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This paper is concerned with the problem of finding all
closed invariant subspaces of operators of the form 7, =
My — JM; and the determination of the similarity relation-
ships between such operators. The operator 7T, is defined,
for suitable conditions on a complex-valued function f and
its derivative ', by Trg(x) = f(x)g(x) — Sxf’(t)g(t)dt for all ¢ in

0

L,. The main result asserts that the closed invariant sub-
spaces of T, are precisely those subspaces that are generated
by the eigenfunctions of 7T,. Conversely, any operator on
L, whose closed invariant subspaces coincide with those of
M — J (i.e., Ty where f(z)=x) must be of the form 7, for
some function g. The closed invariant subspaces of 7' are
cyclic and the generating functions have a rather simple
description. The algebra of operators &°, generated by M —
J, is maximal abelian. A corollary is that & is reflexive. It
is shown that 7, and T, are isometrically equivalent in L,
if and only if f = g. Finally conditions are given for the
similarity of 7y and T.

We give a brief history of the problem of finding all closed
invariant subspaces of a given class of operators. The case of cyclic
hermitian operators is well-known; an exposition appears in Plesner [8].
The general case is accessible via multiplicity theory (see Plesner,
loc. cit.). Beurling [1], in an important paper, found all the closed
invariant subspaces of the shift operator on 4 through a detailed study
of certain analytic functions on the unit disc. Donoghue [3] found
all closed invariant subspaces of the simple Volterra operator .J, defined

by f— Sxf , on L0, 1) and those of a certain weighted shift operator.
0

Kalisch |7] found all closed invariant subspaces of an extensive class
of integral operators (including J) on L,0,1) for 1 < p < . Here
we examine the invariant subspace structure of M — J (and more
generally, T, = M, — JM;). In spite of appearing superficially the
same, the problem of finding all the closed invariant subspaces of
M — nd (n an integer > 1) is quite different and considerably more
difficult. This problem has been solved by the author (using recent
results on L, approximation by splines) and will appear elsewhere.

1. Definitions. We are concerned with bounded operators on
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L,=L,0,1) for 1 < p < . Define (for suitable functions f and 7)
the multiplication operator M,, the Volterra operator J, and the sub-
stitution operator S, respectively by Mg = fg,Jg = S:g (with respect
to Lebesgue measure) and S,g = gor (composition of g and r). For fe
L, and ge L, where 1/p + 1/g = 1, we define the Banach inner
product of f and g by (f, 9) = Sl fg. We write B(L,) for the algebra
of bounded operators on L, and %vrite T* to denote the Banach ad-
joint of Te B(L,); i.e., T* is the unique member of B(L,) such that
(Tf,9) = (f, T*g) for all feL, and g€ L,. In particular, we have
J* =\ and My = M;. If Wis a closed invariant subspace of T'e B(L,)
then we will refer to the restriction of T to W as the part of T on
W or simply as a part of T. For ac]0, 1] we will write ¢, to denote
the characteristic function y,,,; of the interval [a,1]. If E < [0, 1]
is a nonempty closed set we define W(E) to be the closed subspace
of L, generated by the set of functions {e,: ac E}. We will say that
a complex-valued function f:[0,1]— C is absolutely continuous on
[a, b) if f is absolutely continuous on every closed interval contained
in [a, b); the same convention will apply to the intervals (a, b] and (a, b).

If f is a complex-valued function whose derivative s’ exists a.e.
then we will write T, to denote M; — JM,. We define & to be the
collection of all operators 7, such (i) feL, and f is absolutely
continuous on [0, 1), and (ii) the function £«(x) = (1 — x)“’ﬁf’(t)]"dt
belongs to L.. The fact that & < B(L,) follows from a 0result in
[2]. In fact, T;e % implies that M, and JM, each belong to B(L,).
Condition (ii), above, implies that if T, e & then f’ belongs to L,(0, a)
(i.e., S:If’l" < oo> for all a < 1; we will use this fact often in the

sequel. We also note that (i) and (ii) together do not imply that f
is absolutely continuous on [0, 1]. Indeed, it may happen that T,e &
while f fails to be continuous at x = 1, as the example f(x) =
sin (— log (1 — %)) shows. We define .o to be the subset of &
consisting of those operators T, e & such that f is 1-1 and absolutely
continuous on [0, 1] and m {z e [0, 1]: f'(x) = 0} = 0 (where m denotes
Lebesgue measure).

Our first lemma details the important algebraic properties of &.
Part (ii) establishes the fact that & is indeed an (abelian) algebra.
The formula in part (iii) shows that P(T,) = T, for any polynomial
P and any member T, of &. This operational calculus is easily
extended to more general functions. Part (iv) of the lemma plays a
crucial role in the proof of our main lemma (Lemma 4) on the invariant
subspaces of T;. The formula appearing in part (iv) becomes somewhat
more transparent if one considers the special case r(x) = x.
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LeEMMA 1. If T, and T, belong to & then:

(i) MJ—JM, =JM,.J;

(ii) T, and T, commute and their product is equal to T,., which
also belongs to &

(i) Tr= M*— nJM.M:™" for all ne Z*;

@iv) if r(0) = 0 then (T}g, h) = n(r"™", (M, J*M, — M,M,J*)k) for
neZ" and all ge L, and he L,.

Proof. (i) Let ge L,. Then since r is absolutely continuous on
[0, ] for » < 1 we may integrate by parts to compute

[rtwas + | v |[oieds = ro) {orar

which, since v < 1 and g € L, were arbitrary, demonstrates that JM, +
JM,J = M,J.
(ii) Using part (i) to evaluate JM..J we have

T.T, =M, — M JM, — JM. M, + (JM,.J)M,
=M,, — JM. M, — JM,M,
= M'rs - JM(TS)' == T’rs .

