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MARY R. EMBRY

A strictly cyclic operator algebra Sf on a complex
Banach space X(dim X ^ 2) is a uniformly closed subalgebra
ot£f(X) such that S/x = X for some x in X. In this paper
it is shown that (i) if S/ is strictly cyclic and intransitive,
then S/ has a maximal (proper, closed) invariant subspace
and (ii) if i e ^ ( I ) , A Φ zl and {AY (the commutant of A) is
strictly cyclic, then A has a maximal hyperinvariant subspace.

1* Notation and terminology* Throughout the paper X is a
complex Banach space of dimension greater than one and J*f(X) is
the algebra of continuous linear operators on X. Stf will denote a
uniformly closed subalgebra of £f{X) which is strictly cyclic and x0

will be a strictly cyclic vector for Suf: that is, StfxQ = X. We do not
insist that the identity element / of J5f(X) be an element of

If & c £f{X), then the commutant of & is &' = {#: # e
and JEB = BE" for all B in ^ } . We shall use the terminology of
"invariant" and "transitive" as follows: if Mc X and ^ c ^ ( J ι ) ,
then (i) ikf is invariant under & if &M = {Bm: Be ^ and m e ikf} c
M, (ii) Λf is an invariant subspace for ^ if M is invariant under
& and Λί is a closed, nontrivial (Φ {0}, X) linear subspace of X,
(iii) έ%? is transitive if ^ has no invariant subspace and intransitive
if ^ has an invariant subspace. Further, if A e J*f(X) and {A}' is
intransitive, then each invariant subspace of {A}' is called a hyperin-
variant subspace of A. Finally an invariant subspace of & is maximal
if it is not properly contained in another invariant subspace of ^ .

2* Introduction. Strictly cyclic operator algebras have been
studied by A. Lambert, D. A. Herrero, and the auther of this paper,
(See for example [2]-[6].) One of the major results in [2, Theorem
3.8], [3, Theorem 2], and [6, Theorem 4.5] is that a transitive sub-
algebra of J*f(X) containing a strictly cyclic algebra is necessarily
strongly dense in £f(X). In each of three developments the following
is a key lemma: The only dense linear manifold invariant under a
strictly cyclic subalgebra of Jίf(X) is X. In Lemma 1 we shall
present a generalization of this lemma which will be useful in the
study of maximal invariant subspaces and noncyclic vectors of a
strictly cyclic algebra

LEMMA 1. If M is invariant under s%? and x0 e M9 then M = X.
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(It should be noted that we do not require M to be linear nor do
we require, as was done in Lemma 3.4 of [2], that IeJ&l The proof
given here is a slight modification of that given in [2].)

Proof. We shall show that s^xQ c M and thus X = Ssfx0 c M.
Let {xn} be a sequence in M such that l im^^ xn = xQ. By [2, Lemma 3.1
(ii)] there exists a sequence {An} in Szf such that Anx0 ~ xύ ~ xn

and lim^βo 11 Aft 11 = 0. Thus for n sufficiently large, \\An\\ < 1 and
(/ — A*)"1 = ΣΓ=o (^n)* Consequently, j ^ ( / — An)~γ c J ^ and since
xo = (I - An)~ιxn, we have J Λ O = sf{I - An)~ιxn c s^xn c ikf, as
desired.

For the sake of future reference we restate and reprove the
transitivity theorem.

THEOREM 1. If s^f is a strictly cyclic transitive subalgebra of
then j y is strongly dense in

Proof. Using Lemma 1 we can show (as in [2, Lemma 3.5]) that
each densely defined linear transformation commuting with S^ is
everywhere defined and continuous. Further, again using Lemma 1,
we can show that if Eeszf and zeσ(E), then either zl — E is not
one-to-one or does not have dense range. Thus if s^ is transitive,
necessarily E = zl. Consequently, it follows from [1, p. 636 and Cor.
2.5, p. 641] that S^ is strongly dense in

3. Maximal invariant subspaces* In [2, Theorem 3.1] it is
shown that every strictly cyclic, separated operator algebra Szf has
a maximal invariant subspace. ( jy is separated by x0 if A = 0
whenever A e S^f and Ax0 = 0.) Theorem 2 allows us to obtain the
same result without the hypothesis that S^f be separated, provided

is intransitive.

THEOREM 2. An intransitive, strictly cyclic subalgebra jzf of
Jzf(X) has a maximal invariant subspace.

