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This paper is concerned with differential operators and
their adjoints induced in the Hilbert space .Z“%(w) by an
operator (1/w)l where [ is an nth order singular differential
operator and w is a weight. It is shown that weights may
be chosen and boundary conditions may be imposed so that
the structure of these operators is similar to that of regular
differential operators.

1. Preliminaries. Throughout ! will denote an operator of the
form,

(1.1) W) =y™ + S ouy™™

where each p, is an (n — k) times continuously differentiable complex
valued function on an interval (a, b). We allow a = — o andfor b =
co. The formal adjoint of I will be denoted by I*. Hence

@) = (= D + 3 (= D Hpa)

for all » times differentiable ¥ on (a, b).

If y is an (» — 1) times differentiable function then k(y) will
denote the vector valued function, column (y, ¥, ---, ¥*™), and if each
of Yy, ¥, ***, ¥, is an (n — 1) times differentiable function then K(y,,
«++, 4, will denote the matrix valued function whose (7,7) entry
is Yy for 1 < 14,5 < n.

% will denote the complex numbers, the space of all complex
7% X 1 column vectors will be denoted by %", and the space of all
complex % x n matrices will be denoted by .#Z". If M is a matrix
then M* will denote its conjugate transpose.

DerINITION 1.1. Let (®, -+, ?,) be a sequence of linearly inde-
pendent solutions to

1.2) lly)y =0 on (a,bd).

The statement that (4, ---, §,) is the adjoint of (®, +--, #,) means
that 6, is the complex conjugate of the (k, n) entry of the matrix
[K(®@,, +++, P)] " for E=1,2, +++ nm.

We shall make use of the following facts concerning adjoints of
fundamental systems of solutions to Eq. (1.2).
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266 PHILIP W. WALKER

LemmaA 1.2, Let (8, ++-,08,) be the adjoint of (P, +++,P,), @
sequence of linearly independent solutions of Eq. (1.2). Lett,e(a,b)
and let f:(a, b) — & be Lebesgue integrable on every compact subin-
terval of (a, b). It follows that

1.3) ly) = f a.e. on (a,bd)
if and only if
k(@)@ = K(Py, + -+, P)OKK(P,, + =+, P)(E)]"E(Y)(E)

(L) + [ 10,0, - 0001 (6)ds)

for all t in (a, b).

This follows from consideration of the standard vector matrix
formulation of Eq. (1.3) and from Eq. (3.2), p. 75 of [1].

LevMmA 1.8. Let @, and 8,k =1, «++, n, be as wn Lemma 1.2.
It follows that (0, ++-, 0,) is a linearly independent sequence of solu-
tions to

(1.5) Iy =0 on (a,bd).

See problem 19, p. 101 of [1] and Theorem 5, p. 38 of [5]. Note
that in the latter reference the formal adjoint differential operator is
defined without taking complex conjugates. The same is true in Ref.
[2] wherein on p. 69 in Corollary 3.8.2c we find justification for

LemMA 1.4, Let @, and g, be as in Lemma 1.2.
Then

[K(O,, ==+, O)]*PIK(Py, « o+, Pa)] = 1 on (a, b) .

Where I is the n x n identity matrixz and P is the concomitant matrix

of L.

See §3.7 of [2] or p. 285 of [1] (therein denoted B) for the
definition of P.

By a weight we mean a positive real valued continuous function.
If w is a weight on (a, b) then &*(w) will denote the Hilbert space

of all (equivalence classes of) Lebesgue measurable f: (a, b)) — &
b

satistying glb[ fPw< co. If f, ge.=*(w) then {f,g> = S fgw, and
WAl = VLS, e

DEFINITION 1.5. The statement that w is a compactifying weight
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for I means that all solutions to Eq. (1.2) and the all solutions to
Eq. (1.5) lie in &*(w).

Since the solution spaces of Egs. (1.2) and (1.3) are finite dimen-
sional spaces of continuous functions it follows that every operator !
has many compactifying weights. The reason for the terminology
is that operators induced in .&#*(w) by (1/w)l and certain boundary
conditions will have compact inverses.

The study of operators with a compactifying weight is in some
sense complementary to the study of those with an l-admissible weight
considered in [7].

