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It is proved that, from the viewpoint of "geometric"
homology theory, an arbitrary embedding of a closed surface
S in any 3-manifoId with trivial first homology group looks
exactly like the standard embedding of S in the euclidean
3-space. A consequence: every compact subset of a 3-manifold
with trivial first homology group can be embedded in a
homology 3-sphere. Necessary and sufficient (homological)
conditions are given for a compact 3-manifold to be embed-
dable in some acyclic 3-manifold (or in some homology
3-sphere).

1* Definitions and preliminaries•

Manifolds. We work in the PL category. Each manifold is
supposed to have a fixed PL structure. If M is a manifold, then by
a submanifold of M or by a surface, simple closed curve, arc, etc.,
in M we always mean a respective object contained in M as a sub-
polyhedron (in the chosen PL structure of M). All maps are assumed
to be PL. Our manifolds are never automatically assumed to be
without boundary, compact, connected, or orientable. However, by a
surface we mean a compact, connected, orientable 2-manifold. A
cube with n handles is a 3-manifold homeomorphic to a regular
neighborhood of a connected finite linear graph of Euler characteristic
1 - n in E\

We denote the interior of a manifold M by int M and the bound-
ary by Bd M. However, if M is oriented, then by dM we denote the
manifold Bd M oriented coherently with M. The symbol d also
denotes the boundary in the homological sense. Let M be an oriented
manifold and P a codimension 0 submanifold of M. Whenever we
talk of P as an oriented manifold, we assume that P has the orien-
tation inherited from M, unless explicitly stated otherwise. If M is
an oriented manifold, then M with the opposite orientation is some-
times denoted by —M.

Homology. All homology and cohomology groups, cycles, chains,
etc., have integer coefficients. If zu z2 are ^-cycles in a space X,
then z1 ~ z2 means itz1 is homologous to z2". A compact oriented
n-submanifold N of an m-manifold M generates a uniquely determined
PL w-chain in M. This chain is a cycle if and only if N is a
closed manifold. We shall make no distinction in notation between
N and the ti-chain it represents. If M is a manifold of dimension
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at least 2, then every element of H^M) can be represented by an
oriented closed 1-manifold in intilf. If M is a 3-manifold, if Jcz M
is a closed oriented 1-manifold, and if / ~ 0 in M, then there exists
a compact oriented 2-manifold F in M such that J = dF.

If X, Y are spaces and / I ^ Γ a map, then by /* we denote
the homomorphism H^X) -+H^Y) induced by/.

Let S be an oriented 2-manifold and a?, y either two 1-cycles in
S or two elements of H^S). By sc(#, y) we denote the (integral)
intersection number of x and y. The following is well-known.

LEMMA 1.1. Let M be an oriented S-manifold and let J, K be
closed oriented 1-manifolds in dM. If J ~ K ~ 0 in M, then
sc(J, K) = 0.

A polyhedron X is acyclic if it is connected and has Hn{X) = 0
for n > 0. We will call X 1-acyclic if it is connected and has
HJ^X) = 0. Note that any 1-acyclic manifold W is orientable. The
reason is that π^W) contains no subgroups of index 2; a subgroup
of index 2 would contain the commutator subgroup of π1(W)9 but
the commutator subgroup is the whole πλ{W) since Hλ{W) = 0. A
homology n-sphere is an ^-manifold whose homology is isomorphic to
the homology of the ^-sphere. An ^-manifold will be called sub-
acyclic if it can be embedded in an acyclic ^-manifold.

2-Manifolds. We give the definition of oriented piping (in dimen-
sion 2). Let S be a 2-manifold and J,KaS two disjoint oriented
simple closed curves. Let A c S be an arc from a point x e J to a
point y e K; let int A c int S — (J\J K). Take a regular neighborhood
N of A in S. The intersection N (Ί J is a small arc JoczJ containing
x in its interior. Similarly, N Π K is an arc KoaK with # e int iΓ0.
Let Z) be the closure of the component of N — (J U K) which contains
int A. Then D is a disk and Bd D consists of Jo, iΓ0, and two "long"
arcs in Bd N. Suppose that D can be oriented coherently with both Jo

and Ko. Then the simple closed curve L = (Jl) K (j Bd D) - int (Jo U Ko)
can be oriented so that it induces in / — int Jo the same orientation
as J and in K — int Ko the same orientation as K. If this is the
case, we say that the oriented simple closed curve L is obtained
from J U K by piping along A (or that L is obtained by piping J to
K or by piping together J and K). If we think of J, K, L as
1-cycles and of D as a 2-chain, then J + K — L = dD. Hence L ~
J + K. The following lemma is obvious.

LEMMA 1.2. If S is an oriented surface, then any two com-
ponents J and K of dS can be piped together along any properly
embedded arc Ad S which joins J and K.
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For a compact 2-manifold S we define the genus of S to be the
sum of genera of the components of S.

Groups. If G and H are groups, then G ^ H means " 6 is
isomorphic to H". Since we deal only with abelian groups we use
the term "free group" in the meaning "free abelian group". Let G
be a free (abelian) group. We will call x e G a basic element of G
if x is a member of some basis of G. Using standard facts we can
prove that x is basic if and only if the subgroup of G generated by
x is a nonzero direct summand of G, or, if and only if x is not equal
to ny for any integer n > 1 and any yeG.

Matrices. If A is any matrix, let A! denote the transposed of
A. For any positive integer n we denote by In and On the identity
and zero n x n matrices, respectively. If n = 2m, let Jn be the
matrix

Γ Om Im

n" L-/. o.
For any two integers i, j" let δiy denote the Kronecker symbol:

δi3 = 1 if i = i and <̂  = 0 otherwise.

2* Surfaces in 1-acyclic 3-manifolds* The main result of this
section is the following theorem, which is (together with 2.13 and
2.14) an extension of Theorem 32.3 in [2]. Note that if S is a closed
2-manifold in the interior of a 1-acyclic 3-manifold W9 then S
separates W. The reason is that every simple closed curve in W
bounds modulo 2 in W and has therefore zero intersection number
modulo 2 with S. Also, since W is orientable and S separates W, S
is necessarily orientable.

THEOREM 2.1. Let W be a 1-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the two components of W — S. Then there exist oriented simple
closed curves Jl9 , Jg, Kl9 , Kg in S such that

( 1 ) Ji and Ki intersect transversely at a single point, for each
i, and Ji Π Jά = Ji Γ) Ks = K{ Π Kd = 0 if i Φ j ;

( 2 ) Ji — 0 in U and K{ — 0 in V (i = 1, , g);
( 3) the homology classes of Jl9 , Jg form a free basis of

and the homology classes of Ku •••, Kg form a free basis of

The situation described by this theorem reminds us of the
standard embedding of S in E3; in fact, the only difference is that
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in the latter case we can choose Ju , Jg, Ku , Kg so that each
Ji bounds a disk (not only an orientable surface) in U and each Kf

bounds a disk in V.
We postpone the proof of 2.1, which will occupy most of this

section, and first prove two consequences of 2.1.

