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Let V,(R, be the universal ring with respect te em-
beddings of the matrix ring R, into # X n matrix rings over
commutative rings. A construction and a representation
is given for this ring. As a main tool in the construction,
it is proved that every B homomorphism of R,, R a com-
mutative ring, is the restriction of an inner automorphism
of U,, for some U 2 R. Using this, a necessary and sufficient
condition for #? matrices in R, to be matrix units is given.

1. Introduction and notations. All rings to be considered in
this paper, except those denoted specifically as matrix rings, will be
commutative rings with unit. All homomorphisms are unitary. The
unit of a subring coincides with the unit of its over-ring.

Denote by R, the ring of n x n matrices over a ring R. Let
7: R— S be a ring homomorphism then 7 induces a homomorphism
Nt B, — S, given by: 9,(r;) = ((r;;)). If AeR,, (4);; will denote
the (7, 7)th entry of A. The identity element and the standard
matrix units of all matrix rings will be denoted by I and {E,;}
respectively.

Let A be an R algebra. It was proved by Amitsur ([1], Theorem
2) that there exists a commutative R algebra VZ(4), and a map
0: A — (VE(A)), which is universal for homomorphisms of A into
m X m matrix rings over commutative rings, i.e.;

(1) For every 7: A— H,, with H a commutative R algebra,
there exists a homomorphism %: VZ(A) — H such that the following
diagram is commutative;

AL (VEA),
\ |
™ lf/m
N
Hm

(2) VE(A) is generated over R by the entries {[o(a)]:;]|ac 4}.

Properties (1) and (2) determine VZE(A) up to isomorphism and p
up to a multiple by an isomorphism of VZE(A).

In this paper we will give an explicit construction for the ring
VEZ(R,. The case n = m will be treated separately. We start with
investigating the nature of R-homomorphisms of R, into itself.
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162 AMOS KOVACS
2. On the automorphisms of matrix rings.

LemMMmA 1. Let C be a subdirectly irreducible commutative ring.
C can be embedded in a local ring Q which is the complete ring of
quotients of C. For noetherian C we may take C = Q.

Proof. Let MM be the set zero divisors in C, then, by [6] I is
a maximal ideal in C. Let @ be the local ring C, and let f be the
canonical homomorphism f: C — C.,.

The elements of C — I are not zero divisors in C, hence [ is
an injection. Furthermore, the elements of C — I are exactly the
regular elements of C, and so @ is the complete ring of quotients
of C.

Now, if C is noetherian we have, by [3], T = N(C)-the nil
radical of C, and therefore, J(C) < M = N(C) € J(C) where J(C)
denotes the Jacobson radical of C. Hence I =J(C) and being
maximal it is the unique maximal ideal of C. Consequently C is local
and C=C, = Q.

THEOREM 2. Let C and Q be as in the lemma; {E;;|1 <1, 7 < n}
be the set of the standard matriz units in C,, and {F;;|1<1,] < n}
another set of matrixz units in C,, then there exists a matrix AecC,,
invertible in @, such that:

léi,jén EijA:AFii'

If C is noetherian A is invertible in C,.

Proof. By definition >7., F,,=1I hence >/, (F,,), =G, F,),=1.
Now C is subdirectly irreducible, so that the zero divisors in C form
an ideal. Consequently not all of the (F), are zero divisors and
we have some 1 <y < % such that (F,,), is regular. Without loss
of generality we may assume that « = (F,),, is regular. Put now

A=Y EJF, B =>F.E,
than for all 4 and j we have E;;A = E, F,; = AF,; and also
AB’ = <Zn| Eu1F1u><é FFIELM) = ﬁ EVIFMEU‘ = aI *
v=1 p=1 y=1
Now « is regular in C and hence invertible in @, thus B = a™B’ is
the inverse of A in @,. If C is noetherian then by Lemma 1 C= @
and B= A"e(C,.