2. Solutions of the eigenvalue equation. Our first theorem
shows that solutions to differential equations with a compactifying
weight behave in a manner similar to solutions of second order self-
adjoint equations of the limit-circle type. (See §2 p. 225 of [1].)

THEOREM 2.1. Let w be a compactifying weight for l. If fe
FHw) and veE (v may be real, even zero) them every solution to

2.3) Wy) = wiy + f) a.e. on (a,bd)
lies in Z*(w).

Proof. Suppose that y satisfies Eq. (2.1). Let ¢, (e, b) and let
(@, +++, P.) and (6, -+, 0, be as in Lemma 1.2. Inspection of the
first components of vector Eq. (1.4) shows that

5(O) = 20 + 3,200 || BEFE + \y@)u()ds

for all ¢te (a, b) where @ is a solution to Eq. (1.2). Thusfor¢, <t <b
it follows from the Cauchy-Schwartz inequality that

w1 = 120 + 3 @0 o171
+ M ([ 1809 Fueids) (] 106) Protsyds)
Thus
¢ \ 11/2
O = 0] + g0 {| 196 Fuleds)
for t, <t < b where u = || + >, [P.|- |01+ | £I| and
B EARNRTAR

Note that each of u and g is in &*w). Applying Theorem 1 of [4]
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with G(t) = ), and a(t) = B(t) = 1/2, we have that
[, 1y s < ¢ | a6 Pu)ds

for ¢, <t < b where ¢ = 2exp(2ilg|)). A similar argument shows
that for o <T=E

156 Pue)ds = o | luts) Fuids -

Thus y e F*(w).
The next theorem provides a method for specifying initial conditions
for the solutions of Eq. (2.1) at the endpoints of the interval (a, b).

THEOREM 2.2. Let w be a compactifying weight for 1, let fe &£*(w)
and let ne &. Let (P, -+, P,) be a linearly independent sequence of
solutions of Eq. (1.2) and let Y = K(®,, +++, P.). If y is a solution
to Eq. (2.1) then

Im Y7 ()k(y)(t) and  lim Y7 (0)k(y)(¢)

exist and are finite. Moreover, if ce€ & ™ then there is exactly one
solution y of FEq. (2.1) satisfying

2.2) lim Y (O)k(y)(t) = ¢,

and there is exactly one solution y of Fq. (2.1) satisfying
Iinbl Y t)k(y)t) = c.
t—

Proof. Let (6, +--,0,) be the adjoint of (@, ---, ®,) and let ¢, ¢
(a, ). From Eq. (1.4) it follows that if y satisfies Eq. (2.1) then

Y2()k(y)(t) = Y (k) (t)
+ [ w6 (@ + 6@, -+, 0.)6).17ds
for all ¢ in (a, b). Since each of 4, +--, 8,, f, and y (by Theorem 2.1)

is in .&*w) it follows that the limits indicated exist, and that
Eq. (2.2) will be satisfied if and only if

23) k@) = YE) e - [ w6 + 6O, - @)1 ds} -
This is just a standard initial condition for solutions of Eq. (2.1);

hence there is exactly one solution satisfying Eq. (2.3). The proof
of the last assertion of the theorem is analogous.
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3. Maximal and minimal operators. For each operator [/ and
each compactifying weight w, D denotes the set of all functions ¥ in
Z*(w) which have (on each compact subinterval of (a, b)) an absolutely
continuous (# — 1)st derivative and which have the property that
1/w)l(y) is in F*(w). L (the maximal operator) denotes the restriction
of (1/w)l to D. D* and L* are defined in the same may with [ replaced
by 1*.

Let (®,, ---, #,) be a linearly independent sequence of solutions
to Eq. (1.2), and let ¥ = K(®,, +++, ?,). D, denotes the set of all y
in D satisfying

3.1) Im Y=(Oky)(¢) = 0 = im Y™ @)k(y)(®) -

Note that D, is independent of the fundamental system (@, ---, ?,)
which is used. (See Theorem 2.3 p. 70 of [1].) L, (the minimal operator)
denotes the restriction of L to D,. D and L are defined in the
same way with Eq. (1.2), D, and L replaced respectively by Eq. (1.5),
D+, and L*.

