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Denoting by V*(F') the n-dimensional vector space over
the field F' of characteristic 0, let V*(F') be the linear space
of all r-vectors B over V*(F) and G*(F) the Grassmann cone
of the simple r-vectors R in V>(F). The sum B = 3*_, Ri(R; ¢
G»(F)) is irreducible if R is not the sum of fewer than k
elements of G?(F'). (Duality reduces the interesting cases to
2 < r < n/2.) Such sums are trivial only for 7 = 2, because
A’{=1 R; + 0 while always sufficient for irreducibility is then
also necessary. Extension of F' does not influence irredu-
cibility if » = 2 but it can for » > 2.

The sets W>(F, k) of those B in V>(F) which are irre-
ducible sums of k& terms behave as expected when » = 2, but
have the most surprising properties for larger ». Although
VIF) = Ui, WiF, k) and Wi(F, 3) + ¢, the sets W5(R or C, 2)
have interior points as sets in V3(R resp. C) and so does
Wi R, 3) but W5(C, 3) does not.

The paper is based on the thesis [1] with the same title by the
second author.

The smallest number % for which V*(F, k) = Uk, W*(F', i) coincides
with V*(F) is denoted by N(F', n, r) which by duality equals N(F, n,
n — 7). Obviously N(F, n, r) < (f) But in spite of various inequa-
lities relating these numbers which show that (f) is much too large,

the precise value of N(F, n,r) is known only in the two cases implied
by the above statements: namely N(F', n, 2) = [r/2] and N(F, 6, 3) = 3.

The values N(C,7,3) =5, N(C, 8,3) =17, and N(C, 9, 3) =10 have
been claimed but questioned, see Schouten [3, p. 27] and [1].

The purpose of our investigation is to elucidate why the case
r =2 is so much simpler than 2 <r < n — 2. In addition to the
already mentioned facts we show that V7(F, k) is an algebraic variety,
because, if B® is the ith exterior power of R, then R¢*+) =0 is
necessary and sufficient for R e V*(F, k) when r = 2, but merely neces-
sary when 7 > 2. This implies dimV?(R resp. C, k) < dimV?(R resp.
C, k+1) for 1 <k < [n/2] in contrast to the case n =6,r =3. In
fact we show that V?(Ror C,k)isforr>2 k>1l,and n= (k — 1)r + 3
not even a closed set.

An irreducible representation B = 3%, R, k > 1, is for r = 2
never unique, but for » > 2 it is (up to a permutation) if A¥*, R, =0
and k£ < r. The condition k¥ < r is probably superfluous but enters
—like n = (kK — 1)r + 3 (instead of n = r + 3) above—Dbecause we use
the Plicker relations for simple vectors which get out of hand for
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14 HERBERT BUSEMANN AND D. EDWARD GLASSCO II

large k. A coordinate-free approach would therefore be preferable,
but in many cases we were not able to devise one.

We will continue using capitals (R, S, T) with a tilde and with
or without subscripts for general multivectors and omit the tilde only
when the vectors are known or assumed to be simple.

2. Results for general F, n,r, k. The following agreement will
prove convenient. e, ¢, --- are used for elements of a base. If two
spaces V™ C V" occur, then the base e, -+, e, of V" is chosen so that
e, +++, e, is a base of V™. We begin with some simple remarks.

(2.1) If ReGr then R=R + S Ne, with ReGr* and Se
Gyl

For, with suitable v, V"™ and B,

b=y
I
>~x

(v; + Bie,)

i=1

Il
>~z

k2

0 [ (— DB A v Ay AV A o A A e,
1 =1

If the v; are dependent, the bracket reduces to one term; if not, the
bracket is an (r — 1)-vector in the r-space spanned by v, ---, v, and
hence is simple.

We apply (2.1) to prove

(2.2) Re WrEF, k)if andonlyif BN ey A v+ Aeyime Wrt(F, k).

It suffices to prove this for m = 1. We show if Re Wr(k) and B A
€nin € Wrik(l), then { = k. Trivially B A e, € V7ii(k), whence | < k.
By (2.1) and the hypothesis B A €,y = S\t By = L, (R 4+ S; A €,4y)
with R; € G**}, R, e G*,,, and S; € G*. Therefore, SR;=0and R A e,,, =
(2S:) A €,.1, which implies B = 3., S; and k < L.

COROLLARY 2.3. N(F,n +1,r+ 1) = N(F, n,r).

Anticipating N(F, n, 2) = [n/2] we see that both equality and
inequality occur. N(2m, 2m — 2) = N(2m, 2) > N(2m — 1, 2) = N@2m — 1,
2m — 8). Similarly N@m + 1, 2m — 1) = N(@m, 2m — 2). Also
N(n,r) = [(n — r + 2)/2], but this lower bound is for r > 2 too small
to be useful.

A consequence of (2.1) is the generalization

(2.4 If Re V), then R =R + S A e, with R e Vr'(k) and
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Se vr=i(k).

By hypothesis B = 33\, Rl < %, R; € G?). Applying (2.1) to each
R; yields B = 3\, (R + S: A ¢,) = 3o Bi + (34, S) A e, with Rie
G and S; e GrZ!, which is the assertion.

