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Let L be a polyhedron in an n-sphere S*(n = 3) that does
not separate S”. A topological invariant of the position of
L in S* can be introduced as follows: Let [ be an integral
(n — 2)-cycle on L. For each nonnegative integer d, the dth
elementary ideal E,(l) is associated to [ on L in S*. If [ and
I’ are homologous on L, then Ey(l) is equal to E.,(I’). Now the
collection of Ey(l) for all possible ! is a topological invariant
of L in S~,

In this paper the following two cases of E;(l) are considered:
(1) 1 is a 1l-cycle on a f-curve L in S?, and (2) [ is a 2-cycle
on a 2-link L in S% i.e., the union of two disjoint 2-spheres
in S, where each of two 2-spheresis trivially imbedded in S*.

The dth elementary ideal E (I) of I on L is defined as follows
(more precisely see [3]): Let G be the fundamental group (S — L)
and H the multiplicative infinite cyclic group generated by ¢t. Let
be a homomorphism of G into H defined by

gq/» — tlink(g.l) s

where link (g, ) is the linking number between g and I. Using Fox’s
free differential calculus, we associate to ¢ the dth elementary ideal
E, of the group G, evaluated in the group ring JH of H over integers.
This dth elementary ideal E, depends only on G and +, and hence it
depends only on the position of [ on L in S*. We shall denote it by
Ey ).

In this paper we shall prove the following two theorems.

THEOREM 1. Let f(t) be an integral polynomial with f(1) = 1.
Then there extsts a O-curve L, in S® and an integral l-cycle 1 on L,
such that

E) = E(l) = (0),

E() = (f@) and
(E,) =@Q), i d>2.

THEOREM 2. Let f(t) be an integral polynomial with f(1) = 1.
Then there exists a 2-link L, in S*, and an integral 2-cycle | on L;
such that

(1) each component of L, is a trivially imbedded 2-sphere in S,
and that
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(2) we have

Eo(l) = El(l) = (0) ’
E,(l) = (f(t) and
EM)=Q, if d>2.

COROLLARY. Let f(t) be an integral polynomial with f(1) = 1.
Then there exists an oriented 2-link L, in S* such that

(1) each component of L, is a trivial 2-sphere in S, and that

(2) the dth elementary ideal of Ly, in the usual semse and in
the reduced form, is as follows:

Eo(Lf) = El(Lf) = (0),
E\(Ls) = (f(t)) and
(E(L) =), i d>2.

REMARK. This kind of example was first considered in [1].

The construction of these two examples are closely related. They
are also closely related to the construction of 2-spheres in S* in [2].

1. Let P be the family of all integral polynomials f(¢) which can
be expressed in the following form:

t—‘(51+‘--+5n)(1 — t51) + t_(52+“'+5”)(1 — t52)
1
(1) FoeeeptTn(l — ) + 1,

where ¢, = =1 and 0;, =¢; or 6;, =0 for : =1,2, ---, n. We assume
that 1e P.

LEMMA. We have f(t) € P, if and only iof f(1) = 1.

Proof. If f(t) e P, then clearly we have f(1) = 1. Suppose that
f@) =1. Then we have
S@) —1=@1 — D) (aut™ + «++ + ay)
— @ = t)(but™ + +++ + by
=1 —t)at™ + - + ay)
+ (L = t)(But™ 4 e £ bit),

where a;, b, = 0 fori=1,2, ..+, n. This means that f(f) with f(1) =1
can be obtained from 1 by applying a finite number of operation:

g@t) —g@) + t*AL — 1),

where p= 0 and 6 = +1.
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We assume 1e P. Hence we should prove that if f(¢) € P, then
f(@) + t°(1 — t’) e P. Suppose that f(f) has form (1). Now let

p=—(E+ e+t Gt e+ Ea)s
where ¢,,; =¢; for ¢ =1,2, ... n and let

B=0,0= =0, =0 and O, =d
for t=1,2,---, n. Then clearly we have

gt tepb et bel ) (1 — 1)

+ oo A tkin(l — Phen) = t2(1 — ¢°) + f(2) .

Hence the proof is complete.
2. Let f(t) be an integral polynomial with f(1) = 1. Suppose

that f(f) is expressed as (1). Now we construct a l-dimensional
polyhedron K, in E*(c S® as follows: The left-most side of K; is

shown in Fig.1l. Then for each i (¢ =1, ---, n) we add step by step
one of the four figures in Fig. 2. This depends on values of ¢ and
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0; as in Fig. 2. The right-most side of K, is shown in Fig. 3.