THEOREM 2.2. Let W be a 1-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the two components of W — S. Let V be a cube with g handles.
Then there exists a homeomorphism h: Bd V —> S such that

( 1 ) the ^-manifold W = V U h U is 1-acyclic;
( 2 ) if J is a closed oriented 1-manifold in S, then J ~ 0 in

V if and only if h~ι{J) ~ 0 in V.

Proof. Assume 2.1. Think of V as embedded in E3; let S' =
Bd V and U' = Ez - int V. Let J,, Kt (i = 1, , g) be oriented
simple closed curves in S satisfying the conclusions of 2.1. Let
Jl,Ki(zSr have analogous meaning (with respect to U' and V).
Then there exists a homeomorphism h: S' —> S which maps each J[
onto Ji and each K{ onto Ki (not necessarily in an orientation pre-
serving way). Let W = V LU U.

As is well-known, (1) of 2.1 implies that the homology classes of
Ju m',J9,Ki, m'*,Kg form a basis of H^S). The homology classes
of Ku •••, Kg belong to the kernel of H^S) — H^V); it follows from
2.1 (3) that no nontrivial linear combination of the Ji is homologous
to 0 in V. Therefore, a 1-cycle in S bounds in V if and only if it
is homologous in S to a linear combination of Klf •••, Kg. Similarly,
a 1-cycle in S' bounds in V if and only if it is homologous in S'
to a linear combination of K'f , K'g. Therefore, (2) of 2.2 follows
directly from the choice of h.

To prove (1) of 2.2 choose an arbitrary xeH^W). We have to
show that x = 0. Since S is connected and separates W, x can be
represented by a sum zι + z2 where zγ is a 1-cycle in U and z2 is a
1-cycle in F ' . By 2.1 (3), zι is homologous in U to a linear combi-
nation of Kί9 , Kg and z2 is homologous in V to a linear combi-
nation of J[, •••, J'g. Since the sewing map h was chosen so that
each JI — 0 in U and each K{ ~ 0 in V, sx + s2 ~ 0 in W.

THEOREM 2.3. If C is a compact subset of a 1-acyclic 3-manifold
W, then C can be embedded in a homology 3-sphere (and thus also
in an acyclic S-manifold unless C is itself a homology S-sphere).

Proof. We may assume that C c int W. Cover C by a compact
connected 3-submanifold M of int W. Take a boundary component S
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of M. Denote by U and V the closures of the components of W — S;
let U be the one which contains M. By 2.2 we can replace V by a
cube with handles, V, in such a way that W = U\J V is still
1-acyclic. If we perform a similar surgery along each boundary
component of M, we end up with M embedded in a closed 1-acyclic
3-manifold, Σ say. It follows from Poincare duality that Σ is a
homology 3-sphere. If C is not a closed 3-manifold, then there is a
point pel — C and hence C lies in the acyclic 3-manifold Σ — p.

Before we start proving Theorem 2.1 we establish some homo-
logical properties of surfaces. Let S be a closed oriented surface
and let au , an e H^S). The intersection number matrix or the
sc-matrix of the ordered n-tuple (al9 , an) is the nxn matrix A =
(αίy), where aid = sc (ai9 a3). Obviously A is skew-symmetric. The
following lemma is proved by a straightforward computation.

L E M M A 2.4. Let S be a closed oriented surface and aί9 , αm,

bl9 ••, bn eH^S). Let A be the sc-matrix of (aί9 * , α w ) and B the

sc-matrix of (bl9 •••, bn). Suppose that there exists an mx n matrix

T with integer entries such that the column vector (alf •••, an)' is the

product of T with the column vector (bu •••, bn)'. Then A — TBT'.

L E M M A 2.5. Let S be a closed oriented surface of genus g. Let

#i, ' *> azg £ Hi(S) and let A be the sc-matrix of (al9 •••,a2g). Then

{aL, , a2g} is a basis of H^S) if and only if det 4̂ = 1.

Proof. It is well-known that H^S) is free of rank 2g and that
it has a basis {bl9 , b2g} whose sc-matrix is J2g. There exists a
2g x 2g matrix T with integer entries such that (al9 •••, a2g)' is the
product of T with (6X, , b2g)

f. From 2.4 we obtain det A = (det Γ)2.
Obviously {αx, , a2g) is a basis of H^S) if and only if T has an
inverse with integer entries, and this is true if and only if det T =
± 1 . The lemma follows.

COROLLARY 2.6. Let S be a closed surface of genus g. Let A
be a subgroup of H^S) such that sc (x, y) — 0 for any x,y eA. Then
the rank of A is at most g.

Proof. Let r be the rank of A. There exists a basis {al9 , ar}

of A, a basis {bu •• ,δ2ί7} of H^S), and positive integers kl9 " 9kr

such t h a t ai = k^ (i = 1, , r ) . Obviously sc (bi9 bj) = 0 if i, i ^ r .

Therefore JS, the sc-matrix of (bl9 , δ2ff), contains a zero r x r

block. If r > g, then det Z? = 0; but this is impossible by 2.5.

The next proposition is an algebraic version of Theorem 2.1.
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PROPOSITION 2.7. Let W be a 1-acyclic Z-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the components of W— S and by i:S—» U, j:S—+V the inclusions.
Let A = Kerΐ*, B = Kerj*. Then

(1) HX{S) — A φ B and either of A, B has rank g;
(2) i# I B: B—>H^U) and j* \A:A—+ H^V) are isomorphisms;
(3) if x,y e H^S) are either both in A or both in B, then

sc (x, y) = 0.

Proof. Consider the Mayer-Vietoris sequence of (W; U, V):

Since HX{W) = 0, a is an epimorphism. We will show that it is also
one-to-one. Recall that a is defined by a(x) = (i*(x), — j*(x)). Take
an x e Ker a = A Π B. Represent x by a closed oriented 1-manif old
Jd S. Then J bounds compact, oriented, properly embedded 2-manifolds
G' c U and G" c V. G = G' U G" is a closed orientable 2-manifold in
int TF. Let Gl9 -- ,Gn be the components of G and let G'r = G'ΠGr,
G'/ - G" Π Gr, J r - J Π Gr - dG'r = dG't (r - 1, . . , n). To prove that
x = 0 it suffices to show that each Jr bounds a compact oriented
2-submanifold of S.