With k = N(F, n, r) we deduce from (2.4):

(2.5) NF,n,r) <= NF,n—1,r)+ NF,n—1,r—1).

For r = 2 equality holds when # is even and inequality holds
when n is odd.

A linear map f: U™— V" induces a homomorphism f*: U» —V*
given by f*(u, A <o+ Au,) = f@U) A +++ A f(u,). The map f* is
surjective when f is. We note

2.6) If f*(R) + «-+ + f*(R,) 1s irreducible in V", then so is
R + <« + R, in Ur.

We apply this first to the projection f: V"' — V" defined by

ntk n .
f: Zf ale; ——> 21 a‘e;
1= 1=

and find:

@27 If R.eGrF) and 3f, R, is irreducible in V*(F'), then it is
wrreducible in VI F).

Hence
(2.8) N(F,n+1,7r)= N(F,n,r).

The case » = 2 shows again that both inequality and equality can
occur in (2.8). Next we apply (2.6) to the map f: V"¢ — V"*! given by

ntk n . ntk .
fi 2 dle;—— Y e, + (D e,y
=1 =1 i=n+1

and find using (2.2):

2.9 If 3\, R; is irreducible in V:(F), them >t R, A\ e,.; 18
wrreducible in VrIE(F).

Two important facts will now be proved together:

THEOREM 2.10. If AL, R, =+ 0, then >k, R; is irreducible. The
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converse holds only for r = 2.

THEOREM 2.11. If Re VX(F, k) then R¥**" =0. The converse
holds only for r = 2.

If » is odd then R® = 0 for any 7 > 1 so that B*+V = 0 imposes
no condition. If » is even the relation (3 i, R)**Y = 0 is obvious,
so that the first part of (2.11) holds. Since

2.12) G, R)* = k! A, R; for even r

it follows that X%, R, e W*(k) when A’ R; = 0. Applying (2.9) we
see that this also holds for odd 7.

If ALlR,=0,r=2, and R, = v; A w; then one of the v, or w;
depends on the rest, say v, = > Mo, + UK, pw; so that

k k—1
Z. R, = Zf [v: A wp + (v + paw;) A wy] -

Each bracket represents a simple vector because it is a 2-vector in
the space spanned by v;, w;, and w,.

That AL, R; = 0 is necessary for irreducibility only when » = 2
follows from (2.2). This establishes (2.10).

It remains only to prove the second part of (2.11). Let r = 2
and RB%+> = (0. Then Re Wk + i) with ¢ = 1 is impossible because
(2.10) and (2.12) would imply B*+? =« 0. That B*+ = 0 is not suffi-
cient for Re V*(F, k) is obvious for odd » and follows from (2.2) for
even r > 2.

Corollaries of (2.10) resp. (2.11) are:

(2.13) N(F, n, 2) = [n/2].

(2.14) If Re W(F, k) then also Re W(F,, k) for any extension
field Fy of F. This ts not true for r > 2.

The latter means that for each n — 2 > r > 2 there are R, k' <
k, FC F, with Re W/F, k) and Be W»(F,, k'), and follows from (5.9)
and (2.2). Note: The first part of (2.14) does not mean, for example,
that Re V2(F), Re Wz (F,, 2), hence R = R, + R, with R, cG}(F,),
imply R;e G2(F), but only that R,e Gy(F) with B = R, + R} exist,
compare (4.3).

Whereas in (2.2) and (2.9) the number of summands is the same
in hypothesis and assertion, it is different in the next theorem which
is therefore harder to prove.
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THEOREM 2.15. Let Be WX(F, k), B; = Aiziersnrni(i = 1,4, ),
then R + 3i_, E;e Wri(F, k + 7).

Evidently it suffices to prove this for 7 = 1, or with £ = E, that
R+ EeWrr(k+1). Let R+ E=3r,8; S;eGr, and denote by
S the projection of S; on V*. Then S; is simple and B = 37, S..
Therefore, B e Wr(k) implies m =k and that for m =k all S:=0. We
show that m = k is impossible.

There are at least two S; which do not lie in G*. For, S;e G},
if 4> 1, would entail S, =S, + E with S A E+#0, but S, + E is
not simple by (2.10). Assume that S, and S, do not lie in G?. For
w = >Mra‘e, put w = D, %, and w'’ = >\, dle,.

Then

S; = A wi; = Alw!i + wy)
j=1 j=1
and we may assume further that w], = 0 and w;, # 0.

There are subscripts <, 7, k, I with ¢ = k£ such that wi; A wy, = 0.
Otherwise w, Aw}, =0 for k=0 so that w}, = N, w!, for k = 1.
Similarly w}, = ¢, wi; for k #= 2, so that wl = g\, w.

