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An addition chain for a positive integer 7 is a set 1 =
ap<a;<---<a=mn of integers such that every element
a; is the sum a; + a; of two preceding members (not neces-
sarily distinct) of the set. The smallest length r for which
an addition chain for n exists is denoted by I(n). Let iA(n)=
[log:n], and let v() denote the number of ones in the binary
representation of n. The purpose of this paper is to show
how to establish the result that if v(n) = 9 then I(n) = iA(n) +
4. This is the m = 3 case of the conjecture that if »(n) = 2» +
1 then l(n) = 2(n) + m + 1 for which cases m = 0,1,2 have
previously been estabished. The fact that the conjecture is
true for m = 3 leads to the theorem that n = 27(23) 1 7 for
m = 5 is an infinite class of integers for which I(2n) = I(n).
The paper concludes with this result.

An addition chain for a positive integer = is a set L = q, < a, <
a, < +++» < a, = n of integers such that every element a, is the sum
a; + a, of two preceding members (not necessarily distinet) of the
set. The smallest length r for which an addition chain for n exists
is denoted by I(n). Let A(n) = [log,n], and let y(n) denote the number
of ones in the binary representation of n. Step 4 of an addition chain
isa; = a; + a, for some k < j < 4. Since a; < 2a; £ 2a,_,, either Ma;) =
Ma;_y) or Ma;) = NMa;—,) + 1. Step i is called a small step in the former
case and a big step in the latter case. Since «; < 2a,_,, a member
of the chain must occur in each of the half-open intervals [2F, 2¢+)
for 0 <k £ N\(n). Every time a step takes the chain from one interval
to the next it is a big step; otherwise, it is a small step. There are
Mn) big steps in the chain, and the remaining steps are small steps.
If N(a;) represents the number of small steps in the chain to a,,
then the length 7 of the chain may be expressed as r = A(n) + N(n).

A conjecture which is equivalent to one made by K. B. Stolarsky
[10] states that if v(n)=2™+ 1, then I(n) = \=n)+m + 1. That is to
say if v(n) = 2™ + 1, then there are at least m -+ 1 small steps in
any chain for n. The conjecture is true for m = 0,1,2. These
results may be found in [8] with the case m = 2 being part of D. E.
Knuth’s Theorem C. The primary purpose of this paper is to show
how to establish the conjecture for m = 3 and to show this case leads
to the result that there is an infinite class of integers for which
1(2n) = lU(n).

If a; and a, are two integers written in binary notation and placed
one on top of the other in order to add or subtract, the resultant
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figure is called a configuration and is designated by a;/a,. The con-
figuration is divided up into slots numbered from left to right. If
a; = 101100111 and @, = 10101110, then a;/a, is as follows:

123456789
;=101100111
= 10101110.

The slot numbers are written above. Slot 4 is called a 1/1 slot, slot
9 is a 1/0 slot etc. Two lemmas which involve integers written in
their binary notation are the following:

LEMMA 1. If a,=a; + a, and if ¢ represents the number of
carries in a; + a, then v(a;) = v(a;) + v(a,) — c.

LemMA 2. If a, = a; — a, and there are s 1/1 slots in a;/a, and
a one appears in a, p times wnder either a 1/1 slot or a 0/0 slot, then
v(a,) = v(a;) — s + p.

Two further lemmas will now be given which involve numbers
in an addition chain.

LeMMA 3. If a; and a, are two members of an addition chain
and if Majy) = May) + m(m = 0) and 2™a, < a;, then N(a;) = N(a;) + 1.

Proof. Since NMa;) = Ma,) + m, there are precisely m big steps
from a, to a; in the chain, but 2"a, < a; implies that there are at
least m + 1 steps in the chain from a, to a;; hence, at least one of
them is a small step.

LEMMA 4. If a; and a, are two members of an addition chain
and if Ma;) = May) + m(m = 2) and a; > 2™ 'a, + 2™ a,, then N(a;) =
N(a,) + 1 unless a; = 2™ 'q,,,.

Proof. Suppose that there are no small steps from a, to a;.
Assume that there is at least one ¢ such that 2 < ¢ < m and a,,, #*
20p10—e Then apy, < 0ppey + Quyyy < 27, + 2%, which implies that
Qim = Cpitsim—t) = 2" "y S 2™74(2 Ny, + 2'7%qy) = 277, + 2"y, < a5 .
Thus, @+, < @; which implies that there is at least one small step
from a, to a; which is a contradiction. Therefore, if there are no
small steps from a, to a;, then a,,, = 2a;,._, for 2 < ¢t < m which
implies that a; = 2" 'a,.,. It follows that if a; = 2™ q,,,, then N(a;) =

N(a,) + 1.

Knuth’s Theorem C [8] along with the four previous lemmas
will be much used in the work that follows. The statement of Theorem
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C follows with the integers being expressed in binary form.

THEOREM C. If y(n) = 4, then l(n) = Mn) + 8 except when y(n) =
4 and n has one of the four following forms: (A) n = le<ed---1...
levedeeslee. where d indicates the number of zeros between the
first and second one and between the third and fourth one. (B)
M=1eeederelecelecegesele.s where d and e again indicate zeros and
e=d-—1. (C)n=1001..-11-+.. (D) n = 10000111.... In these four
cases l(n) = \(n) + 2.

