HD-MINIMAL BUT NO HD-MINIMAL

YOUNG K. KWON
\textbf{\(\widetilde{HD}\)-MINIMAL BUT NO \(HD\)-MINIMAL}

\textbf{YOUNG K. KWON}

Let \(U_{HD}^k\) (resp. \(U_{\tilde{HD}}^k\)) be the class of Riemannian \(n\)-manifolds \((n \geq 2)\) on which there exist \(k\) non-proportional \(HD\)-minimal (resp. \(\tilde{HD}\)-minimal) functions. The purpose of the present paper is to construct a Riemannian \(n\)-manifold \(n \geq 3\) which carries a unique (up to constant factors) \(\tilde{HD}\)-minimal function but no \(HD\)-minimal functions. Thus the inclusion relation

\[U_{HD}^1 \subset U_{\tilde{HD}}^1 \]

is strict for \(n \geq 3\). By welding \(k\) copies of this Riemannian \(n\)-manifold, it is then established that the inclusion relation

\[U_{HD}^k \subset U_{\tilde{HD}}^k \]

is strict for all \(k \geq 1\) and \(n \geq 3\). The problem still remains open for \(n = 2\).

1. An \(HD\)-function (harmonic and Dirichlet-finite) \(\omega\) on a Riemannian \(n\)-manifold \(M\) is called \(HD\)-minimal on \(M\) if \(\omega\) is positive on \(M\) and every \(HD\)-function \(\omega'\) with \(0 < \omega' \leq \omega\) reduces to a constant multiple of \(\omega\) on \(M\). Let \(\{\omega_n\}\) be a sequence of positive \(HD\)-functions on \(M\). If the sequence \(\{\omega_n\}\) decreases on \(M\), the limit function is harmonic on \(M\) by Harnack’s inequality. Such a harmonic function is called an \(\widetilde{HD}\)-function on \(M\), and \(\widetilde{HD}\)-minimality can be defined as in the case of \(HD\)-minimal functions.

These functions were introduced by Constantinescu and Cornea [1] and systematically studied by Nakai [6]. In particular the following characterization by Nakai is important (loc. cit., cf. also Kwon-Sario [5]):

(i) A Riemannian \(n\)-manifold \(M\) carries an \(HD\)-minimal function \(\omega\) if and only if the Royden harmonic boundary \(\Delta_M\) of \(M\) contains a point \(p\), isolated in \(\Delta_M\). In this case \(\omega(p) > 0\) and \(\omega = 0\) on \(\Delta_M - \{p\}\).

(ii) A Riemannian \(n\)-manifold \(M\) carries an \(\widetilde{HD}\)-minimal function \(\omega\) if and only if the Royden harmonic boundary \(\Delta_M\) of \(M\) has a point \(p\) of positive harmonic measure. These are corresponded such that \(\limsup_{x \in M, x \to p} \omega(x) > 0\) and \(\limsup_{x \in M, x \to q} \omega(x) = 0\) for almost all \(q \in \Delta_M - \{p\}\) with respect to a harmonic measure on \(\Delta_M\).

Since an isolated point of \(\Delta_M\) has a positive harmonic measure, the above characterization yields the inclusion

\[U_{HD}^k \subset U_{\tilde{HD}}^k \]
for all $k \geq 1$.

For the notation and terminology we refer the reader to the monograph by Sario-Nakai [7].

2. Let $n \geq 3$. Denote by M_0 the punctured Euclidean n-space $\mathbb{R}^n - 0$ with the Riemannian metric tensor

$$g_{ij}(x) = |x|^{-4}(1 + |x|^{n-2})^{4/(n-2)} \delta_{ij}, \quad 1 \leq i, j \leq n$$

where $|x| = \left[\sum_{i=1}^{n} (x_i^2)^{1/2}\right]$ for $x = (x^1, x^2, \cdots, x^n) \in M_0$.

For each pair (m, l) of positive integers m, l, set

$$H_{ml} = \{x \in M_0 \mid |x| = 1 \text{ and } x^1 \geq 0\},$$

where $k = 2^{m-1}(2l-1) - 1$, and $ax = (ax^1, ax^2, \cdots, ax^n)$ for $x = (x^1, x^2, \cdots, x^n) \in M_0$ and real a. Let M'_0 be the slit manifold obtained from M_0 by deleting all the closed hemispheres H_{ml}. Take a sequence $\{M'_0(l)\}_{l=1}^{\infty}$ of copies of M'_0. For each fixed $m \geq 1$ and subsequently for fixed $j \geq 0$ and $1 \leq i \leq 2^{m-1}$, connect $M'_0(i + 2^m j)$, crosswise along all the hemispheres $H_{ml}(l \geq 1)$, with $M'_0(i + 2^{m-1} + 2^m j)$.