This, with A, =1 and n,; = g\, gives

S; = A (wj + \wl) .
i=1

But then X'S; cannot produce E. Thus we may assume (with a possible
change of notation) that w), A wy, #0. Then e, A <+« Ae, AN wy, N\ W, =
e, N\ o Ae, N wi A wy #= 0and there is a base {e;} of V" with ¢} = ¢;
for i< m,e,., = w,, and e,., = w,. Then with the original R,
E,S, -+, S

EB+E)NE Neys=(S;+ oo +S) A€ A€y s
i.e.,
RAe, Ne e Wriz(e — 1)
contradicting (2.2) and (2.7),

3. The sets V*(F,, k). Let F, be a topological field. Obviously
GMF)=V™F, 1) =W~F, 1) is a closed set in V?(F,). It is clear
that for &k < N(F,, n, r) the set V*(F,, k) cannot be open, but one
might expect it to be closed. This is true for » = 2, see below, but
in general not for » > 2. To show the latter it is not necessary to
study general n and r > 2 because of the following:

THEOREM 3.1. If for a topological field F, the set VIF, k) is
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not closed in V' (F,) then for m=n,s=r,m—s=n—1r and j =0
the set VI (F,, k + j) is not closed in VI (F).

First let j =0, m>n and Re V*(F, k). By 2.7 Re V™F,, k) so
that the latter is not closed. For any m we conclude from R e V*(F,, k)
and (2.2) that

N it A\ o0 A €pin € VIRHEFL, K) ©

Since V*(F,, k) is not closed there are B, in VI(F, k) =1,2, -
such that B, — Re Wr(F,, k') with k' > k.
Then by (2.2)

Ru VAN ZS SRV ANE R RVAN em+h_‘—’ﬁ N €y N\ voo N €y € W:‘n:hh(Fty k,)

so that V™ *(F,, k) is not closed. This settles the case 5 = 0 or that
VF,, k) is not closed.
With the notation of (2.15) we see with the same argument

VEE(Fy, b+ )3 R+ 3 Bi—— B + 3 Bre Wrti(F, K + j)

which proves (3.1).

In §5 it will be shown that N(F, 6,3) = 3 and V¥R resp. C, 2)
is not closed in V¥R resp. C). Probably no V(R resp. C, k) with
3<r<mn—38and 1 <k< N(R resp. C, n, r) is closed, but from (3.1)
we obtain (with 2 + j = k) this best possible result only for k = 2.

THEOREM 3.2. The sets V*(R, k) and VC, k) are not closed in
Vi(R) resp. V*(C) when k=2,r=3, and n = (k — 1)r + 3.

The mentioned best result would require a direct treatment of
the case k > 2 instead of reduction to k& = 2. The fact that we use
Pliicker relations in §5, which become very involved for large =, r, k,
is responsible for our incomplete result in the case &k > 2.

We now discuss the case » = 2. The by (2.11) necessary and
sufficient condition R%+ = 0 for B e V2(F, k) amounts to polynomial
conditions on the components a® of B = Scicizn @e; A €,. The set
Vi(F, k) is therefore an algebraic come in V;(F) and hence closed
when F' carries a topology.

It is also clear that for 1 < k < k' < [n/2] the set VJ'(F, k) is a
proper subset of V;(F, k') and plausible but, since we do not know
whether VJ(F, k) is an irreducible manifold, not a priori certain, that
the dimension in the sense of algebraic geometry (denoted by a-dim)
and consequently in the case of R resp. C also the topological dimen-
ston (=dim), of V¥, k) is less than that of V;(F, k’). That a proof
is necessary may be seen from the case r» = 3 (see §§5 and 6). In
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spite of N(F, 6, 3) = 8 the sets W{(R resp. C, 2) and WJ(R, 3) have
nonempty interiors in V(R resp. C) so that

dim V¥R resp. C, 2) = dim V(R resp. C)

dim W{(R, 2) = dim W¥R, 3) = dim V{(R) = 20 .
But W$(C, 8) has no interior points and hence by a theorem in dimen-
sion theory (see [2, p. 46])

dim W¥(C, 38) < dim W{(C, 2) = dim V(C) = 40 .

Although we need only the expression for B*® in the case r = 2,
we give, owing to its potential usefulness, the expression of Ak, R;
of k different r-vectors im terms of the components of the R;. The
rather long proof can be found in [1, p. 51].

PutJ:{ju“'sjr} Where 1§j1<--0<j,,.§n,’n2k’r.

Let af = afvir(t =1, «++, k) be indeterminates and define for a per-
mutation = of {1, «+., 7}

;) = aF I = son ar
It {H="h, b, withl=<h < .o <hy,<mandJ, U+ UJ, = H

(disregarding order) then J,NJ, = ¢ for v =+ ¢ and J,, ++-,J, in this
order is a permutation of H whose sign is denoted by

!

T oeeed
Fo o, v, ) = > l: ' k}a{l...a‘]zk
U Cdp=H H

‘We then define

J

where «, stands for {«/: J < H}. If m is a permutation of {1, ..., k},
then

FH(arr(l) ,,,,,

THEOREM 3.8. If R; = X,cyale, with N={l,+++, n}, then
PR, = Sucy Fla,, «++, ay)ey.

a:r(k)) = (Sgn ﬂ.)rFH(aly ttey ak) .

