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Denoting by Vn(F) the ^-dimensional vector space over
the field F of characteristic 0, let Vΐ(F) be the linear space
of all r-vectors R over Vn(F) and G?(F) the Grassmann cone
of the simple r-vectors R in V?{F). The sum R = ΣUi -B»(Λ< e
G?(F)) is irreducible if R is not the sum of fewer than k
elements of G?(F). (Duality reduces the interesting cases to
2 ^ r S n/2.) Such sums are trivial only for r = 2, because
Λ*=1 Ri Φ 0 while always sufficient for irreducibility is then
also necessary. Extension of F does not influence irredu-
cibility if r = 2 but it can for r > 2.

The sets W?(F, k) of those R in Vΐ(F) which are irre-
ducible sums of k terms behave as expected when r = 2, but
have the most surprising properties for larger r. Although
yj(jfP) = ULi W&F, k) and Wl(F, 3) * 0, the sets W&R or C, 2)
have interior points as sets in Vl(R resp. C) and so does
Wl(R, 3) but WtiC, 3) does not.

The paper is based on the thesis [1] with the same title by the
second author.

The smallest number k for which V?(F, k) = \Ji=1W?(F, i) coincides
with Vr(F) is denoted by N(F, n, r) which by duality equals N(F, n,
n — r). Obviously N(F, n, r) ^ ί ̂ Ί . But in spite of various inequa-
lities relating these numbers which show that (n) is much too large,
the precise value of N(F, n, r) is known only in the two cases implied
by the above statements: namely N(F, n, 2) = [n/2] and N(F, 6, 3) = 3.

The values N(C, 7, 3) - 5, N(C, 8, 3) = 7, and N(C, 9, 3) - 10 have
been claimed but questioned, see Schouten [3, p. 27] and [1].

The purpose of our investigation is to elucidate why the case
r = 2 is so much simpler than 2 < r < n — 2 In addition to the
already mentioned facts we show that Vl(F, k) is an algebraic variety,
because, if R{i) is the ith exterior power of R, then Rik+1) = 0 is
necessary and sufficient for R e V?(F, k) when r = 2, but merely neces-
sary when r > 2. This implies dimF2

%(iί resp. C, k) < dimV?(i? resp.
C, & + 1) for 1 ^ k < [n/2] in contrast to the case n = 6, r = 3. In
fact we show that F?(JB or C, A) is for r > 2, & > 1, and w ̂  (& - l)r + 3
not even a closed set.

An irreducible representation R = Σf=i ^», ^ > 1> is for r — 2
never unique, but for r > 2 it is (up to a permutation) if ALi -R; =£ 0
and k ^ r. The condition A; ̂  r is probably superfluous but enters
—like n JΞ> (k — l)r 4- 3 (instead of ^ >̂ r + 3) above—because we use
the Plϋcker relations for simple vectors which get out of hand for
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large k. A coordinate-free approach would therefore be preferable,
but in many cases we were not able to devise one.

We will continue using capitals (R, S, T) with a tilde and with
or without subscripts for general multivectors and omit the tilde only
when the vectors are known or assumed to be simple.

2* Results for general F, n, r, k. The following agreement will
prove convenient. el9 e2, are used for elements of a base. If two
spaces Vm c Vn occur, then the base el9 , en of Vn is chosen so that
el9 , em is a base of F m . We begin with some simple remarks.

(2.1) // R e G* then R = R' + S A en with R' e G r 1 and S e
G n—l

r-i

For, with suitable ^ e Vn~ι and &

R = A (vt + βiβu)

= A Vi + [Σ (- 1)""'/3Λ Λ Λ ^_! Λ vi+1 A Λ vr] A en .

If the Vi are dependent, the bracket reduces to one term; if not, the
bracket is an (r — l)-vector in the r-space spanned by vl9 , vr and
hence is simple.

We apply (2.1) to prove

(2.2) R e W;(F, k) if and only ifRA en+1 A Λ en+m e W#:(F, k).

It suffices to prove this for m = 1. We show if R e W"{k) and R A
en+1 6 ϊΓ ίί(i), then I = k. Trivially R A en+1 e F?ίί(fc), whence I ^ fc.
By (2.1) and the hypothesis R A en+1 = Σί=i Λ* = ΣUi ( ^ + ^ Λ <WX)
with JS, G Gn

rχ\, R\ e G%19 and S, e Gn

r. Therefore, ΣR\ = 0 and β Λ en+1 =
*) Λ eΛ+1, which implies R = Σί=i S< and k ^ I.

COROLLARY 2.3. N(F, n + 1, r + 1) ^ JV(-P, n, r).

Anticipating ^(ί 7, w, 2) = [n/2] we see that both equality and
inequality occur. N(2m, 2m-2) = N{2m, 2) > N(2m - 1, 2) = ΛΓ(2m - 1,
2m - 3). Similarly N{2m + 1, 2m - 1) = ΛΓ(2m, 2m - 2). Also
iV(w, r) ^ [(n — r + 2)/2], but this lower bound is for r > 2 too small
to be useful.

A consequence of (2.1) is the generalization

(2.4) If Re Vΐ(k), then R = R' + S A en with R'e Vr\k) and
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By hypothesis R = Σ U R$ ^ K Ri e G>) Applying (2.1) to each
R, yields R = Σ U (R\ + S, A en) = Σ U Λί + ( Σ U S<) Λ en with i2{ e
G^"1 and JS< e Gjzί, which is the assertion.

With k = iV(F, w, r) we deduce from (2.4):

(2.5) N(F, n, r) ^ N(F, n - 1, r) + AΓ(JF w - 1, r - 1).

For r = 2 equality holds when n is even and inequality holds
when n is odd.

A linear map / : Um —• F w induces a homomorphism / * : ϋJΓ-^^r
given by / * ( ^ Λ ••• Λ ur) = f{uy) Λ ••• Λ /(w r). The map / * is
surjective when / is. We note

(2.6) If f*{R^ + . . . + f*(Rk) is irreducible in Vΐ, then so is
Rλ+ + Rk in U?.