The m = 3 case of the conjecture will now be stated as a theorem,
and the method of proof will be described.

THEOREM 1. If v(n) = 9, then l(n) = \Mn) + 4.

Proof. Letl=q,<a, < +++ < a, =n be an addition chain for
an integer n for which v(n) = 9. Let a; denote the first member of
the chain for which y(a;) = 9. Then a; = a; + a, where k < j since
if £ = j, then a; = 2a; which would mean that v(a;) = v(e;). Thus,
a; and a, are distinct members of the chain, and since v(a;) < 8 and
v(a,) < 8, it follows from Lemma 1 that 9 < v(a;) < 16. Each of the
eight cases for v(a;) must be considered, and for each of these cases
the possibilities for v(a;) and v(a,) must be considered. For convenience
the various cases will be listed as ordered triples (v(a.), v(a;), v{(a.)).
There are 120 cases altogether. The case (9, 5, 4) will be considered
first.

By Lemma 1 ¢ =0 for (9, 5, 4), and the only possibility for a;/a, is:

a; Jeeooen
+a, = ceeleee
;= 1eeeesn .

As can be seen Ma;) = \(a;) and, thus, there is at least one small
step from a; to a;,. Case m = 2 of the conjecture implies that N(a;) =
3 since v(a;) = 5. Thus, N(n) = N(a;) = N(a;) + 1 = 4.

Case (9, 4, 5) is virtually the same as (9, 5, 4) except that it is
N(a,) which is greater than or equal to 3. Since N(a;) = N(a,), it
follows as before that N(n) = 4.

The 34 additional cases for which ¢ = 0 are handled in the same
manner as these cases.

For ¢ = 1 there are 28 cases for (v(a,), v(a;), v(a,)). Since a; < 2a,,
either Ma;) = Ma;) or Ma;) = Ma,) + 1. If NMa)) = Ma;), then as in
the cases where ¢ = 0 it may be concluded that N(n) = 4. If \(a;) =
Ma,) + 1, then with ¢ = 1 the only possibility for a;/a, is:
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aj:]_oo.
+ak= Teo-
a,;:lO"-.

As previously noted a; and a, are distinct members of the chain, and
since \Ma;) = M(a,) it follows that N(a;) = N(a,) + 1. For those cases
where v(a;) = 5, N(n) = N(a;) = N(a;) +1=4. When y(a,) < 4, some
further work is necessary.

The cases where 3 < v(a,) < 4 shall first be considered. By Lemma
1 v(e;) = 6 since ¢ = 1. a; + 2a, since v(a;) # v(a,), and it follows
that either a; = a,, + a, where s<m and a, #*a, or a; = a, + a,
where ¢ < k. Suppose a; = a,, + a, where a, # a,. Since a; < 2a,,
the possibilities on the number line are:

rm,

® @ 1

Py 1
1 } T
] a;
g1 ok ay i oh+1

FIGURE 1

In case (1) N(a;) = N(a,) + 2 = 4 since v(a;) = 3. In case (2) N(a,) =
2 for if N(a,) =1, then 1=¢, <a, < +++» <a, <a; is an addition
chain for a; with less than three small steps contradicting the fact
that v(a;) = 5 implies N(a;) = 3. Thus, N(a,) = N(a,) +2=4. In
case (3) similar reasoning shows that N(a,) = 3, and, consequently,
N(a;) = N(a,) +1=4. In all three cases N(n) = N(a;) = 4.

Suppose a; = a, + a, where t <k < j. Then a, = a; — a,. Since
¢ = 1 there is only one 1/1 slot in a;/a,. When a;/a, is considered from
a subtraction point of view, it follows from Lemma 2 that v(a,) = 5
which means that N(a,) = 3. Thus, N(z) = N(a;) = N(a,) + 1 = N(a,) +
1= 4.

All cases for ¢ = 1 have been dispensed with except (9, 8, 2). In
this case v(a,) = 2 implies N(a,) = 1. If N(a,) = 1, then it may be
concluded that all members of the chain preceding a, have two or
less ones in their binary representation. Thus, v(a,.,) < 4 and v(a;.,) <
6. Since \(a;) = May), this means that N(n) = N(a;) = N(a,) + 3 = 4.
If N(a,) = 2, then N(n) = 4 in the same manner as when 3 < v(a,) < 4.

