,-subgroup of C(L), so C(L) N 0,(8) = $,. Hence, 0,(&) N $, D
{Iy. Buppose 0,(®) N C; (L) # 1. Then 0,(&) N C; (L) N Z(9) contains
an involution L,. Hence, C(L,) N 0,(8)<= $,. Hence, 0,() N C(L,) is
abelian, since

0,(©) N C(Ly) = (0:(&) N C(Lo) N H)<Z> and 0,(&) N C(Lo) N Do

is elementary. This is not the case, since the width of 0,(&) is at
least 2. Hence, 0,(3)NCy (LX) =1. Let U= I°cZ(9,). Thus,
0,(3) N C(U)<S NW), so that 0.6) N C(U)ES 9, and Z¢ 0,(8) N C(U),
since [U, Z] = Z* = 1. Since 0,&) N C; (LX) =1, and since 0,(S) N
C(U) € 9., it follows that 0,(9) N C(U) is a four-group. But m(0,(&)) =
5, 50 |0,(&) N C(U)| = 8. This contradiction completes the proof.

HyroTHESIS 13.6.
(a) ©Se 77(0).
(b) 0,(®) =1, and every normal abelian subgroup of & is cyclic.
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(¢) O0,®) is extra special.

Lemmas 138.61 through 13.69 are proved under Hypothesis 13.6.
Let § = 0,), let w be the width of §, and let T be a S,-subgroup
of & Let & =<I) = Z(9). These equations show that N(I)S S,
so that £ is a S,-subgroup of ®. Let & be the set of non central
involutions of ©. Since 2¢x,, we have w = 2.

LEMMA 13.61. If XeQ and 9, = Cy(X), then C(Q) = Z($,) =
<L, X5.

Proof. Since I¢ §,, we have C(9,) = Cs(9,), so it suffices to show
that C.(H) =S H. Now 9, = (XD x 9,, where §, is extra special, and
Cy(9.) = 9;, where 9, is dihedral of order 8.

Choose Ce C(9,). Then C stabilizes § D 9, D1, so C is a 2-element.
Also, C normalizes Cy(9.) = 9, and C centralizes the four-subgroup
{I, X) of $,. Hence, C induces an inner automorphism of 9;, so C
induces an inner automorphism of £. Since Ci(9) = {I), we have
Ce 9.

LEMMA 13.62. If 9, is any subgroup of index 2 in 9, then 9,
contains every involution of C(9,), and C(D) is a 2-group.

Proof. Since § is extra special, | Z(9,)] = 4. If Z(9, is a four-
group, we are done by Lemma 13.61, so suppose Z(9,) is cyclic. Let
X be an involution of C(9,). Then Xe &, and 9, = Z(9)9,, where
9. is extra special, and X normalizes Cy(9.) = ;. If 9. is a quater-
nion group, then X induces an inner automorphism of §,, so that X
induces an inner automorphism of § and we are done. We may as-
sume that 9, is dihedral and that X induces an outer automorphism
of ;. Hence, X¢ &, so by Lemma 5.36, X inverts an element @
of & of odd prime order. Let £ = {@). Since X centralizes £,, and
19: 9, =2, we get |Q] =3, and [$, Q] =  is a quaternion group.
Thus, X induces an outer automorphism of §, against |$: 9,| = 2.
The proof is complete.

The next lemma is somewhat elaborate, and is the nub of the
matter.

LEmMMA 13.63. Suppose Xel, O, = Co(X) and Ge® — S. Then
ST LS.

Proof. Suppose false. Let & = $7=S. We assume without loss
of generality that & &%T. By Lemma 13.61, C(9,) = (X, I). Set
J = I% so that C(®) = (X% J). Since Ic Z(©), we get I (X J).
Hence, & = <{I) x &,, where &, is extra special of width w — 1.
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Suppose YN & = I). Then HN {, = 1. By Lemma 5.12, w = 2.
Since &, is represented faithfully on 0,,(&)/9, it follows that A44(9)
contains a S,-subgroup of Aut (). It follows that T does not nor-
malize any elementary subgroup of 9 of order 8. On the other hand,
2em, so T contains a normal elementary § of order 8. Let &, =
FNH. If § =D, then F stabilizes $ ©D<I)>>1. This is not the
case since &/9 is represented faithfully on £/9’. Hence, %, is a four-
group. Choose F e — .. If F normalizes each of the two quater-
nion subgroups of §, then since [F, ] = F., F' induces inner automor-
phisms of each, so F' induces an inner automorphism of . This is
not the case, since F ¢ . Hence, § interchanges the 2 quaternion
subgroups of . This implies that |[9, F']| = 8, against [, F'] < F.
This contradiction completes a proof that & N $ > .

Since {J) is the only minimal normal subgroup of &,, and since
1c 8N H <R, we get Je .

Set € =8 nNHP2KI, J). Since &/{J) is elementary, &/€ is also
elementary. Let |G| =2° [R:E| =2/, Since DT> NI) =1,
¢ and &,/€ are both elementary. Since | % &, | = 2, we havee + f = 2w.

Let & = J(©) be the set of all non central involutions I, of §
which are fused to I in &. Thus, JeJI. Suppose L e, I, = I¥,
Ye®. Then C(I) = &' and |9: Ci(I)| = 2. By the preceding argu-
ment we get Ie ', so that IeF*. This implies that Cor(I) &S,
and |9": Cevr(I)] = 2. Let &7 be the set of all ordered pairs (4, B),
A ~ B~ I, such that AeJ(C(B)). By what we have just shown, .7
is symmetric. This symmetry is quite exploitable.

We now study R, in greater detail.

Let B=3B, x +++ X B, be a subgroup of F(Smod ) such that
(@) |B;| = p;, an odd prime, (b) §B; admits R, (¢) C,(9B/9) = C.
The existence of B is guaranteed by Lemma 5.34. For each subset
A of &, let A = AH/H. Let &; be the subgroup of K, containing &
such that & = C(B),1 <i<f, so that [R:%2|=2. Let &=
N,z & and let D; = (€, B;, >. Then D, is dihedral of order 2p;, and
if we set 2= $BR, then L=D, x +++- x D,. Let V= §/9 so that
V is a faithful F,%-module. This notation will be preserved throughout
the remainder of this lemma.