We apply this first to the projection / : Vn+i —> Vn defined by

and find:

(2.7) // Ri e Gn

r(F) and ΣiU Ri is irreducible in V:(F), then it is
irreducible in Vr+k(F).

Hence

(2.8) N(F, n + l,r)^ N(F, n, r).

The case r = 2 shows again that both inequality and equality can
occur in (2.8). Next we apply (2.6) to the map / : Vn+k -+Vn+ι given by

and find using (2.2):

(2.9) If ΣLiRi is irreducible in V?(F), then Σ*=i i2» Λ eΛ+< is
irreducible in V™Zk{F).

Two important facts will now be proved together:

THEOREM 2.10. If ALi ^ ^ 0, then ΣίU-Rί is irreducible. The
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converse holds only for r = 2.

THEOREM 2.11. If R e V?(F, k) then Rik+ι) = 0. The converse
holds only for r = 2.

If r is odd then R{i) = 0 for any i > 1 so that R{k+1) = 0 imposes
no condition. If r is even the relation (Σ?=i RiYk+ί) = 0 is obvious,
so that the first part of (2.11) holds. Since

(2.12) (Σ?=i Ri){k) = ft! Λf=i Λ* /or even r

it follows that Σ i i ^ e Wn

r{k) when A?=i#* Φ 0. Applying (2.9) we
see that this also holds for odd r.

If Λί=i i?i = 0, r = 2, and Ri — Vi A w{ then one of the ^ or wf

depends on the rest, say vk = Σ*=ί λ Λ + Σ?=i PWi so that

Σ Λ< = Σ K Λ Wi + (λ^i + μtWi) Λ wfc] .

Each bracket represents a simple vector because it is a 2-vector in
the space spanned by vi9 wi9 and wk.

That Ai=iRi ^ 0 is necessary for irreducibility only when r = 2
follows from (2.2). This establishes (2.10).

It remains only to prove the second part of (2.11). Let r = 2
and R{k+ι) = 0. Then R e W?(k + i) with i I> 1 is impossible because
(2.10) and (2.12) would imply Rik+i) Φ 0. That R{k+1) = 0 is not suffi-
cient for R e V?(F, k) is obvious for odd r and follows from (2.2) for
even r > 2.

Corollaries of (2.10) resp. (2.11) are:

(2.13) N(F, n, 2) = [n/2].

(2.14) / / Λ e WsPCF, fc) then also R e W2

n(F0, k) for any extension
field Fo of F. This is not true for r > 2.

The latter means that for each n — 2 > r > 2 there are R, k! <
k,F(zF0 with Λ e TΓ^ίF, fc) and JB e W?(F0, k'), and follows from (5.9)
and (2.2). Note: The first part of (2.14) does not mean, for example,
that Re V?(F), Re W?(FQ, 2), hence R = R1 + R2 with R{ e Gζ(F0),
imply R{ e Gΐ(F), but only that R\ e Gζ(F) with R = R[ + R'2 exist,
compare (4.3).

Whereas in (2.2) and (2.9) the number of summands is the same
in hypothesis and assertion, it is different in the next theorem which
is therefore harder to prove.
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THEOREM 2.15. Let R e W?(F, ft), E, = Λί=i en+{i_1)r+ι(ί = 1, . . , j),
then R + Σ ΰ E< e W?+rj(F, ft + j).

Evidently it suffices to prove this for j = 1, or with E = E1 that
R + Ee Wΐ+r(k + 1). Let R + E = ΣH=i $, S< 6 G?+r, and denote by
S the projection of S{ on F r\ Then SI is simple and # = ΣΓ=i S .
Therefore, jβ e W?(k) implies m ̂  k and that for m = k all $ ^ 0. We
show that m = k is impossible.

There are at least two S* which do not lie in G% For, S< e G?,
if i > 1, would entail S, = S[ + E with SJ Λ J& Φ 0, but S; + E is
not simple by (2.10). Assume that Sλ and S2 do not lie in Gn

r. For

w = Σ?ίΓ a%> Put w' = Σ?=i a% a n ( i ^ " = Σ?ΐΓ+i a%
Then

S< = A % - ΛK + O
i=i i=i

and we may assume further that w[[ Φ 0 and w'2[ Φ 0.
There are subscripts i, i , A, Z with i =̂ k such that te JJ Λ w'li Φ 0.

Otherwise w[J /\w"x = 0 for & ̂  0 so that w"z = Xkιw[[ for ft =̂  1.
Similarly wĵ  = μklw'2[ for ft ^ 2, so that w" = μuX^Wu.

This, with λ u = 1 and Xu = /̂ izλ21, gives

S* = A (w; + λiyw i) .

But then î S^ cannot produce E. Thus we may assume (with a possible
change of notation) that w[[ Λ wf

2[ Φ 0. Then e1A ΛenΛwnΛw21 =
eι A ••• Λen ΛWUΛW'ZΊΦ 0 and there is a base {ê } of F w + r with e\ = e{

for i ^ n, e'n+ι = wn, and e^+2 = w2ι. Then with the original Ry

E, Sίf , Sfc,

(JB + E) A e'n+i A e'n+2 = (S3 + + Sk) A e'n+ί A e'n+2 ,

i.e.,

R A e'n+1 A e'n+2 e W:t2

r(k - 1)

contradicting (2.2) and (2.7),

3* The sets V?(Ft9 ft)* Let Ft be a topological field. Obviously
Gΐ(Ft) = F*(Ft, 1) = W?CFt, 1) is a closed set in V?(Ft). It is clear
that for ft < N(Ft, n, r) the set V?(Ft, ft) cannot be open, but one
might expect it to be closed. This is true for r = 2, see below, but
in general not for r > 2. To show the latter it is not necessary to
study general n and r > 2 because of the following:

THEOREM 3.1. If for a topological field Ft the set V?(Ft, ft) is



18 HERBERT BUSEMANN AND D. EDWARD GLASSCO II

not closed in V?(Ft) then for m^n, s^r,m — s'ϊtn — r and j ^ 0
the set VΓ+js(Ft, ft + j) is not closed in VΓ+js(Ft).