Similarly we may show that T,T, = T,, and since T,, = T., we have
proved that 7T, and T, commute with product equal to T,,. The fact
that T,.€ % is a routine verification.

(iii) This follows immediately from part (ii).

(iv) Let T'= T,. Since r(0) = 0 it is easily verified that M,e, =
JM,e, and thus for n = 1 and any ge L, and he L, we have

(Tg, h) = (Mg, h) — (JM, g, h)
= (MJM,.e0, ) — (JM,.M,e,, h)
= (o, (M,.J*M, — M,M.J*)h) .

We now sketch the inductive step, where the adjoint of (i) is used
to evaluate the term M, (J*M,J*) that arises in our computation.
Let N =JM,. Then

(T**'g, h) = (T"g, T*h)
= n(r", (N*M,M, — N*M,N* — M,N*M,)h)
+ w(rm, M,M..(J*M.J*)h)
= n(r*, (N*M,M, — N*M,N* — M,M.N*)h)
= w(Nr*=, M,(M, — N*)h) — n(r", M,N*h)
= (n + L)(Nr", M,h) — (n -+ 1)(=*, M,N*h)
= (0 + 1), (M, J*M, — M,M,JH) .
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The next lemma provides us with a useful tool for deciding when
a densely defined “formal” operator (i.e., one given by a formula, such
as M, — JM,) that is capable of being extended to an “abstract”
operator in B(L,) is actually defined everywhere in L, by the given
formula. The rather straightforward proof, which may be based on
a standard theorem in analysis [4, p. 156], is left to the reader.

LemMA 2. Let T be a function from L, into the set of measurable
Sunctions on [0, 1]. Suppose further that T is bounded and linear on
a dense subspace D of L, and T(D) & L,. Then T maps L, into L,
and is linear (and bounded) if and only if fo€ L, and {f.:n =1,
2,++:}& D and ||f.— foll,— 0 together imply that there exists a
subsequence {f,,} such that Tf, — Tf, pointwise a.e. on [0, 1].

The following elementary fact is used repeatedly in the sequel
and so we single it out as a lemma.

Lemma 3. Let E be a nonempty closed subset of [0,1] and let
geL,. Then (J*g)(x) = 0 for all x in E implies that g = 0 a.e. on K.

Proof. Let h = — J*g and define F' to be the set consisting of
those points z in F such that « is a limit point of E and A'(z) = g(x).
Clearly m(F) = m(E) and so if m(F) =0 the lemma is trivial. If
m(F) > 0 and « belongs to F' let {x,} & E be a sequence converging
to ®. Then A(x) = h(x,) = 0 so that

9(@) = (@) = lim M®) = h&) _ o
noe X — X

which completes our proof.

2. Invariant subspaces, We now turn our atfention to the
classification of the closed invariant subspaces of operators that belong
to the set .&. Our Main Lemma, which gives a characterization of
the functions that belong to a given closed invariant subspace of an
operator in .o, is used repeatedly in much of what follows.

LEMMA 4 (MAIN LEMMA). Let W be a closed tnvariant subspace
of T;e 7. Let E={ac|0,1]:e,c€¢ W} and K = inf E. Then

(i) E is closed and nonempty;

(i) if foe W then f,is a constant k; a.e. on each component
(c;, d;) of the open set [K, 1\E = Uz, (c;, d;) and f, = 0 a.e. on [0, K].

Proof. (i) Since 1e¢ F we have E # . Letting x;— o with
{x;} S E one easily verifies that |[|e,, — ¢,[[,— 0. Thus ze £ and so
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FE is closed.

(ii) Without loss of generality we may suppose that f(0) =0
since T, and T\, ;o = T; — f(0) have the same invariant subspaces.
If K = 0 then trivially f, = 0 a.e. on [0, K]. Thus we will assume
that K > 0 for the remainder of the proof. Let ac U where U =
(0, K) or U = (c;, d;) is a component of [K, 1]\E. Then ¢,¢ W and so
by the Hahn-Banach Theorem there exists a continuous linear functional
S on L, such that S(W) = 0 and S(e¢,) # 0. According to the Riesz
Representation Theorem there exists an % in L, such that Sg= (g, k)
for all ¢ in L,. Thus (T?f,, k) = 0 for all ne Z* and so Lemma 1 (iv)
gives us

(1) 0 = (f*, (My.J* My, — My M, J*)h)

for all ne Z*. Since f, by hypothesis, is continuous and 1-1, a
theorem due to J. L. Walsh [9, p. 39] implies that polynomials in f
are dense in the space of complex-valued continuous functions on [0, 1]
and congequently are dense in L,. Thus (1) and f' = 0 a.e. (since
T, e .&7) together imply that

(2) £oo) | mwat = | ruonwar
almost everywhere. Now

Slh(t)dt - Slea(t)h(t)dt — (e, h) = Se, # 0

and thus, since Slh(t)dt is continuous, there exists an open interval
LU containingj a, such that Slh(t)dt = 0 on I,. This fact together
with (2) implies that f, is absoluxtely continuous on I,. Thus we may
differentiate both sides of (2) on I, to obtain fi(x) glh(t)dt = 0 a.e. on
I, which in turn implies that f| = 0 a.e. on I,. Sinée fo is absolutely
continuous on I, we conclude that f, is equal to a constant m, on
I,. Now let ¢ > 0 be given. Repeating the above argument at each
point a in F, = [¢, K — ¢] (or F. = [¢; + ¢, d; — ¢] as the case may be),
and then using the compactness of F,, we obtain a finite covering of
F, by open intervals I, ---, I, such that f,=m; on [;(i =1, ---, n).
It is easy to see that all the m,;’s must be equal and so f, is a
constant k&, on F,. The fact that f, is constant on U follows easily
from the arbitrariness of € > 0. Finally we must show that when
U= [0, K] we have f, =0 on U. If K > 0 then ¢, does not belong
to W and so there exists a continuous linear functional S = (-, %) on
L, such that S(W) = 0 and (e, &) == 0. For all a ¢ F we have
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0 = Se, = (e, h) = glh(t)dt = (J*h)(a)
and so by Lemma 8 we have k = 0 almost everywhere on E. Thus
K oo d;
(3) 0 =57, = | ripmmar + 3 \" rionwar .