For ¢ = 2 the cases where v(a;) = 5, v(a;) = 5, and v(a;) # v(a)
are handled rather easily. As with the ¢ = 1 cases it may be supposed
that Ma) = May) + 1. If Ma;) = May), then N(n) = N(a;) = N(a,) +
1 = 4. Thus, it may be supposed that M\(a;) > A\(a,), and the only
possibility for a;/a, with ¢ = 2 is:
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a; = 1l...
+ a; = 1.e»
a; = 100+ - -

If a; = a, + a, where s < m <j and a, # a,, then there are three
possibilities on the number line:

O,

@) @ @

] . | |
| | ; 1
PAS ok ohtl
FIGURE 2

In cases (1) and (2) N(n) = N(a;) = N(a,) + 1 = 4 since v(a;) = 5. In
case 3) N(a,) =3 orelsel =q,<a, < -+ <a, <a;is a chain for
a; with less than three small steps which contradicts v(a;) = 5. Thus,
N(#n) = N(a;) = N(a,) +1=4. If a; =a, + a;,, then a, = a; — a,.
Since ¢ = 2, there can be no more 1/1 slots in a;/a,, and since v(a;) #
v(a,), a; # 2a, which means that a, and a, are distinet members of
the chain. a;/a, then looks as follows:

aj: 11.--
——ak: 1.--
at: 1... .

By Lemma 2 yp(a;) = 5 since v(a;) = 5. Since Ma,) = M(a,), N(n) =
N(a;) =z N(a,) + 1 = 4.

There are 12 cases for which ¢ = 2, y(a;) = 5, v(a,) = 5, and v(a;) #
v(a,). Thus, 76 of the 120 cases for (v(a,), v(a;), v(a,)) have been dis-
pensed with so far. In (10, 6, 6), (12, 7, 7), and (14, 8, 8) v(a;) = v(ay),
and it is possible that a; = 2a,. This means that a, = a,; hence, a,
and a, are not distinet members of the chain. Thus, the statement
that N(a,) = N(a,) + 1 cannot be made as with the other cases where
¢ = 2 and v(a;) = 5 and v(a,) = 5. Some additional concepts need to
be discussed at this point which make it possible to dispense with
cases such as these.

Let ly(n) denote the minimal length of an addition chain for an
integer » all of whose members have eight or less ones in their binary
representation. A list of propositions concerning ly(n) will now be
given. The proof of one of these propositions will then be given.
The proofs of the others are similar.
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PrOPOSITION 1. Ify(n) = 7T and n = 111.-., then ly(n) = Mn) + 4.

PrOPOSITION 2. If v(n) = 8 and n = 111..+, then l(n) = \(n) +
4 unless » = 1111-..1111-.-,

ProrosiTION 8. If y(n) =T and n = 110--+, then ly(n) = Nn) + 4
unless n = 11001..-1111...,

PROPOSITION 4. If y(n) =8 and n = 110---, then li(n) = \Mn) +
4 unless
m=1lecedee-1lceelleccgecellees where e=d or e=d — 1.

(Note: The d and e again stand for d and e zeros respectively between
the ones.)

PROPOSITION 5. If y(n) =6 and n = 111.--, then ly(n) = Mn) +
4 unless n=111...111...,111001011-.., 1111-..1001+-.,1111...101- -,
or 1111...11... .

ProposITION 6. If v(n) = Tandn = 10111.-.01..01-.-01:-., then
Li(n) = M(n) + 4.

PROPOSITION 7. If v(n) =8 and n» = 1011111...01--.01--+, then
ls(n) = Mn) + 4.
PROPOSITION 8. If y(n) = 8 and

n = 10111+++01++-01-0011...
01...0011++.01--- ,
0011+++01+++0L1e-+ ,

then ly(n) = Mn) + 4.

PRrROPOSITION 9. If v(n) = 8 and

% = 101101+ +01+++00111. - ,
01---00111---01--- ,
00111+++01+-01.--,

then ly(n) = Mn) + 4.

ProposiTION 10. If y(n) = 8 and » = 1010111...01...01..-01---,
then ly(n) = \(n) + 4.

ProposiTiON 11. If y(n) =8 and » = 1011011...01...01...01,
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then ly(n) = Mn) + 4.

ProrosiTioN 12. If y(n) = 6 and n = 11...01...01...01-..0L---,
then ly(n) = Mn) + 4.

ProrosITION 13. If v(n) =T and n = 1011-.-.01...01-..01-..01---,
then ly(n) = Mn) + 4.

ProrosiTiON 14. If v(n) = 8 and » = 101111...01...01...01..-,
then ly(n) = Mn) + 4.

ProrosiTioON 15. If y(n)=8 and »=101011-..01...01...01...01.--,
then ly(n) = Mn) + 4.

ProPOSITION 16. If y(n) = 8 and

» = 1011...01...01...01...0011-... ,
01e++01-+-0011.++0L-- ,
01++.0011c+<0Le+-0le-.,
0011+++01+++0Lc++01e-- ,

then ly(n) = Mn) + 4.

ProposiTiON 17. If y(n) =8 and n» = 10111...01...01...01...
01..., then ly(n) = Mn) + 4.

ProrosiTiION 18. If v(n) =8 and n = 1011...01...01--.01...
01..-01-.-, then ly(n) = \(n) + 4.

ProposiTION 19. If v(n) = T and n = 1011100-.-111, then l(n) =
AMn) + 4.