First let j = 0, m ^ n and R e V?(Ft, k). By (2.7) R e V?(Ftf k) so
that the latter is not closed. For any m we conclude from R e V?(Ft9 k)
and (2.2) that

R A em+1 A Λ βm+A e TOίΉ, k) .

Since F r

m (^, ft) is not closed there are Rv in V?(FU k)(v = 1, 2, . . . )
such that R»-*Re W?{FU kf) with ft' > ft.
Then by (2.2)

R, A em+1 A Λ βm+, > R A em+1 Λ Λ em+h e W?tf(Ft, k')

so that FΓΛ î77*, fe) is not closed. This settles the case j = 0 or that
V?{FU k) is not closed.

With the notation of (2.15) we see with the same argument

VΓ+js{Ft, h+fiBR+ΣEi >R + ΣE{e WΓ+js(Ft, k! + j)

which proves (3.1).
In § 5 it will be shown that N(F, 6, 3) = 3 and Vξ(R resp. C, 2)

is not closed in Vξ(R resp. C). Probably no Vΐ{R resp. C, k) with
3 <J r ^ n — 3 and 1 < & < JV(Λ resp. C, n, r) is closed, but from (3.1)
we obtain (with 2 + j = k) this best possible result only for k = 2.

THEOREM 3.2. I%e seίs V?(R, k) and V?(C, k) are not closed in
Vΐ{R) resp. Vn

r(C) when k ^ 2, r ^ 3, omcί n ^ (ft - l)r + 3.

The mentioned best result would require a direct treatment of
the case k > 2 instead of reduction to ft = 2. The fact that we use
Pliicker relations in §5, which become very involved for large n, r, ft,
is responsible for our incomplete result in the case ft > 2.

We now discuss the case r -— 2. The by (2.11) necessary and
sufficient condition R{k H1) = 0 for R e F?(JP, ft) amounts to polynomial
conditions on the components aik of R = Σis«*sn <***£• Λ ek. The set
F2

Λ(JF, ft) is therefore an algebraic cone in Vί(F) and hence closed
when F carries a topology.

It is also clear that for 1 g ft < ft' ^ [n/2] the set V?(F, ft) is a
proper subset of V?(F, ft') and plausible but, since we do not know
whether V?(F, ft) is an irreducible manifold, not a priori certain, that
the dimension in the sense of algebraic geometry (denoted by a-dim)
and consequently in the case of R resp. C also the topological dimen-
sion ( = dim), of V?(F, ft) is less than that of V?(F, ft'). That a proof
is necessary may be seen from the case r = 3 (see §§5 and 6). In
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spite of N(F, 6, 3) = 3 the sets Wξ{R resp. C, 2) and W£(R, 3) have
nonempty interiors in V£(R resp. C) so that

dim V!{R resp. C, 2) - dim F3

6(/2 resp. C)

dim TF3

6(i2, 2) = dim W$(R, 3) - dim V!(R) = 20 .

But W£(C, 3) has no interior points and hence by a theorem in dimen-
sion theory (see [2, p. 46])

dim W«(C, 3) < dim Wξ{C, 2) - dim V£(C) = 40 .

Although we need only the expression for R{h) in the case r = 2,
we give, owing to its potential usefulness, the expression of ΛiU #;
of k different r-vectors in terms of the components of the R{. The
rather long proof can be found in [1, p. 51].

Put J = {j\, , jr} where 1 ̂  j\ < <jr<,n,n^kr.

Let αf = aiv"jr(i = 1, •••,&) be indeterminates and define for a per-
mutation π of {1, , r)

av
J) = αΓ : ( 1 ) - i r r ( r ) = sgnπαf .

If {£Γ = Alf , ̂ Ar} with 1 ̂  h,< --• <hkr<, n and J x U U Jk = H
(disregarding order) then J v Π Jμ = φ f or v Φ μ and Ju , Jk in this
order is a permutation of i ϊ whose sign is denoted by

Λ Λ

We then define

H
a{!

where α v s tands for {αί: JczH}. If π is a permutat ion of {1, •••, A:},

t h e n

THEOREM 3.3. / / ^ = Σ j e ^ α ^ mίA ΛΓ = {1, ••, n}, then

A i i ίti = ΣHCZN FH(au , ak)eH.

Consequently, if QH (a) originates from FH (al9 , ak) through
replacing each a{ by the same a = {aJ}, then we obtain

COROLLARY 3.4. If R = Σ/c^ aJeJy then R{k) = k\ ΣJH^N QH{a)eH.

From (3.4) one deduces with the conventions (H) = f i ) = 0,

\ΔJ \ΔJ
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(see [1, p. 65]). Hence

(I) - (n-2

2k),^v;{c,k) = 2 [(;
and so

dim Vζ{R resp. C, k) < dim V?(R resp. C, & + 1) for 1 ^ k < Γ—
1— ZJ '

in contrast to the case r = 3.

4* Uniqueness. Let R, G G?tF), (i = 1, , k). The sum ΣίU #•
is called umgw in F;(F) if S{ e Gn

r{F){i = 1, , fc) and Σ Rt = ΣSt
imply that Sπii) = R{(i = 1, •••,&) for a suitable permutation π of

{1, ••-,*}.
Obviously:

(4.1) If Σf=1 i?i is unique then it is irreducible.

(4.2) 7f Σ*=i -K* ^ s irreducible resp. unique then so is X|= 1 i^ /o7̂
i < k.

The converse of (4.1) does not hold; in particular:

(4.3) If r = 2, k > 1, A'URi ^ 0 ίΛβ^ Σ i i ^ is m>£ unique,
i.e., no irreducible sum of 2-vectors is unique.