Case 1. e = w( = f).
By Lemma 5.14, p, = 3 for all 4.
Since B is elementary of order 3* and B is represented faithfully

on &, it follows that § is the central product of quaternion groups
Ly, «++, Q,, each of which admits 8.
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Case la. w = 3.

Here we have ¢(3) = 3, so . w(38)= _#*(®). By Theorem 13.1, S.-
subgroups of & N &° are of order 1 or 3. Suppose SN B = 1. Choose
Be&“N Y. Since Be . (3), we get C(B)=&S. Hence, C.4(B) &S,
80 S;-subgroups of & N &¢ are non cyclic. We conclude that & N B = 1.
Let J= Q.-+ Q,,Q;€Q,. Since ;. Cx(Q;) is of order 3 for each <,
we get that Q; e Q; — I, all 4. Since J is an involution, w is even,
so w = 4.

Suppose Ee@ — Iy, and EecQ, -+ Q,_,. Since Cy(Q, --- Q) €
27(8), we get C(EYES6S, C(EI)=&. In particular,

97 = (Cy(E), Cyo(EI), Cse(I)) S .

Hence, - ¢ is a 2-subgroup of & whose center is contained in <[> N
{J> = 1. This is impossible, so €N L, +-- O, , =<I>. For each F
in & let F¥= EFE, EcQ ---Q,., EecQ,.Q, The map #:C—
Q0 i,/{I>, given by ®(&) = {I) E, is a homorphism with kerp =
{I>. Hence, [G:{I)| <2 so that w—1=4, w=<5. As w is even,
we have w = 4.

The preceding argument yields that € N Q,Q; = I) for all 1, j.
Since B acts faithfully on $ and does not act faithfully on any proper
subgroup of 9, {Q,, Q,, L, Q,} is the set of all quaternion subgroups
of  which admit 8. Hence, N,(B) permutes {Q,, O, Q,, Q,}. Since
€ = &+ N,(B), & permutes {Q,, O, O, Q). We can choose K e &, such
that K inverts 8. Hence, K normalizes each Q,;, and K induces outer
automorphisms of each ;. We can choose generators @, @, of Q.
such that QFf = Q.. Let f)i = {Q,,Q:,y. Since K centralizes J =
Q - Q,, we have @, --- Q, = J = Q¥ ... QF, so that Q, e@.&, all 7.
Hence, J centralizes Q = @,Q,, since J does not centralize either @,
or @y,. Hence, Q& so that [Q, K]S H°N H = & But

[Q, K] Qé}lQulKQanK Q lQullesz € (C - <I>) N D’l"-"? .

This contradiction shows that this case does not arise.
Case 1b. w < 2.

Here we get w = 2, as 2em,. Since f = 2, a S,-subgroup B of
S is elementary of order 9, and $B permutes J transitively. First,
suppose that for some Ae® — &, H4 N H = F is elementary of order
8. Since $ has just 6 elementary subgroups of order 8, B contains
a subgroup B, of order 3 which normalizes §. Hence, 44(F) contains
the stability groups of F2O>I>>1 and FoO>UI o1 and contains
Ay(8B) = 1. Hence, A4«(H) is non solvable. We may therefore assume
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that whenever 4 = [, € J(S), then $* N $ is a four-group.

Suppose PBR,  S. In this case, T/ is dihedral of order 8, and
it follows as in a previous argument that &% 7;(%) = @. Hence,
& = HBR, is of order 27.3%. Since & = > X &,, where &, is dihedral
of order 8, we can choose non commuting involutions D, D, of &,.
Let ©,, O, be the quaternion subgroups of . Suppose Q, < &. Let
B; be an element of & of order 3 which is inverted by D, i=1,2.
If D, and D, both induce outer automorphisms of Q, and L, then
D D, induces an inner automorphism of §, against D,D,¢ 9. Hence,
we may assume that D, induces an inner automorphism of Q, and an
outer automorphism of Q,. Choose generators Q;,, Q.. of Q,; such that

= Q,,, = Qp. Now J= Q.Q, with Q;eQ,— <I). Since D,
1nverts QLQ w2, D, inverts @, so D, inverts @,. Since D, induces an
inner automorphism of 2, we get Q3 = Q&,d, = £ 1,7 =1,2. Since

Q. is a generator for <Q.€Q.;, we get QUQE = Q7@ = Qu@y'. Hence,
dd, = —1. Thus, we can choose 7€{1, 2} such that Q% = Q7. Let
T =D, I,J>< 9% Then @, normalizes §§ and does not centralize J.
Let 9% = A44(5). Thus, 9 does not centralize J. Since 4.+(F) permutes
transitively § — {J), it follows that U permutes F* transitively.
Hence, 20 is non solvable. We conclude that O, 4 &.

We may assume notation is chosen so that D, interchanges
and Q,. Let Q, = (Q,, Q> and set Q; = Q4 F, = Q.Q.;, 7 =1, 2.
Then set § = D, F, F,, I>, an elementary group of order 16. Let
A= A,(F), A* = A(F). Let o= <F,, F,, I). We argue that F = Co(F)-
In any case, Cs(F,) is a 2-group, and Cy(F,) = B Since &, containg
an element K which induces an outer automorphism of both Q, and
L, it follows that C,(K) is contained in an abelian group of typz
(2, 4). This implies that no element of $K centralizes any elementary
subgroup of © of order 8. Hence, § = C,(F,). Since B contains a
subgroup B, of order 3 which normalizes F,, we get that B, normal-
izes .

We next argue that T normalizes §. Certainly $ normalizes $.
Since T, = Cs{D,, J>), we get that D, normalizes . Since £ =
H(D, Dy, F <. Let N = NF)2TB,. Suppose 5[ |I|. Since N is
solvable, 3t contains a subgroup N, of order 15. Since C(I) = & is a
2, 3-group, N, permutes F* transitively. Since F = C(F), we get F =
0,(MN). But [T:F| = 2% It is easy to check that Aut () has no such
subgroups. Hence, 5} |Jt], so N is a 2, 3-group, [N| = 2".3°,a =1 or
2, 80 (TN NS|<3. Since O,NNBS) =FH is of index 2 in ¥, and
since FH/F is a chief factor of NN S, it follows that FOH = O0N).
Hence, Z(0,(N)) = I> <N, N&S, and [N] = 27.3.