Progf. (Prop. 1) Letl=gqa,<aq < +++ < a,=n be an addition
chain for n where v(n) = 7 and » = 111.--.. It shall be assumed that
all members of the chain have eight or less ones in their binary
representation. Let a; denote the first member of the chain for which
v(a;) =7 and a; = 111.... @, = a; + a, for some k < j <. In fact
k < g for if a; = a, then a; = 2a; which would mean that v(a;) =7
and a; = 111-.. contradicting the fact that a, was chosen as the first
member of the chain having these properties. Thus, a; and a, are
distinct members of the chain and 1 < v(a;), v(a,) < 8. The 49 cases
for (v(a;), v(a,)) must be considered.

a; < 2a; implies that A\(a;) = Ma;) or Ma;) = May) + 1. If va) =
5, it may be assumed that \(a;) = Ma;) + 1; otherwise, N(n) = N(a;) =
N(a;) + 1= N(a,) + 1 =z 4. However, if A\(a;) = Ma;) + 1, the only
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way to obtain q; = 111... is if a;/a, is as follows:

4= TiL-.-
+a, = 11.ees
g = 111-... .

The arrows indicate that at least three carries are needed with this
configuration. As can be seen Ma;) = M\(a,), and it follows that N(n) =
N(a;) = N(a,) + 1 = 4 for all cases where v(a,) = 5. If v(a,) < 4 and
v(a;) = 5, then the configuration still holds, and all cases where v(a;) =
7 may be dispensed with since a; = 111..- again contradicts the
“firstness” of a;. The cases (8, 1), (6, 3), (6, 2), (6, 1), (5, 4), (5, 3), and
(5, 2) all have less than three carries in a; + a, by Lemma 1 while
at least three carries are needed in the configuration. In case (8, 2)
only two carries are possible while three are needed. In (8, 3) it may
be assumed as with case (10, 8, 3) of Theorem 1 that a; = a, + a; (see
Figure 1). a, = a; — a,, and by Lemma 2 y(a,}) = 5 which implies that
N(n) = N(a;) = N(a;) + 1= N(a,) +1= 4. In (8, 4) it may be assumed
that a, is one of the four special types in Theorem C; otherwise,
N(a;) = 3 which implies N(n) = N(a;) = N(a;) + 1= 4. Since a;, = 11...,
this means that a, = 11...11..-. As in (8, 8) it may be assumed
that a; = a, + a,, and as with (8, 3) v(a,) = 5 unless there are four 1/1
slots in a;/a,. By Lemma 1 ¢=5 in a; + a;, and the only way to
meet all of these requirements is if a,/a, is as follows:

a; = 11111...1...1...1... implies @a; = 11111++-1+++1.-1..
4+, = 11011++-0+++0-+-0--- — @, = 11011+++0++0-++0---
a; = 111010+ ++1-+-1-.1... @, = 100-+-1evelevelenn,

Ma,) = Ma,) + 2 while 2%, < a,, and so by Lemma 3 N(a,) = N(a,) +
1=3. Thus, N(n) = N(a;) = N(a,) + 1 =4. In(6,4) ¢ =3 by Lemma
1. Therefore, a;/a, must be:

a; = 111-c+1+-0---
+a, = 111e++0---1.--
@; = 1110+ ++1ee1ees

By Theorem C N(a,) = 3; hence, N(n) = N(a;) = N(a,) + 1 = 4.

The only remaining cases to be considered are (4, 4), (4, 3), and
(8,4). Ma;) = Mea;) + 1 is not possible since at least three carries are
needed while these cases by Lemma 1 have less than two. When
either v(a;) = 4 or y(a,) = 4, it may be assumed that a; and @, are
what shall be called “special fours” meaning that they are one of
the types in Theorem C. Otherwise, N(n) = N(a;) = N(a;) + 1= 4
since it may be assumed that M\a;) = Ma;). In (4,4) the possible
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configurations a;/a, for obtaining a;, = 111... with ¢ =1 are:

1 a; = 1001... 2) a; = 101...01...
+a, = 101.-. +a, = 10.--01-.
a; = 1110--. a; = 111...10---
3) a; = 100...01... 4) a; =11+«
+a,= 11...01... +a, = 00-+-
a;, = 111...10... a; =111...

In (1), (2), and (3) either a; = @, + a, where a, # a, or a; = a, + a..
If a; = a, + a,, then N(a;) = 3 by reasoning similar to that used in
(9, 6, 5) of Theorem 1 (see Figure 2). Thus, N(n) = N(a;) = N(a;) +
1= 4. It shall be assumed then that a; = a, + a,. In (1) there are
two possibilities for a, = a; — a,:

@) a; = 1001.-. (b) a; = 1001 .-
—aQ, = 101"' —a;, = 101---
at = 100:-- a; = 11---

Since ¢ = 1, there can be no further 1/1 slots in a;/a,. Thus, in (a)
v(a,) =3 by Lemma 2, and since \(a,) = Ma,) and a, = a,, this
means N(#)=N(a;) = N(a;) + 1 = N(a,) + 1=N(a,) +2=4. In (b)
v(a,) = 5 by Lemma 2, and, so, N(n) = N(a;) = N(a;) + 1 = N(a,) +
1=4. (2) may be dispensed with in the same manner as (1) part
(a) while in (8) since a, is a “special four” a;/a, becomes:

a; = 100---010- -
—aq, = 11...011-...
Ay = sovcee 111.--

By Lemma 2 y(a,) = 5; hence, N(n) = 4 as in (1) part (b).