Consequently, if Q7(a) originates from F”(ay, +--, ) through
replacing each «; by the same a = {a’}, then we obtain

COROLLARY 3.4. If B = 3,cya’e;, then B% = k! S ey Q¥(a)ey.

From (3.4) one deduces with the conventions <g> = @) =0,
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a-dim VA(F, k) = (Z) — (” _22k), 1<k< [g]

(see [1, p. 65]). Hence

dim Vi (R, k) = (Z) - (n;%), dim V2(C, k) = 2[(:) - (" S 2kﬂ,

and so

dim V(R resp. C, k) < dim V(R resp. C, k + 1) for 1 <k < [%}
in contrast to the case r = 3.

4. Uniqueness. Let R, e G:(F), (¢t =1, .-+, k). The sum X%, R;
is called unique in V(F) if S;e GXF)(i =1, ---, k) and 3 R, = XS;
imply that S.;, = R(i=1, --., k) for a suitable permutation 7 of
{1, -, k).

Obviously:

4.1) If 3\t R; is unique then it is irreducible.

(4.2) If >k, R; is irreducible resp. unique then so is >, R; for
j<k.

The converse of (4.1) does not hold; in particular:

43) If r=2k>1 AR, + 0 then >}, R, is not unique,
1.e., no wrreducible sum of 2-vectors is umique.

Because of (4.2) it suffices to observe that
eeNe+eNe=(e,+e)Ne+e AN (—e +e.

However, if » > 2and A%, R; #+ 0, then >\%., R, probably is unique.
Because the Pliicker relations are hard to handle for large k we were
able to prove only:

THEOREM 4.4. If r > 2, k<7, and AL, R; + 0, then >\, R; is
unique.

Here both the field F' and the dimension n of the space (except
that n = rk is, of course, implied) are deliberately omitted because
they are immaterial.

First we convince ourselves that n is unimportant and at the end
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of the proof we indicate why F is.

Let B, = vi_pypei A\ oo A0 =1, «+«, k), A v; # 0. It suffices to
prove (for a given F) that SR, is unique in the space V spanned by
vy, *++, Uy For, let also

R=3R =3R:, RicV:, V"oV,

Under projection of V" on V let R} — R.. Then YR} — SR. R — R,
A Rf — A R! so that R = YR} and if (4.4) holds in V then {R!} is a
permutation of {R;}. Therefore, A R; =+ 0 and hence A R} = 0. If
Ry = v§_,,00 A\ =+« A v} then because (4.4) holds in the space spanned
by vf, --+, v} we have R}; = R; for a suitable permutation 7 of
{5, =, K}

In the proof of (4.4) we therefore assume that » = rk and R =

¥, R, with

B, = einrmi/\ 200 A €, = €ru s
where
Ly)={y—DLr+1,¢cc,0r} (=1,--- k).
We further put
I=1{i,-, %3} with 154 <--- <3, =7k,
also
Iv) = If{u.}, Iy, 1) = I/{i., 1.}, ete .

It will prove convenient and causes no ambiguities to use I{y) for
{th, =+, Gty Tgyy +++, %) even if 4, is not defined.

2 is the set of all I with i,e Ly)(y =1, ---, k), and I(v)ecQ
means 1, € L(¢) for ¢+ v.

We also use

ez = Niezw € € = Aseresr ete.

The sign depends on the order but will prove irrelevant. Finally
E(y) and F(v) are the spaces spanned by the e¢; with 7e L(v) or 71¢
L(y) respectively.

From now on we will often use the Pliicker relations (see [3, p.
23] and [4, p. 27]) which in our type of notation may be stated as
follows:

Let P = {p, +--, p.}, 1 = p; < n, P(1) = P/{p},

af = qfrrr = sgn TOP=(1) " Palr)

for a permutation 7 of {1, ---, 7} and similarly for @. The vector
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1 .
——2af%p = 3, are, N\ eee Ne, eV
’r" P 15p1<++<PpEn 1 T

is simple if and only if for any P, @
Pliicker: a’a® + 3, (— L)'a” "%’ = 0.
We prove several lemmas beginning with

(4.5) Let T =3 e, and suppose TN RE=0. If k<, ork =
r but T is simple, then ¥* =0 only of IeQ. Thus simple T +# 0
implies Y' = 0 for at least one Ie Q.

If & < r the assertion follows from

EAT= é[eL(y) AN ( > 7191)] )

INL(v)=¢

L N e+ eym Ne for v=p and k<7,

and the observation that IN L(y) = ¢ for some v is equivalent to

I¢Q.
If & = r then the terms in B A T with e, as a factor are

>

erany N [ Yer + (— 1)"7" M (epe + ¢ + eL(k))] .

Therefore, v* = 0 if 7, > r (hence I¢ Q) and Y** + (— 1)"v*® = 0 for
vy > 1. Generally v* =0 if, I¢ 2 and I is no L(v); moreover,

THO 4 (= 1Y =0 i gty

If » is even then v*® = 0 for all v so that ¥ == 0 only for Ie Q.
If » is odd then ¥*® =\ for all y and thus

TZXE—I-Z’YI@I.

