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During the mid nineteen sixties, C. E. Aull presented a series
of papers in which he distinguished several different types of
paracompact subsets. Using these concepts, three classes of
filter bases are introduced and their convergence and other
properties are studied. A variety of characterizations of
paracompactness based on the existence of certain types of
these filter bases and z-filters are given. A paracompactification
construction involving the addition of limit points for one of the
classes of filter bases is presented in detail. Finally, properties
of the paracompactification are explored with some attention
given to its ring of continuous functions.

Generally, the notation of Gillman and Jerison [7], will be followed.
To avoid confusion when considering a property which could be associ-
ated with any one of several sets under consideration the set symbol
will be affixed before the property symbol.

Filter base classes. We begin with the definitions of the various
paracompact subsets which were introduced by Aull.

DEFINITION 1. A subset M of a topological space X is a-paracompact
if and only if given an X-open cover of M there is an X-open refinement
which covers M and is locally finite at every point # in X (denote by
X locally finite).

DEFINITION 2. A subset of X is g-paracompact if and only if it
is paracompact as a subspace of X.

DEFINITION 3. A subset E of X is o-paracompact if and only if
every X-open cover of E has an X-open X o¢-locally finite refinement
which covers E.

DEFINITION 4. An a-filter base (respectively g-filter base, o-filter
base) is a family & of nonempty zero sets satisfying:

(1) If Z is in &% then Z is not a-paracompact (respectively
[B-paracompact, o-paracompact), and

(2) If Uand V are in .&# then their intersection contains an
element of & .

In this section we wish to develop some properties of the three
classes of filter bases defined above. For the most part, the proofs
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are identical for all three types except for the change in terminology.
When such is the case we shall give the statement in all three forms,
but only prove the result for the a-paracompact case, leaving the
verifications of the others to the readers.

THEOREM 1. An a-filter base (respectively G-filter base, o-filter
base) on a locally paracompact space cannot converge. (For properties
of a locally paracompact space see [13].)

Proof. By definition a space is locally paracompact if and only if
every point has an a-paracompact neighborhood. No element of the
a-filter base can be contained in the a-paracompact neighborhood of
a point so the a-filter base can not converge.

THEOREM 2. If <Z is an a-filter base (respectively pB-filter base,
o-filter base), then there is a maximal a-filter base (respectively B-filter
base, o-filter base) which contains <Z.

Proof. This is a standard Zorn’s lemma argument and is omitted.

DEFINITION 5. Let X be a space, then .7 (X) (respectively <#(X),
(X)) is the family of all maximal a-filter bases (respectively g-filter
bases, o-filter bases).

THEOREM 3. If &7 isin 7 (X) (respectively (X)), (X)), then
any zero set which contains an element of & 1is an element of F.

Proof. Let % be an element of % which is contained in the
given zero set Z. Then Z cannot be a-paracompact because F' is not.
For any element B of &, we must have B N Z containing B N F which
contains an element of . Hence {2} U.&# is an a-filter base con-
taining &, which implies Z is an element of &

THEOREM 4. If F isin 7 (X) (respectively Z(X), &7 (X)), then
the intersection of two elements of & 1is an element of Z.

Proof. The result follows immediately from Theorem 3 and the
definition of an a-filter base.

As an immediate result of the last two theorems we have the
theorem below.

THEOREM 5. If & s in 7 (X) (respectively 7 (X), 7 (X)), then
F 18 a z-filter.

THEOREM 6. Amn a-filter base (respectively B-filter base, o-filter
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base) & is maximal if and only if every zero set Z, such that ZN F
18 not a-paracompact (respectively B-paracompact, o-paracompact) for
every F in &, is an element of Z.

Proof. Necessity. Suppose .&# is maximal and let Z be a zero
set such that ZN F is not a-paracompact for every F in #. Then
zZ ={S:S=FNZ Fin &#}U . is a family of non a-paracompact
zero sets. Now let S and S* be elements of Z. If both S and S*
are elements of &, then SN S* is in % and hence Z/. If either
one or both of S and S* is not in &, then SN S* has the form
FNF*NZ where F and F* are in .#. In this case £ = F'N F* is
in &, and EN Z is an element of Z¥. Therefore, % is an a-filter
base, and since XN Z is an element of %/, Z is in %Z. Since
contains the maximal a-filter base &% we must have % = Z.

Sufficiency. Let & satisfy the hypothesis, and let % be an
element of .7 (X) which contains .&#. If & is not %, then there is
a Zin zZz — . Since Z is maximal and contains &, we have ZN F
is not a-paracompact for every F in <. Hence, Z is in &, and &
must equal Z.