Since ¢; and d; belong to E for all 1 and since we have shown that
fo=k; on (c;, d;) we have

Sd FoORBE = k; S'jfh(t)dt

(4) - ki(s:h(t)dt — S;k(t)dt)
— ky(Ses, — Ses) = 0.

Thus, since f, is a constant k, on [0, K], (3) reduces to

0= Sf, = SK FORDAE =k ka(t)dt
= ky«(Se, — Sex) = k,Se,

(since Ke E implies Seyx = 0). But Se,# 0 and so we must have
ko - Oo

LEMMA 5. The spectrum, point spectrum and continuous spectrum
of the operator T;e .7 are respectively the sets f([0, 1]), £([0, 1)) and
{fQV)}. The point spectrum is simple with the eigenfunction e, corres-
ponding to the eigenvalue f(a).

Proof. If ae[0,1) then a simple calculation shows that Tye, =
f(@)e, and so f([0, 1)) & Po(T;) and f([0,1]) & o(T;). If ceC does
not belong to f([0, 1]) then the function % = 1/(f — ¢) is absolutely
continuous on [0, 1] and it is easy to see that 7, € . By Lemmal
(ii) we have T\;_,T, = T.Ts—.,, = Ths—y = I and so T\;_, is boundedly
invertible on L,. S8ince T\, = T, — ¢ it follows that ¢ is not in
the spectrum of T,. Thus o(T,) = f([0, 1]). Next suppose (T, —
f(a))g =0 for ge L, and ac[0,1]. Then

(1) (F@) = F@)@ = | rega

almost everywhere on [0, 1] which implies that g is absolutely con-
tinuous on [0, @) and (a, 1]. If we differentiate (1) we find that ¢’ = 0
a.e. on [0, 1] and therefore g is equal to a constant %k, a.e. on [0, a)
and g =k, a.e. on (a,1]. Let a > 0. Then for almost every z € [0, a]
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0 = (T — fla)g(®) = k(f(x) — f(@)) — ko f (%) — £(0))
= k(f(0) — f(a))

and since f is 1-1 we must have &, = 0. Thus g = ke, which proves
that if a [0, 1) the eigenvalue f(a) is simple and if ¢ = 1 the operator
T, — f(1) is 1-1. We observe that the range of T, — f(1) is dense
in L, since, for all a <1, (T;— f(1))e, = (f(a) — f(1))e,. But the range
of T; — f(1) cannot be all of L, since f(1) e o(T,). Thus f(1) belongs
to Co(T;). This also shows that Po(T;) < £([0, 1)), which, together
with the reverse inclusion obtained earlier gives us the desired equality.

If T, is an operator in .o~ and if K is an arbitrary nonempty
closed subset of [0,1] then clearly the closed subspace W(E) is
invariant for 7, since W(E) is generated by certain eigenfunctions
of 7). Indeed, W(E) is the closed linear span of the eigenfunctions
¢, for a belonging to the set E. Our main result, which we now
state and prove, demonstrates that these are the only closed invariant
subspaces of T,.

THEOREM 1. (Invariant Subspaces of T;). The only closed inva-
riant subspaces of the operator T,e . &7 are those generated by the
etgenfunctions of T, Specifically, if W is a closed invariant subspace
of T, then there ewists a unique closed set E = [0, 1] containing 1 such
that W = W(E). Consequently the lattice of closed invariant subspaces
of T, is isomorphic to the lattice of closed subsets of [0, 1] that contain
the point 1.

Proof. Let W be an arbitrary closed invariant subspace of T%.
Define E = {ac|0,1]:¢,e¢ W}. By Lemma 4 (i) the set E is closed
and nonempty and clearly W(E) & W since the generators of W(E)
all belong to W. For the reverse inclusion let S be an arbitrary
continuous linear functional on I, such that S(W(F)) = 0. By the
Riesz Representation Theorem there exists an e L, such that Sg =
(g9, k) for all ge L,. Since 0 = Se, = (J*h)(a) for all ae F it follows
from Lemma 3 that 2 = 0 almost everywhere on E. Thus for any
ge W we have

K o dq
(1) Sy = | gnwar + 3| “gwnwar

where K = inf E and the (¢;, d;)’s are the components of [K, 1]\E. By
K

Lemma 4 (ii) we see that 0 = | ¢(t)h(t)dt since g = 0 almost everywhere
0

on [0, K]. For the remaining integrals in (1) we again appeal to
Lemma 4 (ii) and use the fact that ¢; and d; belong to E to conclude
that
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| o®ntt)dt = ki(Se,, — Ses) =0

where g = k; a.e. on (¢;, d;). Thus Sg = 0 and consequently S(W) = 0.
The Hahn-Banach Theorem now implies that W = W(E). The uniqueness
of the set E, provided 1e E, is straightforward and so we omit the
details.