Iel

We show 7' is simple only if A = 0 which completes the assertion.
Let Ie Q2 and assume %, = . Then with

L(ly r)?;s = {19 tee, T — 19 7:s}
one of the Pliicker relations for the simplicity of 7' is
—_ L)yl - . SAyL(1,7)ignyrI(8) — I
0= vy 4 s2‘,:1( 1)y v DN LA
for v*®mis = (0 because L(1,r)eU:-, Ly) U R for s > 1, and L1, )3,

contains a repeated index (since ¢, # 7). If ¢, = r just permute L(1)
so that » is not the last element. Thus +' =0 for all Ie®, or
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X = 0. Since T = AE would not be simple we must have \ = 0.
Let H=1{hy, o+, by} With 1 < b, < ¢v0 < By, = 7k
(4.6) If S =3 g%, and B A S is simple then, for
IGQ, B[(s)Bl(t) =0
if s #t.

The terms in the expansion

B A S = Saiirti-g

it p—t

which contain e, as a factor are given by

(4.7) e A [£ B Meruipy £+ o0 £ B Pery,ip]

where L(v,i,) = L()/{i,}. Consider the Pliicker relation for B A S
beginning with

aI-L(s"‘s)aI'L(tvit) = Bl(s)Bl(t) .

The terms not written down all vanish. The first £ — 1 that follow
vanish because the first factor has a repeated superseript. From the
(k + 1)st term on, the last element of L(¢, ¢,) is the first superscript
of the second factor @ which then vanishes because it does not appear
in (4.7). (This requires » = 3. The first « also vanishes and for a
similar reason.)

The following is the decisive step in our long argument:

(4.8) If both S= 3B%ey and RN S are simple and some 8’ = 0
(I(1) € 2) then vk =0 for i,€ L(1) and any v,(s =1, «++, k — 2).
Briefly Se F(Q1),_,.

Take any %, € L(1) and join it to I(1). This produces an Iec Q.
We prove inductively.

prvalte=ekl = 0 for all y, and Nk — 2.

If k=2 we have g = g'® = 0 by (4.6) and B'™ == 0.
If k£ = 3 we make

Step 1. Consider the Pliicker relation
0= Bl(l)Bvl(k—-l,k) _ BIu,k)vBikI(k—Lk) + Bl(lvk)ilﬁikl’l(lik—l,k)

_ ‘Bl(l,k)igﬁikul(2,k—1.k) i cee i_. Bl(l,k)ik__z‘Bika(k—Z,k—l.k) .

Except for order
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oIk — 1, k) = Ik — 1), and IQ, k)i, = I(k)

so that the second and third terms vanish by (4.6). The remaining
terms vanish because the sets I(1, k)i, ---, I(1, k)i,_, contain repeated
elements. If k¥ = 3 we are finished. If &k > 3 we make

Step 2. Take the Plicker relation

— oI pupl(k—2,k—1,k) __ pI(L,k)v Qigul (k—2,k—1,k)
0=p"8 BB
+ Bl(l,k)pBikVI(k—2,k—l.k) _ 181(1,k)ilBikva(l,k—Z,k~l,k)

_l' Bl(l,k)iZBikbyl(Z,k—Z,k—-l,k) _ "'i BI(I,k)ik__gBikva(k—S,k—2,k-—1,k,‘ .

Except for order

Gpllk — 2,k —1,k) = pl(k — 2,k — 1)
and

wllk — 2,k —1,k) =vIlk — 2,k — 1)

so that the second and third terms vanish by Step 1 (that £ — 1, %
are replaced by k — 2, k — 1 is immaterial since the argument of Step
1 is the same for any permutation of {2, .-+, k}). The fourth term
vanishes because of (4.6) and I(1, k)i, = I(k). In all following terms
the sets of superscripts in the first factor @ contain repeated elements
and these terms vanish also. This completes the argument in case
k =4. If k> 4, the process clearly continues.

(4.9) If both S = 38%e; and B A S are simple and S"* # 0 for
some I{t)c Q then Se F{t),_,.. If S=w, N +++ A\ w,_, then each w;e
F(t).

The first part is a consequence of (4.8). The second statement
follows from the general lemma.

(4.10) If m<n, V*"C V™ v,e V", Aso1v; =0 and Aj-,v;€ V] then
v,e V™j =1, +-5).

Setting v; = v} + B, (¢ =1, -+, s) in the proof of (2.1) yields
the case m = n — 1 from which the general case follows.

THEOREM 4.11. If k<r,S= Alw; =0 and RN\ S is simple
then w; e F(t) for a suitable t.

If S = Yp"ey; then it suffices by (4.9) to show that g’ == 0 for
a suitable I(t) e 2. Because B A S is a simple (r + k — 1)-vector there
is a vector v = >\7* d’%,; such that RA SAv=0and SAv=0. If



IRREDUCIBLE SUMS OF SIMPLE MULTIVECTORS 25

T=SAwv=23v¢ then
v =X 4 gIMo .

By (4.5) there is at least one IeQ with +' = 0, hence g™ = 0 for
some ¢.
After these preparations we are ready to prove (4.4). First observe

(4.12) If B = Sk v,,(vie V) then Ak v; # 0.