Note that in a local ring the noninvertible elements form an
ideal so that the proof of Theorem 2 can be easily modified to give
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an elementary proof of the following well-known (e.g. [2]) theorem:
“Let C be a local ring then every C-homomorphism of C, is an inner
automorphism”.

THEOREM 3. Let C be a commutative ring with unit, E;; F;;e
C, as above, then there ewists a commutative ring U containing C
and an tnvertible matric Ae U, such that E;;A = AF;; for all 1 <
1,] = n.

Proof. C may be represented as a subdirect product of sub-
directly irreducible rings ([4], Theorem 1, p. 219). There exists
therefore a set of subdirectly irreducible rings with unit, {C"|ve I'}
such that C S I, C" S II,;er @ = U where Q" is the complete ring
of quotients of C'. Hence C, < (IIC"), = (IIQ"), = U,. Leta": [IQ"—
Q" be the canonical projection. Put E7, = n[(E;;), Fi; = n,(F;;) then,
by definition E7; are the standard matrix units in C7, F/; are another
set of matrix units. By Theorem 2 it follows that there are in-
vertible matrices A7 e Q] such that E A" = A'Fj;.. Let Ae(lIQ"), =
U, be defined by ((A)..)s = (47),,, namely for every velI' 7w (4) =
Ar.  Clearly A 1is invertible in U,, its inverse being given by
((A™) 0 = (AN™),,. Clearly A satisfies E;;A = AF;; for all 7 and j.

COROLLARY 4. (1) For a giwen ring C there exists a ring
U 2 C such that every C-homomorphism 7:C,— C, can be extended
to an inner automorphism of U,.

(2) Gwen 7, the ring U of (1) may be chosen so that the inner
automorphism will be given by a matrixz of determinant 1.

Proof. (1) follows immediately from Theorem 3 by taking
F;; = n(E;;) then, by the theorem we have a ring U and a matrix
Ae U, such that A"BA = »(B), BeC,.

(2) For a fixed 7 we adjoin to U the nth root of a™ = det (47
and replace A by a'/"A.

REMARK. The ring U of Theorem 3 is not uniquely determined.
For example one may take U = IIC, where the product is taken
over all maximal ideals in C. This ring will have the same
property.

COROLLARY 5. Let C be a commutative ring with unit, {F;;|1 <
1,7 < n} a set of matriz units in C, then Cent, (F};)-the centralizer
of all the F;; in C, — 1is C, and every element in C, may be
written in a uniQue way as i CiiFy, ;€ C.
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Proof. By Theorem 8 F,;; = AE;;A™ where A is in some larger
matrix ring U,2C,. Hence; Cent,, (F;) = Centy, (F;)NC, =
A Cent, (E;pA™NC,=UnC,=C. The proof of the second part of
the corollary is classical (e.g. [4], Proposition 6, p. 52).

3. The ring VF(R,. Let R be a fixed ring with unit. All
rings henceforth will be R-algebras and all homomorphisms R-
homomorphisms. We shall write V,(A) for VE(4). We now proceed
to give an explicit construction for the ring V,.(R,).

Let {z;;]1 £ 7,7 < n} be n* commutative indeterminates over R,
let R[x;;] denote the ring of polynominals in the x;; over R. Denote
by D& R|x;;] the ideal generated in R[x;;] by the polynomial det (x;;)—1,
and put K = R[z;;]/D. Clearly we may take RZE K. Put §&; =
2; +DeK, and & = (§;)¢ K,. The matrix 5 is invertible in K,,
and its inverse is given by ! = adj& = (éﬁ) where ﬁ?ﬁ is the
algebraic complement of &; in

Let S be the subalgebra of K generated over R by the n'
elements {E”EA’H [11=<71,4,k l <n}. (S contains the unit element of
K for 3, 8,5, = det (&) = 1)

Define a map p: R,— K, by o(B)=EZB5"'. p is clearly a
unitary R homomorphism, furthermore we have:

[0(Ei)]i = (BE;E ) = Z}} 5_} (E)ky(Eij)pu(E_l)»l

= (E)rlENq = & €S

e
&
I

S

so that p(R,) =S, and we may regard ¢ as a map from R, to S,
and note that the entries {[0o(4)];;] A< R,} generate S. For this
ring S and the homomorphism o we prove;

THEOREM 6. S s the wuniversal ring VR, and 0 ts the
canonical embedding of R, in S, = (V,(R.))..