On the other hand, F-C,(J)ES©&% and &°NE = D, I,J), so
that £ normalizes F. Since H%-C,(J) is a S,-subgroup of &° it
follows that 3 contains a S,-subgroup of &°. Hence, I and J are
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conjugate in M. This is absurd, sinece {I> <{N. Thus, this case does
not occur.

Case 2. e =+ w.

By Lemma 5.8, f = w, so that e = w. By hypothesis, ¢ # w, so
e=w + 1. On the other hand, £ is of width w, and € is an ele-
mentary subgroup of § of order 2°. Hence, ¢ < w + 1, so that ¢ =
w+1, f =w— 1. Since § contains an elementary subgroup of order
2w+ & is the central product of w dihedral groups.

Case 2a. w = 2.

Since § is the central product of 2 quaternion groups, & is a
2, 8-group, and |B| = 3.

Case 2a (). & = €. (Recall that & = $BK,.)

Here the order of & is 2°.3. Since & = {I) x &,, where &, is a
dihedral group of order 8, we get € = {I> X D,., where D, is a four-
subgroup of &,. Choose De R, — D,, D* = 1. We assume without loss
of generality that D inverts B = (B). Let Q,, Q, be the quaternion
subgroups of §. There are several cases.

First, suppose D normalizes both Q, and Q, and that D induces
outer automorphisms of Q, and Q,. We can then choose generators
Q;1, Qi of Q; such that Q) = Q,,, 7 = 1,2. Hence,

C@(D) = <I, Q11Q12Q21Q22> ’

so that J = Q,,0,,Q:,Q:.1% where a = 0 or 1. We argue that I £ cely(1).
Suppose false. Choose I,e€ ¥. Then I, = I* for some A in &, so that
I, € J(®), yielding I€J(S*). Hence, (DN S)- 9 is a S,-subgroup of
S, and 94N O is elementary of order 8 Thus, |cels(l)| =6, and
every element of & commutes with some involution of & — §. On
the other hand, if He §, then HD is an involution if and only if D
inverts H, so that He<{Q,Q., J>. Hence, $D contains at most 8
involutions. Since |cely(D)| = 8, and involutions of T — § are con-
jugate to D in . Hence, every element of I is S-conjugate to an
element of {I,J) — {I). This is not the case, since there are just
6 elements of J so conjugate. Thus, in particular, we have #(®) = 2.

We have determined the isomorphism class of €, and it is straight-
forward to verify that ¥ is isomorphic to a S,-subgroup of M,,. Since
#(®) = 2, it follows from a result of Brauer and Fong [11] that © =
M, But M, is not an N-group, since M,, contains an involution
whose centralizer € has order 240, from which it follows that € is
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non solvable.

Next, suppose D normalizes both Q, and Q,, but that D induces
an inner automorphism of £,. Since D inverts B, it follows that B
centralizes Q, and that (B, D) is faithfully represented on Q,. We
can therefore choose generators @, @, of Q, such that Q2 = @, and
then choose generators Q,, Q.. of L, such that Q5 = Q,, Q5 = Q%,
where d = =+ 1.

Now J = Q,Q,, where @, e @, — {I>,i=1,2. Thus, Q.Q,= Q7 — @7,
so that @Qr7Q, = Q7Q;'e@. NQ,=<I). Hence, D fixes <{[)Q,
so @, = (Q.Q)*, and Q, is inverted by D. Hence, d = —1, and
Q. = Qf'. With a suitable choice of notation, we may therefore assume
that J = @,0,.Q:. Choose Ec@ — {I,J). Then [E, D] = .J, since
Fe &z 47 (9H%. But [, D=L, while JeQ,. This contradiction
shows that this case does not arise.

We may now assume that D interchanges Q, and L,. Let J =
Qle, Qe — <I>’ set @ = @, and choose @,; such that <Q11, Q) =
Q. Let Q,=Q%7=1,2, so that Q, = {Q,, @>. We now get
J=J7 = QPQ?, so that QF = Q¢, Q7 = @7, where d = = 1. Since D
inverts B, we get Cy(B) = D).

Let %, = Co(D) = I, J, QuQwy, T = (B, D), so that F is elementary
of order 16. Since [, D]E,, it follows that F <] 2. On the other
hand, =& so § is also normal in a S,-subgroup of &% Let Nt =
N(®). Thus, I and J both lie in the center of S,-subgroups of N, so
there is N in 3 such that J = IY, and we may assume that G = N.
Hence, & N &¢ contains (F, &>. Let & be a S,-subgroup of NN C(J)
which contains (&, 8>. Then (&, ‘i} normalizes (&, &>, so that
AT, >y = Aut K, J)). Let =0, =2F. If I,,>OF, then N, =
TNE =G, 8, so that ¥, &> =N, as [], &>:F| = 2. Hence,
N = T(R) for some subgroup (B> of order 3 which permutes <I,.J)
transitively. Choose Ee€ @ — (I, J). Since R fixes $E, there is an
element F of §§ such that R centralizes FE. Then (FE) e, J),
so F'E is an involution. The only involutions of FE are in {I,JHFE,
so we may assume that R centralizes F, as {I, J)£ C €. In any case,
we get I, J) <M.

We now examine (I, J, J® = &. Since Cy(B) = (I, & is elementary
of order 8 and admits B. If & = &, then since R also normalizes G,
it follows that A(®) permutes &% transitively. This is impossible,
since N(®) is solvable. Hence, & = &, so that C,(J) = G&, recalling
that & = C,(J)% we get & = (G, ", since we have taken N = G,
and since E <]IN. Hence, T — § contains a conjugate of I. As all
involutions of ¥ — & are <T-conjugate to D, we get D ~ I. Hence,
N contains a S,-subgroup of C(D), so that D is in the center of a
S;-subgroup of N. This is not the case, (I, J> = Z(0,(N)). We con-
clude that § = O,MN).



582 JOHN G. THOMPSON

Suppose 5| |MN|. Let B be a S;-subgroup of N which is permutable
with %. Since || = 5 and T/F is a four-group, we have 0,(TP) O F.
Thus, Z(02P)) N F admits P. As P acts irreducibly on &, we get
that & Z(0,(TP)), so that O,(PL) is abelian. This is not the case,
since e FZ .4 (L). Hence, N is a 2, 3-group.

Since § = 0,(N), we see that a S,-subgroup R of N is elementary
of order 9. Let € = cely(I). Since RN S = T, we get that (€] =9,
and R permutes € transitively and regularly.