The resulting Riemannian n-manifold N is an infinitely sheeted covering manifold of M_0. Let $\pi: N \rightarrow M_0$ be the natural projection.

The following result is essential to our problem (Kwon [4]):

Theorem 1. A function $u(x)$ is harmonic on N if and only if $[1 + |\pi(x)|^{2-n}]u(x)$ is Δ_e-harmonic (harmonic with respect to the Euclidean structure) on N. In particular every bounded harmonic function $u(x)$ on the submanifold

$$G = \left\{x \in N \mid |\pi(x)| > \frac{1}{3}\right\}$$

is constant on $\pi^{-1}(x)$ for each $x \in M_0$ whenever it continuously vanishes on

$$\partial G = \left\{x \in N \mid |\pi(x)| = \frac{1}{3}\right\}.$$

3. For each integer $l \geq 1$, consider the subset of N:

$$N_l = [M'_0(l)] \cup \left[\bigcup_{i \neq l} G_i\right]$$

where

$$G_i = \left\{x \in M'_0(i) \mid |\pi(x)| > \frac{1}{3}\right\}.$$

It is obvious that
and the Riemannian n-manifold G is an infinitely sheeted covering manifold of the annulus \(\{x \in M_0 \mid 1/3 < |x| < \infty \} \).

We are now ready to state our main result:

Theorem 2. The Riemannian n-manifold G ($n \geq 3$) carries a unique (up to constant factors) \hat{HD}-minimal function but no HD-minimal functions. Thus the inclusion

\[
U_{\hat{H}D} \subset U^1_{\hat{H}D}
\]

is strict for Riemannian manifolds of $\dim \geq 3$.

The proof will be given in 4 - 5.

4. For $m \geq 1$ construct $u_m \in HBD(N_m)$, the class of bounded HD-functions on N_m, such that $0 \leq u_m \leq 1$ on N, $u_m \equiv 0$ on $\bigcup_{i=1}^{m-1} [M'_i(i) - G_i]$, and $u_m \equiv 1$ on $\bigcup_{i=m+1}^{\infty} [M'_i(i) - G_i]$. Clearly $u_m \geq u_{m+1}$ on N and therefore the sequence \{u_m\} converges to an \hat{HD}-function u on G, uniformly on compact subsets of G. It is easy to see that $0 \leq u < 1$ on G and $u \mid N - G \equiv 0$. Since

\[
u_m(x) \geq \frac{|\pi(x)|^{n-2} - 3^{2-n}}{|\pi(x)|^{n-2} + 1}
\]

on G by maximum principle and Theorem 1, it follows that $0 < u < 1$ on G. Note that $\lim_{|\pi(x)| \to \infty} u_m(x) = 1$.

We claim that the function u is \hat{HD}-minimal on G. In fact, let $v \in \hat{HD}(G)$ be such that $0 < v \leq u$ on G. In view of

\[
0 \leq \lim sup_{x \in G, x \to y} v(x) \leq \lim sup_{x \in G, x \to y} u(x) = 0
\]

for all $y \in \partial G$, v can be continuously extended to N by setting $v \equiv 0$ on $N - G$. By Theorem 1 v attains the same value at all the points in N which lie over the same point in M_0. Thus we may assume that u, v are bounded harmonic functions on $\pi(G) = \{\pi(x) \mid x \in G\}$ such that u, $v \equiv 0$ on $\pi(\partial G)$.