Because of (4.2) it suffices to observe that

eι Λ e2 + e3 Λ e4 = (ex + β3) Λ e2 + β3 Λ (— e2 + e4) .

However, if r > 2 and Λί=i -R* ^ 0, then Xf=1 JŜ  probably is unique.
Because the Pliicker relations are hard to handle for large k we were
able to prove only:

THEOREM 4.4. If r > 2, & ^ r, and Λf=i ^ =£ 0, ίfeew Σ i i -B* i

Here both the field F and the dimension n of the space (except
that n^rk is, of course, implied) are deliberately omitted because
they are immaterial.

First we convince ourselves that n is unimportant and at the end
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of the proof we indicate why F is.
Let Ri = v{i_ι)r+ι Λ Λ vir(i = 1, , k), A v* =£ 0. It suffices to

prove (for a given F) that 2*2^ is unique in the space V spanned by
^i, *, vkr. For, let also

Under projection of Vn on V let Rt — JBJ. Then 2Ή? — 2Έ;, 5 — 5,
A Rΐ -> A #/ so that β = 272{ and if (4.4) holds in V then {R$ is a
permutation of {jβj. Therefore, A -B* ̂  0 a n ( i hence A R* ^ 0. If
R* = vJl-Dr+i Λ Λ i\> then because (4.4) holds in the space spanned
by vf, -",Vrk we have R*{i) = Ri for a suitable permutation π of
{i, . . ,fc}.

In the proof of (4.4) we therefore assume that n = rk and R =

Σf=i Λi with

ϋk = e«_i)r+iΛ Λ e ί r = eIΛi) ,

where

L(v) = {(v - l)r + 1, , yr} (y = 1, , ft) .

We further put

•ί" = {̂ i, *', h} with 1 £ i, < < ik £ rk ,

also

I(v) = 7/{i}, I(v, μ) = I/{%, ίμ}, etc .

It will prove convenient and causes no ambiguities to use I(v) for
{il9 , ίv_!, %+1, , ΐ&} even if iv is not defined.

Ω is the set of all / with % e L(v){v = 1, , A;), and I(v) e Ω
means ίμ e L(μ) for μ Φ v.

We also use

The sign depends on the order but will prove irrelevant. Finally
i?(z;) and i^(v) are the spaces spanned by the β̂  with ί e L(v) or ΐ ί
L(v) respectively.

From now on we will often use the Plϋcker relations (see [3, p.
23] and [4, p. 27]) which in our type of notation may be stated as
follows:

L e t P = {Pl, . . . , p r } , l^Vi^

ap = aPl"'Pr =

for a permutation π of {1, , r} and similarly for Q. The vector
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-ί- Σ uPeP - Σ αP l-p 'eP l Λ Λ ep e V?

is simple if and only if for any P, Q

Plϋcker: apaQ + Σί=i ( - iγaP{r)qiap-Q{ί) = 0.

We prove several lemmas beginning with

(4.5) Let ¥=ΣA Ϋβi and suppose T A R = 0. If k < r, or k =
r but T is simple, then Ί1 Φ 0 only if IeΩ. Thus simple f Φ 0
implies Ί1 Φ 0 for at least one IeΩ.

If k < r the assertion follows from

β Λ T - Σ Γβ^, Λ ( Σ 7%)] ,

eL(») IWiΦ eLίμ} A e7 for y ^ μ and k <r ,

and the observation that / Π L(j ) = φ for some i; is equivalent to
IίΩ.

If k = r then the terms in R A T wi th eL{ί) as a factor are

eLω Λ Γ Σ ^ Z + ( - l)r7L(1)(eχ(2) + •••
Lii>r

Therefore, 7 J = 0 if \ > r (hence Ig Ω) and 7L(1>) + ( - l) rτL ( 1 ) = 0 for
v > 1. Generally 71 = 0 if, 7gi2 and I is no L(y); moreover,

ΊL{μ) + ( - l) rτL ( 1 / ) = 0 if μ Φ v .

If r is even then yL{v) = 0 for all v so that 71 Φ 0 only for J G Ω.
If r is odd then 7L(ι° = λ for all v and thus

We show T is simple only if λ — 0 which completes the assertion.
Let IeΩ and assume iλ Φ r. Then with

one of the Plϋcker relations for the simplicity of T is

0 = 7L(1)77 + Σ ( - l)57L(1' rH" s7 r/( s ) = λ7z ,
8 = 1

for yw"' = 0 because L(l, r) e \Jl=, L{v) U Ω for s > 1, and L(l, r)i t

contains a repeated index (since ixφ r). If \ = r just permute L(l)
so that r is not the last element. Thus 71 — 0 for all IeΩ, or
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λ = 0. Since T = XR would not be simple we must have λ = 0.
Let H = {hl9 , Ajfc-J with 1 <£ Ax < < /^_! ^ rk.

(4.6) If S = Σ βHeH cmd R A S is simple then, for

IeΩ,βr{8}βI(t) = 0

if s Φ t.

The terms in the expansion

R A S = ̂ a<1""*'+*-1e4...<r+Jfc_1

which contain eτ as a factor are given by

(4.7) eΣ A [± βmeLMύ ± ± βIik)eLlk,ik)]

where L{v, iv) = L(y)/{ίJ. Consider the Plϋcker relation for R A S
beginning with

The terms not written down all vanish. The first k — 1 that follow
vanish because the first factor has a repeated superscript. From the
(k + l)st term on, the last element of L{i, i8) is the first superscript
of the second factor a which then vanishes because it does not appear
in (4.7). (This requires r ̂  3. The first a also vanishes and for a
similar reason.)

The following is the decisive step in our long argument:

(4.8) If both S = ΣβHeH and R AS are simple and some βI{1) Φ 0
(I(ΐ) e Ω) then β^v-^-ϊ = o for ix e L(l) and any vs(s = 1, ., k - 2).
Briefly S

Take any \eL{l) and join it to 1(1). This produces an IeΩ.
We prove inductively.