As an elementary application of Theorem 1 let us find the closed
invariant subspaces of the operator M + J. Straightforward calculation
reveals that the spectrum of M + J is the closed unit interval, with
(0,1} serving as residual spectrum and the point 0 as continuous
spectrum. Thus M + J is certainly not similar to M — J. Nonetheless
we can employ the operator M — J to get at the invariant subspace
structure of M + J as follows. Let S denote the substitution operator
defined by Sg(x) = gL — x). Then S = S is an invertible isometry
and one can verify directly that S(M — J)S = I — (M + J*). It follows
from Theorem 1 (since M — J belongs to .&) that each and every
closed invariant subspace of M + J* is generated by a suitable subset
of its eigenfunctions. Finally, by taking adjoints, it is an easy matter
to determine the closed invariant subspaces of the operator M + J =
(M + J*)*. 1In fact, the lattice of closed invariant subspaces of M +J
is antiisomorphic to the lattice of all closed subsets of [0,1] that
contain the point 0.

Our next result illustrates the manner in which certain subsets
of the complex plane may arise as the (pure) point spectrum of an
operator.

COROLLARY. Let E be a monempty closed subset of [0,1] not
containing 1 and let T be the part of T, .o on the closed invariant
subspace W(E). Then the lattice of closed invariant subspaces of T
18 1somorphic to the lattice of all closed subsets of E. The spectrum
of T is the set f(E) and ts purely point.

Proof. The statement about the lattice of invariant subspaces
of T follows easily from Theorem 1 and our hypothesis that 1¢ E.
The claim regarding the spectrum of T is a slight generalization of
a result due to G. K. Kalisch [5].

The result of Kalisch referred to is that for any nonempty compact
subset of the real numbers there exists a bounded operator on a
separable Hilbert space whose spectrum is purely point and equal to
the given set. A similar result can be obtained for the residual
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spectrum of an operator by considering suitable parts of the operator
M + J. For the continuous spectrum of an operator the above result is
well-known. We remark that all of this can be carried out for arbi-
trary nonempty compact subsets of the plane; i.e., given a nonempty
compact subset of the plane there exists a bounded operator on a
separable Hilbert space whose spectrum is purely point (or purely
continuous or purely residual, as may be desired) and is equal
to the given set. The case of pure point spectrum is also due to
Kalisch.

We now state some algebraic results about the algebra & starting
with the assertion that %" is a maximal abelian algebra.

THEOREM 2. (Commutant of M — J) & is a maximal abelion
subalgebra of B(L,). In fact if T belongs to B(L,) and commutes
with M — J then Te & : t.e., & s the commutant of M — J relative
to B{L,).

Proof. By Lemma 1 (ii) we see that %  is an abelian algebra.
If T belongs to B(L,) and commutes with M — J then for every
ac{0,1) we have

(M — J)Te, = T(M — J)e, = aTe,

whiech, according to Lemma 5, implies that Te, is some scalar multiple,
say M(a), of the function e,. Thus there exists a function 4: [0, 1) —
C such that Te, = h(a)e, for all ae[0,1). For xe€[0, 1) we may then
compute

(1 — a)h(z) = S:h(x)ex(t)eo(t)dt
= (h(x)ex, 60) = (Tex, 80) = (exa T*eo)
= |et(Tre)at = | (T*e)tyat .

Thus for all x < 1

(1) W) = (= ) | (Tre)tyat

Since T is in B(L,), its adjoint 7* belongs to B(L,) and consequently
T*e, belongs to L,. Therefore, (1) implies that & is absolutely continuous
on [0, 1) and 4’ belongs to L,0,a) for all a < 1. Since Te, = h(a)e,
we have the set inclusions ([0, 1)) & Po(T) & o(T) and it follows, upon
defining Ah(1) arbitrarily, that he L.,. We now consider T, = M, —
JM,.. Since he L, the operator M, is bounded. The operator JM,,
maps L, into the measurable functions since #’' ¢ L0, a) for all a < 1.
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Furthermore, on the dense subspace D of L, generated by {e,: a € [0, 1)}
it is clear that JM, agrees with the bounded operator T— M, — T. Finally
it is easy to verify that if {g,} & D converges to ge L, then there
exists a subsequence {g,} such that {JM,g,} converges to JM,g
pointwise almost everywhere. In fact, the sequence {g,} itself has this
property, for if x < 1 we may use Holder’s inequality to compute

TMyg.() — IMug@) < [ 1@ 10.0) — o)) dt

= ({wra)"((1o.0 - 90rr)”

which implies that {JM,g,} converges pointwise to JM,g on [0, 1).
Thus all of the hypotheses of Lemma 2 are satisfied by JM, and so
JM,, is bounded on L,. It follows from [2] that

1 — m)ur 51 ()|t e L.,

and so T, belongs to & and clearly T, = T. Thus & is the com-
mutant of M — J and consequently % is maximal abelian.

As an easy corollary of Theorem 2 we show that the algebra &
is reflexive; i.e., we prove that & = Alg Lat & where Lat & denotes
the family of all closed subspaces of L, that are left invariant by
every member of &, and Alg Lat & denotes the algebra of bounded
operators on L, that leaves invariant every member of Lat &. The
inclusion & < Alg Lat & is obvious. For the reverse inclusion let
T be bounded operator on L, that leaves every member of Lat &
invariant. Then the functions {e,: @ € [0, 1)} are all eigenfunctions of
T and consequently T commutes with M — J. By Theorem 2 we
conclude that T belongs to & and so & is reflexive.