Gr separates W. Let M be the union of Gr and a component of
int W - Gr. Orient If so that dM = G'r U (-<?'/)• L ^ t Af' = MΠ ?7,
f ^ M ί l S . Then Bd M' = F U G;. If we orient F so that dM' =
( - .F) U G;, then Si7 = dG'r = Jr. We have thus shown that Ker a = 0
and therefore α is an isomorphism. This proves (2) and the first
part of (1) of our proposition. Obviously 1.1 implies (3), and (3)
together with 2.6 imply the second part of (1).

Now we start proving Theorem 2.1. In the first step we will
choose the homology classes for the simple closed curves which we
want to construct: α* will be the homology class of Ji9 bi of Kt. We
work with a surface in limbo.

LEMMA 2.8. Let S be a closed oriented surface of genus g.
Suppose that the group H^S) is represented as a direct sum A 0 B
so that sc (x, y) = 0 for any two elements x, y e H^S) which lie either
both in A or both in B. Then there exist bases {al9 * *9ag} of A and
{bί9 , bg) of B such that sc (ai9 b3) = δiS for each i and j .

ADDENDUM 2.9. Let 0 ^ r ^ g and 0 ^ s ^ g. Suppose that
{au •••, ar) is a basis of a direct summand of A and {δL, •••, bs} is a
basis of a direct summand of B such that sc (aif bj) = d{j (i = 1, , r;
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j = 1, , s). Then we can find α r + 1, , ag, b8+1, , bg such that
aiy •> ag> &u , δfir satisfy the conclusion of 2.8.

Proofs of 2.8 and 2.9. First note that 2.6 implies that A and B
have rank g. Assume that r ^ s. lί r < g, choose any elements
α'r+1, , ag such that {al9 , ar, a'r+l9 , α'J is a basis of A. Then set

8

(if s = 0, let a€ = αj). Obviously αx, •••, αfl again form a basis of A
and sc (α*, δ̂  ) = δtj for 1 ^ i ^ #, 1 ^ j ^ s.

L e t us first consider t h e case s = 0. Choose an arbi t rary basis
{δί, * ,δ'ff} of JB. Let C be the sc-matrix of (al9 •• , α , , δ j , •• ,δ'£r).
Then

~ L-zy o{

where /> is the g x g matrix whose (i, i)-entry is sc (α ,̂ δ̂  ). By 2.5,
det C = (det/>)2 = 1, therefore, />' has an inverse U= (ui3) with integer
entries. Put

2.10 bi = Σ ^ίi^i (ί = 1, , ^)

Let

Then, by 2.4, the sc-matrix of (al9 * ',ag9bl9 •••, bg) is ΓCΓ' = J2g.
This is what we wished to have.

If s > 0 we work in the same way except that we do not start
with an arbitrary basis {b[9 , δj} of B. Choose δ'/+i, , b'g eB such
that bί9 , bS9 δ7+i, , δ'/ form a basis of 2?. Then set b\ — b{ for
i = 1, , s and

δί = δί' - Σ sc (αfc, V{)bh for i = β + 1, •••, flr.

Then {δj, •••, δ̂ } is a basis of B and s c ^ , δj) = δiS unless i,j > 5.
This means that the matrices D and U9 defined as above, have the
form

where E is a (g — s) x (g — s) matrix and V = (E')~\ Therefore,
the defining formula 2.10 yields the a priori given 6; for i = 1, , s.
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Lemma 2.8 and its Addendum are proved.
We have chosen the homology classes of our future simple closed

curves J^ and K{. Now we will show that the chosen homology
classes can really be represented by simple closed curves.

PROPOSITION 2.11. Let S be a closed surface and xeH^S).
Then there exist an oriented simple closed curve J c S and a positive
integer n such that x is the homology class of the 1-cycle nJ.

This proposition obviously follows from.

LEMMA 2.12. Let S be a closed surface and KaS a closed
oriented l-manifold. Then there exists a sequence K{1\ K{2\ •••, K{m)

of closed oriented 1-submanifolds of S such that
( 1 ) iΓ(1) = K;
( 2 ) K{i+1) is obtained from K{i) either by omitting a component

of K{i) which separates S or by piping together two components of
K{i) (i = 1, . . . , m - 1);

( 3 ) any two components of K{m) are homologous in S.

Proof. We use induction on the number of components of K.
If K is connected, then there is nothing to prove. Suppose that
2.12 is true if K has less than n components (n^ 2). Choose a
closed oriented l-manifold KaS which has n components, say
JKΊ, , Kn. Denote by T the 2-manifold obtained by cutting S along K,
and let p: T—• S be the corresponding identification map. Let Lrί, Lr2

be the two components of p~\K,) (r = 1, •••, n); orient them so that
p maps each of them onto Kr in an orientation preserving way.

Case 1. Suppose that T has a component To with connected
boundary; let for instance Bd To = Lri. Then Kr separates S. By
induction hypothesis, 2.12 holds for Kr — K — Kr. It obviously
follows that 2.12 holds for K.

Case 2. Suppose that T has a component To which has more
than two boundary components. Then To can be oriented so that
two of its boundary components, say Lri and Lsj, are oriented
coherently with Γo. By 1.2, Lri and Lsj can be piped together along
any properly embedded arc A a To. We claim that r Φ S. Indeed,
S is obtained from T by sewing each Lkl to Lk2 by an orientation
preserving homeomorphism and hence, if Lkι and Lk2 lie in the same
component of T and if T is given any orientation, one of Lkl, Lk2 is
oriented coherently and the other incoherently with T. It follows
that we can pipe Kr to Ks along the arc p(A). Denote by K'r the
oriented simple closed curve obtained by this piping. By induction
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hypothesis, 2.12 holds for K' = (K - Kr - Ks) U KU hence it holds
for K.

Case 3. Finally we consider the case when each component of
T is bounded by exactly two simple closed curves. If some com-
ponent of T can be oriented coherently with both its boundary com-
ponents, then we prove as in Case 2 that 2.12 holds for K. Suppose
that no component of T can be oriented coherently with its boundary.
Obviously T has n components, say Tu •••, Tn. Let St = j)(T«)
(i = lf ...,?&). Since n > 1, no St is a closed surface and therefore
each Si is bounded by two components of K. We may assume that
the numbering has been chosen so that Bd St = K{ U Ki+1 (i — 1, ,
n — 1) and Bd Sn — Kn{j Kx. Since no T{ can be oriented coherently
with its boundary, the same holds for St. This means that each Si
can be oriented so that dSt = { — Ki) U Ki+1 (i = 1, , n - 1). It
follows that Kί ~ K2 ~ ~ iΓ% in S. This concludes the proof of
2.12.

