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Let {Xi, i = 1, 2, } be a sequence of independent and
nonnegative random variables with the distribution function

S CO

xdFi(x) may be infinite. Let H(t) be the
0

renewal function. The main object of this note is to show
that in order to have the asymptotic relation H(t)jt ~ 1/L(t)
as t -> oo, it is necessary and sufficient that μ(t) ~ L(t) as
£->oo, where L(t) is a function of slow growth and μ(t) =
lim^co (1/n) Σ ί U fr(t), μ&) being Γ [1 - Fi(x)]dx, is supposed

Jo
to exist uniformly in t.

Let H(t) be the renewal function for a renewal process, that is, a
sequence {Xi9 i = 1, 2, •} of nonnegative, independent and identically
distributed random variables. Namely H{t) = EN(t) = E[sup {n; Sn ̂  ί}],
where Sn = Σ?=i -Xi Smith [3] has studied the limiting behaviors
of H(t)/t for the case in which EXi = oo.

We now consider an extended renewal process in which Xi9

i = 1, 2, may not be identically distributed. We also in this case
use the similar notations Sn and N(t), and we may also define H(t)
in the similar manner under the condition that Sn has no finite limit
point. The main object of this note is to give a generalization of
a result of Smith to our extended case.

2* Some lemmas* We begin with some lemmas for an extended
renewal process with the finite mean lifetimes.

Let {X^ i — 1, 2, •••} be a sequence of independent and non-
negative random variables with 0 < EX{ = μt < oo and let F^x) be
the distribution function of X{.

LEMMA 1. Suppose that

(2.1) μ = lim — Σ ^ > 0
W-+OO ηfi %=ι

exists and that

lim Γ xdFi(x) = 0
A-+00 JA

holds uniformly with respect to i. Then we have ENa(t) < co for
each t > 0, for a = 1, 2, .
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This lemma was first proved by Kawata [2] for a = 1, and Hatori
[1] showed it for any positive integer a.

LEMMA 2. Suppose that EN(t) and EN2(t) are finite and that
(2.1) is true. Then we have for every t

ESNit)+1 = μ(H(t) + 1) + ±nεn Pr {N(t) + 1 = n) ,

where εn is defined by

n <=i

which converges to zero as n —» oo.

Proof. Letting

Zn = 1, if n ^ N(t) + 1 ,

= 0, otherwise,

we have

N(t) + ί oo
/cy c\\ Ϊ7Ό Jji ^C "V Z77 V̂""* V Φ

\Li.A) il/θ^(ί)+i — -C/ 2-k Λ-n — • " ^1J -^n^n

Since

{ZM = 0} = {iV(ί) + K n) = L) {ΛΓ(ί) + 1 = k}

= {X, > ί } u * U P i + + -Xib-i ^ *) n (X, + + xk > t)},
k = 2

Zn is independent of Xn. Thus, noticing the nonnegativeness of Xnf

we see that (2.2) is

Σ

which turns out to be

ESNit)+ί = Σ G" + nen - (n - l)εn^) Pr {N(t)

= μ(H(t) + 1) + Σ (nϊn - (n - l)εn^) Pr <
7 1 = 1

Since

Σ I nen P r {N(t) + 1 ^ ^} | ^ s u p | ε n\ (EN2(t) + 2 ) <
7 1 = 1 71

by the finiteness of EN2(t), we may rewrite
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Σ (nεn -(n- l)εn_d Pr {N(t) + 1 ^ »} = Σ ne% Pr (iV(ί) + 1 = «} ,

so that

ESmt)+1 = μ{H(t) + 1) + Σ nεn Pr {N(t) + 1 = n} ,

which is the conclusion.

3* A theorem. We return to the case where X{ may have the
infinite mean renewal lifetimes. Let L{t) be a function of slow
growth, that is, for every fixed c > 0, L{ct)/L(t)—+1 as t —> °o. We
shall show the following theorem which is an extension of a result
due to Smith ([3], Theorem 1, (i), v = 1) to the case of nonidentically
distributed random variables.

THEOREM. Let {Xiy i = 1, 2, •••} δe α sequence of independent
and nonnegative random variables with the distribution function Fi(x).
Suppose that

(3.1) μ(t) = lim—ΣjHi(ί) > 0

exists uniformly m θ < ί < ° ° j where

μS) = Γ [1 - ^(»)]ώJ
J

Ae necessary and sufficient condition for the validity of the
asymptotic relation

(3.2)

where L(t) is a function of slow growth, is that

(3.3) μ(t) - L(t) , as ί -* oo .

Before proving the theorem we shall show some lemmas.
We now define a new renewal process {X*} for a fixed positive

number t* by putting

X? = Xi9 if X, ^ t* ,

= ί* , otherwise .

We note that EX? = ^<(ί*) is finite. For the new variables X?, we
define Sf, N*(t) and H*(t) in obvious ways. Then we may easily
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verify the conditions of Lemma 1 for a fixed t* and the following
lemma is immediate.

LEMMA 3. Suppose that (3.1) exists for t*. Then E{N*(t)}a < co
for a = 1, 2, .

The next two lemmas play essential roles in the proof of
Theorem,

LEMMA 4. Suppose that (3.1) exists uniformly in t. Then we
have

f
t ~~

Proof. We consider X* defined above. Since EN*(t) and
E{N*(t)}2 are finite by Lemma 3, we have that for all t,

(3.4) t < μ(t*)(H*(t) + 1) + Σ nεn(t*) Pr {N*(t) + 1 = n}

by Lemma 2 and noting t < SN{t)+1, where en(ί*) is defined by

Now (3.4) holds for t ~ t*, in particular. Thus we have

(3.5) ί* < μ(t*)(H*(t*) + 1) + Σ neu(t*) Pr {iV*(ί*) + 1 = n} .
Λ = l

Next, we estimate of the order of en(ί) as t—>oo. Since the
function 1 — F{{x) decreases to zero as x —> c>o, so does μi(t)/t as
t—>°o. In view of the assumption that (3.1) exists uniformly in t,
it follows that, for any e > 0, there exists a constant N independent
of t such that

(3.6)

Then we have

— Σ
n i=ί

< ε , for n^ N.