In (4) it may be assumed that the first two digits in a, are ones;
otherwise, Ma;) = Ma,) + m for some positive integer m while 2™a, <
a;. By Lemma 3 this would mean N(a;) = N(a,) + 1 = 3, and, hence,
N(n) = 4. Since a; and a, both start with two ones and are “special
fours”, they must both have the form 11...11..., but in this event
it is not possible to have ¢ =1 in a; + a,.

In (4, 3) and (8, 4) ¢ = 0 which means that there are no 1/1 slots
in a;/a,. The possibilities for a;/a, are the following:

1) a;=101-++ (2) a;=100--+ (3) a;=110+-- (4) a;=111.-.
+ak= 10... +ak: 11... +ak: 1--. +ak:000"'
a = 111... a4 = 111..- @ =111 g =111.-. .

In 1) N(n) = 4 for both (4,8) and (8,4) by the same reasoning used
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in (4, 4) with configuration (1) part (a). The remaining configurations
will now be discussed for (4,3).

In (2) @, = a; — a, and by Lemma 2 v(a,) = 4. Thus, N(a,) = 3
which implies N(n) = 4 unless a, is a “special four”. Since a, = 11...,
it may be assumed that a, also starts with two ones by the same
reasoning that was used for a, in (4, 4) configuration (4). Thus, a, =
11...11.... Since there can be no ones under a 0/0 slot in a;/a,
(otherwise v(a,) = 5), there are only two possibilities for a;/a,:

@) a; = 1001.-.101.--  (b) a; = 1000111-..
—a, = 110.--010--- —a, = 111000---
@ = 11...011--.- @, =  1111..

In (@) N(a,) =8 by arguments used before unless a, = a, + a, for
some u <t < k. If a,/a, is examined, it may be seen that v(a,) = 4,
Ma,) = Ma,) and a, = a,. Thus, N(a,) = N(a,) + 1 = 3 which implies
N(#n) =z 4. In (b) a; is not a “special four” and, so, N(n) = N(a;) =
N(a;) +1 = 4.

In 8) a; =11...11.-. gince a; is a “special four”. As in con-
figuration (4) of (4,4) it may be assumed that a, starts with two
ones. a;/a, is then:

a; = 1100---11-- -
+ak: 11...00--.
a; = 1111..-11. ..

As can be seen a; > 2a, + a,, and, so, by Lemma 4 N(a;) = N(a,) +
1= 3 unless a; = 2a,,,. Since v(a,,) =4 and Ma,) = Ma,) + 1, it
follows as before that N(a,.,) = 3 unless a,,, = a, + a, for some ¢ <
k. From a;/a, and the fact that a; = 2a,,, it may be determined
that a,../a, is as follows:

Qpy; = 1100.--11--.
—a, = 11.--00---.
Gy = Leeeeelonen.

By Lemma 2 y(a,) = 3. Thus, N(n) = N(a;) = N(a;) + 1= N(a,) + 1=
N(a,) + 2 = 4.

In (4) a; = 1111... since a; is a “special four”, and since y(a,) =
3, it follows that \(a;) = Ma,) + m for some positive integer m while
2™q, < a;. By Lemma 3 N(a;) = N(a,) + 1 = 3 which implies N(n) =
4. Configurations (2), (3), and (4) will now be discussed for (3, 4).

In (2) it may again be assumed that a; = @, + a,, and a, =
11...11... since a, is a “special four”. By Lemma 2 v(a,) = 3, and
a one can occur in a, at most once under a 0/0 slot in a;/a, or else
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v(a,) = 5. The possibilities for a;/a, are:

@ a; = 10000--- (b) a; = 100---100+-
—a, = 1111... —a, = 11...011..
a, = 1e-. a, = 1...001---

() a; = 100000 - - @) a; = 100--1000+--
—a, = 11011... —aq, = 11...0011...

a,= 101... a = 1...0101....

In (a) and (b) v(a,) = 3, and no matter where the remaining ones in
a, are placed the conditions of Lemma 3 will apply. In (d) v(a,) = 4,
and, so it may be assumed that a, is a “special four” in which case
a, must start as a, = 10--.. Thus, the conditions of Lemma 3 also
apply to (¢) and (d), and in all four cases N(a,) = N(a,) + 1 = 8 which
implies that N(n) = 4.

In (3) it may again be assumed as in configuration (4) of (4, 4)
that the first two digits of a, are ones, and since a, is a “special four”,
this means that ¢, = 11...11.... As in (4, 3) configuration (3) it may
also be assumed that a; = 2a,,, and that a,,, = a, + a, for some ¢t <
k. These facts together with a;/a, determine a,,,/a,:

a; = 1100.-..00.-- implies Ay, = 11060-.-00..-
+ak = 11...11... ——ak = 11-.-110...
a; = 1111++.11... @ = leeess 10+-- .

