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It is proved that, from the viewpoint of ‘‘geometric”
homology theory, an arbitrary embedding of a closed surface
S in any 3-manifold with trivial first homology group looks
exactly like the standard embedding of S in the euclidean
3-space. A consequence; every compact subset of a 3-manifold
with trivial first homology group can be embedded in a
homology 3-sphere. Necessary and sufficient (homological)
conditions are given for a compact 3-manifold to be embed-
dable in some acyclic 3-manifold (or in some homology
3-sphere).

1. Definitions and preliminaries.

Mawifolds. We work in the PL category. Kach manifold is
supposed to have a fixed PL structure. If M is a manifold, then by
a submanifold of M or by a surface, simple closed curve, are, etc.,
in M we always mean a respective object contained in M as a sub-
polyhedron (in the chosen PL structure of M). All maps are assumed
to be PL. Our manifolds are never automatically assumed to be
without boundary, compact, connected, or orientable. However, by a
surface we mean a compact, connected, orientable 2-manifold. A
cube with m handles is a 3-manifold homeomorphic to a regular
neighborhood of a connected finite linear graph of Euler characteristic
1—nin E&.

We denote the interior of a manifold M by int M and the bound-
ary by Bd M. However, if M is oriented, then by oM we denote the
manifold Bd M oriented coherently with M. The symbol ¢ also
denotes the boundary in the homological sense. Let M be an oriented
manifold and P a codimension 0 submanifold of M. Whenever we
talk of P as an oriented manifold, we assume that P has the orien-
tation inherited from M, unless explicitly stated otherwise. If M is
an oriented manifold, then M with the opposite orientation is some-
times denoted by — M.

Homology. All homology and cohomology groups, cycles, chains,
ete., have integer coefficients. If z, 2z, are n-cycles in a space X,
then z, ~ 2, means “z, is homologous to z,”. A compact oriented
n-submanifold N of an m-manifold M generates a uniquely determined
PL mn-chain in M. This chain is a cycle if and only if N is a
closed manifold. We shall make no distinction in notation between
N and the n-chain it represents. If M is a manifold of dimension
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at least 2, then every element of H,(M) can be represented by an
oriented closed 1-manifold in int M. If M is a 8-manifold, if Jc M
is a closed oriented 1-manifold, and if J ~ 0 in M, then there exists
a compact oriented 2-manifold F in M such that J = 0F.

If X, Y are spaces and f: X— Y a map, then by f,. we denote
the homomorphism H,(X)— H,(Y) induced by f.

Let S be an oriented 2-manifold and #, y either two l-cycles in
S or two elements of H,(S). By sc(x,y) we denote the (integral)
intersection number of x and y. The following is well-known.

LEMMA 1.1. Let M be an oriented 3-manifold and let J, K be
closed oriented l-manifolds in oM. If J~K~0 in M, then
se(/, K) = 0.

A polyhedron X is acyclic if it is connected and has H,(X) =0
for n > 0. We will call X 1l-acyclic if it is connected and has
H (X) =0. Note that any 1l-acyclic manifold W is orientable. The
reason is that 7, (W) contains no subgroups of index 2; a subgroup
of index 2 would contain the commutator subgroup of =, (W), but
the commutator subgroup is the whole #,(W) since H(W) =0. A
homology n-sphere is an m-manifold whose homology is isomorphic to
the homology of the nm-sphere. An n-manifold will be called sub-
acycelic if it can be embedded in an acyclic n-manifold.

2-Manifolds. We give the definition of oriented piping (in dimen-
sion 2). Let S be a 2-manifold and J, KC S two disjoint oriented
simple closed curves. Let Ac S be an arc from a point xeJ to a
point ye K; let int Acint S — (JU K). Take a regular neighborhood
N of Ain S. The intersection NN J is a small arc J,CJ containing
2 in its interior. Similarly, NN K is an arc K,C K with yeint K,.
Let D be the closure of the component of N — (J U K) which contains
int A. Then D is a disk and Bd D consists of J,, K,, and two “long”
arcs in Bd N. Suppose that D can be oriented coherently with both J,
and K,. Then the simple closed curve L = (JU KUBd D) —int (J,U K,)
can be oriented so that it induces in J — intJ, the same orientation
as J and in K — int K, the same orientation as K. If this is the
case, we say that the oriented simple closed curve L is obtained
from J U K by piping along A (or that L is obtained by piping J to
K or by piping together J and K). If we think of J, K, L as
l-cycles and of D as a 2-chain, then J + K — L = 0D. Hence L ~
J + K. The following lemma is obvious.

LeEMMA 1.2. If S is an oriented surface, them any two com-
ponents J and K of 0S can be piped together along any properly
embedded arec A S which joins J and K.



SUBMANIFOLDS OF ACYCLIC 3-MANIFOLDS 245

For a compact 2-manifold S we define the genus of S to be the
sum of genera of the components of S.

Groups. If G and H are groups, then G =~ H means “G is
isomorphic to H”. Since we deal only with abelian groups we use
the term “free group” in the meaning “free abelian group”. Let G
be a free (abelian) group. We will call xe€ G a basic element of G
if # is a member of some basis of G. Using standard facts we can
prove that x is basic if and only if the subgroup of G generated by
2 is a nonzero direct summand of G, or, if and only if « is not equal
to ny for any integer » > 1 and any y e G.

Matrices. If A is any matrix, let A" denote the transposed of
A. For any positive integer n we denote by I, and O, the identity
and zero m X m matrices, respectively. If n = 2m, let J, be the

matrix
0,1
J, = N
{:— Im Om:l

For any two integers ¢,7 let J;; denote the Kronecker symbol:
d;; =1 if 1 =7 and 0,; = 0 otherwise.

2. Surfaces in l-acyclic 3-manifolds. The main result of this
section is the following theorem, which is (together with 2.13 and
2.14) an extension of Theorem 32.3 in [2]. Note that if S is a closed
2-manifold in the interior of a 1l-acyclic 3-manifold W, then S
separates W. The reason is that every simple closed curve in W
bounds modulo 2 in W and has therefore zero intersection number
modulo 2 with S. Also, since W is orientable and S separates W, S
is necessarily orientable.

THEOREM 2.1. Let W be a l-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the two components of W — S. Then there exist oriented simple
closed curves J,, +++,J,, K,, +++, K, in S such that

(1) J; and K, intersect transversely at a single point, for each
wand NI, =J,NK;,=K,NK; =@ tf ©t +7;

(2) J;~0in Uand K;~0in V (=1, +++,9);

(8) the homology classes of J,, +++,J, form a free basis of H,(V)
and the homology classes of K,, «++, K, form a free basis of H,(U).