< JL + ε < 2ε

for sufficiently large £, taking into account the fact that μi(t)/t-+O
as t —> oo. Thus, we have for sufficiently large ί
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(3.7)
b 0

— Σ ε
A T '

for the fixed N and for all n ^ N. Therefore we have, for large ί*,
from (3.6) and (3.7)

Σ nen(t*)Pτ{N*(t*) + 1 = n)

(3.8) < — ί* Σ » P r {N*(t*) + 1 = n} + ε

JV"2 w=1

< 6(ί* + £Γ*(ί*) + 1) .
Now we shall show t h a t

(iV*(ί*) + 1 =

(3.9) lim sup
*

<

In order to show this, we define new truncated random variables

XifA for some constant A by putting

i,A — -Λ-f ? II -Λ-i = Λ >

= A , otherwise .

Clearly EXiyA = μi(A) is finite and by the elementary renewal theorem
for an extended renewal process, we have that, if HJt) is the renewal
function associated with {Xi}A}, then

lim EM
μ(A)

(For details, see Kawata [2].) (3.9) follows from t h e remark t h a t
H*(t*) ^ HA(t*) for t* ^ A . Since ε is a rb i t ra ry in (3.8), we have
from (3.8)

(3.10) lim —
«•_«> t*

nen(t*)Pτ{N*(t*) + 1 = n] = 0 .

Therefore, from (3.5)

limiΏί—μ(t*)(H*(t*) + 1) ^ 1 .

On the other hand, we have

for ^ = 2, 3, , and

Thus

: ^ tη =

Pr {S* ^ «*} = 1 .

tη,
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jff*(ί*) = H(t*) + P r { X L

and so

lim inf — μ{t)(H(t) + Pr {X, > t] + 1) ^ 1 .

Noticing that μ(t)/t —• 0 as ί —> oo, we have the conclusion of the
lemma.

LEMMA 5. Under the same conditions as in Lemma 4, we have
for arbitrary δ > 0

Proof. Take <? > 0 arbitrarily and let Xn represent new variables
truncated according to the rule

Xn = Xn , if Xn 5* δί

= δί* , otherwise .

It is clear that EXn = μn(δt*) < oo. Then, noting that £ ^
X^+i> w e have, by Lemma 2,

t ^ μ(δt*)(H(t) + 1) + Σ ^.(«ί*) Pr { W + 1 = n) -
(3.1D %;L

^ μ(δt*)(H(t) + 1) + Σ we (δί*) Pr {N(t) + 1 = n} - δt* ,
n=l

where N(t) and H(t) are defined in the renewal process associated
with the new truncated variables {Xn}. Since (3.11) holds for t = t*9

in particular, we have

(1 + δ)t* ^ μ(δt*)(H(t*) + 1) + Σ nεκ{δt*) Pr {N(t*) + 1 = n) .

The same arguments as in the proof of Lemma 4 yield that

(3.12)

for the fixed δ > 0. Noting that

H(tη s

we have the required result.

We now turn to the proof of the theorem.

Proof of Theorem. We first assume that

= 0
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S & ~ _ ± _ , a s ί - o o .
t Lit)

By Lemma 4 we have

(3.13) l i m i n f - ^ - ^ 1 ,
*-~ Lit)

and by Lemma 5, for any δ > 0,

lim sup -^—- ̂  1 + o .

Writing δt for ί, and using the fact that L(t/δ) ~ L(t) as t —• oo, we
have

lim sup iίίQ- ^ 1 + δ .
*-~ L(ί)

Since δ can be arbitrarily small, we, taking into account (3.13),
conclude the necessity part.

Furthermore, in view of the assumption μ(t) is a function of
slow growth, it follows by Lemma 5 that

lim SUp -"WA*w < l + δ .

Since 3 is arbitrary, Lemma 4 gives the sufficiency part.
When lim^oo μ(t) = oo, we can relax slightly the condition of the

uniform existence of μ(t) in the following way.

COROLLARY. Suppose that

μ(t) = lim — Σ μ{(t) > 0

exists for all t, (not necessarily uniformly), and that there exists a
constant K, independent of t, such that

n <=ί

for n ^ N, N being some finite positive integer. If \imt^^(t) = oo,
then the necessary and sufficient condition for the validity of the
asymptotic relation (3.2) is (3.3).

Proof. In the proof of theorem, the condition relaxed has been
used only in order to show (3.10) and (3.12). Thus, it suffices to
show that (3.10) holds under the conditions of this corollary.
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Now, we have

K
t

μ(t)

4-
1

AT

N
N

A

N

z

«t)

and so | μ(t) \/t can be arbitrarily small for the sufficiently large t.
Thus, en(t) = o(t) for all n ^ N. Therefore, we have

= n}< o(ί*) Σ n Pr {iV*(ί*) + 1 = }̂ + Γ̂ Σ
n=l n=N+ί

< o(t*)N2 + K{H*{t*) + 1) .

Now we shall show under the condition that μ(t) 3, that

As in the proof of the previous theorem, we have

μ(A)

Since A is arbitrary, this shows that

ί*

and (3.10) holds.

The author wishes to express his sincere appreciation to Professor
Tatsuo Kawata of Keio University for continuing guidances and
encouragements.
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