Our next theorem is a partial converse of Theorem 1. We remark
that Theorem 1 can be extended to a slightly larger collection of
operators of the form 7'; than those in the set .57 (by dropping the
requirement that f be continuous at z = 1, but insisting that the
closure of the range of f does not separate the plane), in which case
our next theorem would be a full converse.

THEOREM 3. (Partial Converse of Theorem 1). If the closed
wnvariant subspaces of T e B(L,) are precisely those of the form W(E),
where E ranmges over all monempty closed subsets of [0,1], then T =
T,e & and

(i) his 1—1 on [0, 1);

(i) m{x: h'(x) = 0} = 0.
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Proof. Our hypothesis implies that 7 commutes with M — J
(since e, is an eigenfunction of 7 for all « in [0,1)) and thus by
Theorem 2 we have T=T,e . If 0<a<b<1l and h(a) = h(b)
then T, would have an eigenspace of dimension = 2 at h(a) which
would contradict our hypothesis regarding the nature of the invariant
subspaces of T. Indeed, the linearly independent functions e, and ¥,
would belong to the eigenspace of T at k(a). Thus & must be 1-1
on [0,1) which proves (i). Let F = {x:2'(x) = 0} and suppose that
m(F) > 0. We may assume, without any loss of generality that FF =
[0, @] for some a < 1. Then clearly the closed subspace V = y,L,,
obtained by mapping g€ L, onto ¥,g, is invariant for 7, and so by
our hypothesis we must have V = W(FE) for some closed nonempty
subset E = [0, 1]. But if some b < 1 belongs to E then ¢, e V which
is impossible since every function in %L, vanishes on [a,1]. Thus
E = {1} which implies that V = 0 and contradicts our assumption that
m(F) > 0. Hence m(F) = 0 and so (ii) is proved.

THEOREM 4. (Cyclicity of Invariant Subspaces of T;). Every
closed tnvariant subspace W of the operator T, e .57 is cyclic. In fact,
if we define E = {a:e, € W} and K = inf E then a function sec L, is
cyclic for W if and only if s has the following properties: (i) s =0
almost everwhere on [0, K], (ii) s 7s a constant k; on each component
of [K,1\E and (iii) s is not a.e. equal to a constant on any open
interval containing a point a e E\{0, 1}.

Proof. Let W be an arbitrary closed invariant subspace of 7T'; so
that by Theorem 1 we have W = W(E). Let se L, satisfy (i), (ii),
and (iii) and let W, be the closed invariant subspace of 7', generated
by s and T,. Applying Theorem 1 again gives us W, = W(F) for
some closed set FF={ac|0,1]:e,e W.,}. We now proceed to show
that W =W, by showing that £ = F. We first observe that O0c &
if and only if s 0 a.e. in any neighborhood of x = 0. Similarly
OcF if and only if s 0 nearx = 0. ThusO0ec Fifandonlyif 0c F.
Also, by definition, 1¢ E N F. Suppose next that a¢ E (with a # 0
and ¢ 1). Then there exists an open interval I containing a, such
that T7s is constant on I for all n e Z* and it follows that e, ¢ W..
Therefore, a ¢ F which proves that FF < E. For the reverse inclusion
let ac £ and a¢{0,1}. If a¢ F then upon applying Lemma 4 (ii) to
W, = W(F) we see that there exists an open interval I containing «
such that s is constant on I. But this contradicts (iii) since a € E.
Thus we must have ac¢ F and hence E = F. For the converse we
note that if s is eyclic for W then, since W = W(E), properties (i)
and (ii) must hold for s. It is straightforward to show that if s does
not satisfy (iii) then s and 7, generate a subspace W(F') properly



604 ROBERT E. WATERMAN

contained in W(E). Thus we bave shown that conditions (i), (ii), and
(iii) are necessary and sufficient for the cyclicity of s. To complete
our proof we will demonstrate the existence of a function satisfying
these conditions. Let {a;}:, be a dense subset of £ = {¢,: a ¢ W} and
define a function s by

8

I

; 27%,, .

Then clearly s satisfies conditions (i), (ii), and (iii) and is therefore
cyclic for W. In case the set E is perfect the function fy; is also
cyclic for W. However, if E is not perfect then E contains isolated
points; if there exists an isolated point » € E N (0, 1) then it is readily
verified that fy, fails condition (iii) in a neighborhood of » and
consequently fyr is not cyclic for W.

3. Similarity and isometric equivalence. We begin our study
of the similarity and isometric equivalence of operators belonging to
the set . with a lemma on the boundedness and isometric behavior
of certain substitution operators.

LEMMA 6. Let »:[0,1] — [0, 1] and s = r™ be strictly increasing
absolutely continuous functions such that r(0) = 0 and r(1) = 1. Then
(1) S.eB(L,) if and only if s’ € L, (i) S, is an isometry of L, into
itself if and only if S, = L.

Proof. (i) Suppose S, is bounded. If x < y then

15(0) = 80| = | Zouorn® = | (Stces) Bt
= IS X mulls = IS 1IP+y — .
Thus for a.e. %, in [0, 1] we have

|s' (o) | = 11}101 [s(@) — s(@o)l/|@ — ] = IS, [I7

which shows that s’ e L.,. Conversely if s’ ¢ L., and f € L, is arbitrary
then

IS.£1iz = || Forey 7ae = || £@ 5@ < 1151 11 £ 12
which shows that S, maps L, into itself and is bounded.
(i) If S, is an isometry then for all & in [0, 1]

5(®) = [|SXwoalld = [ Xromllh = o .

Thus s(x) = 2 which implies that () = s™*(#) =« and S, = L.