The situation described by this theorem reminds us of the
standard embedding of S in E? in fact, the only difference is that
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in the latter case we can choose J,, -+, J, K|, +++, K, so that each
J; bounds a disk (not only an orientable surface) in U and each K
bounds a disk in V.

We postpone the proof of 2.1, which will occupy most of this
section, and first prove two consequences of 2.1.

THEOREM 2.2. Let W be a l-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the two components of W — S. Let V' be a cube with g handles.
Then there exists a homeomorphism h: BA V' — S such that

(1) the 8-manifold W' =V’ U, U is l-acyclic;

(2) if J 1s a closed oriented l-mawnifold in S, then J ~ 0 in
V if and only if h7'(J) ~ 0 in V.

Proof. Assume 2.1. Think of V' as embedded in E?% let S’ =
BdV’  and U’ = E®*—intV'. Let J, K; (t=1,+++,9) be oriented
simple closed curves in S satisfying the conclusions of 2.1. Let
J!, K/ < S’ have analogous meaning (with respect to U’ and V).
Then there exists a homeomorphism %:S’-- S which maps each J/
onto J; and each K] onto K; (not necessarily in an orientation pre-
serving way). Let W' =V’ U, U.

As is well-known, (1) of 2.1 implies that the homology classes of
Jy, oo, J,, K, -+, K, form a basis of H/(S). The homology classes
of K,, ---, K, belong to the kernel of H,/(S)— H,(V); it follows from
2.1 (3) that no nontrivial linear combination of the J; is homologous
to 0 in V. Therefore, a l-cycle in S bounds in V if and only if it
is homologous in S to a linear combination of K, .-+, K,. Similarly,
a l-cycle in S’ bounds in V' if and only if it is homologous in S’
to a linear combination of K/, .-+, K;. Therefore, (2) of 2.2 follows
directly from the choice of A.

To prove (1) of 2.2 choose an arbitrary xc H(W'). We have to
show that & = 0. Since S is connected and separates W', 2 can be
represented by a sum 2z, + 2z, where z, is a l-cycle in U and z, is a
l-cycle in V'. By 2.1 (3), 2z, is homologous in U to a linear combi-
nation of K, ---, K, and 2, is homologous in ¥’ to a linear combi-
nation of J/, ---,J,. Since the sewing map k& was chosen so that
each J! ~0in U and each K, ~0in V', 2, + 2, ~0 in W'

THEOREM 2.3. If C is a compact subset of a l-acyclic 3-manifold
W, then C can be embedded in a homology 3-sphere (and thus also
in an acyclic 3-manifold unless C is itself a homology 3-sphere).

Proof. We may assume that Ccint W. Cover C by a compact
connected 3-submanifold M of int W. Take a boundary component S
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of M. Denote by U and V the closures of the components of W — S;
let U be the one which contains M. By 2.2 we can replace V by a
cube with handles, V’, in such a way that W' = UU V'’ is still
l-acyclic. If we perform a similar surgery along each boundary
component of M, we end up with M embedded in a closed l-acyclic
3-manifold, ¥ say. It follows from Poincaré duality that 3 is a
homology 8-sphere. If C is not a closed 3-manifold, then there is a
point pe X — C and hence C lies in the acyclic 3-manifold 3 — p.
Before we start proving Theorem 2.1 we establish some homo-
logical properties of surfaces. Let S be a closed oriented surface
and let a, ---, a,€ H(S). The intersection nmumber matriz or the
sc-matriz of the ordered n-tuple (a,, -, a,) is the nxXn matrix A =
(a;;), where a;; = sc (a;, a;). Obviously A is skew-symmetric. The
following lemma is proved by a straightforward computation.

LEMMA 2.4. Let S be a closed oriented surface and a,, +-, a,,
b, +++,b,c H(S). Let A be the sc-matriz of (a, +-+,a,) and B the
sc-matrix of (b, +++, b,). Suppose that there exists an m X n matrix
T with integer entries such that the column vector (a,, +--, a,) s the
product of T with the column vector (b, +++,b,). Then A = TBT'.

LEMMA 2.5. Let S be a closed oriented surface of genus g. Let
ay, 200, 0, € H(S) and let A be the sc-matriz of (a, «++, ay,). Then
{a,, +«+, ay,} is a basis of H,(S) if and only if det A = 1.

Proof. It is well-known that H,(S) is free of rank 2¢ and that
it has a basis {b, -+, b,,} whose sc-matrix is J,,. There exists a
29 X 2¢9 matrix T with integer entries such that (a, ---, a,,)’ is the
product of T with (b, ++-, by,)’. From 2.4 we obtain det A = (det T)%.
Obviously {a,, ++-, a;,} is a basis of H,(S) if and only if T has an
inverse with integer entries, and this is true if and only if det T =
+1. The lemma follows.

COROLLARY 2.6. Let S be a closed surface of genus g. Let A
be a subgroup of H/(S) such that sc (z,y) = 0 for any x,yc A. Then
the rank of A is at most g.

Proof. Let r be the rank of A. There exists a basis {a,, ---, a,}
of A, a basis {b, -, by} of H,(S), and positive integers k,, «--, k,
such that a; = kb, ¢ =1, -+-, 7). Obviously sc(b;, b;) =0 if 7,5 < r.
Therefore B, the sc-matrix of (b, ---, b,,), contains a zero r x r
block. If r > g, then det B = 0; but this is impossible by 2.5.

The next proposition is an algebraic version of Theorem 2.1.
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PROPOSITION 2.7. Let W be a 1-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the components of W — S and by i:S— U, j: S—V the inclusions.
Let A =Kert,, B=Kerj,. Then

(1) H(S) =A@ B and either of A, B has rank g;

(2) .| B:B— H((U) and j.|A: A— H,(V) are isomorphisms;

(3) if x,yeH(S) are either both in A or both in B, then
sc(x,y) = 0.

Proof. Consider the Mayer-Vietoris sequence of (W; U, V):

a

» H(S) — H(U) @ H(V)— H, (W)—> --- .