Theorem 2.1 follows from 2.7 and the following proposition.

PROPOSITION 2.13. Let S be a closed oriented surface of genus g.
Suppose that H^S) is represented as a direct sum A@B so that
sc (x, y) = 0 for any x, y e H^S) that lie either both in A or both in
B. Then there exist oriented simple closed curves Jiy Ki in S
(i = 1, , g) such that

( 1 ) for each i, Ji f) Ki is a single point and sc (/,-, i Q = 1; if
i Φ j , then J{ Π J3 = Ji Π K3- = Ki f] K3 = 0

( 2 ) the homology classes of Jl9 " ,Jg form a basis of A and
the homology classes of Klf , Kg form a basis of B.

ADDENDUM 2.14. Suppose that we are given elements au , ar, e
A, &!, , 6β/ e B (0 ^ r' ^ g, 0 ^ s' ^ g) and oriented simple closed
curves Jly , Jr, Kly , Ks c S (0 ^ r ^ r', 0 ^ s ^ s') such that
the following conditions are satisfied:

( i ) if i ^ mm (r, s), J^ Π iΓί is α single point; if i Φ j , then
JiΓiJj=0, Jif] Kj = 0, KiΓ) Kj = 0 (eαc/̂  of these equalities is
satisfied for all pairs i, j for which it makes sense);

(ii) ai is the homology class of Ji and bό is the homology class
of Kj (i = 1, , r; j = 1, , s);

(iii) {au « ,αr,} is a basis of a direct summand of A and
{bly •••, δs,} is a basis of a direct summand of B;

(iv) sc (αt , b3) = δfJ (i = 1, , rf; j — 1, , s'). Then there exist
oriented simple closed curves Jr+1, •• ,JΓ

ff, Ks+1, " ,Kg such that Ji
represents α* (ΐ = r + 1, , r'), Kj represents bj (j = s + 1, , s'),

JΊ, m ,Jg, Ku ••-, Kg satisfy the conclusions of 2.13.
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REMARK. It is not difficult to show that if Jl9 , Jr are disjoint
oriented simple closed curves in S such that S — (Jλ\J ••• \JJr) is
connected, then the homology classes of these curves freely generate
a direct summand of H^S). Therefore, if r ' = r and sf — s, we can
replace the condition (iii) above by: a{ e A, b{e B, and S — {J1U U/r)>
S — {Kx U U K8) are connected.

In the proof of 2.13 and 2.14 we shall need the following three
lemmas. The proofs of 2.15 and 2.17 are easy and we omit them.

LEMMA 2.15. Let S be a surface, JczS an oriented simple
closed curve, and Lc: S an oriented closed 1-manifold. Orient S so
that n = sc (/, L) ^ 0. Then L is homologous to an oriented closed
1-manifold KaS such that J Π K contains exactly n points.

The K of 2.15 may have to have more components than L. On
the other hand, the following lemma is valid.

LEMMA 2.16. Let S be an oriented surface, JaintS an oriented
simple closed curve, and LaintS an oriented closed 1-manifold such
that sc (J", L) = 1. Then L is homologous to an oriented simple closed
curve K c S such that J Π K contains exactly 1 point.

Proof. By 2.15 we may assume that J f) L has only one point.
We will prove the lemma by induction on the number of components
of L. If this number is 1, we can take K—L. Suppose that 2.16
is true if L has at most n components (n ^ 1). Take an L with
n + 1 components, say Lo, Ll9 , Ln; let Lo be the component which
intersects J.

Denote by T the 2-manifold obtained by cutting S along all
components of L and let p: T—>S be the corresponding identification
map. Let L\, L'l be the two boundary components of T composing
p~ι{Lι) (i = 0,1, •••, n). Orient L\ and L" so that p maps each of
them onto Li in an orientation preserving way. Obviously p~ι(J) is
an arc connecting L'o and L". Hence LJ' and L'o lie in the same com-
ponent, To say, of T. Clearly, Bd To intersects p~~\L — Lo). Changing
the notation, if necessary, we can assume that L[ c Bd To. Orient
To coherently with L[. Then one of Lo, Lo' is oriented coherently
with To and the other incoherently. Assume that L[ is oriented
coherently with To. Let A c To be a properly embedded arc which
misses p~\J) and joins Lo to L[. By 1.2 we can pipe L'o to L[ along
A. It follows that in S we can pipe Lo to L1 along the arc p(A),
whose interior misses J U L. This piping changes L to a closed
oriented 1-manifold, homologous to L, which still intersects J at a
single point and has only n components. Therefore, the induction
hypothesis implies that 2.16 holds for L.
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LEMMA 2.17. Let S be a closed surface of genus g > 0 and let
J, Kcz S be two simple closed curves crossing each other at a single
point. Denote by T the surface obtained by cutting S along J and
K and let p: T-+S be the corresponding identification map. Let Sr

be the closed surface obtained by attaching a disk to T along the
boundary curve p~ι(J U K) of T; let k: T-+S' be the inclusion. Then
k* is an isomorphism and p^k*1: H^S') —• Ht(S) maps iϊi(S') iso-
morphically onto the direct summand of H^S) which consists of
homology classes of 1-cycles that have zero intersection numbers with
both J and K. Moreover, if we orient S and S' so that p preserves
orientation, then p^ki1 preserves intersection numbers.

Proofs of 2.13 and 2.14. By 2.8 and 2.9 we can assume that
rf — sr = g. We also assume that r ;> s.

The proof is by induction on the genus of S. If this genus is
0, there is nothing to prove. Suppose that 2.13 and 2.14 are true if
the genus of S is less than g(g > 0) and consider a situation with
the genus of S equal to g.