Let § = ¥ x &', where each ¥ is a four-group which admits R.
Let Ry, = Co(F), R, = 0,8, R; = (R, i =0,1. Hence,

T = T UF U celo(D) .

Since I¢F°, we get F 4 N. Let U = N (R) so that U is a four-group.
We can choose U,c€U such that U, inverts R. Then choose U,cll —
{U,y. 8ince U, normalizes 3°, U, interchanges $° and ' and so inter-
changes R, and R,. We may assume that R = R..

Since § is weakly closed in ¥, we get that ¥ is normal in every
2-subgroup of & which contains %. (We have used this fact earlier.)
Hence, ccl,(I) = ccly(I) N B.

Choose generators F, F,, of ¥ such that Fgo = F,, and set
F,=F},1=0,1. Thus, § = (Fy, F,,). Hence, § is a free F,Il-
module, so all involutions of £ — F are $-conjugate to an element of 1.

Suppose Uell — N,. Then Cy(U) = (R) is of order 3. Suppose
also that U~ I. Since U, and U,U, interchange R, and R,, it follows
that R¢ R, UR,, so that R has no fixed points on F. Let W = Cy(U),
a four-group. Thus, W(RIW <= C(U), and IeW. Hence, W x US
0,(C(U)). But AxW x (U)) contains the stability group of W x
CUYD(U)Y 21, since W x (U) S 0,(U)), and also contains the stability
group of W x U)DW>1, since ¥ normalizes W x {U). Hence,
A(T x {U>) acts irreducibly on I x (U, so is non solvable. We
conclude that if Uell — (U, then U+ I. Hence, if V is any in-
volution of € — FKU,>, then V « I,

Let Y = J%, where B = (B) is a S,-subgroup of & inverted by
D. Then {1, Y, J) is elementary of order 8. If I, Y,J) = B, then
_ since D centralizes §,, so does B. This is obviously not the case, so
I, Y,J) + . Since F=FNH, we get Y &F. By the previous
argument, Ye$U,, Hence, Y inverts some S;-subgroup of N, so YV
normalizes both F° and F'. Hence, Cy(Y) = Cp(Y) X Cx(Y). But
Ci(Y)2LI,J), so {I,J) = Ce(Y) X C(Y). Thus, JeFUF'. This
contradiction shows that this case does not occur.

Case 2a(ii). ©D 8.

Here we get that S,-subgroups of & are elementary of order 9.
Hence, © permutes J transitively. Since & has just 6 elementary
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subgroups of order 8, there is a subgroup R of & of order 3 which
normalizes €. Let A = A44,(€). Then {I) is the only proper subgroup
of & which is normalized by A.(€). Hence, A = 4.(€), since otherwise,
A acts irreducibly on & so is non solvable. But U also contains the
stability group of €2 <{J) D1, since < $ This contradiction shows
that this case does not arise.

Case 2b. w =3 and B is a 3-group.

Since f = w — 1, B is elementary of order 9. Since |&| = 2", §
is the central product of 3 dihedral groups. Hence, § is not the
central product of 3 quaternion groups.

Case 2b(i). Cy(B) > <I>.

Let &, = Cy(B), 2, = [, B]. Thus, B is represented faithfully
on £, so that Q, is the central produet of 2 quaternion groups Q,, Toos.
Hence, £, is dihedral, and @,, Q, admit K.

Suppose Je Q. UQ,Q,,. In this case, some element B of B*
centralizes J, so Be &[], B]S $°N HB < . This is not the case,
since &, fixes no non identity element of HB/D.

Write J = Q,Q,,Q.,, where Qlegl, Q@ € X0y — {I). Hence, @} =1,
since J is an involution. Suppose @, ¢ {I>. Since &, normalizes Q,
and sinee [&:C|=2"""= 2% we can choose Kec & — & such that
[, K1=<{I)>. Hence, [, K]S Q,. But then [, K]S<JI> N, =1,
against Ce % 77(H. Hence, Q,c<{I), so we may assume that
@, = 1, after changing notation.

Suppose €N Q, D, Jy. Choose FeQ,— <I,J> and set € =
I,J,E>. We can then choose Be®* such that B normalizes &,.
Hence, |A4.(&)| = 2°.3, so 44(&) = A.(E,). This is not the case, since
Ay(&) contains the stability group of the chain & > {J)> 21. Hence,
En @z = <I, J>.

Let U, U, be non commuting involutions of L, so that Q, =
KU, Uy. Since |G:<I,J>| =4, we can choose FE,, FE, in & such that
E = UU, E,= U,U?, where U, U*cQ, Since [&,6CE]=<J), it
follows that [&, Q] {I). Since U, U, are non commuting involu-
tions, U', U* are also nocn commuting involutions, which, however,
commute with J. Hence,

Co,(J) = <J> x (UL U, and KUY, UY, RI=<L, T .

On the other hand, & = C,«(I), so that & = {I) x &,, where &,
is the central product of 2 dihedral groups. Hence, &, contains a
four-group &, with £ NE =1, & = ER,. Let K be the uniquely
determined involution of & such that 9K inverts $B/9. Hence, K
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inverts some S;-subgroup of £, which we may assume is B. Hence,
K normalizes both Q, and Q,,, and induces outer automorphisms of
each. Let @, Q;. be generators of Q,, such that Q5 =@,,7=1,2.
Hence, an(K) = <I, J> = <Q11Q12Q21Q22, I>, so that

CQZ(J) = <Q11Q12Q21Q22> X <Q11Q21, Q11Q12Q21> .

But [Q..Q..Qx, K] is an element of Q,, of order 4, sois not in {7, J).
Thus, this case does not occur.

Case 2b(i). CyB) = <{I>.

Since B acts faithfully on &, we can choose distinct subgroups
B,, B, of B of order 3 such that O, =C®B,) >, i=1,2. If 00,9,
then Q,, £, are both quaternion groups, and § is the central product
of 2, 0,, O, where Q, is dihedral. This gives Cy(B) = Q,. Hence,
$ is the central product of Q, and Q,, and we can choose notation
so that Q, is the central product of L., and Q,,, where Q,, is quater-
nion and L, is dihedral, and Q, is quaternion. This is impossible,
since we have assumed that Cy(B) = <{I). So this case does not arise.

Case 2¢c. w = 3 and B is not a 3-group.