Since H(W) = 0, a is an epimorphism. We will show that it is also
one-to-one. Recall that & is defined by a(z) = (i.(x), — j.«(x)). Take
an rcKera = AN B. Represent & by a closed oriented 1-manifold
Jc S. Then J bounds compact, oriented, properly embedded 2-manifolds
G'cUand G'CcV. G=G'UG" is a closed orientable 2-manifold in
int W. Let G, +--, G, be the components of G and let G, = G NG,,
G=6G6"NnG,J,=JNG, =0G, =0G! (r=1,+--,n). To prove that
x = 0 it suffices to show that each J, bounds a compact oriented
2-submanifold of S.

G, separates W. Let M be the union of G, and a component of
int W — G,. Orient M so that oM = G, U (—G)). Let M’ =Mn U,
F=MnNnS. Then Bd M’'=F U G,. If we orient F so that oM’ =
(=F)U G, then 0F = 0G, = J,. We have thus shown that Kera =0
and therefore a is an isomorphism. This proves (2) and the first
part of (1) of our proposition. Obviously 1.1 implies (3), and (3)
together with 2.6 imply the second part of (1).

Now we start proving Theorem 2.1. In the first step we will
choose the homology classes for the simple closed curves which we
want to construct: a; will be the homology class of J;, b; of K;. We
work with a surface in limbo.

LEMMA 2.8. Let S be a closed oriented surface of genus g.
Suppose that the group H,(S) is represented as a direct sum AP B
so that sc (z, y) = 0 for any two elements =, y € H(S) which lie either
both in A or both in B. Then there exist bases {a,, ++-, a,} of A and
{b,, +++, b,} of B such that sc (a;, b;) = d;; for each i and j.

ADDENDUM 2.9. Let 0Zr=<g¢g and 0=<s=g. Suppose that
{a, +++,a,.} is a basis of a direct summand of A and {b, ++-, b,} is a
basis of a direct summand of B such that sc(a;, b;) = 0;; (1 =1, e+, 7}
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j=1,¢c¢,8). Then we can find ..., e+, g byyy, +++, b, such that
Ay, 2o, @y by, oo+, b, satisfy the conclusion of 2.8.

Proofs of 2.8 and 2.9. First note that 2.6 implies that A and B
have rank g. Assume that r=s. If r <g, choose any elements
a,y,, **+, a, such that {a,, ++-, a,, a,,,, -+, a,} is a basis of A. Then set

8
ai=a2—;80(a£, ba,, i1=r+1 0 g
=1

(if s =0, let a; = a}). Obviously a,, -+-, a, again form a basis of A
and sc(a;, b)) = 0;; for 1 <19, 1 <j=<s.

Let us first consider the case s = 0. Choose an arbitrary basis
{b}, «-+, b} of B. Let C be the sc-matrix of (a, -, a, b, <<+, b}).

Then
o[ 22]
-D 0,

where D is the g x g matrix whose (¢, j)-entry is sc (a;, b}). By 2.5,
det C = (det D)* = 1, therefore, D’ has an inverse U = (u;;) with integer
entries. Put

2.10 b= ugb, G=1,---,0).
Jj=1

T - [’v "ﬂ] .
o, U
Then, by 2.4, the sc-matrix of (a,, ---, a, b, <++, b,) is TCT' = J,,.
This is what we wished to have.
If s> 0 we work in the same way except that we do not start
with an arbitrary basis {b!, -+, b,} of B. Choose b,,,, --+, b € B such

that b, «--, b,, b/, +++, b, form a basis of B. Then set b; = b; for
1=1,+++,5 and

Let

b, = b;’—kzs‘,sc(ak, b)b, for i=s+1 +e0,g.
=1

Then {b], -+, b} is a basis of B and sc(a;, b} = d;; unless 7,7 > s.
This means that the matrices D and U, defined as above, have the

form
I, O I, 0
D = , U= ,
[0 E’} I:O V}
where E is a (g — s) X (g — s) matrix and V = (E’)™*. Therefore,
the defining formula 2.10 yields the a priori given b; for 1 =1, «--, s.
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Lemma 2.8 and its Addendum are proved.

We have chosen the homology classes of our future simple closed
curves J; and K,. Now we will show that the chosen homology
classes can really be represented by simple closed curves.

ProPOSITION 2.11. Let S be a closed surface and xe H(S).
Then there exist an oriented simple closed curve J C S and a positive
integer m such that x is the homology class of the l-cycle n.J.

This proposition obviously follows from.

LEMMA 2.12. Let S be a closed surface and KCS a closed
oriented 1-manifold. Then there exists a sequence KW, K® «.. K™
of closed oriented 1l-submanifolds of S such that

(1) K® =K;

(2) K" 4s obtained from K'Y either by omitting a component
of K which separates S or by piping together two components of
K? (1=1,+.-, m — 1);

(3) any two components of K™ are homologous in S.

Proof. We use induction on the number of components of K.
If K is connected, then there is nothing to prove. Suppose that
2.12 is true if K has less than % components (% = 2). Choose a
closed oriented 1-manifold K< S which has » components, say
K, +++, K,. Denote by T the 2-manifold obtained by cutting S along K,
and let p: T— S be the corresponding identification map. Let L, L,,
be the two components of p*(K,) (r =1, -+, n); orient them so that
» maps each of them onto K, in an orientation preserving way.

Case 1. Suppose that 7T has a component T, with connected
boundary; let for instance Bd T, = L,;. Then K, separates S. By
induction hypothesis, 2.12 holds for K’ = K — K,. It obviously
follows that 2.12 holds for K.

Case 2. Suppose that T has a component 7T, which has more
than two boundary components. Then T, can be oriented so that
two of its boundary components, say L,; and L,; are oriented
coherently with T,. By 1.2, L,; and L,; can be piped together along
any properly embedded arc Ac T,. We claim that » == s. Indeed,
S is obtained from T by sewing each L, to L, by an orientation
preserving homeomorphism and hence, if L, and L,, lie in the same
component of T and if T is given any orientation, one of L,, L, is
oriented coherently and the other incoherently with 7. It follows
that we can pipe K, to K, along the arc p(4). Denote by K, the
oriented simple closed curve obtained by this piping. By induction
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hypothesis, 2.12 holds for K’ = (K — K, — K,) U K/, hence it holds
for K.

Case 3. Finally we consider the case when each component of
T is bounded by exactly two simple closed curves. If some com-
ponent of T can be oriented coherently with both its boundary com-
ponents, then we prove as in Case 2 that 2.12 holds for K. Suppose
that no component of T can be oriented coherently with its boundary.
Obviously T has % components, say T, ---, T,. Let S;= p(T)
(t=1, -+, n). Since n >1, no S; is a closed surface and therefore
each S; is bounded by two components of K. We may assume that
the numbering has been chosen so that BdS; = K, UK., ¢ =1, -+,
n— 1) and BdS, = K, U K,. Since no T, can be oriented coherently
with its boundary, the same holds for S;. This means that each S;
can be oriented so that oS, = (-K)UK;, (¢=1,---,n—1). It
follows that K, ~ K, ~ .-+ ~ K, in S. This concludes the proof of
2.12.