If r > 0, then we already have Jγ. If r = 0, choose any oriented
simple closed curve representing a1 (it follows from 2.11 that one
such exists) and call it Jγ. If s > 0 (and hence r > 0 by our assump-
tion), then we already have Kγ. Suppose that s — 0. Represent bL

by a closed oriented 1-manifold L. By 2.15 we can assume that
L Π (J2 U U Jr) = 0 . Applying 2.16 to S - (J2 U U J r), Jlf and
L we can find an oriented simple closed curve Kx~ L such that
Ji Π Kx is a single point and Kx Π (J2 U U Jr) — 0 •

We can therefore assume that we already have a "good" pair
Jl9 Klf either preassigned or constructed as described above. Define
T, p, S', and k as in the statement of 2.17, with Jx and Kx taking
the roles of J and K, respectively. It follows from 2.17 that S',
g' = g - 1, A! = Kp*\A), B' = K<pϊ\B), a\ = Kpti^) and b\ =
KptiK) (i = 2,---,g),Jl = kp-\Jt) and K] = kp~\K3) (i = 2, . ., r;
j = 2, « ,s) satisfy the hypotheses of 2.13 and 2.14. By induction
hypothesis we can represent each a\ by an oriented simple closed
curve Jl c k{T) c S' and each b) by an oriented simple closed curve
ϋΓ; c k(T) c S ' (i = r + 1, , g; j = s + 1, , g) such that J2', ,
/;, Ki, •••, K'g satisfy (1) of 2.13. Let J, = pk"\Jl)9 Ks = pk"\K'i)
(i = r + 1, « ,flr; i = s + 1, , g). Then Ju ,Jg, Ku---,Kg

satisfy the conclusions of 2.13 and 2.14.
We conclude this section with a proof of the following theorem.

THEOREM 2.18. Let U be a cube with g handles. Denote Bd U
by S and let i: S—> U be the inclusion. Let {alf •••, ag} be any basis
of Keri* . Then we can represent each ar by an oriented simple
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closed curve JraS ( r = 1, * ,g) such that JΊ, •••, Jg bound disjoint
disks in U.

This result is implicitly contained in pp. 296-299 of [2]. But
perhaps it is worth while stating and proving it explicitly. Let us
first consider the following weaker lemma.

LEMMA 2.19. Let U, S, and i be as in 2.18. Then every x e
Kerί* can be represented by a 1-cycle nJ where n is a positive
integer and Ja S is an oriented simple closed curve which bounds a
disk in U.

Proof. We can assume that x Φ 0. Let {Ku , Kg) be a collec-
tion of oriented simple closed curves in S which bound disjoint disks
in U and whose union does not separate S. Then the homology
classes of Ku " ,Kg form a basis of Kerί*. Therefore, there exist
integers nu , ng such that the 1-cycle njίγ + + ngKg re-
presents x. This obviously implies that x can be represented by an
oriented closed 1-manifold K such that the components of K bound
disjoint disks in U. Therefore, 2.19 easily follows from 2.12 and the
following obvious lemma.

LEMMA 2.20. Let U be a 3-manifold and let Lly L2 be oriented
simple closed curves in Bd U bounding disjoint properly embedded
disks Ex and E2, respectively, in U. Suppose that Lx can be piped
to L2 along an arc A c Bd U and let L be the simple closed curve
obtained by this piping. Let N be a neighborhood of A in U
containing the "pipe" L — (Lλ (J Lz). Then L bounds a properly em-
bedded disk Ecz U which is contained in Eι U E2 (J N.

Proof of 2.18. Suppose that 2.18 is false and take the smallest
g for which 2.18 fails. By 2.19, g > 1.

Embed U into E\ Let V = Ez - int U and let j : S-> V be the
inclusion. Choose an orientation for S. It follows from 2.7, 2.8, and
2.9 that there exists a basis {bu , bg) of Ker j * such that sc (αr, bs) —
3rs (r, s = 1, , g). By 2.19 we can represent a1 by an oriented
simple closed curve Jx c S which bounds a properly embedded disk
A c U. Obviously U — D1 is connected.

Represent ar by an oriented closed 1-manif old Kra S and br by
an oriented closed 1-manifold LraS (r = 2, •••,#); by 2.15 we may
assume that Jx Π Kr = Jγ Π Lr = 0 . Choose compact, oriented, pro-
perly embedded 2-manifolds FraU, G r c 7 such that dFr = Kr, dGr =
Lr. If Fr intersects D19 we can put Fr in general position with Dv

remove the part of Fr which lies in a regular neighborhood of D19
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and then patch the resultant holes in Fr by disjoint disks "parallel"
to Dx. In this manner we can replace Fr by another compact,
oriented, properly embedded 2-manifold in U such that it is bounded
by Kr and misses Dt. Therefore, we will assume that the originally
chosen F2, , Fg were already disjoint from Dλ.

Choose a regular neighborhood JV of A in £?3 and let U' =
U-intN, V = V U N, S' = Bd U' = Bd V. Let i' and j' be the
inclusions of S' in U' and F', respectively. U' is again a cube with
handles ([2], 6.2), Let T = S f] S'. Then S' - int T consists of two
disjoint disks, which we denote by Ό[ and Ώ[\ Let J[ — Bd D[,
Jϊ = Bd D['. Orient J[ and J[f so that J[ ~ J, ~ J[* in S. Let
o!r, b'r e H^S') be the homology classes of Kr, Lr, respectively (r =
2, •••,#)• Since ifr bounds Fr in £7' and L r bounds Gr in F ' we
have αj. eKerί'*, δ^eKer j * . If we give S' the orientation which on
Γ agrees with the chosen orientation of S, then sc (α'r, δ'β) = sc (ifr, Ls) =
δ r s. Thus it follows from 2.5 that the a'r and 6'r form a basis of
f?Ί(S') and therefore, {c4 •••, α'J is a basis of Kerί'*.

By supposition, 2.18 is true for cubes with g — 1 handles. Thus
there exist oriented simple closed curves J/, , J'g c Sf and disjoint
properly embedded disks D[, , Πg in U' such that for each r the
following are true:

(a ) J'r is in the homology class a\ and hence Jr

r ~ iΓr in S';
(b) j ; = Bd£>;.

Without loss of generality we can assume
(c) j c i n t Γ ,

Note that T - (J[ U U J'g) is connected.
It is easy to see that (a) above implies that Kr ~ Jf

r + n'rJ[ +
nrrJ[r in Γ for some integers n'r, n". Hence Kr ~ J'r + nrj1 in S,
where ?ιr = n'r + ^r; We will therefore try to replace each J'r + nrJ1

by a homologous oriented simple closed curve bounding a disk in U.
Suppose that n2 Φ 0. Let for instance %2 > 0. We can show,

by the same argument as twice before, that it is possible to pipe J[
to J[ along an arc whose interior misses J[ U J[f U Jί U U J'g (If
n2 < 0, we pipe J/ to — J[.) By this piping we obtain an oriented
simple closed curve J2"; 2.20 implies that J2 bounds a properly
embedded disk Df^cU which is disjoint from Dl9 D[, , Ό\. We
replace J2

f by J2 and D2 by D'2. Now we have K2 — J2 + m2/!,
where | m2 \ = | w21 — 1. It should now be clear how to finish the
proof of 2.18 by induction on the number | n21 + + | ng |.