No matter where the other one in a,,, is placed, it can be seen that
v(a,) = 3, Ma,) = Ma,) and a, # a,. Thus, N(a,) = N(a,) + 1 = 3 which
implies N(n) = 4.

In (4) a, is a “special four”, and the conditions of Lemma 3 will
apply unless a, = 111-... A(a;) = N\a,) + m for some m = 2 while
a; > 2™ 'a, -+ 2" 2q,, and, so, by Lemma 4 N(a;) = N(a,) + 1 = 3 unless
a; = 2™ 'a,,,. As before it may be assumed that a,., = a, + a, for
some ¢ < k, and these facts together with a;/a, determine a,.,/a,:

a; = 111...0000- -« implies tpy; = 11100 -«
+a, = 1111... —a, = 1111...
a; = 111...1111--. a, = 1101...

N(a,) = N(a,) + 1 = 3; hence, N(n) = 4.

In all 49 cases it has been shown that N(n) = 4, and, so, it may
be concluded that if v(a;) = 7 and a; = 111.-., then l(n) = \(n) + 4.
In Proposition 2 a; denotes the first member of the chain for which
v(ie,) =8, a; = 111... but a; = 1111...1111.... The proof is then
carried out in the same manner as the proof of Proposition 1. The
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proofs of the remaining propositions are similar, and as each one is
proved it may be used in the proof of the next one. Propositions 1
to 5 are extremely helpful in the proofs of the remaining propositions
and in that part of the proof of Theorem 1 that remains. We shall
now return to the proof of Theorem 1 to demonstrate how the pro-
positions are used. As an example of the remaining cases (9,7, 7)
will be examined.

To recall a; is the first member of an addition chain for n for
which v(a;) = 9. a; = a; + a, where v(a;) <8 and y(a;) <8. The
propositions concerning I (n) are applicable to a; and @, and all other
members of the chain preceding a;. As in (9, 6, 5) it may be assumed
in (9,7,7 that Ma;) = Ma;) + 1 and Aa;) > Mag). Also if May) =
May) + m, it may be assumed that a; = 2™a, or else by Lemma 3
N(a;) = N(a,) +1 = 4 which implies N(#n) = 4. In (9,7, 7)¢c =5, and
the possibilities for a;/a, are now listed. These possibilities are the
ways to proceed from left to right to the first 1/1 slot in a;/a, without
exceeding five carries and with the previously mentioned restrictions
kept in mind.

1) a;= 11.... 2 a;= 101... B) a;= 111.....
+a,= 1l... +a, = 11-.. +a, = 111...
@ = 10++++. a; = 100+ @ = 100ces-
4) a;= 1011.... (5) a;= 1001... (6) a; = 1101.-..
+a,= 1011 +a,= 111 +a, = 11
a; = 1000..... a; = 1000+-.. a; = 1000
(7N a;= 1111...... 8 a; = 10101-.- (9) a;= 10011...
+a, = 1111... +a, = 1011... +a, = 1101...
a; = 1000ccc-... a; = 100000 - . a; = 100000- ..
(10 a; = 10001... (11) a; = 11001...- (12) a; = 111010...
+a,= 1111... +a, = 111... +a, = 111...
a; = 100000 - . a; = 100000 .. a; = 1000001...
(13) a; = 111110000--.
+a, = 11111...

1000001111... .

i
Il

In configurations (3), (5), (6), (7), (9), (10), (11), (12), and (13) Pro-
positions 1 and 3 imply that either N(a;) = 4 or N(a;) = 4. In either
event this means that N(n) = N(a;) = 4. In (1) N(n) = 4 in the same
manner unless a; and a, both have the binary form 11001...1111...,
but in this event it is impossible to arrange a;/a, so that ¢ = 5. In
(2) it may be assumed that a, = 11001...1111-.. and that a; = a; +
a, for some ¢t < k (see Figure 2). Since ¢ == 5 there can be at most
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two more 1/1 slots in a;/a,. There are two possibilities for a;/a,:

(a) a; = 101 -------- OO- . (b) a; = 101 ........ OO- .o
—a, = 11001...1111... —a, = 11001...1111...
@ = 10eecences 0le-.. = Leeeveson OLle-- .

In (a) it is impossible to have two further 1/1 slots in a;/a, with
zeros under them. Thus, v(e,) =5 by Lemma 2, and since A\(a,) =
x(a;) and @, # a,, N(n) = N(a;) = N(a,) + 1 = 4. Configuration (b)
can be filled out a little further by realizing that the 1 can ocecur
under the 1/1 slot only if a;/a, is as follows:

a; = 10100+ -« .. 00
—a, = 11001...1111.-.
at = 111 ------ 01. oo

It is impossible to have zeros in a, under any further 1/1 slots in
a;/a,, and, so, by Lemma 2 y(a,) = 9 which contradicts the fact that
a; is the first member of the chain for which v(a;) =2 9. In (4) it
may again be assumed that a; = a, + a, for some ¢ < k. ¢ = 5 implies
that there is one more 1/1 slot in a;/a;; hence, v(a) = 5 by Lemma
2. It is evident that \(a,) = Ma.), and if a, # a,, N(n) = N(a,) =
N(a,) + 1 = 4. It is possible in this case, however, that a, = a, which
means a; = 2q,. With ¢ = 5 the configuration would be:

a; = 101110++.10++.10++.10--
+a, = 101110---1-+.01+++0L---
a; = 1000101+« +11++.11++-11... .