Theorem 2.1 follows from 2.7 and the following proposition.

PROPOSITION 2.13. Let S be a closed oriented surface of genus g.
Suppose that H,(S) is represented as a direct sum A @ B so that
sc(x, y) = 0 for any «, y e H,(S) that lie either both in A or both in
B. Then there exist oriented simple closed curves J,, K; im S
(it=1, -+, 9) such that

(1) for each i,J;N K; is a single point and sc(J;, K;) =1; if
1% 7, then J;NJ; =J;NK; = K;NK; = @

(2) the homology classes of J,, +++,J, form a basis of A and
the homology classes of K,, +++, K, form a basis of B.

ADDENDUM 2.14. Suppose that we are given elements a,, +++, a, €
A b, -+, b,eB (01 =g, 05§ <¢g) and oriented simple closed
curves J,, eoe,J, K, oo K,.CS 0ZrZv, 0Ls<s) such that
the following conditions are satisfied:

(i) 4 1< min(r,s), J; N K; is a single point; if i+ 4, then
SN, =9, iNK; =g, K,NK;=@ (each of these equalities 1s
satisfied for all pairs i, 7 for which it makes sense);

(ii) a; s the homology class of J, and b; is the homology class
of K; (i=1,e00,7; =1, 04 5);

(ii1) {ai, +++,a,.} is a basis of a direct summand of A and
{b,, «++, b} is a basis of a direct summand of B;

(iv) sc(a;, b)) =06;; (1 =1, ««+, 9;5 =1, +-+,8). Then there exist
ortented simple closed curves J,.y, -+, J, K, -+, K, such that J,
represents a;, (1 =1 + 1, ««+, ), K; represents b; (j =s+ 1, -+, ¢),
and J, +e+,J, K, «++, K, satisfy the conclusions of 2.13.
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REMARK. It is not difficult to show that if .J,, .-, J, are disjoint
oriented simple closed curves in S such that S — (J;U -~ UJ,) is
connected, then the homology classes of these curves freely generate
a direct summand of H,(S). Therefore, if v = r and & = s, we can
replace the condition (iii) above by: a;,€ 4, b;e€ B, and S— (J,U «++ UJ,),
S— (K,U +++ U K,) are connected.

In the proof of 2.13 and 2.14 we shall need the following three
lemmas. The proofs of 2.15 and 2.17 are easy and we omit them.

LEMMA 2.15. Let S be a surface, JC S an oriented simple
closed curve, and L C S an oriented closed 1-manifold. Orient S so
that n = sc(J, L) = 0. Then L is homologous to an oriented closed
1-manifold K< S such that J N K contains exactly n points.

The K of 2.15 may have to have more components than L. On
the other hand, the following lemma is valid.

LEMMA 2.16. Let S be an oriented surface, J Cint S an oriented
simple closed curve, and L Cint S an oriented closed 1-manifold such
that se (J, L) = 1. Then L is homologous to an oriented simple closed
curve K S such that J N K contains exactly 1 point.

Proof. By 2.15 we may assume that J N L has only one point.
We will prove the lemma by induction on the number of components
of L. If this number is 1, we can take K = L. Suppose that 2.16
is true if L has at most % components (n = 1). Take an L with
# + 1 components, say L, L,, +++, L,; let L, be the component which
intersects J.

Denote by T the 2-manifold obtained by cutting S along all
components of L and let p: T— S be the corresponding identification
map. Let L;, L} be the two boundary components of T composing
p L) ¢=0,1,+++,m). Orient L; and LY so that p» maps each of
them onto L; in an orientation preserving way. Obviously p™(J) is
an arc connecting L) and L;. Hence L} and L) lie in the same com-
ponent, T, say, of T. Clearly, Bd T, intersects p~*(L, — L,). Changing
the notation, if necessary, we can assume that L;c Bd 7,. Orient
T, coherently with L]. Then one of L}, L[ is oriented coherently
with T, and the other incoherently. Assume that L) is oriented
coherently with T,. Let Ac T, be a properly embedded arc which
misses p~'(J) and joins L} to L]. By 1.2 we can pipe L; to L] along
A. It follows that in S we can pipe L, to L, along the arc p(A4),
whose interior misses J U L. This piping changes L to a closed
oriented 1-manifold, homologous to L, which still intersects J at a
single point and has only % components. Therefore, the induction
hypothesis implies that 2.16 holds for L.
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LeMMA 2.17. Let S be a closed surface of genus g > 0 and let
J, KC 8 be two simple closed curves crossing each other at a single
point. Denote by T the surface obtained by cutting S along J and
K and let p: T— S be the corresponding identification map. Let S’
be the closed surface obtained by attaching a disk to T along the
boundary curve p~*(J U K) of T; let k: T— S’ be the inclusion. Then
k. ts an tsomorphism and p.k3': H(S') — H(S) maps H(S’) iso-
morphically onto the direct summand of H,(S) which consists of
homology classes of 1-cycles that have zero intersection numbers with
both J and K. Moreover, if we orient S and S’ so that p preserves
orientation, then p. k3 preserves intersection numbers.

Proofs of 2.13 and 2.14. By 2.8 and 2.9 we can assume that
' =8¢ =g. We also assume that » = s.

The proof is by induction on the genus of S. If this genus is
0, there is nothing to prove. Suppose that 2.13 and 2.14 are true if
the genus of S is less than g(g > 0) and consider a situation with
the genus of S equal to g.

If » > 0, then we already have J,. If » = 0, choose any oriented
simple closed curve representing a, (it follows from 2.11 that one
such exists) and call it J,. If s > 0 (and hence r > 0 by our assump-
tion), then we already have K,. Suppose that s = 0. Represent b,
by a closed oriented 1-manifold L. By 2.15 we can assume that
LNJ,;U-+--UJ,)=@. Applying 2.16 to S— (J,U -+ UJ,), J,, and
L we can find an oriented simple closed curve K, ~ L such that
J, N K, is a single point and K, N (J,U «++ UJ,) = .