3* Compact 3-submanifolds of acyclic 3-manifolds* In this
section we will prove the following two theorems.

THEOREM 3.1. A compact connected 2>-manifold M whose boundary
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has m components (m > 0) is subacyclic if and only if it satisfies
the following conditions (1), (2), and either (3') or (3"):

(1) M is orίentable;
(2) HX{M) is free;
(3') H2{M) is free of rank m — 1;
(3") JΪ^Bd M) -+ H.iM) is onto.

THEOREM 3.2. Let M be a compact, connected, subacyclic 3-mani-
fold and J a closed oriented 1-manifold lying in a boundary component
S of M. Let F be an oriented surface and h: dF —+J an orientation
preserving homeomorphism. Then the polyhedron P = F U \M can be
embedded in an acyclic 3-manifold if and only if J satisfies one of
the following two conditions.

(1) The homology class of J in M is a basic element of H^M).
(2) There exist compact 2-submanifolds G,HcS such that

G U H — S, G Π H = /, and there exists an orientation of S such
that dG= -dH = J.

The proof of 3.1 in one direction is quite easy. Suppose that M
lies in an open acyclic 3-manifold W. Then M is orientable. Let V
be the closure of W — M. The Mayer-Vietoris sequence of (W; M, V)
contains the following subsequence

0 > ^(Bd M) > fli(Λf) 0 -H ( F ) > 0 .

It follows that Hλ(M) is free and that iϊ^Bd M) -> H,{M) is onto.
The other direction of 3.1 will be proved by induction on m.

First we show that the conditions (3') and (3") of 3.1 are equivalent.

LEMMA 3.3. Let M be a compact connected S-manifold with m
boundary components and suppose that (1) and (2) of 3.1 are satisfied.
Then (3') and (3") of 3.1 are equivalent and they imply that
H2(M, Bd M) F& H^M) and that the following sequence is split exact:

0 > H2(M, Bd M) -^> fli(Bd M) — Ht(M) > 0

(here 9* and i* are the homomorphisms from the homology sequence
of the pair (M, Bd M)).

Proof. Since H^M) and H2(M) are free, duality and the Universal
Coefficient Theorem yield the following two relations

HX{M, Bd M) ~ H\M) ~ H2(M), H2(M, Bd Af) ~ H\M) ~ fli(AΓ) .

Consider the exact sequence for the reduced homology of the pair
(M,BdM):
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H2(Bd M) > H2(M) > H2(M, Bd M) >

H^Bd M) > H.iM) > H^M, Bd M) > HQ(Bd M) > 0 .

Suppose that iJx(Bd M) -> H^M) is onto. Then i?0(Bd M) **
Bdikf) & H2(M) and hence H2(M) is free of rank m — 1. Now suppose
that H2{M) is free of rank m - 1. Then ^ ( M , Bd M) -> ifo(Bd AT) is
an epimorphism of free groups of the same rank and thus it is
actually an isomorphism. It follows that ZẐ Bd M) —• H^M) is onto.

We conclude the proof of 3.3 by showing that (3') of 3.1 implies
that d*:H2(M, BdM)—>iί1(Bdikf) is one-to-one. It suffices to show
that H2(Bd M) —> H2{M) is onto, and this follows from the fact that
the image of iί2(Bd M) —• H2(M) is free of rank m — 1 (this is true
for any 3-manifold M which has exactly m compact orientable
boundary components) and that H2(M, Bd M) is torsion free.

Now we start proving the remaining direction of 3.1.

LEMMA 3.4. Let M be a compact connected S-manifold having
precisely m boundary components and satisfying (1), (2), and (3') of
3.1. Suppose that there exists an oriented simple closed curve
KczBdM such that the homology class of K in M is a basic element
of HX{M). Then M can be embedded in a compact connected 3-
manifold M' which has again m boundary components, again
satisfies (1), (2), and (3') of 3.1, and whose boundary has smaller
genus than Bd M.

Proof. Denote by S the component of Bd M which contains K
and let A be a regular neighborhood of K in S. Let Mf be the
3-manifold obtained by attaching a 2-handle H to M along A. Since
K does not separate S, M' has exactly m boundary components and
Bd M' has smaller genus than Bd M. Obviously M' is compact, con-
nected, and orientable. By considering the Mayer-Vietoris sequence
of (ikf; M, H) for reduced homology we can prove that H^M') is free
and H2{Mf) ^ H2(M).

LEMMA 3.5. Theorem 3.1 is valid for m — 1.

Proof. Suppose that this is false. Among all 3-manifolds M
which are counterexamples to 3.1 for m = 1 choose one whose bound-
ary has the smallest genus. Because of 2.3, HX{M) is nontrivial.
Choose a basic element xeH^M). It follows from 3.1 (3") and 2.11
that x can be represented by a simple closed curve KczBdM. But
then 3.4 yields a 3-manifold M' which is a counterexample to 3.1 for
m — 1 and whose boundary has smaller genus than Bd M. This
contradicts our choice of M.
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LEMMA 3.6. Theorem 3.1 is valid for m = 2.

Proof. Suppose that the lemma is false. Choose a 3-manifold
M which is a counterexample to 3.1 for m = 2 and whose boundary
has the smallest possible genus. Our plan is to find a simple closed
curve KczBdM representing a basic element of H^M); as in 3.5
this will lead to a contradiction.

Let S' and S" be the two components of Bdikf, let g' be the
genus of S' and #" the genus of S", and let i':S'-+M, i":S"-+M,
i:BdM-+M be inclusions. By 3.3, Hλ{M) has rank g'+ g" and
therefore #' + g" > 0.

SUBLEMMA 1. Keri* = Kerΐ* = 0.

Proof. Suppose that e.g. Ker i* ^ 0. Since H^M) is free,
Kerΐ'* is a direct summand of Hλ{Sf). Therefore, it follows from 2.11
that there exists a nonseparating oriented simple closed curve Jc S'
such that J ~ 0 in Af. Let Ka S' be a simple closed curve inter-
secting J transversely at exactly one point. Choose an orientation
for M, orient Bd M coherently with M, and then orient K so that
sc (J, K) - 1.

We claim that K represents a basic element of H^M). Suppose
that for some oriented closed 1-manifold L c M and for some positive
integer n, K is homologous to nL in M. Since M satisfies (3") of
3.1 we can assume that L c Bd M. Then K — nL is a 1-cycle in
Bd M, homologous to 0 in M. By 1.1, 1 — n sc (J, L) = sc (/, K — nL) —
0. Hence n = 1 and consequently K represents a basic element of
H^M). As we know, this leads to a contradiction and hence our sup-
position above must be wrong. Sublemma 1 is proved.