By Lemma 5.15, B = B, x B,, where |8,| = 3, |B,] = 5, and 9 is
the central product of Q, and Q,, where Q, is a quaternion group
and A4,(Q,/Q)) is dihedral of order 10. As above, we get J¢Q, U Q.
so J=QQ, Q:eQ; — {I), and Q, is of order 4. Since |R;: E| =4,
there is K in & — € such that [Q,, K] =<I), so that [€, K]=<{J) N
2, = 1, against e & _47(H).

Case 2d. w = 4.

First, suppose $ is the central product of Q, and Q,, that O,
admits 8,7 =1, 2, and in addition, the following hold:

(@) Cy() + 1, ’

(B) &./€ does not act faithfully on Q,/K{I).

Let B, = C3(Q,). Suppose J&Q,. Then B, £ & so that [B, &] &
PN HBZ 9, against the fact that &, has no non trivial fixed points
on HB/H. Hence, J¢,. Choose Ke& — & with [Q,, K]=<(I).
Such a choice is possible by (8). Then [9, K]=Q,, so [€, K]1=Q, N
(Jy =1, against e . 4+7(H%. So no such L, Q, exist.

For each subset 2 of &, let A = AH/H. Let V = §/9’, and, as
usual, & = HBK.

Case 2d(i). V is an irreducible -module.
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Since & acts faithfully on V, we get 2w = 0 (mod 2°7%). Since
w =4, we get w=4. By Lemma 5.15, |B] =3 Let V=V, x V, x
V. x V,, where each V; is an irreducible B-group. Let B; = Cx(V)),
V:=2,/9". Thus, [8:9B;| =38 and | V;| = 4, while & permutes tran-
sitively {V,, V,, Vi, V.} and {8, B,, B, B,}. Furthermore, O, = Q; all
1, 7, and L, is quaternion or elementary.

Suppose B, = B,. Then B, = B,, so that B, NB, = 1, and B, N B,
centralizes §. This is impossible, so B; = B; implies ¢ = j. Hence,
0, = Cy(By), so that Q; is quaternion and & is the central product of
2, 0, 0, Q.. Also, B, NYB;|=8,15i<js 4

If JeQQy then BN OB, N B, D1, sothat [B,N B, RIS $°N
BH= H. This is not the case, so if 1 £7<j <4, then J¢Q,Q;.
Hence, J = 0,Q,0,Q,, Q;€Q,;, and at least 8 of the Q; are of order 4.
Since J* = 1, we have Q;eQ,; — {I), all 4.

Since & = {I> x !,, where &, is the central product of 3 dihedral
groups, &, contains a subgroup &, such that &, is elementary of order
8and & NE =1, 8, = ER,. Let K be the uniquely determined involu-
tion of ®, such that K inverts B. We assume without loss of gener-
ality that K inverts 8. Thus, L, has generators Q,,, Q. with Q% = Q..
Since K centralizes J, K inverts Q;,1 < ¢ < 4. Interchanging @;, and
@Q;; if necessary, we may assume that Q, = Q,@Q;. Suppose 7+ J.
Then J centralizes Q;Q;, so [Q.,Q;:, K] H$°N $ = E. Hence,

QilQiszlez € @ ’
all ¢, 7,4+ J.

By our construction, we have B< F(&mod ). Let € be a S,-
subgroup of F(& mod ) which contains B. Since L, = Cy(B,), L;
admits C;(B). Hence, 0,(€) = 1, so that € is a 38-group. Suppose
B C(B). Since Cy(B) = Co(B) x {I>, K normalizes C,(B). If Ce
C:(B) N C(K), then C normalizes Q; and [Q,, K], so C centralizes each
2, so C=1. Hence, K inverts C;(B). This implies that C,(B) is
elementary of order 3‘. But in this case

Cm('SB) ﬂ C(Q11Q12Q21Q22) € ‘////*(@) ’

so that C(Q,Q,,Q:@Q:.[*) & for ¢ = 0 and 1. This implies that $°c &,
which is not the case. Hence, Be &¥% +7(€). Suppose Bc €. Then
€/B is faithfully represented as permutations of {Q,, Q,, Q,, Q.}, since
if € = N6 N N, then [, B] centralizes §, so that [, B] =1,
€ = B. Hence, |C:B|=3. Suppose |Z(€)| = 3. Choose Ce Z(@)*
such that Cy,(C)><(I). Then C4(C) admits €, so € centralizes C;(C),
as Cy(C) has width at most 2. Since § = (C,(C)|Ce Z(C)*>, we get
that € = 1. This is not case, so [Z(©)| =3,6 = Z, ! Z. But &
acts faithfully on €, against m(€) = 2, m(®,) = 3. Hence, B =G, so
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that F(& mod ) = 8.

It is a direct consequence of the preceding equality that & is a
2, 8-group and that S,-subgroups of & have order 3° or 3%

We next show that if X is any non identity 2-subgroup of &,
then N(¥X) is a 2, 3-group. Suppose » = 5 and p||N(F)|. By Lemma
13.1, 0, (N(X)) = 1. Thus, p||4:®)|, where Y = 0,(N(¥X)). By Lemma
5.51, ¥ contains a normal subgroup <, snch that p||A4I,)]. Since
TS N(E,), N(Z,) contains an elementary p-subgroup p # 1 which is
permutable with . Let I = TP, I, = 0,(M). If $=T,, then I is
the central involution of £,, so that M &S. This is not the case,
since & is a 2, 3-group. Hence, Y £ Z,, but of course IeZ,. Since
T,9/%, = 9/H NI, is elementary, P contains a subgroup P, of order
p which is permutable with £,9. Let £, = 0,(Z,9%,), so that

1T.9:%.1=2, [£:9NnT[=2.

By Lemma 13.62, 2,(Z(%,)) has order at most 4, so is centralized by
Pey as p = 5. Hence, P, =&. This contradiction establishes the as-
sertion.