Each v; # 0 because 3% e,,, = R is irreducible. Assme A v; =0
and let {w;},1 <j <\ <kr, be a maximal set of independent w,.
Since the w,; span a proper subspace V' of V, an ¢, with w,A -+ A
w; A\ e, # 0 exists, and the w; together with e, span a space V" with
V'cV'"cV. Now Xv,, is irreducible in V and V’, and therefore (see
(2.2) and (2.7)) X, A e, is irreducible in V" and in V. But if e L(s)
then B A e, = S..er) A €

(4.13) If R=f v, (eV), k<r, I=1{i, -, 3,})eQ then
v;, € E(n(t)) for a suitable permutation m of {1, ---, k}.

First v;,, #= 0 by (4.12). Next
R A Vi) = Vi A Vi # 0

is simple. Therefore (4.11) yields v; € F(n(s)), (v # s) for a suitable
number 7(s), (1 < 7(s) < k). We must show that m(s) defines a per-
mutation of {1, ---, k} or that 7(s) == 7(t) for s = t. Assume 7(s) = 7(t)
for some s = t. Then v; € F(n(s)) forv =1, ---, k because I(s) U I(t) =
I whence v, € F(n(s)), and B A v; = e, A v; % 0 contradicting B A
v; = 0. Thus v;, € i ez F(7(8) = Ny Fl7(s)) = E(xn(t)).

This establishes the uniqueness of Ye;,,. For, consider Ie 2 and
put I' = {j,, %,, +++, %} with j,€ L(1). Then I'e Q. Since v; € E(z(v))
for v > 1 it follows from (4.13) that v; € E(x(1)). Thus v; € E(r(1))
for all j,e L(1) and v, = ezz-

Generally, v;,, = .6, whence a, = 1(v =1, -+, k) and unique-
ness follows.

The condition v, € V which entered the proof of (4.12) because we
applied (2.2) can now be eliminated; Xe,,, retains its form after
extension of the underlying field and therefore remains unique after
the extension. This justifies the formulation of (4.4) which does not
mention a field.

5. The case n = 6,r = 3. The remainder of the paper deals
with the case n = 6, » = 3 whose importance was noted in connection
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with (3.2). We first show N(F, 6, 3) = 8 which may be new for F =
C. Our inequalities (2.3) and (2.5) give only

2= N(F,5,2) < N(F,6,3) < N(F,5,3) + N(F,5,2) =4.

With e;;, = e; A e; A\ e, we prove:
(5.1) S = ey + €ug + €u 15 rreducible; whence N(F,6,3) = 3.
This proof rests on the observation:
(5.2) If R=S8 A XL, Rle; is simple then 5 = g = g° = 0.

(The converse is trivial but not needed.) If

R= py e
2
124<j<k<I<26

then

1<'<k<60c1jkﬁe”'kﬁ = e N [ — B'(€a + €x)] «
<4

Therefore one of the Pliicker relations for R is
O — a1624a1635 — a1623a4165 + a1'625a4613 — (61)2 .

Similarly, g* = g* = 0.

Assume S were reducible, S = v, + v, (Where again v = v; A
v; A ) with v; = 3%, Bfe,. Then S A v; is simple, so that by (5.2)
BE =0 for k < 3, whence

S = [det (8Y") + det (8%H)]ews »

which is false because S A € = €. #= 0.
To show N(F,6,3) <3 we need the lemma:

(5.3) Given R;e VAF)i=1, -+, m) there are ;e F and R;e
GYF)( =0, +++ m) such that B, = R; + MR(i =1, «++, m).

If R, is simple then R; = B, »; = 0 will do, so we assume that no
R, is simple. G% is a quadratic cone and a hypersurface in Vi(F).
Therefore, R,c G exists such that the tangent hyperplane of Gi at
R, does not contain any R;, and no line through B, and R, intersects
G! (as a locus in V} completed to a projective space) at infinity. Then
the line through R; and R, intersects G in a second point R} so that

R.= (1 — N)R;+ MRy = R + MR,

This argument does not require extending F because it amounts to
solving a quadratic equation of which one root is F.
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Now let B = 3, ;cicizs @%e;;, € VE(F) be given. A simple calcul-
ation shows that either R e V(F,2) or a base {¢;} exists in terms of
which

R = > 4Bij5é—ia‘5 + > B = gx N €5+ Sz N €g

1<i<js 1=49<j<4
with S;e Vi By (5.3) there are S;e G and \; € F' such that
B= (S +NMS) A&+ (S:+MS)A &
=S A&+ S A&+ S A (M8 + Ng) € VI(F, 3) .
Thus:
(5.4) N(F,6,3) = 3.
By a similar argument we prove
(5.5) S<N@F, 17,3 <5.

The left inequality follows from 3 = N(6, 3) < N(7, 3), see (2.8).
For the right inequality one shows (see [1, p. 90]) that either Re
VI(2) or with a suitable base {¢;}

~ e YV P 5 PN
R= 3 B%¢;+ > B +1S;<4,3”7em + _2181676'567 .
21<J= 7=

1=9<)54 1S9<i<4

The last sum is simple and applying (5.3) to the first three terms on
the right yields N(F,7,3) < 5. This method does not extend to N(n,
3) with n > 7.