We can therefore assume that we already have a “good” pair
J., K,, either preassigned or constructed as described above. Define
T, p,S’, and k as in the statement of 2.17, with J, and K, taking
the roles of J and K, respectively. It follows from 2.17 that S,
9 =9—-1 A =kpi(4), B =kpi(B), a =kpi'(a) and b=
i) @=2,++4,9), Ji =kp™J;) and K; = kp™(K;) (i =2, -+, 15
j=2,++.,5) satisfy the hypotheses of 2.13 and 2.14. By induction
hypothesis we can represent each a! by an oriented simple closed
curve J; Ck(T) = S’ and each b} by an oriented simple closed curve
K/ ck(T)cS" G=r+1,+-,9; =8+ 1, -+, g) such that J;, ---,
J;, Kj, -+, K] satisfy (1) of 2.13. Let J; = pk™(J;), K; = pk™(K))
@G=r-+1ee,9;, 7=8+1,¢4¢,9) Then J, -+, J,, K,--- K,
satisfy the conclusions of 2.13 and 2.14.

We conclude this section with a proof of the following theorem.

THEOREM 2.18. Let U be a cube with g handles. Denote Bd U
by S and let i: S— U be the inclusion. Let {a, -+, a,} be any basis
of Keri,. Then we can represent each a, by an oriented simple
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closed curve J,C S (r =1, «++, g) such that J,, «++,J, bound disjoint
disks in U.

This result is implicitly contained in pp. 296-299 of [2]. But
perhaps it is worth while stating and proving it explicitly. Let us
first consider the following weaker lemma.

LeEMMA 2.19. Let U, S, and © be as in 2.18. Then every xz ¢
Ker i, can be represented by a l-cycle mJ where n is a positive
integer and J C S is an oriented simple closed curve which bounds a
disk in U.

Proof. We can assume that z = 0. Let {K|, ---, K,} be a collec-
tion of oriented simple closed curves in S which bound disjoint disks
in U and whose union does not separate S. Then the homology
classes of K,, ---, K, form a basis of Keri,. Therefore, there exist
integers n,, +++,n, such that the 1l-cycle n,K, + +++ + n,K, re-
presents x. This obviously implies that x can be represented by an
oriented closed 1-manifold K such that the components of K bound
disjoint disks in U. Therefore, 2.19 easily follows from 2.12 and the
following obvious lemma.

LEMMA 2.20. Let U be a 3-manifold and let L,, L, be ortented
stmple closed curves im Bd U bounding disjoint properly embedded
disks E, and E,, respectively, in U. Suppose that L, can be piped
to L, along an arc ACBd U and let L be the simple closed curve
obtatned by this piping. Let N be a mnetghborhood of A in U
containing the “pipe” L — (L, U L,). Then L bounds a properly em-
bedded disk EC U which is contained in E, U E, U N.

Proof of 2.18. Suppose that 2.18 is false and take the smallest
g for which 2.18 fails. By 2.19, ¢ > 1.

Embed U into E®. Let V= E®— int U and let 5: S— V be the
inclusion. Choose an orientation for S. It follows from 2.7, 2.8, and
2.9 that there exists a basis {b,, -+, b,} of Ker j, such that sc(a,, b,)=
0 (r,8=1,+++,g9). By 2.19 we can represent a, by an oriented
simple closed curve J, S which bounds a properly embedded disk
D,c U. Obviously U — D, is connected.

Represent a, by an oriented closed 1-manifold K, S and b, by
an oriented closed l-manifold L,.CS (r=2, +++, g); by 2.15 we may
assume that J,N K, =J, N L, = @. Choose compact, oriented, pro-
perly embedded 2-manifolds F,c U, G,CV such that oF, = K,, oG, =
L,. If F, intersects D,, we can put F, in general position with D,,
remove the part of F, which lies in a regular neighborhood of D,
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and then patch the resultant holes in F, by disjoint disks “parallel”
to D,. In this manner we can replace F, by another compact,
oriented, properly embedded 2-manifold in U such that it is bounded
by K, and misses D,. Therefore, we will assume that the originally
chosen F,, -.-, F, were already disjoint from D,.

Choose a regular neighborhood N of D, in E® and let U’ =
U—intN, VV=VUN, S =Bd U’ =BdV’'. Let 7 and j/ be the
inclusions of S’ in U’ and V', respectively. U’ is again a cube with
handles ([2], 6.2). Let T=SNS. Then § — int T consists of two
disjoint disks, which we denote by D, and D). Let J/ = Bd D],
J!” =BdD/. Orient J; and J so that J/ ~J, ~J/ in S. Let
a,, b, € H(S') be the homology classes of K,, L,, respectively (r =
2, +++,g9). Since K, bounds F, in U’ and L, bounds G, in V' we
have a, e Keril, b, ecKer j,. If we give S the orientation which on
T agrees with the chosen orientation of S, then sc (a), b;) =sc (K,, L,)=
0,s« Thus it follows from 2.5 that the a, and b, form a basis of
H,(S') and therefore, {a;, «+-, a,} is a basis of Ker ).

By supposition, 2.18 is true for cubes with g — 1 handles. Thus
there exist oriented simple closed curves J,, --+,J; .S’ and disjoint
properly embedded disks Dj +-., D, in U’ such that for each » the
following are true:

(a) J. is in the homology class a, and hence J, ~ K, in §';

(b) J.=BdD,.

Without loss of generality we can assume

(¢) J/cCint T.

Note that T'— (J; U -+ UJ;) is connected.

It is easy to see that (a) above implies that K, ~J, + n/J/ +
w!J! in T for some integers =., %.). Hence K,~J, + n,J, in S,
where %, = n. + n). We will therefore try to replace each J, + u,J,
by a homologous oriented simple closed curve bounding a disk in U.

Suppose that n, = 0. Let for instance #n, > 0. We can show,
by the same argument as twice before, that it is possible to pipe J;
to J; along an arc whose interior misses J, UJ, UJ, U --- UJ,. (If
n, < 0, we pipe J; to —J/.) By this piping we obtain an oriented
simple closed curve J,’; 2.20 implies that J,;” bounds a properly
embedded disk D) c U which is disjoint from D, D, -.., D;,. We
replace J; by J) and D; by D;. Now we have K, ~J; + myJ,,
where |m,| = |n,| — 1. It should now be clear how to finish the
proof of 2.18 by induction on the number |n,| + <<+ + |n,]|.