βvv~vλnk-x.....k) = Q for a u Vs a n ( j x £ k - 2 .

If Jc = 2 we have /3*1 = /9Z(2) - 0 by (4.6) and βI{1) Φ 0.
If k ̂  3 we make

Step 1. Consider the Plϋcker relation

0 _ βl(l)βvl{k-l,k) βl(l,k)vβikl(k-l,k) _j_ βl{l,k)iιβik»I{l,k-l,k)

I[2,k-l,k) _}_ # . . + oI(l,fc)i^2

Except for order
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ikl(k -l,k) = I(k - 1), and /(I, k)ix =

so that the second and third terms vanish by (4.6). The remaining
terms vanish because the sets 1(1, k)i2, , 1(1, k)ik_2 contain repeated
elements. If k = 3 we are finished. If k > 3 we make

Step 2. Take the Plίicker relation

0 = OKI)β»μI{k-Z,k-l,k) _ βI(l,k)vβikμHk-2,k-l.k)

_j_ βl(l,k)μβik»l(k-2,k-l,k) βl(l,k)iγβikvμl {l,k-2,k-l,k)

_j_ βl{l,k)i2βik»μl{2,k-2,k-l,k) . . . _|_ β 1 ^ k)ik-3gipj«Λfc-3,k-2,k-l,k)

Except for order

ikμl(k - 2, k - 1, k) = μl(k - 2, k - 1)

and

ikvl(k - 2, k - 1, k) = vl(k - 2, k - 1)

so that the second and third terms vanish by Step 1 (that k — 1, k
are replaced by k — 2, k — 1 is immaterial since the argument of Step
1 is the same for any permutation of {2, •••,&}). The fourth term
vanishes because of (4.6) and 1(1, k)\ — I(k). In all following terms
the sets of superscripts in the first factor β contain repeated elements
and these terms vanish also. This completes the argument in case
k = 4. If k > 4, the process clearly continues.

(4.9) If both S = ΣβHeH and R A S are simple and βI{t) Φ Ofor
some I{t) e Ω then Se F(t)k^. If S = w1 Λ Λ wk_λ then each wt e
F(t).

The first part is a consequence of (4.8). The second statement
follows from the general lemma.

(4.10) If m<n,Vmcz Vn, vά e Vn, AUvi ^ ° a n d AU v* e VT then
v3e Vm(j = 1, -- s).

Setting Vi = v\ + βiβn (i = 1, •••, s) in the proof of (2.1) yields
the case m = n — 1 from which the general case follows.

THEOREM 4.11. If k ̂  r, S = A&1 w* ̂  0 and R Λ S is simple
then Wi e F(t) for a suitable t.

If S = ΣβHeH then it suffices by (4.9) to show that βI{t) Φ 0 for
a suitable I(t) e Ω. Because R Λ S is a simple (r + k — l)-vector there
is a vector v = Σlίi ^X such that β Λ S Λ v = 0 and S Λ ^ O . If
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T = S A v = ΣjJeJ then

ΊJ = Σ ± βJ{t)δjt .

By (4.5) there is at least one IeΩ with 71 Φ 0, hence βI{t) Φ 0 for
some t.

After these preparations we are ready to prove (4.4). First observe

(4.12) If R = Σϊ=i VL(»(Vi e V) then Λίii v< Φ 0.

Each Vi Φ 0 because Σ£=ι eL[v) — R is irreducible. Assme A vi — 0
and let {wy}, 1 ^ j ^ λ < fcr, be a maximal set of independent v{.
Since the ^ span a proper subspace F ' of F, an ^ with wxA ••• Λ
Wλ Λ eμ Φ 0 exists, and the ^ together with β̂  span a space F " with
V c F " c F. Now ΣvL{v) is irreducible in F and F', and therefore (see
(2.2) and (2.7)) 2 ^ ) Λ eμ is irreducible in F " and in F. But if μ e L(s)
then R A eμ = Σ , ^ s eL(1/) Λ e .̂

(4.13) If ft = Σί=i vL(v) (v e F), A; ̂  r, / = {il9 . . . , iΛ} e fl ίAβw
^ G E(π{t)) for a suitable permutation π of {1, , &}.

First v7(β) ^ 0 by (4.12). Next

-β Λ viω = vL(β) Λ v/(β) ^ 0

is simple. Therefore (4.11) yields viv e F(π(s)), (v Φ s) for a suitable
number π(s), (1 <̂  ττ(s) ^ A:). We must show that π(s) defines a per-
mutation of {1, , k} or that π(s) Φ π(t) for s Φ t. Assume π(s) = π(t)
for some s Φ t. Then i;ίy e F(π(s)) for 1; = 1, , k because I(s) U I(t) =
/ whence vΣ e F(π(s))k and R A vx = eL(ff(β)) Λ 7̂ ^ 0 contradicting β Λ
^ = 0. Thus vit e Πήβz(S) F(π(s)) = Πs*t F(π(s)) = E(π(t)).

This establishes the uniqueness of ΣeL{v). For, consider /e Ω and
put /' = {jl9 i2, , ik) with j \ e L(l). Then Γ e Ω. Since ^ v e E{π(v))
for v > 1 it follows from (4.13) that vhe E(π(l)). Thus v3[eE(π(ΐ))
for all j\eL(l) and vLω = a.e^^.

Generally, vL{v) — aveUπ{v)) whence av — l(v = 1, , k) and unique-
ness follows.

The condition v{ e V which entered the proof of (4.12) because we
applied (2.2) can now be eliminated; ΣeL,v) retains its form after
extension of the underlying field and therefore remains unique after
the extension. This justifies the formulation of (4.4) which does not
mention a field.

5* The case n = 6, r = 3* The remainder of the paper deals
with the case n = 6, r = 3 whose importance was noted in connection
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with (3.2). We first show N(F, 6, 3) = 3 which may be new for FΦ
C. Our inequalities (2.3) and (2.5) give only

2 - N(F, 5, 2) ^ N(F, 6, 3) rg N(F, 5, 3) + N(F, 5, 2) = 4 .