Again by Theorem 1, $(1 + |x|^{2-n})v(x)$ is Δ_ε-harmonic on $\pi(G)$. In view of the fact that Δ_ε-harmonicity is invariant by the Kelvin transformation, the function

\[
\frac{1}{3^{n-2}} |x|^{n-2}(1 + 3^{2(n-2)} |x|^{n-2})v\left(\frac{x}{9|x|^2}\right)
\]

is Δ_ε-harmonic on M_0 for $0 < |x| < 1/3$ and continuously vanishes for
$|x| = 1/3$. Therefore, there exists a constant $a \geq 0$ such that

$$v\left(\frac{x}{9|x|^2}\right) = \frac{3^{n-2}a}{1 + 3^{2(n-3)}|x|^{n-2}}$$

on M_0 for $0 < |x| < 1/3$ (cf., e.g. Helms [3, p. 81]). Thus

$$\lim_{x \to 0} v\left(\frac{x}{9|x|^2}\right) = 3^{n-2}a$$

exists and $v = 3^{n-2}au$ on G, as desired.

5. Suppose that there exists another $\widetilde{H\!D}$-minimal function ω on G. Choose a point $q \in \Delta_{M,G}$, the Royden harmonic boundary of G, such that q has a positive harmonic measure and

$$\limsup_{x \to q'} \omega(x) = 0$$

for almost all $q' \in \Delta_{M,G} - \{q\}$ relative to a harmonic measure for G. Let $j: G^* \to \overline{G} \subset N^*$ be the subjective continuous mapping such that $j|G$ is the identity mapping and $f(x) = f(j(x))$ for all $x \in G^*$, the Royden compactification of G, and $f \in M(N)$, the Royden algebra of N. Here \overline{G} is the closure of G in N^*. Note that a Borel set $E \subset \partial G$ has a positive harmonic measure if and only if $j^{-1}(E)$ has a positive harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore, $j(q) \in \partial G$ and $\partial G \subset j(\Delta_{M,G})$.

For each $m \geq 1$, $u_m(q) = u_m(j(q)) = 1$ since $j(q) \in \overline{G} - \partial G$. Thus it is not difficult to see that $0 < \omega \leq \beta u_m$ on G, where

$$\beta = \limsup_{x \to q'} \omega(x) > 0.$$

Therefore, $0 < \omega \leq \beta u$ on G and ω is a constant multiple of u on G as in 4.

It remains to show that u is not $H\!D$-minimal on G. If it were, u would have a finite Dirichlet integral. But u has a continuous extension to $\overline{G} \cup \partial G$ with $u|\partial G \equiv 0$. Then by Theorem 1 u must attain the same value at all the points in G which lie over the same point in $\pi(G)$, a contradiction.

This completes the proof of Theorem 2.

6. Let G' be the Riemannian n-manifold obtained from G by deleting two disjoint closed subsets B, C, where

$$B = \left\{ x \in M_0(1) \mid |x| = \frac{9}{24} \text{ and } x^i \geq 0 \right\},$$

$$C = \left\{ x \in M_0(1) \mid |x| = \frac{11}{24} \text{ and } x^i \geq 0 \right\}.$$
For each \(k \geq 2 \) take \(k \) copies \(G_1, G_2, \ldots, G_k \) of \(G' \), and identify, crosswise, \(B_i \) with \(C_{i+1} \) for \(1 \leq i \leq m \). Here we set \(C_{n+1} = C_1 \). Then it is easy to see that the resulting Riemannian \(n \)-manifold \(G^{(k)} \) has exactly \(k \) non-proportional HD-minimal functions but no HD-minimal functions.

COROLLARY. For all \(k \geq 1 \) the strict inclusion
\[
U_{HD}^k < U_{HD}^k
\]
holds for Riemannian manifolds of \(\dim \geq 3 \).

7. For the sake of completeness we shall sketch a proof of Theorem 1. In view of the simple relation
\[
\Delta u = |x|^{n+2}(1 + |x|^{n-2})^{-2} \cdot \Delta_s[(1 + |\pi x|^{2-n})u],
\]
it suffices to show the latter half.

For each integer \(k \geq 0 \) let \(U_k \) be a component of the open set
\[
\{x \in \mathbb{N} | 2^{2k-1} < |\pi(x)| < 2^{2k+1}\},
\]
and \(S_k \) a compact subset of \(U_k \) which lie over the set
\[
\{x \in M_0 | |x| = 2^{2k}\}.
\]
Since \(U_k \) is a magnification of \(U_0 \) and the \(\Delta_s \)-harmonicity is invariant under a magnification, it is not difficult to see that there exists a constant \(q, \ 0 < q < 1 \), such that
\[
|u(x)| \leq q \cdot \sup \{|u(x)| \mid x \in U_k\}
\]
on \(S_k \) for any harmonic function \(u \) on \(U_k \) which changes sign on \(S_k \). Note that \(q \) is independent of \(k \).