We shall show later that maximal a-filter bases (respectively g-filter
bases, o-filter bases) on a Hausdorff completely regular space are very
large in the sense that they are almost z-ultrafilters, being contained
in only one z-ultrafilter.

Paracompact spaces and filter bases. We now present a variety
of characterizations of paracompactness depending on the existence of
a-filter- bases, G-filter bases, o-filter bases, and z-ultrafilters with
a-paracompact elements. We continue our convention used in the last
section regarding the three types of paracompact subsets and the
statement and proof of theorems. For some of the results involving
B-filter bases we will have need for the following result.

THEOREM 7. If & 1is an a-filter base, let F ° be {F° in F : F°
18 a meighborhood of some element of F }. Then & 1s a B-filter
base.

Proof. By Theorem 1 in [4], if some element of & ° were gG-
paracompact, the element of # for which it is a neighborhood would
be a-paracompact.

THEOREM 8. Let X be a completely regular space. Then X 1is
paracompact if and only if there is mo free a-filter base (respectively ;
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B-filter base, o-filter base) on X. Also, X is paracompact if and only
if there is mo free maximal a-filter base (respectively G-filter base,
o-filter base) on X.

Proof. Necessity is obvious for all three cases.

Sufficiency. For the cases involving a-filter bases or o-filter bases
suppose X is not paracompact. Then there is an open cover & which
has no locally finite (respectively g-locally finite) refinement. Therefore,
if &* is a finite subfamily of 2, the union of elements of &* is not
X, and its complement is not a-paracompact (respectively o-paracompact).
Let <# = {F': F is the complement of the union of a finite subfamily
of £} and & = {Z in Z(X) : Z contains some F in <#}. An easy
calculation shows # to be an a-filter base (respectively o-filter base).
Since Z is a cover of X, we may use complete regularity to show that
& is free, and we are done.

For the case involving p-filter bases, we take the a-filter base &
obtained above, and use Theorem 7 to obtain the pB-filter base & °.
Since .&# is free, we may use complete regularity to show that & °
is free.

The last assertion follows from Theorem 2.

COROLLARY 8A. A completely regular space X is paracompact if
and only if every free z-filter has an a-paracompact (respectively
B-paracompact, o-paracompact) element.

Proof. The proof follows from Theorem 5.

COROLLARY 8B. Let X be a regular space. Then X is paracompact
if and only if there is no a-filter base (respectively B-filter base, o-filter
base) on X. If we drop the condition of regularity then we must drop
the case for o-filter bases in the conclusion.

Proof. In the proof of the theorem, we needed complete regularity
only to obtain & free, otherwise regularity sufficed, and regularity
is needed only for the o-filter base.

We note that for Corollary 8A results corresponding to Corollary
8B can be stated. If the space is locally paracompact and either regular
or Hausdorff a slightly nicer result is possible. We will need the
following results from [13].

THEOREM 9. A Hausdorf locally paracompact space is regular.
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THEOREM 10. Let E be an a-paracompact subset of a regular
(respectively Hausdroff) locally paracompact space and let G be any
open set containing E, then there is a closed a-paracompact neighbor-
hood of E contained in G.

THEOREM 11. If X is a regular (respectively Hausdorf) locally
paracompact space and A is an a-paracompact subset, then A is eom-
pletely separated from any disjornt closed set.

Proof. Let F be a closed set disjoint from A, then by Theorem
10 there is a closed a-paracompact neighborhood V of A which is
contained in X — F. The subspace V is normal since it is regular
and paracompact, hence there is a function g in C(V) such that
0= g() =<1 and ¢ is zero on A and one on V-int V. Define f taking
X into the closed unit interval by f|V =g and f[X-int V] =1.
Clearly f is continuous and completely separates 4 and F.

The Hausdorff case follows from Theorem 9.

THEOREM 12. If X is a regular (respectively Hausdorff) locally
paracompact space and F is in 7 (x), then given any a-paracompact
set A there is an F in & which is disjoint from A.

Proof. Let A and .&# be as in the hypothesis, and let V be a
closed a-paracompact neighborhood of A. For each F'in . &, the inter-
section of F and V is a-paracompact. Therefore, K = F N (X-int V)
is not a-paracompact. Since FE is disjoint from A, there are disjoint
zero set neighborhoods Z(A) and Z(E). By using Theorem 6, it is not
difficult to show Z{(E) is an element of #.

The Hausdorff case follows from Theorem 9.

COROLLARY 12A. If X is a regular (respectively Hausdorff) locally
paracompact space, then no maximal a-filter base has a cluster point.