With eίifc — et A βy Λ efc we prove:

(5.1) S = e145 + e246 + 6356 is irreducible; whence N(F, 6, 3) >̂ 3.

This proof rests on the observation:

(5.2) If R= S Λ Σ t i β% is simple then βι = β2 == /S3 = 0.

(The converse is trivial but not needed.) If

1

then

Σ_ _ fc6βlifc6 = β l β Λ [/36β45 - / S 1 ^ + β ω ) ] .
l<i<A<6

Therefore one of the Plϋcker relations for R is

0 = α1624α1635 - α1623α4165 + α1625α4613 = (β1)2 .

Similarly, β2 = /33 = 0.
Assume S were reducible, S = vm + ^456 (where again vijk = v4 Λ

Vy Λ f̂c) with v4 = Σ L i iS*efc. Then S Λ v< is simple, so that by (5.2)
β\ = 0 for fc <: 3, whence

S = [det (#+*) + det (/33

3ΐi)]^56 ,

which is false because § A e6 = β1456 ^ 0.
To show iV^, 6, 3) <̂  3 we need the lemma:

(5.3) Given R{ e Vi{F){i = 1, , m) ίΛere are X^ei^ and ^ 6
G\{F){i = 0, m) sucft ίΛaί Λ< = i?4 + λίi?0(ί = 1, , m)

If ^ is simple then i^ = 5<, \ = 0 will do, so we assume that no
Ri is simple. Gg is a quadratic cone and a hypersurface in Vl(F).
Therefore, Ro e G2 exists such that the tangent hyperplane of G\ at
Ro does not contain any Ri9 and no line through R{ and i?0 intersects
G\ (as a locus in Vt completed to a projective space) at infinity. Then
the line through Ri and Ro intersects G\ in a second point R\ so that

This argument does not require extending F because it amounts to
solving a quadratic equation of which one root is F.
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Now let R = Σi<;ί<i<^6 oci5keijk e V%{F) be given. A simple calcul-
ation shows that either R e Vξ{F, 2) or a base {e"J exists in terms of
which

R = Σ /3ίi5ei3 5

with Si e F2

4. By (5.3) there are Si e G\ and λ; e i*7 such that

R = (Sλ + \So) Aeδ + (S2 + X2S0) A eβ

= S,Ae5 + S2Λeβ + S0Λ (\eδ + λ2e6) e V3

6(F, 3) .

Thus:

(5.4) N(F, 6, 3) - 3 .

By a similar argument we prove

(5.5) 3 ̂  N(F, 7, 3) £ 5 .

The left inequality follows from 3 = JV(6, 3) ^ iV(7, 3), see (2.8).
For the right inequality one shows (see [1, p. 90]) that either Re
Vl{2) or with a suitable base {ej

R= Σ /3^V ί i5+ Σ / 3 ί i 6 ^ 6 + Σ βiύ7eiύ7 + Σ /3 ί 6 7^6 7 .
l^i<i^4 l^i<^4 l^i<i^4 i

The last sum is simple and applying (5.3) to the first three terms on
the right yields N(F, 7, 3) ^ 5. This method does not extend to N(n,
3) with n > 7.

We now study a special type of, R e Vξ{C) which will confirm
some of the important assertions made previously.

Let Y be the set of triples

Y = {123, 126, 135, 156, 234, 246, 345, 456}

and suppose that the a1, Ie Y, satisfy the inequalities

^123^156 + ^126^135 φ Q ? ^123^246 _j_ u™^ φ Q ,

(5.6) ama™ + α 1 3 5α 2 3 4 Φ 0 , amam + aU6a™ Φ 0 ,
^135^456 + ^156^345 φ Q ^ ^^6^456 + ^156^246 φ Q ?

and that the roots λ, μ of

(5.7) (a123x - α234)(α156ίϋ - α456) + (a126 x + α246)(α135£ + α345) = 0

are distinct. They are different from zero.

THEOREM 5.8. If R = Σ/er α 1 ^ e F3

6(C) α^d ίfee a1 satisfy (5.6),
β = Rβ + Rr, Rβ = Σ/€Γ βτel9 Rr = Σ/er 7Jβ/, w/̂ erβ i2^ αnώ i?r

simple with Rβ A Rr ̂  0. Hence the representation Rβ + i?r is
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unique (by (4.4))
If λ, μ are the solutions of (5.7) then the β1 and γ7(/e Y) are

given by

βiίj _ tl(X a jiij _ if AjCX

μ — λ μ — X '

No β1 or T Z (/G Y) vanishes.

This representation was found by using Plucker relations (see [1,
pp. 98-106]), but after it is explicitly given one readily verifies that
Rβ and Rr are simple and that Rβ A Rr Φ 0. In fact, it is easy to
factor Rβ and Rr, see [4, p. 21]: Since β1 Φ 0 if IeY, letting v =
(βm)-2/3 we find

Rβ = uΛvΛw = Σu% A Σv% A Σw%

with

(see also [1, p. 102]), and similarly for Rr.
First we confirm the statement in the introduction that irreduci-

bility may depend on the field.

(5.9) If the a1 in (5.8) are real and λ, μ are not, then R e Wi(C, 2)
but Re W!(R, 3).

For because Rβ + Rr is unique, R e F3

6(i?, 2) is impossible, and
this with N(R, 6, 3) = 3 entails the assertion.

Next we observe that the vector

R(V) = β i Λ (e2 + e5) A e6 + eγ A e3 A e5 + ^β2 Λ e4 Λ e6

+ (e2 + eβ) Λ e3 Λ β4 (̂ 7=7̂  0)

is a special case of (5.8) and that λ, μ are real when η < 0. Letting
η —> 0~ we find

β(0~) = βi Λ (e2 + eβ) Λ e6 + e : Λ β3 Λ e5 + (e2 + e6) Λ β3 Λ β4

which by (5.1) lies in Wξ(R or C, 3). Therefore:

(5.10) The sets Vξ{R, 2) rβsp. F3

6(C, 2) are πoί cZosβrf in Vξ{R)
resp. Vξ{C).