Set £ = 0,,0,,Q0,@:,,€ €. We will show that C(F)=&. Let € =
C(E), a 2, 3-group. Also, B,N B, = B is contained in €, and is of
order 3. We first show that B is a S,-subgroup of €. Namely,
B C(B), so that C.(B)e _~2*(®), and so C(B)=6S. Suppose X is a
3-element in € N C(B). Then X normalizes $ N C(B) = Q.Q,, since
Xe&. Since Q,,Q, are the only quaternion subgroup of Q,.Q, X
normalizes Q, and Q,. Since X centralizes Q,,Q.,.Q.Q., X centralizes
2,9, If (B, X) is non cyclic, then there is Y e (B, X>* such that
Cy(Y)DQ,Q,. Thus, Ci(Y) = Q,0,Q0; for some 7€(3,4}. However,
V is an irreducible R-group, and so Y centralizes V, yielding ¥ = 1.
We conclude that B is a S,-subgroup of & N C(B), so B is a S;-sub-
group of €. Let & be a S:-subgroup of € N &, and let T* be a S,-
subgroup of € which contains €. Let T** be a S,-subgroup of ®
which contains £*, and let I* be the central involution of T**, If
I* = I, then € = T*, so that € =©. Suppose I* == I. Then I* cen-
tralizes € N = C,(E), so by Lemma 18.62, [* e (E, I). Thus, I* = E
or EI. In any case, we have E = I” for some Y in &, since E v EI
Hence, 8= &". Since C(B) =S, we get that S,-subgroups of &N &
are non cyclic, against Theorem 13.1. Hence, € =&&. Since E  EI,
we also have C(EI)=©&. Hence, $¢ = {Cys(E), Coe(EI), Coo(I)) S S,
so that $H° is a 2-subgroup of & whose center is contained in {(I) N
{J) = 1. This contradiction shows that case does not occur.

Case 2d (ii). V is a reducible @-module and & acts faithfully on
no proper submodule of V.
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By Lemma 5.7, V is completely reducible. Let V=V, x V,
where V; == 1, and V, is irreducible. Let ¥, be the subgroup of &
which contains § and satisfies 2, = C3(V,). Thus, &, <8, so
LNB=+1 Let O, =18, 9,0, =Cy(&.NB). Then Q)Y =V, i=
1,2. Since Ci(V,) =+ 1, and since V, is irreducible, it follows that &,
does not act faithfully on V,. Thus, (@), (8) hold. This contradiction
shows that this case does not occur.

Case 2d (iii). V is a reducible &-module and & acts faithfully on
some proper submodule of V.

Let W be a submodule of V minimal subject to C3(W) = 1. By
hypothesis, W< V. Suppose | V: W|=2. Then W = §/¢’, | Z(D)| = 4,
and § = Z($)D,, where , is extra special of width w — 1. Hence,
Ic[B, 9], and L acts faithfully on [B, H|/$’ = W. Hence, we
have | V: W| = 4.

By Lemma 5.8, we get | W| = 2**"", and W is completely reducible.
Let W = §/$’. First, suppose § is extra special. Then let §, = b(55),
so that §, has width 1 and admits 2. Hence, V is completely reduci-
ble. If W is reducible, we get Q,, Q, satisfying (@), (8). If W is
irreducible then | W| £ 2, by Lemma 5.8, so that w < 3. This is not
the case.

It remains to treat the case where $ is not extra special. Let
8= Z()><I>. Since T has no fixed points on W, we get |8: <(I>| = 4.
Since | V: W| = 4, we get |8] = 8, and since 8 is an abelian group
of order 8 admitting a non trivial automorphism of odd order, 3 is
elementary. Since W is completely reducible, W= 8/<I> x 8, with W =
/9, where Q is extra special and admits 8. Let Q = C,(Q), so that §
is the central product of © and £ and Q admits & By construction,
the width of £ is 2, so that the width of Q is w — 2 > 2. Thus, B
does not act faithfully on either £ or Q, and &/ does not act
faithfully on 9/%’. Thus, the pair Q, O satisfy (), (8). This con-
tradiction completes the proof of this lemma.

LEMMA 13.64. He ~Z*(®).

Proof. Suppose false. Choose Ne.&¥7.F(®) suchthat S NZL S,
and with this restriction, minimize |M|. Let N, be a S,-subgroup of
R which contains $. Then Iis the central involution of %, so N, = S.
Hence, it = N,Q, where Q is a ¢-group for some odd prime ¢q. Since
9 contains an element U of Z/(2), we get 0,(N) = 1, so € O,(N).
Since U (9; 2') is trivial, and since 0, (N) € Y(H; 2'), we get 0, (N) = 1.

Since e 0,(N), we get that H0.(N)/0,N) is elementary. By min-
imality of M, we get M = 0,M)QVY, and [H: 9N O,M| 2. If H=
0,(M), then I is the central involution of 0,(N), so that N&S. Hence,
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[: 9N 0N =2. Choose Qe — &. Then (H N O,M)*=0,N) =
N, =S, against Lemma 13.63. The proof is complete.

LEMMA 13.65.
(a) <I> ts weakly closed in 9.
(b)) w=3.

Proof. Suppose I*=JecH, Ge® —&S. Let 9, = Cy(J). Then
$.S6° = CWJ), so $7'=S. Since G'e® — S, Lemma 18.63 gives
a contradiction. This establishes (a).

Suppose w = 2. By (a) and the Glauberman Z*-theorem [16],
HcCi.

Case b (i). [|Z:9|=2.

Choose Ge® — & such that J = I°e Z. By (a), we get T = H{J).
Let @ = Cy(J) =&°. If € is not elementary, then Ie D(€) & £, against
(a). Hence, ¢ is elementary.

Suppose |G| = 4. Then A4,(E, J)) is the stability group of the
chain (€, JJ>DE>D1. Let § =<, J>C &% LetE =N $% so that
I¢ @, and A.«(F) is the stability group of o0& >D1. Let € = E N E,.
Hence, |§,| = 2 and {N.(B), N«(F)) maps onto the subgroup of Aut (%)
which fixes §. Hence, ¢, is contained in the center of a S,-subgroup
of &, ¢, = (K, with E ~ I. This violates (a).