THEOREM 13. A regular (respectively Hausdorf) locally para-
compact space X is paracompact if and only if every free z-ultrafilter
has an a-paracompact element.

Proof. For the nontrivial part, suppose that every free z-ultrafilter
has an a-paracompact element. Then no free z-ultrafilter can contain
a maximal a-filter base by Theorem 12. Hence, any maximal a-filter
base on X must be fixed. This is impossible because X is locally
paracompact. Hence, X has no maximal a-filter base and is para-
compact.
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THEOREM 14. If X is a regular (respectively Hausdorff) locally
paracompact space, .7 (X) and the family of all free z-ultrafilters with
no a-paracompact elements are identical.

Proof. Every such z-ultrafilter must be an element of .o/ (X).
Now suppose that & is in .97 (X). Then there is a free z-ultrafilter
% containing & and by Theorem 12 no element of % is a-paracompact.
Hence & equals %

Paracompactifications using filter bases. In this section we take
up the construction of paracompactifications obtained by adding limit
points to the various classes of filter bases discussed above.

DEFINITION 6. Let K (respectively K, K,) be an index set for the
maximal a-filter bases (respectively g-filter bases, o-filter bases) on
X, then define .&%(X) (respectively <Z(X), $%(X)) tobe {F,: k is in
K (respectively K,, K,) and .#, is a free maximal a-filter base (respec-
tively p-filter base, o-filter base)}. For each set G in X define K(G)
(respectively K,(G), K,(G)) to be {k:k is in K (respectively K,, K,) and
there is an F' in &, contained in G}.

To establish the desired topologies on the extensions of X the
following result is needed, its proof is obvious.

THEOREM 15. If G and H are arbitrary sets, then K(G) N K(H)
equals K(GN H) and similarly for K, and K,.

Using the previous result, it is a simple computation to obtain the
following.

THEOREM 16. Let #X ={y,:keK,y, is not in X}U X and
Z# ={H:H=GU{y,:k isin K(G)} where G is a cozero set}. Then
B is a base for a tepology on wX. For K, and K, we may define
n.X, B, and X, B, respectively with the analogous conclusion.

From now on we will be using results from Gillman and Jerison [7],
and hence will require all spaces to be Hausdorff and completely regular.
Let W (respectively W,, W,) be the subspace of 8X obtained by adding
to X all points p in gX — X for which the z-ultrafilter A? on X contains
a maximal a-filter base (respectively g-filter base, o-filter base). Denote
{A”:pis in W (respectively W,, W,)} by A(X) (respectively B(X), S(X)).

THEOREM 17. If 3 is in 7 (X) (respectively 7 (X), (X)) and
Ar is an element of A(X) (respectively B(X), S(X)) such that F, is
contained in A?, then F, converges to p.
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Proof. Since the zero set neighborhoods of a point in a Hausdorft
completely regular space are a base for its neighborhood system, it is
sufficient to show that every zero set neighborhood of p contains an
element of #,. Let V(p) be a zero set neighborhood of p, and let
V*(p) be a zero set neighborhood of p contained in the interior of V{(p).

Let EF = W-int,, V(p), since p is not in F there are disjoint zero
set neighborhoods of E and p, call them F(E) and F(p). Let U(p)
be the intersection of F(p) and V*(p). Then U(p) is a zero set neigh-
borhood of p, and U(p) is contained in int, V(p). Let Z(p) = V(p) N X,
Z¥(p) = Up)N X, and Z(E) = F(E)N X; then Z(p), Z*(p), and Z(E)
are zero sets in X. We also have Z(E)N Z(p) empty and
Z(p)UZE)=X. If pisin X, then it may be that Z(p) = V(p), or
Z*(p) = U(p), but all relations still hold.

Now suppose that Z(p) N F' is a-paracompact for some F in .#,.
We have that Z*(p) N F and Z(F) are disjoint zero sets, and because
Z*(p) N F must be in A2, Z(E) cannot be in .&#,. There is an F” in
&, such that F' N Z(E) is a-paracompact, but then

FFNF=(FNF)NZE)UF NF)N Zp)

which must be a-paracompact because components of the union are.
This is impossible since F' N F is in #;. Hence, Z(E) must be in
Z, or else Z(p) N F' is not a-paracompact, the former is impossible so
the latter is the case. Therefore, Z(p) is in .Z,.

The case for o-filter bases has only the terminology changed in
the above proof. The case for pg-filter bases rests upon the fact that
in a Hausdorffl completely regular space the union of two closed
B-paracompact sets is gS-paracompact, so that the above proof holds
with appropriate terminology changes.