CERTAIN COMMUTING OPERATORS IN L, 605

Our next lemma provides necessary and sufficient conditions for
the absolute continuity of the composition » = g7'o f of ¢ and f
where g and f are 1-1 complex-valued absolutely continuous functions.
This result is used in the proofs of Theorems 5,6, and 7 to establish
certain properties of the substitution operator S,, which arises in our
investigation of the similarity and isometric equivalence of T, and T,.

LEMMA 7. Let f and g:[0,1] — C be 1-1 absolutely continuwous
Sunctions such that F(0) = g(0) and f([0, 1}) = ¢([0, 1]). Define E, =
{e:g’(x) = 0}, Then r = g0 f is absolutely continuous if and only
if for each set K = [0, 1] of measure zero we have m(E, N »(K)) = 0.

Proof. Our hypothesis implies that » = g7o f and s =+ are
strictly increasing continuous functions mapping [0, 1] onto itself. A
well known theorem [4, p. 288] states that a real-valued function is ab-
solutely continuous if and only if it is continuous, of bounded variation
and carries sets of measure zero into sets of measure zero. Thus the
proof of the lemma is reduced to showing that the following two
conditions are equivalent:

(i) m(KE) = 0 implies m(F, N »{H)) = 0,

(i) m(E) = 0 implies m(r(&)) = 0.

Clearly (ii) implies (i) and so to complete the proof we show that the
reverse implication, (i) implies (ii), holds. If % is a complex-valued
absolutely continuous function on [0, 1] and if (@, b) < [0, 1] let us
write Vi,.,,,h to denote the total variation of 4 on the interval (a, b).
A standard theorem in analysis [4, p. 272] together with the fact that
VS = Viw,ang gives us

(1) | o=\ g

whenever £ is an interval in [0,1]. It is now straightfoward to
verify that (1) holds for every measurable subset # in [0,1]. Now
suppose that (i) holds and let £ < [0, 1] be an arbitrary set of measure
zero. Then using (1) we obtain

0= |rwlat
= towiar
(2) T
= _ig@la+ | iomla
r(L)NEg r{ ENEg

| g
T(ENE

where the last equality follows from applying (i) to the set E which
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is assumed to have measure zero. Thus

o=\ lowlat
T{EN\E

and since ¢’ # 0 a.e. on E; we conclude that m(r(E)\E,) = 0. On the
other hand, (i) says that m(»(¥) N E,) = 0 so that

m(r(E)) = m(r(E) N E) + m@r(E)\E,) = 0

which shows that (ii) holds, and completes our proof.

Our next result, which gives necessary conditions for the similarity
of two operators in .&7, is the workhorse for much of what follows.

LEMMA 8. If T; and T, belong to &7 and are similar in L,,
say VI, V' =T, then:

(i) the functions r = g7'o f and s = r™* are well-defined absolutely
continuous strictly monotone increasing functions mapping [0, 1] onto
itself;

(i) there exists a function h: [0, 1) — C, absolutely continuous and
nonvanishing on [0,1), such that Ve, = h(a)e,., for all ac[0,1). In
fact, for all x€]0, 1)

1
1— r)

hz) = ( ) S:(V*eo)(t)dt .

Proof. (i) If T, and T, are similar in L, then T, and T, must
have the same point spectrum and spectrum so Lemma 5 implies that
f{0, 1)) = ¢([0, 1)) and f([0, 1]) = ¢(]0, 1]). Since f and g are 1-1
continuous functions it follows that f(0) = g(0) and f(1) = g(1) and
consequently the functions » = g™'c f and s = r™* are strictly monotone
increasing continuous functions mapping [0, 1] onto itself. Since f’
and ¢’ are nonvanishing a.e. it follows that »" and s’ also have this
property and so Lemma 7 implies that » and s are absolutely continuous.

(ii) Let ae[0,1). Then

Ty(Ve,) = VI ;V'Ve, = VIeo = f(a) Ve,

which shows that Ve, is an eigenfunction of T, corresponding to the
eigenvalue f(a) = g(r(a)). By Lemma 5 we know that the point
spectrum of T, is simple and so Ve, must be some scalar multiple, say
h(a), of the eigenfunction e,,. Thus we have a function A: [0, 1) —
C such that Ve, = h(a)e, ., for all ae[0,1). Also, 2 is nonvanishing
on [0, 1) since V is invertible. For a€[0, 1) we compute
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na)(l — r(a) = Soh(a)er(a)(t)eo(t)dt = (Ve,, e)
= (e, V*e) = SI(V*eo)(t)dt X
The above computation shows that % is absolutely continuous on [0, 1).

THEOREM 5. (Isometric Equivalence of T, and T,). If T, and
T, belong to .57 then they are isometrically equivalent in L, if and
only if f=g.

Proof. Suppose that V is a boundedly invertible isometry such
that VT,V = T,. Then by Lemma 8 the functions » = ¢g™'o f and
s = r~t are well-defined strictly increasing absolutely continuous maps
of 0, 1] onto itself. We claim that for every nonempty closed subset
E<10,1]

(1) VIW(E)] = W(r(E)) .

To see this let % denote the function appearing in the statement of
part (ii) of Lemma 8. Then Ve, = h(a)e,,, for all ¢ in [0,1) and
Ia) # 0. Since V is invertible we clearly have V(span e,) = span (Ve,) =
span (e,,,). Equation (1) now follows by taking the closures of the
above spans. Next we consider the operator

Vr = M(W)l’psr: Lp e Lp .