Suppose |&| = 8. Let § = (&, J)>. Thus, ccl,(J) has four elements.
Let £ be a S,-subgroup of & which contains § Then |celz(I)| = 4.
Let U = cely(I) N'F, so that U 2Decel,(J) U{I} and UNE = {I}. Sup-
pose U Deely(J) U {I}, Uell — (cely(J) U{I}). Then Ug @, so |ccly(W)| =
4, and so |11| = 9. Hence, Il = cely(J) U cel(U) U {I}, sinceU N & = {I};
this yields (11| = 9. Hence, 1 = GJ U {I}. Let &* = FN H° so that
by symmetry 1 = G*I U {J}. Let N, =U - {I,J}. If U, U,el, then
UU,e@nE* since U;e@JNE*I. Hence, &= &*, since |U,| = T.
This is false, since Ie @, I¢ @*, We conclude that U = cel (J) U {I} =
cely(I) U {J}, so that |11| = 5. Since each element of 11 is in the center
of a S;-subgroup of N(F), it follows that N(®) permutes U transitively.
Hence, 5| [A44(F)|. Let P be a S;-subgroup of N(F) permutable with
Z. Since |P| = 5 and T/F is elementary of order 4, we get 0,(EP) O F.
Hence, 1 < Z(0,(EP)) C F, so that P centralizes Z(0,(TP)), and so P
centralizes . This is not the case, since 2¢ 7.

Case b (ii). [Z:9]> 2.

Since % 45(X) + O, it follows as in an earlier argument that
Z/9 is a four-group and that & = TB, where B is elementary of
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order 3°. By the Z*-theorem, there is G in & — & such that J =
I°c¥. By (a), J¢ 9. Let € = Cy(J). If € is not elementary, then
Ie D) & % against (a). Hence, & is elementary.

Suppose |G| = 4. Let § = (&, J>. Then Ay(F) contains A(ZF)
and A(Z*), where :F2E21, #* FOE D1, 6 = FN H° Since
& # % *, it follows that A4(F) is the subgroup of Aut (¥) fixing
G N G* = (B)>. Thus, if $is a S,-subgroup of N(©), then <E> = Z(%X),
so that F ~ I, against (a).

Suppose |&| = 8. Let F = (&, J>. Then  normalizes F. Since
|&| = 8, § contains a four-group £ such that K> =1, KE = H.
Since §F = (J)>*, F is a free F,®-module, so F is the only subgroup
of ¥ which is isomorphic to . Hence, § <] %, [T: F| = 8.

Let W = celg(/) N F, so that (| =5o0r 9. If (U] =9, then U =
CGJU{l} =@*IU{J}, where G* = FN H° As above, we get ¢ = E*,
so that Je@® < ©, against (a). Henee, |11} = 5. Hence, A4,g) is a
multiple of 23.5, and 0,(44(F) = 1. This forces A4%) to be non
solvable. The proof is complete.

LEMMA 18.66. Suppose Ge®S — &. Then one of the following
holds:

(a) [9:9°NG| >4,

(b) [9:9N&% >4,

(c) 9 NS does not normalize H°N S,

(d) 99N S does not normalize N &°.

Proof. Suppose false. Let , = $NS & = $°NS. By Lemma
13.63, we have | 9: ©,| = | 9% & | = 4. By Lemma 13.65, §, and &,
are non abelian, and Lemma 13.63, , N &, is centralized by both 9,
and &, and is elementary. Since J¢ , N K, and , N &, < K, we get
that & = ., N K, X K, for some subgroup K, of & which is non abelian.
Notice that 9 N R/, SHNS =9, HNR, S/, sothat HN/=9, N K.

Since [ 9% 8,| = 4, we have |Z(®)] < 8. Since (H,N K, J> < Z(K])
we have |9, N &, | < 4. Since &, is non abelian, we can choose K in
K, such that K® = J.

Let V=9/9, Vo= 9,/9, so that |V: V,| = 4 and J centralizes
Voo

Since | 9% &, | = 4, K, contains a subgroup &, which is extra special
of width w — 2. Let B be a ¢-subgroup of 0,.(5), ¢ an odd prime
such that (a) & acts faithfully and irreducibly on $B/HD(B), (b) &
centralizes $D(B)/D, (¢) D(B) < Z(B), (d) B is of exponent q. We are
guaranteed that B exists since & N H = 1. Since the absolutely
irreducible faithful representations of &, over all fields of odd char-
acteristic have degree 2°72, we get m(B) = 2% By Lemma 5.3 applied
to B acting on V, we get m(V) = 2*~'. Hence, 2w = m(V) = 2",
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so that w < 4.

Suppose w = 4. Then Lemma 5.3 gives ¢ = 3 and forces B to be
elementary. In this case J inverts $B/9, so that V is a free F{J)-
module, against |V: V,| = 4. Hence, w = 3.

If ¢ == 3, then Lemma 5.8 forces ¢ = 7, |B| = 7%, so that J inverts
$B/H. This forces V to be a free F,{J>-module, against |V: V,| = 4.
Hence, ¢ = 3.

First, suppose [B]| = 9. Then J inverts $B/9H, and we may as-
sume that J inverts B. Since [V, B] is a free F,{J)>-module, we get
that [9, B] = § is the central product of 2 quaternion groups on each
of which J induces an outer automorphism. Hence, |9: C;(J)| =8,
against |9: §,| =4, $,&©&° Hence, [B]| > 9.

Since S;-subgroups of Sy(2) are Z,§Z,, we get that B is non
abelian of order 27 and exponent 3. Thus, B acts faithfully and
irreducibly on V. Let B, be a subgroup of B of order 9, and let
B, B,, B, be the subgroups of B, of order 3 distinct from B’. Then
Cy(B,) is of order 8 7 =1, 2,3, and B’ acts faithfully on each C,(3B,),
so Cy(B;) = Q; is a quaternion group. Furthermore, Q,, Q,, O, are
the only quaternion subgroups of $ which admit %B,.

We assume without loss of generality that J inverts 8B,. Let
€ = 9B(J). Then $-Ci(®B) = $B(J ), so J normalizes O, and inter-
changes Q, and Q,. Since |9: §.| = 4, we get that J centralizes Q,
and that C,(J) is elementary of order 8. Hence, § = Q, X §,,
where 9, is elementary of order 4.

By symmetry, &, is the direct product of a quaternion group and
a four-group, so &, is quaternion.

Now C¥(®B) = Q,B,{J), so that J normalizes B,. Since Ny(B,) =
KIYBLT), we get that J normalizes B.

Suppose [§, N &,| < 2. Since [H, RIS H. N &, it follows that K,
has an element X of order 4 such that Q, N C(X)><I). Hence,
(X, B,> centralizes Q, N C(X); since X*=J,<(X,B,) contains a S;-
subgroup of ¥, against Cy(B) = (I>. Hence, |H, NK,| = 4. Since
I¢ % N &, it follows that Cy(J) = Q, x (. N &).