Proof. We have seen that S is generated by the appropriate
elements so that all that remains to be shown is that every homo-
morphism z: R, — C, factors through p.

As C is an R algebra, we have the natural homomorphism
i: R — C. Denote i(r) = ' ¢,(B) = B’ for all re R, BeR,.

Let E;; be the standard matrix units of R, than Ej; are the
standard matrix units of C, and 7(E;;)) = F;; are a set of matrix
units in C,. By Theorem 38 there exists an R algebra U2 C and
an invertible matrix (a;;) = Ae U, such that F;; = AE;A™"; further-
more, by Corollary 4 (2) we may suppose that det(4) =1. We
clearly have for all Be R, ©(B) = AB'A™.
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Define 7°: R[a;] — U by 7°(w;) = a5, then 7°(det (xy;) — 1) =
det (9°(x;;)) — 1 = det (A) — 1 = 0, and therefore 7° induces a homo-
morphism 7: K = R[w;;]/D— U such that 7(¢;) = a;;, and we have
the map 7,: K, — U, for which 7,(5) = A4, 7,(58™") =A™ and 7,(B) =
B’ for Be R,. For all Be R, we have:

7.0(B) = 7,(8BE™) = 7,(E)].(B)7.(E7) = AB'A™ = 7(B) so that
7,0 = 7. Let 1 be the restriction of 77 to S, then we have: o(R,) &
S, and 7,(S,) & C,. The last inclusion follows from the fact that for
Be R, n([0(B);:; = [7.0(B)];; = [t(B)];;€ C and since S is generated
by the elements [o(B)]:;, 7(S) S C. Consequently the following
diagram is well defined and commutative.

AN
™\ N,
N

Q —
D)

which completes the proof.

COROLLARY 7. (1) If R is an integral domain (in particular
R = F a field) then so is V,(R,).
(2) If R is noetherian so is V,(R.,).

Proof. (1) If R isa domain then so is R[x;;] and the polynomial
det (x;;) — 1 is prime in R[x;;]. Hence, D is a prime ideal and K =
R[x;;]/D is a domain. V, (R, = S < K is hence also a domain.

(2) S= V,R, is finitely generated over R (see also [1]).

4. An alternative representation of V,(R,). V,(R, was shown
to be generated by n' elements Skiél,-. We aim now to describe the
ring in terms of these generators and their relations. To this end
we begin with a ring R[z/{] with zj{ n* commutative indeterminates
over R. The elements zj{ are to represent the generators EHL:"” and
so they must satisfy the relations arising from the commutativity of
the &;; and from the fact that £~ = £7'Z = I, namely;

(1) zifz7 = zilzy for all 4,74, k,1,s,q,,7
(2) Xt zii= o0y for all k, 1
(3) Zi‘zl zii = 0;; for all ’i, j.

In fact we will show that the generators of V,(R,) satisfy no
other relations except these. This will be done by showing that
R[zi{] modulo those relations is again the universal ring V,(R,).

We begin with conditions for matrices in a matrix ring to be
matrix units.
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THEOREM 8. Let {F7 |1 <1,j5 <mn} be a set of n* matrices in a
matric ring C,. The {F¥} are a set of matrix units in C, if and
only if they satisfy the following conditions:

( 1) (F“)kl(qu)t'r = (Fiq)kr(st)tl for a’u i, j, k’ ly 87 q’ t, T
(2) > (F”)kz = 0w for all k, l
(3) i  (F)y = 0y for all 1, .