Using the absolute continuity of » this operator is easily seen to be
an isometry since for all h, e L,

V.ally = {1y @yt
= {Im@irae = iiniz

Similarly we see that V, is an isometry and since
Ve = My onisS, = S;Myjrmio

it follows that V, is boundedly invertible on L,. For te [0, 1] let E,
denote the projection of L,(0,1) onto W([t, 1]) defined by E.h, = eh,
for all h,e L,. Then for all 2, € L, and a.e. = in [0, 1] we have
(V:lEt Vrhl)(x) = (SsMU/r')IIPEiM(r’)llpSrh’l)(x)
(2) = (S, E.S,h)(®) = e,(s(x))h(x)
= €,n(®%)* () = (Erpnh)(®)

for all ¢ in [0,1]. Since V is an invertible isometry it is clear that
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NVE, V|| = || E,|| = 1. The operator VE,V™ is obviously idempotent
and by (1)

(VE, V7)L,(0,1) = (VE)L,(0, 1) = VW([t, 1])
= Wl 1) = w(r®), 1D ,

so that VE, V™' has range equal to W([»(), 1]). A result due to G. K.
Kalisch [6, p. 94] now allows us to conclude that

(4) VE V™' = E,.,, .
Upon combining (3) and (4) we obtain
(5) V.VE, = E,V,V

for all ¢ in [0, 1]. Another result of G. K. Kalisch [6, p. 95] now implies
that

for some ke L_,. Then for all h, e L,

th = Vr—lehl
= (V' M,e,)(S,h,)
= (Ve)(S:h) = h(0)S,h,

which shows that V = h(0)S,. However,
[R(O)] - el = 1| Vesll, = leoll,

implies that |2(0)] = 1 and so S, is an isometry. Lemma 6 (ii) now
tells us that S, =71 and so T, = T,. A routine argument now de-
monstrates that f = g.

THEOREM 6. (Similarity of T, and T,). If T, and T, belong to
7 then they are similar in L, if and only of ([0, 1)) = ¢([0, 1)) and
there exists a function h, absolutely continuous on [0, 1), such that the
operator V, defined by V, = S 1., (M, — JM,) is boundedly invertible
on L,. In this case the similarity is implemented by V, and we have
V. T, Vit = T,.

Proof. (i) Suppose T, and T, are similar and let V be a boundedly
invertible operator on L, such that VT,V = T,. By Lemma 8 the
functions » = g7'o f and s = ' are strictly monotone and absolutely
continuous with 7(0) = 0 and »(1) = 1. Let & denote the function in
the statement of Lemma 8 (ii) and define the operator V, by V, =
S,T,. An elementary calculation shows that V,e, = Ve, for all ae
[0,1] and so V, and V agree on the dense subspace D of L, consisting
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of all linear combinations of the e¢,’s. Thus V, extends uniquely to
a bounded operator, namely V, defined on all of L,. In a sense this
is what we set out to prove. However, the proof of the corollary of
the present theorem will require the somewhat sharper result that V'
is actually given by the formula for V,, on all of L, We will
show this ultimately by using Lemma 2, but at this point we do
not know that V, is defined on all of L,. Indeed, to show this we
will need the fact that %’ belongs to L, 0, a) for all ¢« < 1; but Lemma
8 (i) merely implies that %' e L,(0,a) for all a < 1. We begin by
showing that V, is well-defined on L. and agrees with V there. Let
g.€ L., be arbitrary. For ¢ < 1 Lemma 8 (ii) implies that 2’ e L,(0,
s(a)) and so, by Holder’s inequality,

1STMyg.@)| = | Bg0dt < o

Clearly S,M,g.(a) is finite for a.e. a [0, 1] and so V,g, is well-defined
and is a measurable function which is finite a.e. on [0, 1]. Let {s,} &
D be a sequence of step functions such that ||s, — g/, — 0 and || s, || <
llg.1l.. for all #n. Since V is bounded we have Vs,— Vg, in L, and
so there exists a subsequence, which we will also denote as {s,} for
simplicity, such that Vs, —Vy, almost everywhere. Similarly we may
assume that s,— g, almost everywhere. Let a < 1 be arbitrary.
Then |s.h'| < ||g.ll.|?"| € L0, s(a)) for all » and s,k — g,h' a.e. on
[0, s(a)]. By Lebesgue’s Dominated Convergence Theorem we conclude
that

s(a) s(a)

lim | s = [

Thus S, JM,.s, converges to SJM, g, for all a« < 1. Clearly S,M,s, —
S.M,9, a.e. and therefore V,s,— V,g, a.e. on [0,1]. On the other
hand, Vs, = Vs, — Vg, a.e. and so it follows that V,g, = Vg,. Thus
V., and V agree on L.. We are now able to demonstrate that &'e
L0, a) for all @ < 1. Define the function & by h(x) = &'(x)/ | (x)| if
B'(z) # 0 and by h(z) = 1 otherwise. Then |h| =1 and 'k = | 1’| almost
everywhere. Let g, € L, be arbitrary and let {s,} & D such that ||s, —
g.ll,— 0 and s, — g, almost everywhere. By choosing a suitable sub-
sequence of {s,}] we may also suppose that V(k|s.|) converges a.e. to
V(k|g,). For all ne Z* we have h|s,| e L., and therefore, since V =
V, on L., the sequence Vh(ﬁ |s.|) converges a.e. to V(k|g, |)e L,. Clearly
S, M.(k\s,|) — S,M(k|g,)) a.e. and so

SJIM,.(h|s,)) = (S.M;, — Vi)(his.)

converges a.e. to
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S Mi(k|g,) —V(k|g.]) .

This last function is finite a.e. and so for almost every a in [0, 1]
we have

(1) lim S:(”i 1 (t)s.(t)|dt = lim S:(a)h’(t) h(t) | s.(t) | dt
= lim [S,JM,.(k|s,])](@) < oo .