The main result of this section is presented in the following
theorem. It is of interest to note that we are able, in the case of
a compactifying weight, to deleniate the minimal operator through
the boundary conditions (3.1); whereas in earlier treatments of similar
problems, even with symmetric operators with maximal deficiency
indices, (see §17 of [6] and § XIII. 2 of [3]). The minimal operator has
been viewed less succinctly as the closure of what would correspond
to the restriction of our operator L to function with compact support
interior to (a, b). (See Corollary 3.5.)

THEOREM 3.1. Let w be a compactifying weight for . Then L,
is a densely defined operator on F*w),
Ly =L" and (LY)*=1L,,
where = denotes the adjoint operator in ZF*(w).

The proof of this theorem will require the following lemmas, some
of which were motivated by the material in §17.8 of [6].

LEMMA 38.2. Let w be a compactifying weight for I and let fe
FHw). There is exactly one solution y to
(3.2) l(y) = wf a.e. on (a, b)

lying in D, if and only if f is orthogonal to all solutions of I*(y) = 0
on (a, b). Also &*(w) is the orthogonal direct sum of range of L,
and the null space of L*.
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Proof. Using the notation of Theorem 2.2, let y be the solution
of Eq. (3.2) satisfying

ltim Y (O)k(y)(E) =0 .
By Theorem 2.1, y is in &*w). Let =0, and ¢ = 0 in Eq. (2.3);

multiplying both sides of this equation by Y (¢), and taking the
limit as ¢,— b we see that y will also satisfy

Lim Y2 (@)k()(t) = 0 ,

hence be in D,, if and only if

0 = column ({f, 6.3, +++, <, 0.)) -

In view of Lemma 1.3 the first assertion is proved. Since the null
space of L* is of finite dimension, the Hilbert space *(w) is the
orthogonal direct sum of it and its orthogonal complement. We have
shown that this orthogonal complement is the range of L.

Lemma 1.4 and Theorem 2.2allow us to give a particularly
simple expression for Lagrange’s identity. Note that if w is a com-
pactifying weight for [ then it is also a compactifying weight for I*.
Hence by Theorem 2.2 the vectors z, and z, defined below do exist.

LeMMA 3.3. Let w be a compactifying weight for . Let (P, ++-,
®,) be a linearly independent sequence of solutions to Fq. (1.2) and
let (8, -++,0,) be the adjoint of this sequence. For each ye D and
ze Dt let

v. = im [K(®,, -+, 2)O] kW)
and

z. = lim [K(@, -++, 6,001 k=) ,

and let y, and z, be defined in the same way taking the limits at b
rather than at a.
It follows that if ye D and ze D' then

(Ly, 2y — <y, L2y = 21y, — 21, -
Proof. If a <a < B8 < b then
51Ny, s 1 \om
(o~ [
= 1wz - v
= {[k@)]*PE@)} |}
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where P is the concomitant matrix for [. (See pp. 86 and 285 of [1].)
In view of Lemma 1.4 this last expression is the same as

{[[K (0, -+, 0Nk K@), ==, P EW}E .
The conclusion to the lemma then follows by taking limits as g— b

and a— a.

LEMMA 3.4. If the hypotheses of Lemma 3.3 are satisfied and
each of ¢, and ¢, is in E" then there is a ye D satisfying

y. = ¢, and y, = ¢
and there is a ze D satisfying

Z,=¢ and 2z, = €.

Proof. We shall show that there is a we D such that u, = ¢, and
u, = 0. A similar argument would show that there is a ve D such
that v, = 0 and v, = ¢,; then y = u + v will satisfy the conclusion to
the lemma.

Let z; be the solution to {*(y) = 0 on (a, b) that

Zjq = €45

for j = 1,2, -+, n where e;; is the n x 1 matrix with (¢, j) entry 1
if 2 =7 and 0 otherwise. Since

[K(0,, =2+, 0.)] 7K (2, + -+, 24)

has the limit I (the = x n identity matrix) at a, it follows that
K(z,, -+, %,) is nonsingular at some (hence all points) point in (a, b).
Thus 2, »++, 2, are linearly independent and their Gram determinate
(computed with respect to the inner product of <#*(w)) is nonzero. In
view of this fact we may let f be the linear combination of 2, -, z,
such that

column (<f’ zl>y "t <f, zn>) = —¢C.