3. Compact 3-submanifolds of acyclic 3-manifolds. In this
section we will prove the following two theorems.

THEOREM 3.1. A compact connected 3-manifold M whose boundary
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has m components (m > 0) is subacyclic if and only if it satisfies
the following conditions (1), (2), and either (3) or (3”):

(1) M s orientable;

(2) H,(M) is free;

(3) Hy(M) is free of rank m — 1;

3"y H,(BdM)— H(M) is onto.

THEOREM 38.2. Let M be a compact, connected, subacyclic 3-mani-
fold and J a closed oriented 1-manifold lying in a boundary component
S of M. Let F be an oriented surface and h:oF —J an orientation
preserving homeomorphism. Then the polyhedron P = F U ,M can be
embedded in an acyclic 3-manifold if and only if J satisfies one of
the following two conditions.

(1) The homology class of J in M is a basic element of H,(M).

(2) There exist compact 2-submanifolds G, HC S such that
GUH=S, GNH=J, and there exists an orientation of S such
that 0G = —o0H = J.

The proof of 3.1 in one direction is quite easy. Suppose that M
lies in an open acyclic 3-manifold W. Then M is orientable. Let V
be the closure of W — M. The Mayer-Vietoris sequence of (W; M, V)
contains the following subsequence

0 —> H,(Bd M) — H,(M) @ H,(V) — 0.

It follows that H,(M) is free and that H,(Bd M) — H,(M) is onto.
The other direction of 3.1 will be proved by induction on m.
First we show that the conditions (8’) and (3”) of 3.1 are equivalent.

LEMMA 3.3. Let M be a compact connected 3-manifold with m
boundary components and suppose that (1) and (2) of 3.1 are satisfied.
Then 8) and (8") of 8.1 are equivalent and they imply that
H,(M, Bd M) ~ H (M) and that the following sequence is split exact:

0 — H,(M, Bd M) -2 H,(Bd M) —*> H,(M) — 0
(here 0, and i, are the homomorphisms from the homology sequence

of the pair (M, Bd M)).

Proof. Since H,(M) and H,(M) are free, duality and the Universal
Coefficient Theorem yield the following two relations
H(M,Bd M) ~ H*(M) ~ H(M), H(M,Bd M)~ H(M) ~ H(M) .

Consider the exact sequence for the reduced homology of the pair
(M, Bd M):
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. — H,(Bd M) — Hy,(M) —> H,(M, Bd M) —>
— H(Bd M) — H,(M) — H,(M, Bd M) — H,Bd M) — 0.

Suppose that H,(Bd M)— H,(M) is onto. Then H,(Bd M)~ H,M,
Bd M) ~ H, (M) and hence H,(M) is free of rank m — 1. Now suppose
that H,(M) is free of rank m — 1. Then H,(M, Bd M) — H,Bd M) is
an epimorphism of free groups of the same rank and thus it is
actually an isomorphism. It follows that H,(Bd M) — H,(M) is onto.

We conclude the proof of 3.3 by showing that (8’) of 3.1 implies
that 0,: H(M, Bd M) — H,(Bd M) is one-to-one. It suffices to show
that H,(Bd M) — H,(M) is onto, and this follows from the fact that
the image of H,(Bd M)— H,(M) is free of rank m — 1 (this is true
for any 3-manifold M which has exactly m compact orientable
boundary components) and that H,(M, Bd M) is torsion free.

Now we start proving the remaining direction of 3.1.

LEMMA 3.4. Let M be a compact connected 3-manifold having
precisely m boundary components and satisfying (1), (2), and (3') of
3.1. Suppose that there exists an oriented simple closed curve
K c Bd M such that the homology class of K in M is a basic element
of H(M). Then M can be embedded im a compact connected 3-
manifold M’ which has again m boundary components, again
satisfies (1), (2), and (3") of 3.1, and whose boundary has smaller
genus than Bd M.

Proof. Denote by S the component of Bd M which contains K
and let A be a regular neighborhood of X in S. Let M’ be the
3-manifold obtained by attaching a 2-handle H to M along A. Since
K does not separate S, M’ has exactly m boundary components and
Bd M’ has smaller genus than Bd M. Obviously M’ is compact, con-
nected, and orientable. By considering the Mayer-Vietoris sequence
of (M'; M, H) for reduced homology we can prove that H,(}M’) is free
and H,(M') ~ H,(M).

LEMMA 3.5. Theorem 3.1 is valid for m = 1.

Proof. Suppose that this is false. Among all 3-manifolds M
which are counterexamples to 8.1 for m = 1 choose one whose bound-
ary has the smallest genus. Because of 2.3, H,(M) is nontrivial.
Choose a basic element x ¢ H,(M). It follows from 3.1 (3”) and 2.11
that = can be represented by a simple closed curve K Bd M. But
then 3.4 yields a 3-manifold M’ which is a counterexample to 3.1 for
m =1 and whose boundary has smaller genus than Bd M. This
contradicts our choice of M.
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LEMMA 3.6. Theorem 3.1 is valid for m = 2.

Proof. Suppose that the lemma is false. Choose a 3-manifold
M which is a counterexample to 8.1 for m = 2 and whose boundary
has the smallest possible genus. Our plan is to find a simple closed
curve K Bd M representing a basic element of H,(M); as in 3.5
this will lead to a contradiction.

Let S and S” be the two components of Bd M, let ¢’ be the
genus of S’ and ¢g” the genus of S”, and let ¢:S8'"— M, ': 8" — M,
2:Bd M — M be inclusions. By 8.3, H, (M) has rank ¢’ + ¢” and
therefore ¢’ + ¢ > 0.

SuBLEMMA 1. Keri, = Keriy =

Proof. Suppose that e.g. Keri, = 0. Since H,(M) is free,
Ker 7, is a direct summand of H,(S"). Therefore, it follows from 2.11
that there exists a nonseparating oriented simple closed curve JC S
such that J ~0 in M. Let KC S be a simple closed curve inter-
secting J transversely at exactly one point. Choose an orientation
for M, orient Bd M coherently with M, and then orient K so that
sc(/J, K) = 1.

We claim that K represents a basic element of H,(M). Suppose
that for some oriented closed l-manifold L < M and for some positive
integer n, K is homologous to #L in M. Since M satisfies (3"”) of
3.1 we can assume that Lc Bd M. Then K — nL is a l-cycle in
Bd M, homologous to 0in M. By 1.1, 1—nsc(/, Ly=sc(J, K—nL)=
0. Hence » =1 and consequently K represents a basic element of
H,(M). As we know, this leads to a contradiction and hence our sup-
position above must be wrong. Sublemma 1 is proved.