Proof. Suppose the F'*/ are matrix units in C,, then, by Theorem
3 we have F'" = AE;;A™ where Ae U,, for some U2C. Put A= (a;)
and A™ = (a;) and evaluate the left side of (1);

(Fij)kl(qu)tr = (AEijA_l)kl(AEqu—l)tr
= (2 0l Biosia (S el Bup)et,)
= (@) (Qsag,) -

While the right side of (1) gives:

(Fiq)kr<st)tl - (AEﬂlqA_l)kr(AEsjA——l)tl

- (Z a’kv(Eiq)y,ua;xr><Z atr(Esj)fma;l>
173 =a

= (@05, (@, 05)

Which, by the commutativity in U proves (1). To prove (2) we
have only to notice that X2, (F%),, = C~, F*%),, = (I);, = 0,,. Con-
dition (3) states that tr(F'*) = d;;, now for ¢ = 7 we have

tr(F) = tr(F*F) = tr(F9F%) = tr(0) = 0 = 4,

while for ¢ = 5 we have, using (1) and (2)

() = 133 (F 9 = (33 F":)( 3 (F)
= % (Fa(F ) = 2 (F)ys = 1 = 055 &

]

Conversely, suppose the F satisfy conditions 1, 2,8 than
[(Fy‘u)(Fm)]kl = ;::ll (Fvy)kt(Fra>tl = tZ:ll (FD(’)kl(Frﬂ)tt
= (F*)u Z:l; (Fre) = (Fw)klar,u = (5:/1Fw)kl .

This being true for all k, ! we have F*F* = ¢_F*. We also have
G Foyy =30 (F %) = 04y = (1), hence X7, F'* = I which concludes
the proof that the F'“ are indeed matrix units. (A similar result
on orthogonal idempotents was obtained in [7].)

We are finally in the position to present V,(R,) in terms of
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generators and relations. We start as before with the ring R[z
and let J be the ideal generated by all the polynomials of the forms:
2zl — zizd, TR — 84 Dkl 2Y — ;; where the indices range
over all possible combinations. We denote by (i} the class 2 + J
in the quotient ring § = R[z¥]/J = R[{¥]. We define now a homo-
morphism 0: B, — S, by [0'(A)]u = 3t 231 @il

The relations imposed on the (¥ and Theorem 8 imply that the
matrices 0'(E;;) = ({¥) are clearly a set of matrix units in S so
that evidently 0’ is indeed an R-homomorphism.

THEOREM 9. With these mnotations S = V,(R,) and 0 is the
canontcal embedding of R, in S, = (V,(R,)),-

Proof. We note that [0 (E;)]., = & so that S’ is generated
by the appropriate elements. All that remains to be shown is the
universal property of (S’0’). Let z: R,— C, be a homomophism,
F7 = 7(E;;) are then a set of matrix units in C,. Define 7: R[z}j] — C,
by 7(z%) = [t(E; )] = (F*),;, by Theorem 8 J < Ker 7 and so 7 induces
a map 7: S — C for which 7(C¥) = [t(E;;)]i,- It remains to show that
7.0 = 7, and clearly it is enough to demonstrate the equality on the
generators E;; of R, indeed [7,0(E;)lw = 70" (E:)lul = n(&) =
[t(E;;)]i;» This being true for all k, I and for all 7,7 we have 7,0 =<
as required.

REMARK. By the uniqueness of V,(R,) S and S’ should be iso-
morphic. The isomorphism is given by the correspondence 4: (i —
§:5; and o = 00'.

5. Embedding in matrix rings of different order. In this
section we investigate the homomorphisms of a matrix ring into
matrix rings of higher orders. In particular we give a description
of the ring V,(R,) for all n and m.

If n and m are integers such that n/m we have an injection
d: C, — C,, which places an n X n matrix m/n-times along the diagonal

. . » J .
of an m x m matrix. The combined map R,,LC,LHCM will be
denoted by ¢'.
Our first result is elementary:

LEMMA 10. There exists a unitary R homomorphism 7: R, — C,
if and only if n/m.