COROLLARY 17A. If X is a Hausdorfl completely regular space,
there is a one-to-one correspondence between the filter bases in .7 (X)
(respectively Z#(X), (X)) and the z-ultrafilters containing them.

COROLLARY 17B. Ewvery element in 7 (X) (respectively % (X),
L (X)) comverges in W (respectively W,, W.).

If &, converges to p in W, denote &; by .F.m. The one-to-
one correspondence given by Corollary 17A illustrates the previously
mentioned fact that elements of .o7(X), &£ (X), and S(X) are
nearly z-ultrafilters, since in general, a z-filter is contained in many
z-ultrafilters.

THEOREM 18. Let U be the relative topology of the subspace W of
BX. The family &, = {H: H= G U {p: k(p) is in K(G)} where G is
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a cozero set of X} is a base for U. Analogous statements may be made
regarding W, and W,.

Proof. Let Z be in Z(X),G =X — Z, and H= W-cl, Z. If we
show H has the desired form, since {cl, Z:Z in Z(X)} is a base for
the closed sets in W, we will have the topology generated by #
contains 7.

Let ¢ be an element of W — X. Suppose that ¢ is in H, then
since &, converges to ¢, and H is a neighborhood of ¢ there is an
Fin &, such that F'is contained in H N X = G. Therefore, {k(q): q
is in H} is contained in K(G). Suppose ¢ is not in H. Then ¢ is in
cl, Z and by the construction of BX given in [7], Z is an element of
A’. Hence, since F' an element of &, implies that F' is in A7, we
must have F'N Z nonempty and no F in &, is contained in HN X = G.
Therefore, K(G) is contained in {k(q):q is in H} and they are equal.
Hence, H=GU{g:q is in H} = G U {q: k(¢) is in K(G)}.

To show that the topology generated by <% is contained in %,
we show that every set in <% is a member of Z. Let H=G U {p: k(p)
is in K(G)} be an element of <& If p is in H, then there exists an
F in &, such that F is contained in G, so that F N (X — g) is empty
and the zero set X — G cannot be an element of A?. Hence p is not
in cl, (X — @), and H is contained in W-cl, (X — G). If pis an element
of W— H,no F in ¥, isin G. Hence every F in .#,,, has nonvoid
intersection with X — G. Therefore, X — G is an element of A? and
p is not in W-cl (X — G), so that W-cl, (X — G) is contained in H.
Hence H= W — cl,(X — G) and H is an element of %.

COROLLARY 18A. The space nX (respectively . X, m,X) 1s homeo-
morphic to a subspace of BX, namely W (respectively W,, W,). Hence
X (respectively m X, 7,X) is a completely regular Hausdorff space.

Proof. This follows from Theorems 16, 17, and 18; identifying <Z
and <%, in the obvious manner.

We now commence a series of lemmas which lead to the result
that the extensions X, #, X, and 7,X are paracompact. The first two
are given simply for reference.

LEMMA 19. If & 4s a free z-filter on a completely regular
Housdorff space, then F° is also a free z-filter.

LEMMA 20. Let E be a dense subspace of a completely regular
Hausdorff space Y. Then, if F 1is a free z-filter on Y with each
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element having nonvoid interior, the trace of F on K is a free
z-filter.

LeMMA 21. If a X closed (respectively m X closed, m,X closed)
set F is contained in X, then F is X a-paracompact (respectively
B-paracompact, X o-paracompact).

Proof. Suppose that F' is not X a-paracompact. Then there is an
X open cover & which covers F and has no X locally finite refinement
which covers F. Hence, * = & U (X — F) covers X and has no
locally finite refinement which covers X. Therefore, & ={Zin Z(X):Z
contains the complement of the union of a finite subfamily of £ *} is
a free a-filter base on X, and so F' is contained in &, a member of
75(X). Hence {Zin Z(X): F is contained in Z} is contained in .7,
which implies ¢ is in ¢l., F' = F, and F is not contained in X.

The o-paracompact case is analogous with the appropriate changes
in terminology.