Identify fi^BdikΓ) with H^S') 0 HX(S") and let p': J2i(Bd M) ->
-HΊ(S')> p": ^(Bd AT) -> ̂ (S") be natural projections.

SUBLEMMA 2. The compositions

p'3*: H2(M, Bd ΛΓ) > H^S') , p"3^: JΪ2(ikf, Bd M) > HX(S")

are monomorphisms and hence gf = g".

Proof. Let a? e H2(M9 Bd Λf) be such that p'd*(x) = 0. Then
i'iv"d*{x) = i*Prd*(x) + i'*p"3*(») = i*3*(») = 0. This equality and Sub-
lemma 1 imply that p"d*(x) = 0. Therefore, d*(x) = 0 and hence, by
3.3, x = 0. Similarly we show that p"d* is one-to-one.

By 3.3, H2(M, Bd M) has rank #' + g". Since p'3* is one-to-one,
g' + flr" ̂  2fff; similarly, g' + g" ^ 2g". Hence ^ = ̂ ' .

Denote g' — g" by g.
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SUBLEMMA 3. There exist oriented simple closed curves J,Ka
Bd M, one lying in S' and the other in S" and neither homologous
to 0 in BdΛf, and there exists a positive integer r such that
J + rK ~ 0 in M.

Proof. Choose a basis {a[, •••, a[g) of HJJS'), a basis {&[, •••, δ^}
of E' = p'd*H2(M,Bά M), and positive integers n[9 •••, w^ such that
bj = n'άa

f

5 (j = 1, •••, 2#). Let w' be the greatest common divisor of

Suppose that w' = 1. Then £" contains a basic element of H^S').
Indeed; suppose that no element of Er is basic for HX{S'). Then
there exists a prime q such that E'aqH^S') (see e.g. [1], 5.1.1).
Since n' = 1 there is an s (1 ̂  s ^ 2c/) such that w£ is not divisible
by q. Then, as a!s is a basic element of H^S'), Vs — n'sa!s is not equal
to qx for any x e H^S') and this contradicts our previous conclusion.
Thus there really exists a V e E' which is a basic element of H^S').
Let δ" = p"d*{tfd*)-\V) e H^S"). By Sublemma 2, δ" ̂  0. It follows
from 2.11 that there exist oriented simple closed curves JaS',
KaS" and a positive integer r such that J represents 6' and rjK"
represents b". Since (6', 6") = d*(p'd*)-\V) e Ker i*, J + riΓ - 0 in
M. Thus Sublemma 3 is true in this case.

Now suppose that n' > 1. For each j let b" = ί>"9*(ί>'9*)"1(δj ) e
HAS"); let e# be the basic element of H^S") and ^7 the positive
integer such that b' = n"a". Let n" be the greatest common divisor
of n[\ •• ,n"g. If n" = 1 we show as above that Sublemma 3 is
valid. Suppose that n" > 1. We will show that this leads to a
contradiction. Choose a prime divisor g of n". By 2.5 the deter-
minant of the intersection number matrix of (a[, , a'2g) is equal to
1. Therefore, there exists an entry of this matrix, say sc (α's, a[),
which is not divisible by q. Note that each pair (δ' , V ) lies in
Kerί*. Therefore, 1.1 implies that sc ((&'„ 6'/), (K &'/)) = 0 and
hence sc (b'β, b[) = ~sc (δj', δί'). Since the number n\n\ sc (α«, αj) =
— n'sΠ't sc (α'/, α'/) is divisible by g and sc (α', a[) is not, one of n'8, n't,
say n't, is divisible by g. Let for instance n'8 = qk\ n" = qk". Put
α' = fc'ai, α" = fc"α'Λ Then the basic element (j/S*)-1^) of JHΓa(ΛΓ, Bd AT)
is mapped by d* to (&', 67) = ^(α', α") This contradicts the fact
that 3* embeds H2(M, Bd M) as a direct summand into fli(BdΛf).
Sublemma 3 is proved.

We conclude the proof of 3.6 with

SUBLEMMA 4. K represents a basic element of

Proof. Assume that JaS', KczS". Let ueH^S'), veH^S")
be the homology classes of /, K, respectively; let x = 3~x(^, rv) e
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H2(M, Bd M). Since u is a basic element of H^S'), x is basic for
H2{M, Bd M). Let H2(M, Bd ikf) = A φ J5 where A is the subgroup
generated by a;. Let A' be the subgroup of H^S') generated by
u, A!f the subgroup of H^S") generated by v, Br the smallest direct
summand of JE?i(S') containing p'd*(B), and B" the smallest direct
summand of H,{Sn) containing p"d*(B). Then H^S') = A! φ £ ' and
if^S") = A" 0 5" .

We have to show that ί"(v) = i*(0, v) is a basic element of H^M).
It follows from Sublemma 1 that i'l(v) Φ 0. Suppose that there
exists an integer n > 1 and an element z e HX{M) such that i'l(v) —
nz. It follows from 3.3 that there exist elements aeH^S'), be
H^S"), y e H2(M, Bd M) such that z = i*(α, 6) and (wα, nb — v) = d*(y).
Let α = α% + α0, b = βv + b0, y = Xx + 2/0> where α, /S, λ are integers
and aoeB',boeB", yoeB. Then we have d*(y) = 7<d*(x) + d*(y0) or
(%α, nb — v) = X(u, rv) + 9*(2/0). Applying on both sides of this
equation the natural projection iϊ^Bd ikf) —• A! we obtain nαw = λ%;
projecting to A!f yields (nβ — l)v = Xrv. The former equation im-
plies that λ is divisible by n, which contradicts the latter equation.
Sublemma 4 and Lemma 3.6 are proved.

The following lemma is a special case of Theorem 3.2.

LEMMA 3.7. Let M' be a compact, connected, subacyclic ^-mani-
fold, S a boundary component of M', and Aa S a separating
annulus. Let M be the %-manifold obtained by attaching a 2-handle
to M' along A. Then M is subacyclic.

Proof. Embed Mr in a homology 3-sphere Σ. Let U be the
closure of the component of Σ — S which intersects M'. Denote by
V the 3-manifold obtained by attaching a 2-handle H to U along A.
Then there exists a natural embedding of M into V and therefore
in order to prove our lemma it suffices to show that V is sub-
acyclic. Obviously V is orientable. Since H2(U) = 0 (by the already
proved part of 3.1), the following is a section of the Mayer-Vietoris
sequence of (V; U,H) for reduced homology:

0 > H2(V) > fli(A) > H,(U) >Hί(V) > 0 .