By Proposition 6 N(n) = N (a;) = 4. In (8) it is not possible that a; =
2a,, and, so, N(n) =4 as in (4) when ¢, # a,. This concludes the
proof of (9,7, 7).

The proof of the remaining cases is similar. Once Theorem 1 is
established it follows that the propositions concerning l(n) are true in
general. That is I(n) may be used in the statements of all of the
propositions instead of ly(n). The reason for this is that if an integer
with more than eight ones in its binary representation does occur in
one of the chains then by Theorem 1 there are at least four small
steps in the chain up to that integer which means that N(n) = 4. In
particular Proposition 19 may be restated to say that if v(n) = 7 and
n = 1011100-.-111, then I(n) = M(n) + 4. This leads to the result
that there exists an infinite class of integers for which I(2n) = l(n).
This is the essence of the following theorem.

THEOREM 2. If n=2"(28)+7 where m=5, then l(2n)=lUn)=m+8.
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Proof. m has the binary form =» = 1011100...111, and by the
restatement of Proposition 19 I(n) = ax(n) + 4. On the other hand,

1,2,8,4,7 14, 21, 23, 2(23), - -+, 2"(23),2"(23) + T = n

is a chain for » with only four small steps. Thus, l(n) = An(n) + 4.
2n = 2™(23) + 14 = 1011100---1110. v(2n) = 7 implies that [(2n) =
\(2n) + 3 while

1,2, 4,5, 9,14, 23, 2(23), -+, 2"7(23), 2"(23) + 14 = 2n

is a chain for 2n with only three small steps. Thus, I(2n) =\(2n) + 3.
Since AM2n) = AM(n) + 1 = m + 5, it follows that 1(2n) = A(2n) + 3 =
xn) + 4 =1Un) =m + 8.
More details of the proofs of the Propositions and Theorem 1 are
available in [12] and in private manuscripts.

REFERENCES

R. E. Bellman, Advanced problem 5125, Amer. Math. Monthly, 70 (1963), 765.

A. T. Brauer, On addition chains, Amer. Math. Soc., 45 (1939), 736-739.

P. Erdés, Remarks on number theory III on addition chains, Acta Arith. VI (1960),
7-81.

4. A. A. Gioia, M. V. Subbarao, and M. Sugunumma, The Scholz-Brauer problem in
addition chains, Duke Math. J., 29 (1962), 481-487.

5. W. Hansen, Zum Scholz-Brauerchen problem, J. Reine Angew. Math., 202 (1959),
129-136.

6. A. M. Il’in, On additive number chains, Problemy Kibernet, 13 (1965), 245-248.

7. H. Kato, On addition chains, Ph. D. Dissertation, University of Southern California,
June, 1970.

8. D. E. Knuth, The Art of Computer Programming, 2 Addison-Wesley, Reading, Mass.,
(1969), 398-422.

9. A. Scholz, Jahresbericht, Deutsche Math.-Verein., 47 (1937), 41.

10. K. B. Stolarsky, A lower bound for the Scholz-Brauer problem, Canad. J. Math.,
21 (1969), 675-683.

11. E. G. Straus, Addition chains of vectors, Amer. Math. Monthly, 71 (1964), 806-808.
12. E. G. Thurber, The Scholz-Brauer problem on addition chains, Ph. D. Dissertation,
University of Southern California, September, 1971.

13. W. R. Utz, A note on the Scholz-Brauer problem in addition chains, Proc. Amer.
Math. Soc., 4 (1953), 462-463.

14. C. T. Whyburn, A note on addition chains, Proc. Amer. Math. Soc., 16 (1965), 1134.

I
©

Received January 1, 1972.

BiorLAa COLLEGE



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

RICHARD ARENS (Managing Editor)
University of California
Los Angeles, California 90024

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

J. DUGUNDJI¥*

Department of Mathematics
University of Southern California
Los Angeles, California 90007

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

ASSOCIATE EDITORS

K. . BECKENBACH B. H. NEUMANN

F. WoLr K. YosHiDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA

MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA

NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON

OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

# 0. R. DePrima California Institute of Technology, Pasadena, CA 91109, will replace

J. Dugundji until August 1974.

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 49, No. 1 May, 1973

A. Bigard, Free lattice-ordered modules . . ................ ... i .. 1
Richard Bolstein and Warren R. Wogen, Subnormal operators in strictly cyclic
OPErator AlGEeDTAS . . ... ... e 7

Herbert Busemann and Donald E. Glassco, Il, Irreducible sums of simple
TMUITIVECTOTS . . . . oo oot e e e e e e e e e e e 13

W. Wistar (William) Comfort and Victor Harold Saks, Countably compact groups

and finest totally bounded topologies ............ ... .ot 33
Mary Rodriguez Embry, Maximal invariant subspaces of strictly cyclic operator