Now assume F’ is not g-paracompact, then # is not a-paracompact,
and there is a free a-filter base % on X such that &~ contains {Z in
Z(X) : Z contains F'}. For some z-ultrafilter A” and some &, in
(X)) we have

F'CF C Fun T A"

Note that while A” is an element of A(X) we cannot assume A7 is
in B(X), however this is the case, as we now show. If Z, is the
intersection of a zero set neighborhood of p with X, Z, contains an
element Z of &, in inty Z,. Hence Z, is not @-paracompact. If F
is an element of &7, let Z* be an element of . which is contained in
int; F', then

FNZointy(FNZ) = (inty F) N (inty Z,) > Z*N Z

and F'N Z, is not g-paracompact. Since the trace .#~ on the z-filter of
zero set neighborhoods of p is a z-filter on X, and since p is a cluster
point of 7, the family _#~ U & ° generates a B-filter base containing
& ° and converging to p. Hence there is a maximal g-filter base <Z
containing & and itself contained in A?. Therefore 47 is in B(X)
and p would be in cl. y F, which is a contradiction.

LEMMA 22. Let f be an element of C(X) which is bounded on the
complement of an a-paracompact (respectively closed B-paracompact,
closed o-paracompact) set A by a real number M, then there is an
extension = (respectively [, f") of f in C(@X) (respectively C(m,X),
C (7, X)) which is bounded on the remainder by M.
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Proof. Since any f in C(X) equals (f VV 0) + (f A 0), it is sufficient to
show the result for a function f = 0 satisfying the conditions in the
hypothesis. Now define g = (M + 1/2) A f, then ¢ is in C*(X), and
g restricted to X — A is equal to f restricted to X — A. Since g is in
C*(X), there is an extension ¢g" in C*(#X). Define f* by f~ restricted
to X is equal to f and f"(y.) = 9"(¥s)-

For each k, f*(y,) < M, since if ¢*(y,) = > M then the set
S =g~ — @ — m)/2, r+ (r— m)/2)] is an element of the neighbor-
hood system of y, in #X. Hence S must contain a non X «-para-
compact element Z of #,. But SN X is contained in A so that Z
would be X a-paracompact.

Now since r = g"(y,) < M, let

V(Ir):<,r_M+12/2_7°,7.+M+12/2—"r>.

Then g™ [V(r)] is a neighborhood of y, in #X. The neighborhood V(»)
is contained in the interval [0, M + 1/2], hence f~[V(r)] = g™ [V(r)].
Any neighborhood of » contained in V(r) is the preimage of a neighbor-
hood of y, under f*-. Hence if U(r) is a neighborhood of », then
there exists an ¢ neighborhood V.(r) such that V.r) is contained in
Ur) N V(r). The set f~[V.(r)] is in the neighborhood system of ¥,
in 7X so that f*[U(r)], which contains f*[V.(#)], is a neighborhood
of y,. Therefore, f* is continuous at y,.

LEMMA 23. Let F be an X a-paracompact (respectively o-para-
compact) set contained in a wX (respectively wX) closed nmeighborhood
V, which is contained in X. Then F is ©X a-paracompact (respectively
m,X o-paracompact).

Proof. Let ¥ be a X open cover of F, and let &* = {G*:G*
isequal to G N int, V, G an element of °}. Since V is X a-paracompact
by Lemma 21, K (int,V) is empty. Hence int;V = int.,V and £* in
both 7X and X open. We can now obtain an X locally finite is open
refinement of < * which has all of its elements contained in int., V.
Hence the refinement of * is 7#X open and wX locally finite, so F
is 7 X a-paracompact.

LEMMA 24. Let F be an X a-paracompact (respectively o-para-
compact) set with an X a-paracompact (respectively o-paracompact)
netghborhood. Then F is nX a-paracompact (respectively m,X o-para-
compact).

Proof. Let G be the X open set containing F' with cl, G being
X a-paracompact. In cl, G, F' and cl, G — G are closed disjoint sets.
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Since cly G is X a-paracompact and Hausdorff, it is a normal subspace
of X. Hence there are disjoint zero set neighborhoods Z, and Z, in
Z (cly G) such that F and cl, G — G are contained in the interior with
respect to cly G of Z, and Z, respectively. Let & be an element of
C(cly G) such that Z, =h" (1), Z, = h"(0), and 0 < h < 1.

Define f taking X into the closed unit interval by flcl, G =5
and f|(X — G) = 0. The function f is in C(X). If it is the case that
cly G — G is empty, we may immediately define fin C(X) by f[G] =1
and f[X — G] = 0.

Let Z;,={x: f(x) = 1/2}. Thenwehave FCint,Z,C Z,Cint,Z,C G.
The function f is bounded on the complement of Z, by 1/2, and Z, is
X a-paracompact. We apply Lemma 22 to get f*in C(#X) such that
f* is bounded on the remainder by 1/2. Hence Z, is in Z(zX) and is
a 7wX closed neighborhood of F.

THEOREM 25. 7wX (respectively m X, m,X) 1is paracompact.