Theorem (3.2) whose proof used (5.10) is therefore completely
established.
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We now prove a surprising fact for C which has no analogue for
R (see (6.3)):

(5.11) The interior of Wξ{C, 3) as a set in Vl(C) is empty.

We show that if R = R, + R2 + iϋ3, R* e G\{C), is irreducible then
it is the limit of elements in Vξ{C, 2).

Ri and R,(i Φ j) have no nonvanishing 2-vector as a common factor,
because R4 + Rό would then be simple. Thus two cases are to be
considered:

( 1 ) Ri Λ R3 Φ 0 for some i, y, say Rx A R2Φ 0,
( 2 ) i^ and Rά have for i Φ j & vector vk Φ 0 (but no 2-vector ^

0) as a common factor where (i, y, fe) is a permutation of (1, 2, 3).
In the latter case the vt are either parallel or no two Vi are

parallel. If they were parallel we could choose eQ parallel to the Vi
so that R = S A e6 with Se VFί{C), and ΣRt would be reducible since
N(F, 5, 2) = 2. If no two ^ are parallel then with suitable u{

Rx = u : Λ v2 A vB, R2 = ^2 Λ Vi Λ v3, i?3 = ^ Λ ^i Λ ^ •

The vectors w<, ̂ y are independent, for otherwise ΣRi would be a 3-
vector in a space of dimension less than 6 and by N(F, 5, 3) = 2
reducible. The proof of (5.10) shows R can be approximated by elements
of Vϊ{C,2).

In case (1) there are vectors wu , w6, vu vz, v3 such that wu w2,
wB are parallel to Rl9 wiy w6, w6 are parallel to R2, R3 = vλ A v2 A vd and

Vl = a1w1 + α4^4, v2 = a2w2 + α5^5, v3 = α3î 3 + α6^6 .

If ΛS^Wί^O then Λ = Σ/6F^ 7 ^/ and ΠS=i α< =̂  0 is equivalent to
(5.6), so we have a special case of (5.8) (see [1, p. 83]) and hence Re
Vl(C, 2) contrary to the hypothesis. If AS=i w* = 0 and/or ΠS=i α» = 0
we can choose w\ and α arbitrarily close to w{ resp. α< such that
A?=1 wl Φ 0 ΠS=i αί ^ 0 and XΦ μ, so that β is the limit of elements
in F3

6(C,2).
For fcr ^ n let Z?(F, k) be the set of R = Σ t i Ri ™tth A*=i ̂  ^

0. Then Z?(F, k) c TΓ?(F, ft) by (2.10).

(5.12) Z?CR ^esp. C, fc) is cίewse m F?(Λ ^e^p. C, fc).

This is nearly obvious: If R = YJi=ι Ri e Zn

r{j), j < k, then jRi+1,
, Rk exist with A*=i -22*̂ =0 and

= lim (5 + δ Σ Λ<) as δ -> 0 .

If 5 = Σί=i Ri 6 W?(ί), i ^ &, Λl=i Λ* = 0 and Rt = Λί=i v( i_1)r+i then
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Wi—+Vi w i t h Aίιwi =£ 0 exis t a n d Σ ί = i Λί=i w ( i_1 ) f.+ A—»jβ.

Because

V!{C) = Z!(C, 2) U F3

6(C, 2)IZξ{C, 2) (j W7(C, 3) ,

(5.11,12) show that ZH(C, 2) is dense in V!{C), so that V!(C)/Z!(C, 2)
has no interior points, and hence has dimension less than 40 ( =
dim F3

6(C)), see [2, p. 46]. In the next section we will see that ZI(C, 2)
is open. Thus

(5.13) The set Zξ(C9 2) is open and dense in V£(C), hence

VΪ(Q/ZΪ(C, 2)

is closed and dim ZI{C, 2) = 40, dim Vξ(C)/Zi(C, 2) < 40.

Note that Wξ{C, 3) c Vξ{C)IZI{C, 2) and that therefore the closure
of W*(C, 3) has dimension less than 40.

6. The sets Zt(R resp. C, 2) and W3

6(R, 3). We now prove that
Z\{R resp. C, 2) is open. Actually our next theorem provides much
more information which will allow us to show that Wl(R, 3) has a
nonempty interior.

THEOREM 6.1. Let F=R or C. If Rl9 R2e Gξ(F) and R,/\R2Φθ
then there is a neighborhood U(R0) of Ro = Rx + R2 in V$(F) such
that for R e ϋ(R0) there are simple R[, R[ with R = R[ + R[. Further-
more, given neighborhoods Ui(Ri) of R{ in Gl(F) there is a neighb-
orhood U'(R0) c U(R0) such that R e U'(R0) implies R\ e Ui(Ri) and
R[/\R'2Φ 0. Consequently Re Zξ(F, 2) and by (4.4) R[ + R[ is unique.

Necessary for (6.1) to work is that Gl x Gl and Vξ have the
same dimension, which is the case because α-dim G> = r(n — r) + 1,

α-dim V? = (fy and 2[3(6 - 3) + 1] = 20 = (f). But this argument

is far from sufficient as similar situations for other dimensions show;

the structure of Gl enters.
Since Rί Λ R2 =£ 0 we can choose a base so that iJL = β123, R2 = em.

A neighborhood of JBX on Gl consists of the simple R[ = Σβτeτ =
Σî ί<i<A:g6 βίjkeijk with /S123 close to 1 and the remaining β1 close to 0,
so βm Φ 0 may be assumed. Similarly for R'2 = Σy^j and τ456 ^ 0. The
components of -Ko are 1,0, , 0, 1.