N—>c0

Since |2's,| = 0 it follows from (1) that
(2) lim Su[h’(t)sn(t)ldt < o

for all a < 1. Now let a <1 be arbitrary. Then (2) and Fatou’s
Lemma together imply that

[ wwemat < \'1we-1a.0)at
< lim {"| K@) -1, dt < o= -

Since ¢, € L, was arbitrary, the converse of Holder’s inequality now
implies that %' e L,(0, @). Finally, since a < 1 was arbitrary, we have
W eL,0,a) for all a <1. It now follows easily that V, is defined
everywhere on L, and satisfies all of the hypotheses of Lemma 2.
Hence V, is bounded and, since V, = V, boundedly invertible.

(ii) Finally, we consider the converse. If V, is boundedly inver-
tible then it is straightforward to verify that V' = (M — JMyum)S,
and that V,T,V;* = T,, demonstrating the similarity of T, and T,.

The following corollary lists necessary conditions, involving only
the functions f and g, for the similarity of 7, and T,. Thus, since
the ‘auxiliary function % appearing in Theorem 6 is dispensed with,
the corollary provides us with the means for the direct verification
of the similarity of a given T, and T,.

COROLLARY. If T; and T, belong to &7 and are similar in L,
them, with r = g™'o f and s = ™, we have

(i) Tu_nS, and T_,S, belong to B(L,);

(ii) @ — (") and (1 — s)(s")~* belong to L.,;

(iii) 7" and s’ belong to L.(0,a) for all a < 1.

Proof. Let V, denote the operator in the statement of Theorem
6 so that V' = TS, and is bounded. It is straightforward to verify
that T,,_,, € B(L,) and hence
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TonS: = Thoen TS, = Thien Vit

belongs to B(L,). If we interchange the roles of T, and T, in
Lemma 8 and Theorem 6 then we can repeat the above argument
to show that T, ,,S,e B(L,) which proves (i). The operators V, =
M.yS, and V, = M,,1»S, are boundedly invertible isometries on L,
with Vi* = S;Myp» and V' = S, M,;,n0. Then by part (i) the
operators

Tu~r>M<1/w>1‘.ﬁ = T<1~T>S7SSM(1/T'>1MJ
and
T(l—s)M(lls’)UT’ - T(l—s)SsS'rM(lls’)lfp

belong to B(L,). Since #' e L, it is clear that the function
ko) = (L= a) {107 ) et
0

belongs to L. which by [2] implies that JM,, .c B(L,). Thus the
operator

Moo = Toon Mot — JMoyry Mo —10n
= Tomun—1e + S Mg

belongs to B(L,). It follows that (I — #){(#')™"*¢ L.. A similar argu-
ment shows that (1 — s)(s’)™*e L., and thus (ii) holds. For a <1
the function 1 — s is bounded away from zero on the interval [0, »(a)]
and so (ii) implies that (s")"? e L_(0, v(a)). But, since s’ is nonvanish-
ing a.e., s'(r(z)) = 1/r'(x) and consequently "¢ L.(0,a). A similar
argument shows that s’ e L (0, a) for all ¢ < 1 and completes the proof
of (iii).

We remark that the conditions +' ¢ L., and s e L. are sufficient
for the similarity of T, and T,. Indeed, one may then take A =1
in Theorem 6. These conditions are apparently not too far removed
from also being necessary for similarity, as part (iii) of the corollary
illustrates.

As an application of the preceding corollary we consider the semi-
group 7 of bounded operators T“ defined, foralla > 0, by T° = T...
The semi-group property is an immediate consequence of Lemma 1 (ii)
which says that T°T°" = T,oT,t = T,ers = T°**. Lemma 5 and Theorem
1 imply that the spectrum and closed invariant subspaces of every
member of 7~ are identical. However, the following proposition shows
that no two distinct members of &~ are similar. This provides an
interesting contrast to the semi-group .# of multiplication operators
of the form M,.(a > 0). Not only do all the members of _# have
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the same spectrum and closed invariant subspaces; any two members
of _# are isometrically equivalent in L,. In fact, the equivalence
of M,. and M,» may be implemented by

(SsM(llr’)”p)Mz“(M(r')l"I’Sr) = be

where » = z*® and s = 7.

PROPOSITION. The operators T* and T® in 7 are similar if and
only if a = b.

Proof. Let a < b and suppose T° and T° are similar. Let f = &°
and g = 2*. Then » = g7'o f = x*® and +' = (a/b)x™****. Part (iii) of
the corollary implies that — 1 + a/b = 0, or equivalently, a = b. Thus

= b.

Our final theorem is the analog, for certain operators in .o, of
the well known theorem about the similarity of matrices with 1-
dimensional root spaces; viz., two such matrices are similar if and
only if their eigenvalues are the same.

THEOREM 7. If T; and T, belong to & with ' and ¢’ continuous
and nonvanishing then T; and T, are similar in L, if and only if
their point spectra coincide.

Proof. If the point spectra of T, and T, are equal then by
Lemma 5 we have f(]0, 1)) = ¢(]0, 1)) and since f and g are 1-1 con-
tinuous functions it follows that f(0) = g(0) and f(1) = g(1). Thus
=g 'of and s = ' are well-defined and our present assumptions
on ' and ¢ imply that r and s satisfy the hypothesis of Lemma 7.
Hence r and s are absolutely continuous and it is clear that ' and
s’ belong to L.. By Lemma 6 (i) the operators S, and S, are bounded
and clearly S;* = S,. An easy computation now shows that S,T,S, =
T;.. = T, which completes our proof.
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