As A separates S the homomorphism H^A) —* fli(Z7) is trivial.
Hence H2(V) « HX{A) and H^V) ** H^U). Since Bd V has two com-
ponents it follows from 3.6 that V is subacyclic.

We conclude the proof of 3.1 by proving

LEMMA 3.8. Suppose that 3.1 holds for m < k (k > 2). Then
3.1 is true for m = k.
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Proof. Let M be a compact, connected 3-manifold whose boundary-
has k components and which satisfies conditions (1), (2), and (3') of
3.1 (with m — k). Let J be a properly embedded arc in M whose
endpoints lie in different components of Bd M. Let N be a regular
neighborhood of J in M and let M* be the closure of M — N. Then
M' is a compact, connected, orientable 3-manifold with k — 1 boundary-
components. Let S be the component of BdJIf' which intersects
N. We can think of N as a 2-handle attached to Mr along the
annulus A — M' Π N, which separates S. By considering the Mayer-
Vietoris sequence of (M; M', N) for reduced homology we can prove
that Mf satisfies (2) and (3') of 3.1 (with m = k — 1). By the hypothesis
of the lemma this implies that Mf is subacyclic. Hence, by 3.7, M
is subacyclic.

Proof of 3.2. We consider all possible situations with respect to
the homological properties of J in M. We divide these situations
in two larger groups. First we consider

Case 1. Suppose that / - 0 in S. In this case there exists a
unique pair of compact 2-submanifolds of S, say G, H, such that
G U H = S, G Π H = J. Indeed; choose a point xoeS — J and let G
be the closure of the set of all points in S — J that can be reached
from xQ by some arc in S which misses J or crosses J an even num-
ber of times; let H = S — int G. If at least one of G, H is such
that it cannot be oriented coherently with /, then the polyhedron P
cannot be embedded in any acyclic 3-manifold. Suppose that e.g. G
cannot be oriented coherently with J. Then F U Gcz P is a non-
orientable closed 2-manifold and therefore, as observed in the beginning
of § 2, F U G cannot be embedded in any acyclic 3-manifold.

Now suppose that both G and H can be oriented coherently with
J. Then there exists an orientation for S such that, for the induced
orientations in G and H, J = dG = —dH. Give S this orientation.
Let Gl9 ,Gn be the components of G. For i — 1, , n do the
following. Let K{ = /zr̂ Bd Gi) c Bd F. Choose a disk with holes
G\ c Gi such that Bd G[ — J{ U Bd Gi where J* is a simple closed curve
in int G{. Similarly choose a disk with holes F\cF such that Bd F\ —
Ki U K'i where K\ is a simple closed curve in int F; let F[, , F'n
be pairwise disjoint. Orient J, coherently with G\ and K\ coherently
with F\.

Let C = Sxl, where / = [0,1], be an outer collar of M on S
and let M' = M{jC, S' = S x l c B d M ' (SxO is identified with S
in the natural way). Since F is homeomorphic to Gί there exists a
proper embedding h\ of F't into G x IaC such that h | K{ = h \ K*:

and hi(Kί) = J- = Ji x 1 c S'. In particular, choose a function f{: F[ —•
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I such that /.(iQ = 0, /«(ZJ) = 1, /<(int F{) = int I; extend A, | K, to
a homeomorphism /^: F[ —> G and then set h\(x) = (hi(x),fi(x)) eff x l

Let i f - (Jϊu U Gd x l c S ' , f f - S ' - int # ' , J> = \JJ\. Orient
iS' and J7 so that the natural homeomorphisms S' —• S, JJ —• J* preserve
orientations. Then / ' = — dG' = dH'. Denote by F' the closure of
F-yjF"* and let h':dF'->Jf be defined by h'\Ki = h't\Ki (i = 1, •••,

n). Then A' is an orientation reversing homeomorphism. There is
an obvious embedding of P into Pr = F' U h*M'. Thus, if we can
prove that P ' can be embedded in some acyclic 3-manifold W, then
P can be embedded in W. Note that each component of G' has con-
nected boundary and that this implies that H' is connected. This
means that we have reduced our problem to the case when one of
G, H, say G, is connected. If we apply the procedure described
above to this situation, we reduce the problem to the case when /
is a separating simple closed curve in S.

Let us therefore assume that J c S is a separating simple closed
curve. Let A be a regular neighborhood of J in S. Denote by Mf

the 3-manifold obtained by attaching a 2-handle to M along A.
Obviously P can be embedded in ikΓ. By 3.7, M' is subacyclic and
therefore P can be embedded in some acyclic 3-manifold.

Case 2. Suppose that J is not homologous to 0 in S.

If J ~ 0 in M, then P certainly cannot be embedded in any
acyclic 3-manifold. Suppose that there exists an embedding i:P-^W
where W is an open acyclic 3-manifold. Let U be the closure of the
component of W — i(S) which contains i(int M) and let V be the
closure of the other component of W — i(S). Then i(J) bounds in
both U and V. But this contradicts 2.7 (1).

Now suppose that the homology class of J in M is equal to kx
for some integer k > 1 and some nonzero xeH^M). In this case
the image of x under HJJd) —• HJJP) is a nonzero element of order k
in J3Ί(P). Since 3.1 implies that a compact subpolyhedron of an
acyclic 3-manifold has free first homology group, P cannot be embedded
in any acyclic 3-manifold.

Finally suppose that J represents a basic element of HJJM).
Consider the Mayer-Vietoris sequence of (P; M, F) for reduced
homology:

0 > H2(M) > H2(P)

_L» Hί(P) > H0(J) > 0 .

It is not difficult to prove that a embeds H^J) as a direct summand
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into HAWQHJJF). Therefore, the homomorphism H2(P) -> H,(J) is
trivial and, as H^M) and HX{F) are free, the image of β is free.
It follows that H2(P) P* H2(M) and that H^P) ~ Im β φ H0(J) is free.

Identify F with f x O c f x / . Give Bd (F x J) the orientation
induced by the orientation of F and choose an orientation for S.
Extend h to an orientation reversing embedding g:(BdF) x I—>S
and construct V = (F x I) (J ,Λf. Then F is a compact, connected,
orientable 3-manifold containing P, and P is a deformation retract
of V. It follows that H2(V) ^ H2(M) and that i ϊ^F) is free. Sup-
pose that Bd M has m components. Then, by 3.1, H2(V) ^ H2{M) is
free of rank m — 1. This implies that Bd V has at most m com-
ponents. On the other hand, Bd V has at least as many components
as Bd M. Thus V has exactly m boundary components. Now it
follows from 3.1 that V is subacyclic. This concludes the proof of
3.2.
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