Let \(u \) be a harmonic function on \(G \) such that \(|u| \leq 1 \) and it continuously vanishes on \(\partial G \). For each \(m \geq 1 \), denote by \(\pi_m \) the cover transformation of \(G \) which interchanges the sheets of \(G \): the points in \(G \cap M_0(i + 2^m j) \) are interchanged with points, with the same projection, in \(M_0(i + 2^{m-1} + 2^m j) \) for \(j \geq 0 \) and \(1 \leq i \leq 2^{m-1} \). Define \(v_m \) on \(G \) by
\[
v_m(x) = \frac{1}{2} [u(x) - u(\pi_m(x))].
\]
Clearly \(v_m \) is harmonic on \(G \), \(|v_m| \leq 1 \), and \(v_m \) changes sign on \(S_k \), \(k = 2^{m-1}(2l - 1) - 1 \). Therefore,
\[
\max \{|v_m(x)| \mid x \in S_k\} \leq q
\]
for all \(l \geq 1 \). By induction on \(l \), we derive that \(|v_m| \leq q^l \) on \(S_{k'} \), where \(k' = 2^{m-1} - 1 \). Letting \(l \to \infty \), we conclude that \(v_m \equiv 0 \) on \(G \), as desired.

REFERENCES

4. Y. K. Kwon, Strict inclusion \(O_{HB} < O_{HD} \) for all dimensions, (to appear).

Received August 21, 1972 and in revised form January 17, 1973.

UNIVERSITY OF TEXAS
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

J. DUGUNDJI*
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* C. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace
J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
A. Bigard, Free lattice-ordered modules ... 1
Richard Bolstein and Warren R. Wogen, Subnormal operators in strictly cyclic
operator algebras ... 7
Herbert Busemann and Donald E. Glassco, II, Irreducible sums of simple
multivectors .. 13
W. Wistar (William) Comfort and Victor Harold Saks, Countably compact groups
and finest totally bounded topologies ... 33
Mary Rodriguez Embry, Maximal invariant subspaces of strictly cyclic operator
algebras .. 45
Ralph S. Freese and James Bryant Nation, Congruence lattices of semilattices 51
Ervin Fried and George Grätzer, A nonassociative extension of the class of
distributive lattices .. 59
John R. Giles and Donald Otto Koehler, On numerical ranges of elements of locally
m-convex algebras .. 79
David A. Hill, On dominant and codominant dimension of QF − 3 rings 93
John Sollion Hsia and Robert Paul Johnson, Round and Pfister forms over R(t) 101
I. Martin (Irving) Isaacs, Equally partitioned groups 109
Athanassios G. Kartsatos and Edward Barry Saff, Hyperpolynomial approximation
of solutions of nonlinear integro-differential equations 117
Shin’ichi Kinoshita, On elementary ideals of θ-curves in the 3-sphere and 2-links in
the 4-sphere .. 127
Ronald Brian Kirk, Convergence of Baire measures 135
R. J. Knill, The Seifert and Van Kampen theorem via regular covering spaces 149
Amos A. Kovacs, Homomorphisms of matrix rings into matrix rings 161
Young K. Kwon, HD-minimal but no HD-minimal 171
Makoto Maejima, On the renewal function when some of the mean renewal lifetimes
are infinite ... 177
Juan José Martínez, Cohomological dimension of discrete modules over profinite
groups .. 185
W. K. Nicholson, Semiperfect rings with abelian group of units 191
Louis Jackson Ratliff, Jr., Three theorems on imbedded prime divisors of principal
ideals ... 199
Billy E. Rhoades and Albert Wilansky, Some commutants in B(c) which are almost
matrices .. 211
John Philip Riley Jr., Cross-sections of decompositions 219
Keith Duncan Stroyan, A characterization of the Mackey uniformity \(m(L_∞, L^1) \) for
finite measures ... 223
Edward G. Thurber, The Scholz-Brauer problem on addition chains 229
Joze Vrabec, Submanifolds of acyclic 3-manifolds 243
Philip William Walker, Adjoint boundary value problems for compactified singular
differential operators .. 265
Roger P. Ware, When are Witt rings group rings 279
James D. Wine, Paracompactifications using filter bases 285