Since J normalizes B, J centralizes %', so B’ normalizes Cy(J), so
B’ normalizes 2,(Cy(J)) = I> x $,N K. Hence, Q' normalizes F =
I, % N&,J), an elementary group of order 16, and [, B'] is a four-
group such that § = <1, J> x [§, B'].

Let &, = N¢(B). Since Q,Q0, normalizes &, it follows that >
{H: N &, I>DI)>D1 is a composition series for § as S-module. By
symmetry, FOHD. N K, J) D) D1 is a composition series for F as
Neo(F)-module. Hence, N(F) acts irreducibly on §. Since § = (I, J) x
[, B'], it follows that a S;-subgroup of A(F) normalizes <I,J) and
[F, B']. Since A4(F) is solvable, it follows that 44(F) is a 2, 3-group.
Since § is irreducible, 0,(44®) = 1, so |Ax(B)| = 2°.8%, with a = 2.
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Hence, A4(%) is 3-closed, and {I, J), [§, B'] are the only four-subgroups
of § which admit 0,(44(F)). This is not the case, since [Q,Q,, J] =
$NF is elementary of order 8. The proof is complete.

LeEMMA 18.67. Suppose XeJ. Let 9, = Cy(X). Then the fol-
lowing hold:

(a) WU(§:;2) is trivial.

(b) 9.6 2Z*O).

Proof. Suppose (a) is false. Let £ be of minimal order in
U($H.; 2') subject to Q = 1. Then Q is an elementary g-group for some
odd prime ¢, and &, acts irreducibly on Q. If Q&&, then [§, Q]S
H$NQ =1, so that O stabilizes > H, D1, so that O = 1. We may
assume that Q£ &. Hence, I inverts Q. Since Z(§,) is a four-group,
we can choose an involution Z of Z($,) which centralizes Q. Let € =
C(Z). By Lemma 13.1, we get 0,(€)=1. Let €, be a S,-subgroup of €
which contains §, and let T be a S;-subgroup of & which contains
€,. Let T be the central involution of . Then T centralizes D5 S0
TeZ(H)= H, by Lemma 13.62. By Lemma 13.65, we get T = I,
Thus, I€ Z(S€,), so Ic 0,€). Hence, [I, Q]S 0,(€) N = 1. Since Q
is inverted by I, we have the desired contradiction.

Suppose Ne F P F(®), H,SNRELS, and N is minimal with this
property. Let o, be a S,-subgroup of M which contains &,. Then
N, =& for some Ge®, so $,=S% By Lemma 13.63, we get &° = &.
Hence, %, cN. By minimality of N, we have N = N,Q for some ¢-
group Q. By (@), 0,%) =1. Let = 0,M). Then Ie, since
IcZ(R,). Hence, .2/ = §,/9, N L is elementary. By minimality of
N, we get that Q is cyclic and that N, = LY, [H.: H. N ¥ = 2. Let
9. = 9. NE, so that [H: §,| < 4. Choose Qe — S. Then HIS LS
N,=6, and ¥ < for all i. Hence, |9 H°NS| <4, |9:HNES| =
1997 99 N S| £ 4, so Lemma 13.66 gives a contradiction.

LevMMA 18.68. © is a T.I. set in &.

Proof. Suppose Ge® — & and X is an involution of & N H°.
Since {I) is weakly closed in §, we have XeJ. Hence, C(X)= &,
since Cy(X)e #Z*(@®). Hence, Cyo(X)<= S, against Lemma 13.63.

LEMMA 13.69. & does not contain an elementary subgroup € of
order 2* such that

(a) ENH=1,

(b) C (E) = C,©G) for all E in &

Proof. Suppose false. Let B =B, x -+« x B, be a subgroup of
0,,.. (&) such that (a) |B;| = p;, p; an odd prime, (b) & normalizes $B;,
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1<i=<w, (c) € acts faithfully on B/9. Let V = §$/9’. By Lemma
5.8, V=V, x «++ X V,, where each V; is an irreducible {-module,
{ = 9BE, and where |V;| <16, all . Since w = 3, Ce(V;) = 1. Let
Vi= /9, so that [E, $,]< &', for all e C(V)). Let §:(E) = C, (E).
Then |9:: $:(E)| < 2, and € centralizes §,(E), by (b). If |C(V))| > 2,
then §; = (Q:(E) | E e Cy(V))*, so that ;= C(€). Suppose |Co(V;)| = 2.
Then w =3,|V;| =16, and [9:: C,,(€)| < 2. This is not the case,
since € centralizes no hyperplane of V,. Hence, $ < C,(®), against
HSNE=1.

THEOREM 13.7. Hypothesis 13.6 is not satisfied.

Proof. Suppose false. We use the preceding notation. By the
Z*-theorem, there is G in & — & such that J = I°e &. First suppose
that Cy(J) contains an element K of order 4. Then Ke&° Also,
[Coo]), KIS HN ¢ = 1. Let e & 47(9° be chosen so that F
admits K. Then ¥, = 2.(F) is elementary of order = 2. Since
Cy(K?) = Cy(K), we get that J = K* centralizes &,. Let & be an
elementary subgroup of &, of order 2. Then €=, and €N $ = 1.
If Ec@®, then [Cy(E), Gl 9N 99 = 1. This violates Lemma 13.69.
Hence, Cy(J) is elementary. Let V = $/$’. Since V is elementary
of order 22, it follows that [C,(J)|= 2%, and so |C,(J)| = 2. Let
@, be a subgroup of Cy(J) of order 2*, and let & = &5, Since &, = &F,
we have 6= &. If GN 9 #= 1, then since E<= %', we get § = H77,
G €&, against our choice of G. Hence, €N 9 = 1. If Ec@*, then
[CAE),El= 9N $° = 1. This violates Lemma 18.69. The proof is

complete.
THEOREM 13.8. ¢(®) < 2.

Proof. Suppose false. Then Hypothesis 13.1 is satisfied. Let
M be the subgroup given at the conclusion of Lemma 13.3. By
Theorem 13.3, every normal abelian subgroup of I is generated by
2 elements. Suppose B is a non cyclic normal abelian subgroup of
M. Choose peo. Then Cy(B) contains an element of .o (p), so
C(By= M for all B in B*. Thus, Hypothesis 13.3 is satisfied, against
13.4. We conclude that every normal abelian subgroup of I is cyclic.
Theorems 13.5, 13.6, 13.7 yield a contradiction. The proof is complete.
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