Identify H,(Bd M) with H/(S") @ H(S"”) and let »': H,(Bd M) —
H(S"), »': H(Bd M) — H,(S") be natural projections.

SuBLEMMA 2. The compositions
P00 Hy(M,Bd M)— H(S), 00, H(M, Bd M) — H,(S")

are monomorphisms and hence ¢’ = ¢".

Proof. Let wxe Hy(M,Bd M) be such that p0,(x) =0. Then
11p"0,(x) = 1,00, (%) + 149”0, (%) = 1,0,(x) = 0. This equality and Sub-
lemma 1 imply that »”9.(x) = 0. Therefore, 3,(x) = 0 and hence, by
3.3, x = 0. Similarly we show that p"’d, is one-to-one.

By 3.3, H,(M, Bd M) has rank ¢’ + ¢"”. Since p’d, is one-to-one,
g + ¢" £ 2¢'; similarly, ¢’ + ¢” < 2¢”. Hence ¢’ = g".

Denote ¢’ = ¢” by g¢.
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SUBLEMMA 3. There exist oriented simple closed curves J, K C
Bd M, one lying in S and the other in S” and neither homologous
to 0 in Bd M, and there exists a positive integer r such that
J+ rK~0in M.

Proof. Choose a basis {al, ---, a;,} of H,(S’), a basis {b], «--, bj,}
of E' = p'0,H,(M, Bd M), and positive integers =], <+, n;, such that
b; =mnja; (j=1,+-+,29). Let ' be the greatest common divisor of
N, oo, Nige

Suppose that #' = 1. Then E’ contains a basic element of H,(S").
Indeed; suppose that no element of E’ is basic for H(S’). Then
there exists a prime ¢ such that E' C qH,(S) (see e.g. [1], 5.1.1).
Since n’ = 1 there is an s (1 < s < 2g) such that =} is not divisible
by q. Then, as a; is a basic element of H,(S"), b, = w.a, is not equal
to gx for any x e H,(S') and this contradicts our previous conclusion.
Thus there really exists a o ¢ E' which is a basic element of H,(S).
Let " = p"0,.(p'0,)"'(b') € H(S"). By Sublemma 2, " 0. It follows
from 2.11 that there exist oriented simple closed curves JC S,
Kc S” and a positive integer r such that J represents b and rK
represents b”. Since (V,d”) = d.(p'd,) (V') Keri,, J +rK ~0 in
M. Thus Sublemma 3 is true in this case.

Now suppose that n’ > 1. For each j let b = p"0,(p'0,)7'(b)) €
H,(S"); let af be the basic element of H,(S”) and =) the positive
integer such that b} = n}a;. Let »” be the greatest common divisor
of n',«--, ny. If " =1 we show as above that Sublemma 8 is
valid. Suppose that #” > 1. We will show that this leads to a
contradiction. Choose a prime divisor ¢ of #”. By 2.5 the deter-
minant of the intersection number matrix of (aj, ---, a;,) is equal to
1. Therefore, there exists an entry of this matrix, say sc(al, ai),
which is not divisible by ¢. Note that each pair (b}, bd}) lies in
Ker ¢,. Therefore, 1.1 implies that sc ((b., b)), (b, b)) = 0 and
hence sc (b}, b)) = —sc (b)), b)). Since the number =n)n;sc(a, ai) =
—nint sc(a, a’) is divisible by ¢ and sc (o), a;) is not, one of #, nl,
say m,, is divisible by ¢q. Let for instance =, = ¢k, n. = qk”. Put
a =ka, " =k"a. Then the basic element (p'9,)*(b}) of H,(M, Bd M)
is mapped by 9, to (b, b)) = q(a’, ¢’’). This contradicts the fact
that 0, embeds H,(M,Bd M) as a direct summand into H,(Bd M).
Sublemma 3 is proved.

We conclude the proof of 3.6 with

SUBLEMMA 4. K represents a basic element of H,(M).

Proof. Assume that J< S, KcS§”. Let ue H(S), ve H(S")
be the homology classes of J, K, respectively; let x = d3'(u, rv) ¢
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H,(M,Bd M). Since u is a basic element of H,(S), « is basic for
H,(M,Bd M). Let H,M,Bd M) =A@ B where A is the subgroup
generated by x. Let A’ be the subgroup of H,(S') generated by
u, A” the subgroup of H,(S”) generated by v, B’ the smallest direct
summand of H,(S’) containing p'0,(B), and B"” the smallest direct
summand of H,(S”) containing 9"0,(B). Then H,(S) = A" @ B’ and
H(S") = A" B".

We have to show that ¢//(v) = 7.(0, v) is a basic element of H,(M).
It follows from Sublemma 1 that 47(v) # 0. Suppose that there
exists an integer » > 1 and an element ze H,(M) such that {(v) =
nz. It follows from 3.3 that there exist elements ac H,(S), be
H(S"), ye Hy(M, Bd M) such that z = i.(a, b) and (rna, nb — v) = 0,(y).
Let a=au + a, b= pBv+ b, y = A& + ¥y, where a, 8, \ are integers
and a,e B, b,e B’, yc B. Then we have 0,(y) = N0.(®) + 0,(y,) or
(na, b — v) = Mu, rv) + 04+(¥,). Applying on both sides of this
equation the natural projection H,(Bd M) — A’ we obtain nau = \u;
projecting to A” yields (8 — 1)v = Mv. The former equation im-
plies that \ is divisible by %, which contradicts the latter equation.
Sublemma 4 and Lemma 3.6 are proved.

The following lemma is a special case of Theorem 3.2.

LeEMMA 3.7. Let M’ be a compact, connected, subacyclic 3-mani-
fold, S a boundary component of M’', and ACS a separating
annulus. Let M be the 3-manifold obtained by attaching a 2-handle
to M' along A. Then M is subacyclic.

Proof. Embed M’ in a homology 3-sphere Y. Let U be the
closure of the component of 3 — S which intersects M’. Denote by
V the 3-manifold obtained by attaching a 2-handle H to U along A.
Then there exists a natural embedding of M into V and therefore
in order to prove our lemma it suffices to show that V is sub-
acyclic. Obviously V is orientable. Since H,(U) = 0 (by the already
proved part of 3.1), the following is a section of the Mayer-Vietoris
sequence of (V; U, H) for reduced homology:

0 — Hy(V) — H\(A) — H(U) — H(V) — 0.