We now study a special type of Re V¥C) which will confirm
some of the important assertions made previously.

Let Y be the set of triples

Y = {128, 126, 135, 156, 234, 246, 345, 456}
and suppose that the af, Ie Y, satisfy the inequalities

a123a156 + a126a135 ;ﬁ O y a123a246 + al26a234 ¢ 0 ,
(5 ‘6) a123a345 + a135a234 i 0 s a234a456 _|_ a246a345 ¢ 0 ,
a135a456 __l_ a156a345 i O , a126a456 _|_ a156a246 i O y

and that the roots A, ¢ of
(5.7) (a123x —_— a234)(a156x —_ a456) _|_ (aIZGx + a246)(a135x + a345) — 0
are distinct. They are different from zero.
THEOREM 5.8. If B = 3., a’e; € VE(C) and the o satisfy (5.6),

then B = Ry + R, Ry = Siiey B'€r, By = Sirer Y'er, where Ry and R,
are simple with Ry \ R, + 0. Hence the representation R, + R, 1s
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unique (by (4.4)).
If N\, 1t are the solutioms of (5.7) then the B' and Y (Ic€Y) are
given by

Blij _ yalij — i ot — Nt ,
©— N 7Y
B!'ij — 7\11811']' s ,7443]' — #,7173]' .

No p" or ¥'(Ie Y) vanishes.

This representation was found by using Pliicker relations (see [1,
pp. 98-106]), but after it is explicitly given one readily verifies that
R; and R, are simple and that R, A R, # 0. In fact, it is easy to
factor R, and R,, see [4, p. 21]: Since B’ # 0 if Ie Y, letting v =
(B we find

Ri=uAvAw= Zue; \ Svie; \ Jw'e;
with
ui — ”/8231., ,Ui — u1813i’ wi — vﬁm‘
(see also [1, p. 102]), and similarly for R..

First we confirm the statement in the introduction that irreduci-
bility may depend on the field.

(5.9) If the &’ in (5.8) are real and \, it are not, then B e W(C, 2)
but B e WiR, 3).

For because R; + R, is unique, Re VR, 2) is impossible, and
this with N(R, 6, 3) = 3 entails the assertion.
Next we observe that the vector

Bm)=e N(ex+e) ANes+ e Aes A es+ Nes A\ e N e
+@+e)ANeANe (=0

is a special case of (5.8) and that )\, ¢t are real when 7 < 0. Letting
7 — 0~ we find

RO)=eN(ete) Nea+eANeNe+ (6+e) AeAe
which by (5.1) lies in W{(R or C, 3). Therefore:

(5.10) The sets Vi(R, 2) resp. Vi(C, 2) are not closed in VI(R)
resp. V(C).

Theorem (3.2) whose proof used (5.10) is therefore completely
established.
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We now prove a surprising fact for C which has no analogue for
R (see (6.3)):

(5.11) The interior of W(C, 3) as a set in VI(C) is empty.

We show that if R = R, + R, + R,, R, e GYC), is irreducible then
it is the limit of elements in V{(C, 2).

R; and R;(¢ # j) have no nonvanishing 2-vector as a common factor,
because R; + R; would then be simple. Thus two cases are to be
considered:

(1) R; A R; # 0 for some 1,7, say B, A R, # 0,

(2) R; and R; have for 7 ++ j a vector v, = 0 (but no 2-vector #
0) as a common factor where (7, 7, k) is a permutation of (1, 2, 3).

In the latter case the v; are either parallel or no two v; are
parallel. If they were parallel we could choose ¢; parallel to the v,
so that B = S A ¢ with Se V¥(C), and SR; would be reducible since
N(F,5,2) = 2. If no two v; are parallel then with suitable u;

B=u Av, ANvyy By =% ANV, A\ Vs, By =u ANV, A\ 0.

The vectors u;, v; are independent, for otherwise YR, would be a 3-
vector in a space of dimension less than 6 and by N(F,5,3) = 2
reducible. The proof of (5.10) shows R can be approximated by elements
of V(C, 2).

In case (1) there are vectors w,, «--, ws, v,, v;, v; such that w,, w,,
w, are parallel to R, w,, w; w, are parallel to R,, R,= v, A v, \ v, and

V= W, + AWy, Vy = GW, + AWs, Vs = QW + AW .

If AL,w;#0 then R =3,.,a’w, and [[%,a; # 0 is equivalent to
(5.6), so we have a special case of (5.8) (see [1, p. 83]) and hence R ¢
Vi(C, 2) contrary to the hypothesis. If A%{,w; =0 and/or TI{,a; =0
we can choose w; and a} arbitrarily close to w,; resp. a; such that
S w; =0 JI-,a;+ 0 and N # g, so that R is the limit of elements
in V{(C, 2).
For kr < n let Z*(F, k) be the set of B = 3%, R, with Ai,R; #
0. Then Z*»(F, k)yc Wr(F, k) by (2.10).