Proof. If nX is not paracompact, there is a free maximal a-filter
base # on 7X Corollary 8C. By Theorem 5 & is a z-filter. Let & *
be the trace of the z-filter #° on X. Then & * is a free z-filter.

Suppose Z* is an element of & *, we wish to show that Z* is
not X a-paracompact. There exists a Zin & °, such that ZN X = Z*.
Let Z' be an element of & such that Z’ is contained in int.,Z. If
Z' is contained in X then Z’ is X a-paracompact by Lemma 21, and if
we assume Z* to be X a-paracompact then Z' is 7 X a-paracompact by
Lemma 24. Therefore, Z'N (zX — X) is not empty, but then
(int.»Z) N (X — X) is not empty. Foreachy,in (int.x2Z) N (X — X),
the int.,Z is a neighborhood of y,. Hence Z must contain an element
F of &,. Since Fis then contained in Z* also, Z* is not X a-para-
compact.

Since & * is an a-filter base on X, there is a maximal a-filter
base _#"* on X which contains & *, and since & * is free so is 4%
Hence _#* converges to some gy, in 7 X — X. Let Z* be the unique
z-ultrafilter on X containing _s"*. Let % be the z-filter on 7X
generated by {cl.,Z:Z is in % *}. The set of cluster points of %
contains y,, so there is a z-ultrafilter % on nX containing % and
converging to y,.

Since & 1is a free z-filter on 7X, it cannot be contained in the
convergent z-ultrafilter 2. Therefore, there is an E in .&# and an
E* in 77 which are disjoint. Hence E and E* have disjoint zero set
neighborhoods ¥V and V*. The zero set V is in % ° which implies
VN Xisin & * and V contains cl., (VN X) so Vis in Z. There-
fore, V and V* are both elements of %, which is absurd. We have
a contradiction and the proof for the space X is complete.
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The proof for the space 7, X requires only the appropriate termi-
nology changes in the above. For the space 7, X, we may use the fact
that g-paracompactness is a property which is dependent only on the
set, so the application of Lemma 24 is not necessary. Other than this
change the proof is analogous to that for mX.

COROLLARY 25A. The three paracompactifications are T, spaces.

The question as to the relation which exist among 7 X, 7, X, and
7,X is answered in the following.

THEOREM 26. The three paracompactifications constructed above
are tdentical.

Proof. Since all the paracompactifications are subsets of gX, we
need only show that for points in the remainder, the families of
z-ultrafilters are identical.

Let A” be a z-ultrafilter converging in #X — X with its associated
maximal a-filter base .&,,. Let V be a basic open set in 7X con-
taining p. Then there is an element F' of .#,,, contained in V' N X.
The set Z=X— (VN X) is a zero set of X. Since Z and F are
disjoint zero sets, they have disjoint zero set neighborhoods Z° and F°.
The set F°is an element of the g-filter base & },), and F" is contained
in VN X. Hence &Y, converges to p. We can then find a free
maximal g-filter base converging to p and contained in A?. Therefore,
A? is in B(X).

Now suppose A? is a z-ultrafilter on X converging to a point in
X — X with its associated maximal g-filter base .#;,. Now .#,.,,
is a free a-filter base which has a unique z-ultrafilter A” containing
it. Hence the free maximal «-filter base containing ., must be
contained in A?, and A” is in A(X). We have A(X) = B(X) and nX
is identical to =, X.

A similar argument established 7, X to be identical to 7,X.

THEOREM 27. A completely regular Hausdorff space X is locally
paracompact if and only if X is open in wX.

Proof. The proof of this is a straight forward argument and so
is omitted.

THEOREM 28. If X is a Hausdorff locally paracompact space, then
F is X a-paracompact if and only if cl.x F = F.

Proof. Necessity. If Fis X a-paracompact, then for each 7, in
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7X — X we may apply Theorem 11 to get a zero set Z, in #,° which
is disjoint from F. The set given by (inty Z,) U {Y;:J is in K (int; Z,)}
is a neighborhood of ¥, in #X and is disjoint from F.

Sufficiency. This follows from Lemma 21.

COROLLARY 28A. If X is a locally paracompact Hausdorff space,
and F is an X a-paracompact set, then F is X a-paracompact.

THEOREM 29. Let X be Hausdorff and completely regular, let G
be an open subset of X, and let G* = GU {y,: k is in K(G)}. Then
cl.y G = cl.; G*.

Proof. Clearly G is contained in G*, so that cl.; G is contained
in cl.y G*. If y, is in G*, then there is an F, in .#, such that F,
is contained in G. Since &, converges to ¥,, every neighborhood of
9, has nonvoid intersection with F), and hence G. Therefore, G* is
contained in cl.; G, and so cl., G* equals cl.; G.