As A separates S the homomorphism H,(4A)— H(U) is trivial.
Hence H,(V)~ H,(A) and H(V)~ H,(U). Since BdV has two com-
ponents it follows from 3.6 that V is subacyeclic.

We conclude the proof of 3.1 by proving

LEMMA 3.8. Suppose that 3.1 holds for m <k (k> 2). Then
3.1 is true for m = k.
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Proof. Let M be a compact, connected 3-manifold whose boundary
has k components and which satisfies conditions (1), (2), and (3') of
3.1 (with m = k). Let J be a properly embedded arc in M whose
endpoints lie in different components of Bd M. Let N be a regular
neighborhood of J in M and let M’ be the closure of M — N. Then
M’ is a compact, connected, orientable 3-manifold with £ — 1 boundary
components. Let S be the component of Bd M’ which intersects
N. We can think of N as a 2-handle attached to M’ along the
annulus A = M’ N N, which separates S. By considering the Mayer-
Vietoris sequence of (M; M’, N) for reduced homology we can prove
that M’ satisfies (2) and (3') of 3.1 (with m = k —1). By the hypothesis
of the lemma this implies that M’ is subacyclic. Hence, by 3.7, M
is subacyeclic.

Proof of 3.2. We consider all possible situations with respect to
the homological properties of J in M. We divide these situations
in two larger groups. First we consider

Case 1. Suppose that J ~ 0 in S. In this case there exists a
unique pair of compact 2-submanifolds of S, say G, H, such that
GUH=S8, GNH=J. Indeed; choose a point #,¢ S —J and let G
be the closure of the set of all points in S — J that can be reached
from x, by some arc in S which misses J or crosses J an even num-
ber of times; let H=S — int G. If at least one of G, H is such
that it cannot be oriented coherently with J, then the polyhedron P
cannot be embedded in any acyclic 3-manifold. Suppose that e.g. G
cannot be oriented coherently with J. Then FUGCP is a non-
orientable closed 2-manifold and therefore, as observed in the beginning
of §2, FU G cannot be embedded in any acyclic 3-manifold.

Now suppose that both G and H can be oriented coherently with
J. Then there exists an orientation for S such that, for the induced
orientations in G and H, J = 0G = —0H. Give S this orientation.
Let G, -+-, G, be the components of G. For ¢=1, ..., n do the
following. Let K; = hrBdG;))cBdF. Choose a disk with holes
G G, such that Bd G} = J; U Bd G; where J; is a simple closed curve
in int G;. Similarly choose a disk with holes F;C F' such that Bd F =
K; U K; where K} is a simple closed curve in int F; let F7, ---, F,
be pairwise disjoint. Orient J; coherently with G; and K coherently
with F7.

Let C = Sx1, where I = [0,1], be an outer collar of M on S
and let M= MUC, S =Sx1cBdM (S x 0 is identified with S
in the natural way). Since F! is homeomorphic to G} there exists a
proper embedding #; of F} into G; x I< C such that &} | K, = h| K;
and ri(K!) = J, = J, x 1< S'. In particular, choose a function f;: F! —
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I such that fi(K;) =0, fi(K}) =1, fi(int F/) = int I; extend h|K; to
a homeomorphism #%;: F{ — G} and then set Zi(x) = (h(x), fi{x)) e Gi x I
(xe F).

Let H=HUUG) x1cS, G =8 —intH,J' =UJ;. Orient
S’ and J” so that the natural homeomorphisms S’ — S, J; —J; preserve
orientations. Then J’' = —0G = 0H’. Denote by F" the closure of
F — U F} and let #': 0F —J’' be defined by #' | K; =hi|K, (1 =1, «--,
n). Then &' is an orientation reversing homeomorphism. There is
an obvious embedding of P into P’ = F'U ;. M’. Thus, if we can
prove that P’ can be embedded in some acyclic 3-manifold W, then
P can be embedded in W. Note that each component of G’ has con-
nected boundary and that this implies that H’ is connected. This
means that we have reduced our problem to the case when one of
G, H, say G, is connected. If we apply the procedure described
above to this situation, we reduce the problem to the case when J
is a separating simple closed curve in S.

Let us therefore assume that JC S is a separating simple closed
curve. Let A be a regular neighborhood of J in S. Denote by M’
the 3-manifold obtained by attaching a 2-handle to M along A.
Obviously P can be embedded in M’. By 3.7, M’ is subacyclic and
therefore P can be embedded in some acyclic 3-manifold.

Case 2. Suppose that J is not homologous to 0 in S.

If J~0 in M, then P certainly cannot be embedded in any
acyclic 3-manifold. Suppose that there exists an embedding i: P— W
where W is an open acyclic 3-manifold. Let U be the closure of the
component of W — ¢(S) which contains 4(int M) and let V' be the
closure of the other component of W — #(S). Then ¢(J) bounds in
both U and V. But this contradicts 2.7 (1).

Now suppose that the homology class of J in M is equal to kx
for some integer &£ > 1 and some nonzero «¢€ H,(M). In this case
the image of x under H,(M)— H,(P) is a nonzero element of order k
in H,(P). Since 3.1 implies that a compact subpolyhedron of an
acyclic 3-manifold has free first homology group, P cannot be embedded
in any acyclic 3-manifold.

Finally suppose that J represents a basic element of H,(M).
Congider the Mayer-Vietoris sequence of (P; M, F) for reduced
homology:

0 —> Hy(M) — Hy(P) — H\(J) — H(M) @ H/(F)

2 H(P) — HJ)—0 .

It is not difficult to prove that a embeds H,(J) as a direct summand
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into H(M) @ H,(F). Therefore, the homomorphism H,(P)— H,(J) is
trivial and, as H(M) and H,(F') are free, the image of g is free.
It follows that H,(P) ~ H,(M) and that H(P) ~ Im 8 @ H,J) is free.

Identify F with FF x 0C F x I. Give Bd (F' x I) the orientation
induced by the orientation of F and choose an orientation for S.
Extend 2 to an orientation reversing embedding g: (Bd F) x I— S
and construct V= (F x I) U ,M. Then V is a compact, connected,
orientable 3-manifold containing P, and P is a deformation retract
of V. It follows that H,(V)~ Hy(M) and that H/(V) is free. Sup-
pose that Bd M has m components. Then, by 3.1, H(V)~ H,(M) is
free of rank m — 1. This implies that Bd V' has at most m com-
ponents. On the other hand, Bd V has at least as many components
as Bd M. Thus V has exactly m boundary components. Now it
follows from 3.1 that V is subacyeclic. This concludes the proof of
3.2.
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