By Theorem 2.2 we may let u be the element in D such that
Lu= f and y, = 0. By Lemma 3.3 it follows that

<f) z5> = <Lu9 zi> = <’M, L+zj> - z;{aua ’

and since L*z; =0 for j=1,2,---, n and z,, = e;; we have that
u, = ¢,. The argument for the existence of the ze D* is similar.

Proof of Theorem 3.1. That D, is dense in <~*(w) follows from
the fact that D, contains all n times continuously differentiable func-
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tions with compact support interior to (a, b).

For the remainder of the proof we will adopt the notation of
Lemma 3.3.

If yeD, and ze D* then y, = 0 = y, hence by Lemma 3.3,

Ly, ) = Ly, z) =y, L*z) .

Thus L™ = Lg.

Suppose that ge L. Let h = L¥g and let z be any element of
D* satisfying 1*(2) = wh a.e. on (a, b). (See Theorem 2.1.) If ye D,
it follows from Lemma 3.3 that <y, ) = {y, L*2) = {Lyy, ) and it
follows from the definition of the adjoint operator that (v, k) = {v,
Ligy = {Lyy, 9>. Hence {Ly, z — g> = 0 for all ye D,. From Lemma
3.2 we have that <*(w) is the orthogonal direct sum of the range of
L, and the null space of L*. Thus z — ¢ (after modification on a set
of measure zero) is in the null space of L*. In particular z — ge D*
and since ze D* it follows that ge D*. Since L*g = L*z and Lz =
h = L}g it follows that L} < L*. Hence the fact that L¥ = L* has
been established.

From L} = L* we have that L;* = (L*)* and since A & A** for
any densely defined operator A it follows that L, & (L*)*.

Applying the part of Theorem 3.1 that has been proved with
l replaced by I+ we find that (L{)* = L. Since L; & L* implying
(LH* < (Li)* it follows that (L*)* & L. Thus if ye (L*)* then y¢
D and (L*)*y = Ly; and if ze D*, by definition of adjoint, we have

<y, Ltz)y = {(LH*y, 2
or
<y, L2y = Ly, 25 .
On the other hand, by Lemma 3.3 it follows that

Ly, z) = <y, L*z) + ziy, — ziy. .

Thus z}y, — z¥y, = 0 for all ze D*. Since by Lemma 3.4 there is a
ze D* such that z, and z, have any preassigned values it follows that
Y. = Yy, = 0. Since we already have ye D and (L*)*y = Ly it follows
that ye D, and (L*)*y = Ly. Thus (L*)* & L,. This completes the
proof of the fact that (L*)* = L,.

COROLLARY 3.5. The operator L, is closed in ZF*(w).

Proof. The adjoint of any densely defined operator is closed and
by Theorem 3.1,



ADJOINT BOUNDARY VALUE PROBLEMS 273
Li* = (L*)* = Ly .

4., Intermediate operators and their adjoints. In this section
we shall consider operators which lie between the maximal and minimal
operators and their adjoints. We shall continue to use the notation
developed in §3 and assume that all our operators are based on an
nth order operator [ with a compactifying weight. Furthermore, all
vectors Y., ¥,, Z., and z, are to be formed using an arbitrary but fixed
sequence (P, +++, ?,) (of linearly independent solutions to I(y) = 0)
and its adjoint. (See Lemma 3.3.)

If each of M and N is in _#"and B is the n X 2n matrix (M: N)
then D, will denote the set of all ye D such that

4.1) My, + Ny, =0
and D; will denote the set of all ze Dt such that
4.2) ziy =¢*M and zf = — ¢*N for some cec&".

Ly and Lj will denote the restrictions of L and L* to D, and Dj
respectively.

The following theorem shows that the boundary conditions 4.1
and 4.2 deleneate mutually adjoint operators in #*w).

THEOREM 4.1. If each of M and N is in _#Z" then (Lg)* = Ly
and (L§)* = Lg.

Proof. By Lemma 3.3, if ye D, and z¢ D} then

(4’3) <L8y: z> - <y} L;z> = Z;kyb - Z;(ya ’

and from 4.1 and 4.2 it follows that the right hand side of this
equation is zero. Thus Lj & Lj.