AlEDIAS . . ... 45
Ralph S. Freese and James Bryant Nation, Congruence lattices of semilattices. . . . .. 51
Ervin Fried and George Gritzer, A nonassociative extension of the class of

distributive lattices. . .......... ..o i 59
John R. Giles and Donald Otto Koehler, On numerical ranges of elements of locally

M-CONVEX QLGEDTAS . ...\ vt 79
David A. Hill, On dominant and codominant dimension of QF —3 rings ........... 93
John Sollion Hsia and Robert Paul Johnson, Round and Pfister forms over R(t) .... 101
I. Martin (Irving) Isaacs, Equally partitioned groups . ..................cccoo.... 109

Athanassios G. Kartsatos and Edward Barry Saff, Hyperpolynomial approximation
of solutions of nonlinear integro-differential equations. ...................... 117

Shin’ichi Kinoshita, On elementary ideals of 6-curves in the 3-sphere and 2-links in
the d-Sphere. ... ...

Ronald Brian Kirk, Convergence of Baire measures. . .........
R. J. Knill, The Seifert and Van Kampen theorem via regular co
Amos A. Kovacs, Homomorphisms of matrix rings into matrix

Young K. Kwon, H D-minimal but no H D-minimal . ..........
Makoto Maejima, On the renewal function when some of the me
ATCTNfINILE .« o v v et ettt
Juan José Martinez, Cohomological dimension of discrete modu
QEOUDS . ottt e e
W. K. Nicholson, Semiperfect rings with abelian group of units
Louis Jackson Ratliff, Jr., Three theorems on imbedded prime di
Ideals. ... .o
Billy E. Rhoades and Albert Wilansky, Some commutants in B(
TRAITICES « o oot e et e ettt
John Philip Riley Jr., Cross-sections of decompositions. . . ... ..
Keith Duncan Stroyan, A characterization of the Mackey unifor
JINTLE MEASUTES ... oo v oottt et e eannd
Edward G. Thurber, The Scholz-Brauer problem on addition ch
Joze Vrabec, Submanifolds of acyclic 3-manifolds . ...........
Philip William Walker, Adjoint boundary value problems for co
differential operators..............c.uuiiiiiiiiiiiieann.
Roger P. Ware, When are Witt rings group rings . .............
James D. Wine, Paracompactifications using filter bases . . . . . ..


http://dx.doi.org/10.2140/pjm.1973.49.1
http://dx.doi.org/10.2140/pjm.1973.49.7
http://dx.doi.org/10.2140/pjm.1973.49.7
http://dx.doi.org/10.2140/pjm.1973.49.13
http://dx.doi.org/10.2140/pjm.1973.49.13
http://dx.doi.org/10.2140/pjm.1973.49.33
http://dx.doi.org/10.2140/pjm.1973.49.33
http://dx.doi.org/10.2140/pjm.1973.49.45
http://dx.doi.org/10.2140/pjm.1973.49.45
http://dx.doi.org/10.2140/pjm.1973.49.51
http://dx.doi.org/10.2140/pjm.1973.49.59
http://dx.doi.org/10.2140/pjm.1973.49.59
http://dx.doi.org/10.2140/pjm.1973.49.79
http://dx.doi.org/10.2140/pjm.1973.49.79
http://dx.doi.org/10.2140/pjm.1973.49.93
http://dx.doi.org/10.2140/pjm.1973.49.101
http://dx.doi.org/10.2140/pjm.1973.49.109
http://dx.doi.org/10.2140/pjm.1973.49.117
http://dx.doi.org/10.2140/pjm.1973.49.117
http://dx.doi.org/10.2140/pjm.1973.49.127
http://dx.doi.org/10.2140/pjm.1973.49.127
http://dx.doi.org/10.2140/pjm.1973.49.135
http://dx.doi.org/10.2140/pjm.1973.49.149
http://dx.doi.org/10.2140/pjm.1973.49.161
http://dx.doi.org/10.2140/pjm.1973.49.171
http://dx.doi.org/10.2140/pjm.1973.49.177
http://dx.doi.org/10.2140/pjm.1973.49.177
http://dx.doi.org/10.2140/pjm.1973.49.185
http://dx.doi.org/10.2140/pjm.1973.49.185
http://dx.doi.org/10.2140/pjm.1973.49.191
http://dx.doi.org/10.2140/pjm.1973.49.199
http://dx.doi.org/10.2140/pjm.1973.49.199
http://dx.doi.org/10.2140/pjm.1973.49.211
http://dx.doi.org/10.2140/pjm.1973.49.211
http://dx.doi.org/10.2140/pjm.1973.49.219
http://dx.doi.org/10.2140/pjm.1973.49.223
http://dx.doi.org/10.2140/pjm.1973.49.223
http://dx.doi.org/10.2140/pjm.1973.49.243
http://dx.doi.org/10.2140/pjm.1973.49.265
http://dx.doi.org/10.2140/pjm.1973.49.265
http://dx.doi.org/10.2140/pjm.1973.49.279
http://dx.doi.org/10.2140/pjm.1973.49.285

	
	
	