The special properties of Gl arise from the Pliicker relations which
(see [1, p. 69]) with λ = (/5123)"1 are equivalent to
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β%9h = ± λ ^ i g 3, 4 ̂  j < A; ̂  6, (i, p, σ) = π(l, 2, 3) ,

£124 ^125 £ 1

ygiw £135 £ 1= λ 2

Similarly with μ = (γ456;

7"* = ± ί« 7 , 1 7 1 1 S i < 3 Π 3, 4 ̂  A; ̂  6, (p, σ, k) = ττ(4, 5, 6) ,

= c.

If now Σa'ej = R = R[ + R[ = Σβ'βj + Σj'βj then a1 = /Sz + 7J, and

substitution gives

rγiσk

,γl45

^146

ry245

7 2 ί 6

rγ256

Λ^345

7 3 4 6

/y356

123 = £ 1

^ = + λ
-iσj βi

^Ki^3,4^ί;^6,(ftσ,i;) = ττ(4, 5, 6) ,

^ 6 , ( i , p , σ ) = τr(l, 2, 3),

Thus the 20 components of R are expressed in terms of /5123, the
nine β1 with 1 ̂  % ̂  3, 4 ̂  j < fe ̂  6, the nine γ7 with l ^ ΐ < i ^ 3 , 4 ^
k < 6, and 7456. Evaluation of the functional determinant at (1,0, ,
0, 1) gives the value 1. Therefore, the implicit function theorem is
applicable and yields the assertion. The details of the calculation may
be found in the thesis, [1, pp. 93-97].

As a corollary we have

(6.2) The set Z!(R resp. C, 2) is open in VI{R resp. C).

But in contrast to (5.11):

(6.3) The interior of Wξ{R, 3) is not empty.

For take any Ro = Σ/6F^zβi of (5.8) for which the a1 are real
but λ, μ are not. Then

Ro = Rβ + Rr with Rβ A Ry Φ 0 .

By (6.1) for R e U'(R0) c Vξ{C)
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R = R[ + R[ with R[ A R[ Φ 0, R[ close to jβ, and R[ close to Rr

so that R[ and Rf

2 cannot be real either. Also R[ + R[ is unique by
(4.4) and this implies as in the proof of (5.9) that

R e Wξ(R, 3) for R e U'(R0) Π V*{R) ,

where we consider V\{R) as a subset of F6

3(C).

REFERENCES

1. D. E. Glassco, Irreducible Sums of Simple Multivectors, Dissertation, University of
Southern California, 1971.
2. W. Hurewicz and H. Wallmann, Dimension Theory, 1st edition, Princeton, 1941.
3. J. Schouten, Tensor Analysis for Physicists, 2nd edition, Oxford, 1954.
4. B. L. Van der Waerden, Einfύhrung in die Algebraische Geometrie, Berlin, 1938,
New York, 1945.

Received July 17, 1972.

UNIVERSITY OF SOUTHERN CALIFORNIA

AND

CALIFORNIA POLYTECHNIC STATE UNIVERSITY AT SAN LUIS OBISPO



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD A R E N S (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT

University of Washington
Seattle, Washington 98105

J. DUGUNDJl*
Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GlLBARG AND J. MlLGRAM

Stanford University
Stanford, California 94305

E. F. BECKENBACH

ASSOCIATE EDITORS

B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace
J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 49, No. 1 May, 1973

A. Bigard, Free lattice-ordered modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Richard Bolstein and Warren R. Wogen, Subnormal operators in strictly cyclic

operator algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Herbert Busemann and Donald E. Glassco, II, Irreducible sums of simple

multivectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
W. Wistar (William) Comfort and Victor Harold Saks, Countably compact groups

and finest totally bounded topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Mary Rodriguez Embry, Maximal invariant subspaces of strictly cyclic operator

algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Ralph S. Freese and James Bryant Nation, Congruence lattices of semilattices . . . . . . 51
Ervin Fried and George Grätzer, A nonassociative extension of the class of

distributive lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
John R. Giles and Donald Otto Koehler, On numerical ranges of elements of locally

m-convex algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
David A. Hill, On dominant and codominant dimension of QF− 3 rings . . . . . . . . . . . 93
John Sollion Hsia and Robert Paul Johnson, Round and Pfister forms over R(t) . . . . 101
I. Martin (Irving) Isaacs, Equally partitioned groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Athanassios G. Kartsatos and Edward Barry Saff, Hyperpolynomial approximation

of solutions of nonlinear integro-differential equations . . . . . . . . . . . . . . . . . . . . . . . 117
Shin’ichi Kinoshita, On elementary ideals of θ -curves in the 3-sphere and 2-links in

the 4-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Ronald Brian Kirk, Convergence of Baire measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
R. J. Knill, The Seifert and Van Kampen theorem via regular covering spaces . . . . . . 149
Amos A. Kovacs, Homomorphisms of matrix rings into matrix rings . . . . . . . . . . . . . . 161
Young K. Kwon, H D-minimal but no H D-minimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Makoto Maejima, On the renewal function when some of the mean renewal lifetimes

are infinite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Juan José Martínez, Cohomological dimension of discrete modules over profinite

groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
W. K. Nicholson, Semiperfect rings with abelian group of units . . . . . . . . . . . . . . . . . . . 191
Louis Jackson Ratliff, Jr., Three theorems on imbedded prime divisors of principal

ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Billy E. Rhoades and Albert Wilansky, Some commutants in B(c) which are almost

matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
John Philip Riley Jr., Cross-sections of decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Keith Duncan Stroyan, A characterization of the Mackey uniformity m(L∞, L1) for

finite measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Edward G. Thurber, The Scholz-Brauer problem on addition chains . . . . . . . . . . . . . . . 229
Joze Vrabec, Submanifolds of acyclic 3-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
Philip William Walker, Adjoint boundary value problems for compactified singular

differential operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Roger P. Ware, When are Witt rings group rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
James D. Wine, Paracompactifications using filter bases . . . . . . . . . . . . . . . . . . . . . . . . . 285

Pacific
JournalofM

athem
atics

1973
Vol.49,N

o.1


	
	
	