Proof. If m/m we have exhibited such an homomorphism, namely
o’. Conversely, suppose there exists a =t R,— C,. Let I be a
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maximal ideal in C. We have the induced B homomorphism T: R,,—T>

Cmﬂ"»(C/WR)m = K,, therefore, without loss of generality we may
assume C = K a field. Let E;; be the standard matrix units of R,,
then 7(E;;) = f;; are »® matrix units in K,,. We have K, = >, fi, K S
K, and K, = K, QxCenty (K,) by taking dimension over k& we
clearly have n/m.

Consequently we can assert that V,.(R,) = {0} if and only if m/n,
which we shall assume henceforth. We would like now to generalize
Theorem 3 to the case of #* matrix units in a matrix ring of order m.
Turning to subdirectly irreducible components does not seem to be
very helpful and so we localize. Our next result is again not new.
It was proved for example by Knus [5] in a more general setting.
Our proof is rather elementary except for the use of the classical
Skolem-Noether theorem.

THEOREM 11. Let (C, M) be a local ring. {e;;} and {fi;} two sets
of n* matriz units in C, (n/m), there exists an invertible matrix
AeC, such that f;; = Aej;A™ for 1 <14, < n.

Proof. {zw.le;)} and {7,.(f:;)} are two sets of #»° matrix units in
a matrix ring (C/IN), over a field. By the Skolem-Noether theorem
there exists an invertible matrix 7e (C/M), such that x,(f:;) =
Y. (e:)¥ . Let y be a matrix in C,, with 7,(y) = 4. 0= det(7,(y) =
w(det (y)) € C/M, therefore, det (y) ¢ M is invertible in C and y is an
invertible matrix in C,. Put A = 3" f..ye,, then we have

(1) 154, 750 JiiA = fuye; = Ae;;
furthermore:
AT = 3, Tl ) TEa@)T ™ = 33 FulF) (1)

Tn(f) = Tall) = I,

M

v

il

1

so w,(A4) is invertible in (C/M),, and hence, as above, A is invertible
in C,, which, by (1), completes the proof of the theorem.

The next theorem can be proved with the help of Theorem 11
in the same way that we proved Theorem 3.

THEOREM 12. Let C be a commutative ring with unit. {e;;} and
{fi;} two sets of W' matriz units in C, (w/m). There exists a com-
mutative ring U2 C and an invertible matric Aec U, such that
e;; = Af ;A7 for all 1 <4, 9 <n. The ring U is independent of
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the {e;;} and {fi;}. For fized {e;;} we may choose the ring U and the
matric A in such a way that det (4) = 1.

We can now show that V,(R,) is a subalgebra of V,(R,), more
precisely:

THEOREM 13. Let p:R,— (VER,),. and o6:R,— R, be the
canonical maps. Then VZER,) is the subalgebra S, generated in
VER,) by the entries {[06(B);;| Be R,} and 00 is the corresponding
canonical embedding.

Proof. The condition on the generators of S is fulfilled by de-
finition so we have only to show the factoring property for maps.
Let 7: R, — C,, be a homomorphism, by the usual reasoning we have
a ring U2 C and a matrix Ae U, such that for Be R, ©(B) =
Ad'(BYA™ where ¢ is as in Lemma 10. Define ¢: R, — U, by
(D) = AD'A™, we have the following commutative diagram:

7

/
e

’

e

SN Um

R
|
C.

The square on the left is commutative by the definitions, while 7
and the commutativity of the triangle are given by the universality
of V.(R,).

Define 7 to be the restriction of % to S. Then, for the genera-
tors of S we have 7([00(B)];;) = [7.00(B)];; = [t(B)];;€ C. Therefore,
N(S) & C and the diagram

R, 8,
N
o

is well defined and commutative, which concludes the proof of the
theorem.

REMARK. Obviously Corollary 7 may now be formulated for the
ring VE(R,).
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