By its definition we have that L, & L, hence Lj & L{f so from
Theorem 3.1 we have that Li & L*. Thus Ljz = L*z for all z in
the domain of L,. Suppose now that z is in the domain of Lj. Then,
by definition of adjoint {Ly, 2> = {Lyy, z) = {y, L}, 2) = {y, L*z), for
all ¥ in D;. On the other hand, by Lemma 3.3 we have that

<Ly’ z> - <y, L+Z> = Z;kyb - Z:kaa .

Hence zjiy, — zFy, = 0 for all ye D,.

Or the vector | ‘z ‘: is orthogonal in &** (with respect to the standard
inner product) to the subspace of all vectors [Z‘Z] such that ye D,.
We denote this subspace by V. In view of Lemma 3.4 V is the set
of all vectors B‘] such that
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Mu+ Nv=290.

Therefore, another way to view V is that it is the orthogonal comple-

ment in & of the column space of [ N*]' Hence[_ z "] must be in
b

this column space or

[ Z“J M1 &
= o ",
—z N* c r some c &€

Thus condition 4.2 is satisfied and ze Di. We have shown then that
L}z = L*z for all z in the domain of L} and that this domain is a
subset of Df. Thus Li & Lj. This completes the proof of the first
assertion of the theorem.

Again conditions 4.1 and 4.2 imply that the right hand side
of equation 4.3 is zero when ye D, and ze Dj. Thus L < (Li)*.
Also from its definition L & Lj, hence (L$)* < (Li)*; so by Theorem
3.1 applied to I* we have that (L§)* < L. If y is in the domain of
(Lz)* then

Ly, 2y — {(Ls)*y, 2> = <y, Liz) = {y, L*2)
for all ze D{ and from Lemma 3.3
{Ly, 2y — <y, L*z) = z{y, — ziy. .

Thus ziy, — zXy, = 0 for all ze Dj or the vector [y“] is orthogonal

b
in &* to the subspace of all vectors [ j‘] such that ze Dj. We
_ b
denote this subspace by W. Again by Lemma 3.4 we conclude that

W is the set of all vectors [g] such that

u* =c¢*M and v* =c*N

for some ce &" or that W is the column space of the matrix [% :]

Since [g“] is orthogonal to W we have that My, + Ny, = 0. Thus

b
ye D, and we have completed the argument that (Di)* & D, and

from (L{)* & L we have that (L§)* & L. Thus (Lg)* = L.

The next theorem shows that boundary conditions of the type
4.2 can be expressed by conditions of the type 4.1 and conversely.

THEOREM 4.2. Suppose that M, Ne #" and that m 18 the column
rank of | _ Jﬂ\{* ] Let D be a 2n x (2n — m) matriz whose columns
form a basis in & for the orthogonal complement of the column

space of [_ %: ] and let P and Q be the n X (2n — m) matrices such
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that D = [5] It follows that ze D* satisfies condition 4.2 if and
only if

(4.4) P*z, + Q*z, =0,

and 1t follows that ye D satisfies condition 4.1 if and only if

y¥ =c¢*P* and yf= — c*Q* for some ceE".

Proof. ze D* satisfies 4.2 if and only if [ ] [ N*]c for S](‘);Ee
ce & ". This holds if and only if [z ] is in the column space of [ N*]
and this is equivalent to Z] being orthogonal to the orthogonal to
the orthogonal complement of the column space of [ %: . Eq. (4.9)
is simply another way of stating that [z:] is in the orthogonal com-

plement of the column space of D. The argument for the second
assertion of the theorem is similar.

5. Invertibility and Green’s functions. In this section we give
a necessary and sufficient condition for the operator Lj, defined in
§4, to be invertible and show how the inverse operator, when it
exists, may be expressed as an integral operator of the Hilbert-
Schmidt type.

THEOREM 5.1. Let M, Ne _#Z", let B= (M: N), and let Ly be as
wm §4. It follows that Ly, is tnvertible if and only if the matrix
M + N is nonsingular.