Proof. Let ^/f = {M: M is an invariant subspace of J^}. By
hypothesis ^^Φ0. We shall order ^// by set inclusion and show
that each linearly ordered subset of ^£ has an upper bound in ^ C
To this end we let {Ma} be a linearly ordered subset of ^y/ί. Then
\JaMa is invariant under J>Λ By Lemma 1, if (J« Ma = X, then
\JaMa= X and consequently x0 e Ma for some value of a. Since this
last implies that X = S/xQ c s^Ma c Ma and contradicts the fact that
Ma is a proper closed linear subspace of X, we see that \Ja Ma is not
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dense in X. Thus (J« -M« is an element of ^ C and is an upper bound
for {Ma}. By the Maximality Principle ^£ has a maximal element.

Lemma 1 and the Maximality Principle can be combined to arrive
at other similar results. For example, (i) if s$f is intransitive and
strictly cyclic, then s$f has a proper maximal invariant subset (this
will be discussed further in §4) and (ii) if X is a Hubert space and
J%? has a reducing subspace (that is, an invariant subspace of Ssf
which is also invariant under j y * = {A*: AeSsf}), then s^f has a
maximal reducing subspace.

In [2, Theorem 3.7] it is shown that if A is not a scalar multiple
of I and {Ay is strictly cyclic, then A has a hyperinvariant subspace.
This result combined with Theorem 2 yields the following:

COROLLARY 1. If A is not a scalar multiple of I and {A}f is
strictly cyclic, then A has a maximal hyperinvariant subspace.

We shall now turn our attention to intransitive, strictly cyclic
operator algebras on a Hubert space X. If M is a closed linear
subspace of X, PM will denote the orthogonal projection of X onto M
and ML the orthogonal complement of M: ML = {y: (y, m) = 0 for all
m in M}. Furthermore, J ^ * = { A * : i e j / } .

In the Hubert space situation we are able to conclude that jy*/M
is strongly dense in ^f(Mλ) when M is a maximal invariant subspace
for j ^ . This remains an open question if X is an arbitrary Banach
space and is a particularly interesting one if X is reflexive. For in
that case if M is a maximal invariant subspace of jy, then M1 =
{x*:x*(M) = 0} is a minimal invariant subspace of

THEOREM 3. Let j y be a strictly cyclic operator algebra on a
Hilbert space X. If M is a maximal invariant subspace of jy, then

( i ) (/ - PM)Sf{I - PM)x0 = M1 and (ii) j y *(/ - PM) is strongly
dense in

Proof. Note first that (I - PM)S^{I - PM) = (I - PM)^f, so that
(i) is immediate. Since M is a maximal invariant subspace for j ^ M1

is a minimal invariant subspace for jy* . Thus each of j y * ( I — PM)
and (/ — PM)j^(I — PM) is transitive on ML. Thus the uniform closure
of (/ - PM)j^(I — PM) in ^f(Mλ) is transitive and by (i) is strictly
cyclic; hence by Theorem 1 (/ — PM)jzf(I — PM) is strongly dense in

which concludes our proof of (ii).

THEOREM 4. Let X be a Hilbert space, A e J*f{X) and {A}'
strictly cyclic. If M is a maximal invariant subspace for {A}',
then there exists a multiplicative linear functional f on {A}" such
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that for each E in {A}", (E - f(E)I)(X) c M.

Proof. As we noted in the proof of Theorem 3,

& = (I - PM){A}'(I - PM)

is strongly dense in £?(Mλ) and thus its commutant consists of the
scalar multiples of the identity operator on M1. Since {A}"c{A}'
and M is invariant under {A}', we know that (/ — PM){A}"(I — PM)
is contained in the commutant of & on M1 and hence (I — PM){A}"(I —
PM) c {z(I — PM)}. Thus for E in {A}", there exists a complex number
z such that (I - PM)E(I - PM) = z(I - PM). Therefore, (I - PM)(E -
zl) = 0 since M is invariant under {A}"; or equivalently (E — zI){X) c
M. Since M is a proper subset of X, it is now obvious that the
number z for which (E — zI){X) a M is unique. Define f(E) — z.

That / is linear follows immediately from the fact that f(E) is
the unique number for which (E — f(E)I)(X) c M. Furthermore, since
M is invariant under {A}", (FE - f(E)F)(X) c M for all E, Fe {A}".
Consequently (by uniqueness again), 0 = f(FE - f(E)F) = f(FE) -
f(E)f{F) and thus we see that / is multiplicative.