Now we give a presentation of the fundamental group of E® — K,
(and that of S® — K, too). We use the Wirtinger presentation. If
(o, ***y Qyy Cop ** %y Cmy o, v++, d,y (M + m' = n) are paths in Fig. 4, and

Fig. 4.

alse, as usual, the paths which represent elements of the fundamental
group in question, then the presentation is given as follows:

Generators: Aoy =+, Gy,
Coy ***y Cp,y
doy o+, d(m +m = n).

Relations:
(i) If ¢,=1,06, =1, then

{ Cjy = ai—lcja;—ll ’
a; = ¢;o;_,c3t,
(iiy If ¢, = —1,0, = —1, then
{ C; = aicj-—la;l ’
Ay = C; ;07
(iii) If ¢, =1,4; = 0, then

d; = ai-—ld.f—lai—il ’
J

a; = dj(l,,-_ldfl ’

;. = dj—1aid;—l1 ’

di—l - aidja;l )
for each ¢ =1, ---, n, and

cria, = 1.

3. Let k; be a 1-cycle on K, such that
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link(ai,kf):o, for ’L'ZO,].,-",’YL,
lil’lk(C“kf)Zl, for ’i:o,l,--o’m,
link (d;, k;) =1, for i=0,1,.-+, m .
We consider the elementary ideals of %, on K 7 in 8% For each pair
a;, and a; the corresponding two rows in the Alexander matrix are

elementary equivalent to the following:
(1) If ¢ = 6,, then

@iy a; Cis ¢;
1 — ¢ 0 -1 1
P
(2) If 6, =0, then
iy a; d;_, d;
1 — ¢ 0 1 -1
[i tei -1 0 0 } .

From the last relation we have the following entries to the Alexander
matrix.

an CO cm

[1 1 —1]

Hence we have matrix (*) as an Alexander matrix of k;on K, in S3.
Matrix (*) is elementary equivalent to (**). Note that we add a
suitable number of rows of zeros. Matrix (**) can be reduced to (***)
by elementary operations. Now it is easy to see that

tn —1

.\\\\ . .

f 1
1] 1 ~1 0
11
CI . .
Y

1 -1

1 g 0 R P
11
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v -1
\\\\\ \\\ 0 O
‘g iy
1 —teeel —tinl 0 0
|
1 ¢ -1 1 0 {6‘ 7.}
““““ ] 00 5 =0
v —1
00
(***) \\\ \\\\
tn =1
1—¢treeel1—t211 0 0

Eks) = Ei(ks) = (0),
Eyky) = (t~ar (L — ¢21) + «»

+ (1 = t'n) + 1) = (@)
Byk) =), if d>2.

4. Proof of Theorem 1. Let f(t) with f(1) = 1 be given. First
construct K, in S® and k; on K;as in 2 and 3. The construction of
the corresponding f-curve L, is shown in Fig. 5. The l-cycle I, on

Fig. 5.

L; has coefficient 1 on the oriented arc ¢ and on the oriented arc d,
respectively, and coefficient 0 on the arc b. It is easy to see that
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7n(S* — Ly) is isomorphic to 7(S* — K;) and E,(l,) = E,(k,) for every
nonnegative integer d.

REMARK. It is proved in [3] that if [ is a l-cycle on a f-curve
L in S3 then we have
E(l) = E(l) = (0), and
(B =(@1), if d=2,

where o is a trivializer (i.e., the operation to let ¢ = 1 in E,(l)(2)).

5. Proof of Theorem 2. Let f(t) with f(1) = 1 be given. First
construct K, in S*® and k; on K, as in 2 and 3. Then construct the
corresponding two arcs C and D in E® as in Fig. 6, where

¢
}Z

Fig. 6.

E(i = {(xly 932, x3) ] x]_ Z 0} .

Then the usual construction of the spinning of these ares around the
plane

{(9}1, Ty 3, 334) i €, = 0, Xy = 0}

gives rise to a 2-link L, in S*

Now the arc C represents a trivial knot in E%. A part of the
step to see this is shown in Fig. 7. From this it follows that the
2-sphere S;, which is the result of spinning C, is trivial in S% Clearly
the same is true for the 2-sphere S2, the result of spinning D.

We have

2(S*— K)=n(E. — CUD) ==x(S*— L)),

and to find a 2-cycle I, on L; that corresponds to %k, on K, is easy.
Then we have

E’d(kf) = Ed(lf)

for every d = 0. Hence the proof is complete.
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Fig. 7.

Proof of Corollary. We have L, = SZU S} in S* in the example
above. Then I, =1, + l;, where I, and [, are fundamental cycles of
S% and S2, respectively. This completes the proof.

REMARK. Let L be a 2-link in S* Then it is known that for
each 2-cycle I on L we always have

E(l)=E@l =0,
(E) =@, if d=2,

where o is a trivializer. (See [3] and [4].)
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