THEOREM 30. Let vX be the Hewitt Realcompactification of X.
Then vX is contained in nX. (This result and the nmext require all
cardinals to be monmeasurable.)

Proof. We know vX is the smallest realcompactification of X.
Since 7 X is paracompact, it is realcompact and yX N 7 X is realcompact.
Hence v X must be contained in this intersection.

THEOREM 31. For a Hausdorff completely regular space X the
following are equivalent.

(1) =X 4s tdentical to vX.

(2) A(X) s identical to the family of real z-ultrafilters on X.

(8) For each f in C(X) and each F, in (X) there is an
element Z; of F, such that f is bounded on Z;.

Proof.

(1)=1(2) This is obvious.

(2)=1(3) If A(X) is identical with the family of real z-ultra-
filters on X, then every .&#, in .%(X) is contained in a unique
z-ultrafilter with c.i.p. If some f in C(X) is unbounded on every
element of .#,, then for every positive integer =, Z, = {x:|f(x)| = n}
has nonvoid intersection with every Z in .#,. Hence #,U{Z,:n =1,
2, --+} generates a z-filter which contains .&#; and does not have c.i.p.
This is a contradiction.

(83)=(1) Let #,, be an element of .o (X). We show that
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A? is real. Let f* be the Stone extension of f into the one-point-
compactification of the real numbers (see §7.5 of [7]). Then by
Theorems 5.7 and 7.6 in [7] we have f*(q) = <, since Z, is an element
of A? for each f in C(X). Hence A’ is real, 7X is contained in vX.

We shall continue to use f* to represent the Stone extension of
a function f in C(X) into the one-point-compactification of the real
numbers.

THEOREM 32. Let X be a Hausdorff completely regular space, and
let f be in C(X). Then there is a continuous extension f* in C(zX)
of f if and only if the z-filter f4(F.) ={Z, a zero set in the real
numbers: f[Z] is in F} converges, for every Z, in p(X). (For
properties of f* see §§4.12 and 10.17 of [7].)

Proof. Necessity. Since f~ is continuous, the filter generated by
the image of the neighborhood system of y, in #X converges. Now
Z, is a base for a filter % which contains the neighborhood system
of y, in #X. Therefore the filter generated by {S:S = f*[F] where
F is in .&,} converges to the real number r = f*(y,). Hence every
zero set neighborhood of » is an element of this filter. Since every
F in &, is contained in X, the filter generated by {S:S = f*[F], F
is in #;} equals the filter generated by {S:S = f[F], F is in Z}.
For each zero set neighborhood V(») of =, f*[V(r)] is a zero set
neighborhood of ¥,, so f*[V(r)]N X is in &,, and equals f[V(r)]
giving f¥<,) convergent.

Sufficiency. To show f has an extension to #X it is sufficient to
show that the limit of the filter generated by S = {f[XNV]:V is a
neighborhood of y, in 7.X} exists for every k in K. Let » be the limit
of f4(#;). Then if V(r) is any zero set neighborhood of », there is
a Z in f# %, which is contained in int V(r). Hence f-[Z] is in &,
so that f7[V(r)] contains an element of #,, and f(f[V(")]) = V(r) is
an element of S, and we are through.

DEFINITION 7. For a Hausdorff completely regular space X, define
C(X)={f in C(X): f*(p) = o for every p in zX}.

We note without proof that C~ is identical to {f in C(X):zX is
contained in y,;X} where v,X is the realcompact subspace of 8X equal
to {pin BX: f*(p) # ~}. Hence 71X = N{y,X:f isin C7}. (See 8B2
and 8B3 in [7].)

THEOREM 33. Let f be in C(X). Then f has an extension f* in
C(zX) iof and only if f is in C*(X).
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Proof. Necessity. If f has an extension f* in C(xX), then f* and
f* must agree on the dense subset X of #X. Both f* and f* may
be considered as functions into the one-point-compactification of the
real numbers. Hence both are defined for all of #X and must agree.
Since f*(p) = o~ for all p in 7X, neither is f*, and f is in C*(X).

Sufficitency. If f is in C*(X), f* is a real valued continuous ex-
tension of f to all of 7X.

COROLLARY 33A. The family C*(X) is a subring of C(X) and 1is
ssomorphic to C(xX).

THEOREM 34. Let f be an element of C(X). Then Z; = {p in
BX: f*(p) # =} is a zero set in BX.