COROLLARY 2. Let A e ̂ ?{X) where X is a Hilbert space. If
the range of A — zl is dense in X for each complex z, then {AY is
not strictly cyclic.

Proof. Except for one minor technicality, Corollary 2 follows
immediately from Theorem 4. For, if {A}' is strictly cyclic and
intransitive, by Theorem 4 there exists a complex number f(A) such
that the range of A — f(A)I is contained in a proper subspace of X.
By Corollary 1 the only other way in which {Ay can be strictly cyclic
is when A — zl for some complex z, in which case the range of A —
zl is certainly not dense in X.

In [2, Lemma 3.6] and [3, Proposition 2], it is shown that if
£ e j / / where j^f is strictly cyclic and zeσ(E), then either zl — E
is not one-to-one or zl — E does not have dense range. Corollary 2
now adds to our knowledge of σ(A) where {A}' is strictly cyclic: in
this case we know that for at least one value of z, the range of
A — zl is nondense. Indeed we have the stronger result:

COROLLARY 3. Let Ae^f(X) where X is a Hilbert space. If
{AY is strictly cyclic, then there exists a common eigenvector for {A*}".

Proof. The case in which {A}' = ̂ f(X) is trivial. Thus we
assume Aφzl. By Theorem 4 if Ee{A}", there exists a complex
number f(E) such that (E — f{E)I){X) c M where I is a maximal
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invariant subspace of {A}9. Therefore, E*{I - PM)x0 = f(E)*(I - PM)x0

and (I — PM) x0 Φ 0 since x0 is cyclic for {A}' and M is a proper
invariant subspace for {A}'.

4* Noncyclic vectors of J%C In this last section of this paper
we shall discuss briefly several properties of the set of noncyclic vectors
of a strictly cyclic operator algebra Ssf. A vector x is noncyclic for
Szf if S/x is not dense in X. These results are summarized in
Theorem 5. Parts (i) and (iii) of Theorem 5 also are found in [5,
Theorem 2].

THEOREM 5. Let JV be the set of noncyclic vectors of a strictly
cyclic operator algebra J ^

( i ) if x£ N, then x is a strictly cyclic vector for j ^ ,
(ii) N is invariant under Jϊf,
(iii) JV is closed in X,
(iv) JV is the unique proper maximal invariant subset of Jϊf,
(v) if N is not linear, then JV + JV — X, where JV + JV = {x +

y:xf yeN}.

Proof, (i) If x ί JV, then jzfx — X and thus by Lemma 1 since
S^fx is invariant under j ^ we have Ssfx = X and x is strictly cyclic,
(ii) Assume that xeN and A e S$f. Then s*f Ax c Ssfx and consequently
SxfAx Φ X. That is, AxeN for each A in j%f which proves (ii)
(iii) By (ii) jzfNa N. Since szf has a strictly cyclic vector, we know
by Lemma 1 that N contains no strictly cyclic vector for Ssf. Thus
by (i) N contains only noncyclic vectors for J^, which says that JV is
closed, (iv) By (ii) JV is invariant under J ^ By hypothesis j ^ has
a strictly cyclic vector so that N Φ X. These two observations essen-
tially prove (iv) since an element a; of a proper invariant subset of
Szf is necessarily an element of JV. (v) If JV is nonlinear, then
since JV is homogeneous, we know that JV Φ JV + JV. Therefore, since
JV + JV is invariant under J^(by (ii) we know that JV + JV = X by
(iv))

To see that there exist strictly cyclic operator algebras for which
JV is linear and those for which JV is nonlinear let us reconsider
Example 1 of [2].

EXAMPLE. Let X be a Banach space, dim X ^ 2 and let x0 e X,
x0 Φ 0. Let each of x* and y* be a continuous linear functional on
X such that x*(xQ) = y*(x0) = 1. For each x in X define Ax by

Axy = x*(x)[y - y*(y)x0] + V*(y)%
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and let J ^ = {Ax: x e X}.
It was observed in [2] that j y is a strictly cyclic operator algebra

with strictly cyclic, separating vector x0.
A simple argument shows that a vector y0 of X is cyclic (and

hence by Theorem 5 strictly cyclic) if and only if y*(y0) Φ 0 and x*(y0) Φ
0. Thus the set N of noncyclic vectors coincides with ker y* U ker a?*.
Consequently, N is linear if x* and y* are dependent and nonlinear
otherwise.
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