(5.12) Z™(R resp. C, k) 1s dense in V(R resp. C, k).

This is nearly obvious: If R = 37, R,e Z"(j),j <k, then R,,,
voo R, exist with A, R, #+ 0 and

E:lim(fi—Fsz,Ri) as 0—0.

i=7+1

It B= i, Ric WiG),i <k Aics R =0 and B = Aj. vy,ss then
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w; — v; with A2, w; # 0 exist and S, Ale Wi—yyrrs — R
Because

2(C) = ZJ(C,2) UVI(C, 2)/Z3(C, 2) U W3(C, 3) ,

(5.11, 12) show that Z$(C, 2) is dense in V{(C), so that VC)/Z:(C, 2)
has no interior points, and hence has dimension less than 40 (=
dim V§(C)), see [2, p. 46]. In the next section we will see that Z3(C, 2)
is open. Thus

(56.13) The set Z{(C, 2) is open and dense tn VI(C), hence
Vi(C)/Z3(C, 2)
s closed and dim Z{(C, 2) = 40, dim V{(C)/Z3(C, 2) < 40.

Note that W(C, 3) c V&C)/Z{(C, 2) and that therefore the closure
of WC, 3) has dimension less than 40.

6. The sets Z)(R resp. C,2) and W{(R, 3). We now prove that
Z(R resp. C, 2) is open. Actually our next theorem provides much
more information which will allow us to show that W$(R, 3) has a
nonempty interior.

THEOREM 6.1. Let F=R or C. If R, R,e G{F) and R\ E,#0
then there is a meighborhood U(R,) of B,= R, + R, in VXF) such
that for R e U(R,) there are simple R!, R] with B = R! + R]. Further-
more, given meighborhoods UyR;) of R; in G3(F) there is a meighb-
orhood U'(R)c UR) such that Re U'(R,) implies Ric U(R;) and
R/ A R,=0. Consequently Re Z(F,2) and by (4.4) R, + R} is unique.

Necessary for (6.1) to work is that G! x G} and V¢ have the

same dimension, which is the case because a-dim G} = r(n — r) + 1,

a-dim V? = (Z:‘) and 2[3(6 — 3) + 1] = 20 = (g) But this argument

is far from sufficient as similar situations for other dimensions show;
the structure of G enters.

Since R, A R, #+ 0 we can choose a base so that R, = e, R, = €.
A neighborhood of R, on Gj consists of the simple R] = Yge; =
Sisi<i<kss B7%e;;, with £ close to 1 and the remaining g7 close to 0,
S0 B'# =0 may be assumed. Similarly for R, = 3v’e; and v** 0. The
components of R, are 1,0, -++, 0, 1.

The special properties of GS arise from the Pliicker relations which
(see [1, p. 69]) with \ = (8'*)™* are equivalent to
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_ L , . B
18 _iNBiM- Biak =’b=3,4§]<k§6,(1,‘0,0')—-7f(1,2,3),
6124 ,8125 '8126

:8456 = \2 ,8134 18135 3136 =B.
6234 6235 3236
Similarly with g = (v*%)™

3 ,.),iplc ,),j,ok
’\/”k:i/,t ok jak1§7x<.7§3,4§k§63(p’0’k):ﬂ(4’5y6)’
v Y
7145 ,-),245 ,),345
7123 — #2 7146 ,-),246 7346 — C .
,7/&56 72’36 7356

If now Sa’e; = R = R, + R, = 3%, + 37'e; then af = g% + 7%, and
substitution gives

a123 — ,8123 + C y

. g yiek  oydek
a'b]k p— B‘a]k i /1 '7'50]‘ ’Yjak 1 é ?: <j g 3, 4 g k é 6, ('0, 0, k) = 77-.(4, 5) 6) ’
lgipi ijk

it = 4 )\ +7 1<1<8,4<5<k=6, (00 =1r(,23),

[B'L‘aj I@iak
W = B+ 6,

Thus the 20 components of R are expressed in terms of 5, the
nine B’ with 1<7<38,4<j<k<6, thenine v with 1<:t<j<3,4<
k < 6, and v**. Evaluation of the functional determinant at (1, 0, ---,
0,1) gives the value 1. Therefore, the implicit function theorem is
applicable and yields the assertion. The details of the calculation may
be found in the thesis, [1, pp. 93-97].

As a corollary we have

(6.2) The set Z{(R resp. C, 2) is open in V(R resp. C).
But in contrast to (5.11):
(6.3) The interior of Wi(R, 3) is not empty.

For take any R, = 3.y a’e; of (5.8) for which the a’ are real
but A, ¢ are not. Then
R,=R;+ R, with R,AR,#0.

By (6.1) for Re U'(R,) = V&C)
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B =R + R, with R.A R, = 0, R; close to R; and R; close to R,
so that R, and R} cannot be real either. Also R, + R] is unique by
(4.4) and this implies as in the proof of (5.9) that

Re WiR,3) for ReU'(R)NVXR),

where we consider V§(R) as a subset of V§(C).
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