Proof. Since L, is linear it is invertible if and only if the only
solution to Lgzy = 0 is the zero function. L,y = 0 if and only if ¥
satisfies the boundary condition 4.1 and v is a linear combination of
the same sequence of solution (®,, -+, ®?,) used to construct y, and
Y. Thus Lpy = 0 if and only if

MIm K@, -+, PO K@, -+, 2)(D)]e
(5.1) + NIm [K(@,, -+, P)OI K@y, « -+, Pa)(D)]e = 0
or (M+ N)e=20
where ¢ is the vector in &* such that
Y= (P, o+, PaC.

Since Eq. 5.1 is satisfied only for ¢ = 0 if and only if M + N is non-
singular the theorem is proved.
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THEOREM 5.2. Let M, Ne _#", let B= (M: N), let Ly be as in
§4, and suppose that Ly is invertible. If fe &%w) then y<€ Dy and

Loy = f if and only if y(t) = SbG(t, 8) 7 (s)w(s)ds for all t (a, b) where

(P, + -, PONDM + N)TM[(6,, ---, 0,)()]*
Gt 5) = for a<s<t<b
’ — [Py, + =, PIONM + N)TN[(6,, «+-, 0.)(5)]*
for a<t<s<b

wherein (P, «++, P,) 18 a linearly independent sequence of solutions
to l(y) = 0 on (a,bd) and (0, ---, 8,) is its adjoint.

Proof. ye Dy and Lzy = f if and only if condition 4.1 holds
and l(y) = wf a.e. on (a,b). By Lemma 1.2 we see that this last
differential equation holds if and only if

[K(@,, - -+, P)EOI k@)
= {[K(@,, -+, PO kW)@

{10, -+, 0)O) Fy)ds]

whenever t, 7€ (¢, b). Using the fact that each 6, and f is in &*(w)
we may conclude that if l(y) = wf a.e. on (a, b) then

v = [K@, -+, 2)O1 K@)
= 1@, -+, )@ Fw(s)ds
and
¥ = [K(®, -+, 2) O] k@)
+ {10, -+, 0D Fw (s
for all ¢ in (a, b). Multiplying the first of these equations (on the

left) by M and the second by N and adding we see that if I(y) = f
a.e. on (a, b) and 4.1 is satisfied then

(M + MIK(@, -+, 2O K@)
2 =M |10, -+, 0. S Ow(s)ds
= N 10, -, 0O Fuw(eds -

Using the fact that M + N is nonsingular (see Theorem 5.1),
solving Eq. (5.2) for k(y)(t), and examining the first components of
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the resultant equation we see that the integral equation indicated in
the theorem is satisfied.

If the integral equation in the theorem is satisfied then differen-
tiating we find that

y®) = 3 P00 (w)
63 4 [0 2V O+ NML@, -, 01 Fwis)ds
— (1@, e, 2O+ NNIO, -+, 0 F (s

for all £ in (a, b). Returning to Definition 1.1 we see that >2_, P8,
is the (j + 1, n) entry of the n x n identity matrix. In case n =1
Eq. (5.2) is immediate from the integral equation of the theorem,
and in case n = 2 the last observation and continued differentiation
of Eq. (5.8) shows that Eq. (5.2) is satisfied. Taking the limits as
t—a and as t— b in Eq. (5.2) we find that

(5.4) My, + Ny, = [~ M(M + N)*N + N(M + N)"'M]|.7
where
b
=10, -+, )@ s
and adding and subtracting M(M + N)™'M in the term in brackets

on the right side of Eq. (5.4) we see that condition 4.1 is satisfied.
Returning to Eqg. (5.2), if we add and subtract

N1, -+, 0061 f uls)ds
on the right hand side we find that
EW)(®) = K@, -+, %)(t)[— (M + N)"N_7
+ {10, -+, 0)O1 FewEs]

for all ¢ in (a, b). Letting ¢, be a point in (a, b) and adding and
subtracting

L0, -, 0@ FOue)ds

in the term in brackets in the last equation we see that

k@O = K@, -+, 20 ¢ + | (@, -+, 261" Gw(s)ds |
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for all te (a, b) where c is a constant vector in °”. Thus by (a slight
modification of) Lemma 1.2 y is a solution to I(y) = wf a.e. on (a, b).
Using Theorem 2.1 we may now conclude that ye D, and Lgy = f.
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