Proof. Define g=|f|V 1. Then Z;,= Z, and it will suffice to
show the result for functions bounded away from zero and positive.
Assume f =1 and define 2 = 1/f then k is in C*(X) and has an
extension %% in C(B8X). The functions A? and h* are equal. Now
X1 (BX — Z(h#)) and 1/h*| (BX — Z(h*)) are both extensions of f and
must be equal. Hence Z; and Z(h#) are equal, for otherwise 2%f* would
equal 1 for some point in Z, or Z(h?).

THEOREM 35. If BX — wX is not emptly, it has carinality greater
than or equal to 2°.

Proof. Let f be in C°(X) and let Z, be nonvoid. Then Z; is
contained in BX — 7X. Since Z; intersects the closure of 7X but not
7X U X we apply Theorem 9.4 in [7] to get the result.

DEFINITION 8. A function f in C(X) bounded on the complement
of an X a-paracompact set is essentially bounded.

THEOREM 36. A function f in C(X) has an extension f*in C@X)
bounded on the remainder if and only if it is essentially bounded.

Proof. Necessity. If f in C(X) has the extension f* in C(zX)
with bound M on the remainder, then for each y, in the remainder
the set Vi(e) = f*(f(w.) — €/2, f(y,) + €/2)] is an open neighborhood
of y, for €e>0. The set 7 X— U{V,(e):y, isin 7X — X} is an X
a-paracompact set which has f bounded by M + ¢/2 on its complement.

Suffictency. This is simply Lemma 22.

THEOREM 37. If nX — X is pseudocompact, then the family of
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essentially bounded functions on X is C(X).

We wish to give some results now which present properties of
a-filter bases in relation to various other properties.

THEOREM 38. The maximal a-filter bases are prime 2-filters.
Proof. This is an easy computation and is omitted.

We recall that &, is the unique free a-filter base on X contained
in the z-ultrafilter Ac.

THEOREM 39. If Z,isin & (X), then F,, contains Z[07] (for
properties of 0¢ see 41, 7.12 — 7.15, TH in [7]).

Proof. Every prime ideal in C(X) is contained in a maximal ideal
M?, and containg an 07 for unique p. Z[.%.]is a prime ideal. Hence
Z[Z [ Zrw]] contains Z[07].

COROLLARY 39A. If X1is a P-space, then #,., = Z[0?] (for proper-
ties of P-spaces see 4J, K, L, 5P, and 7L in [7]).

COROLLARY 39B. If X is a P-space, then cl.yZ = Z for a-para-
compact Z.

THEOREM 40. Let %, be a free a-filter base such that the open
cover consisting of the complements of members of F, has no locally
finite open refinement which covers X. Then the intersection of any
subfamily F * of ., which has locally finite complements, is a
member of F,.

Proof. Let &, be an element of .%7(X), and let & be {G:G =
X—Z,7Zin #;}. Since £ has no locally finite refinement which
covers X, every locally finite subfamily &* of % must have
N{Z:Z=X—- G, G in £*} to be nonvoid. Let Z* be such an inter-
section. We show Z* to be in F,. If Z* is not in F,, then there is
an F in &, such that FFN Z* is a-paracompact. Then 5 = {G: G
isin &* or G = X — F} is an open locally finite refinement of Z.
There is an open locally finite refinement S#* of & which covers
FnZ* Then 57 U S7* is a locally finite open refinement of & which
covers X, and we have reached a contradiction.

THEOREM 41. Let X be a space such that for every #, in i (X),
the family {(G: G = X — Z, Z in Z,} has no open locally finite refine-
ment which covers X. Then for any paracompactification Y of X every
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Z, n 7 (X) must converge in Y.

Proof. Suppose that .7 in o7(X) does not converge in Y. Let
G ={F:F=cl,Z, Zin .#,}. Then since &, does not converge in Y,
{(G:G=y— F,Fin &} is a Y open cover of Y. Since Y is para-
compact, there is a Y open locally finite refinement £* = {G}:j isin
J} which covers Y. Then {G,;:G; = Gf N X, Gf in £*} is an X open
locally finite refinement of {G:G = X — Z, Z in #,} which covers X.

THEOREM 42. Let X be a space such that for every &, in w(X),
the family {(G: G = X — Z, Z in F,} has no open locally finite refine-
ment which covers X. Then if Y is any Hausdorff paracompactification
of X, there exists a continuous function f:7xX— Y that holds X
potntwise fized.

Proof. Define the function g: X— Y by g(x) = 2. Let g be the
Stone extension of g taking gX into BY and define X, = g-[Y]. Let
f=7|X, Then f is continuous, onto ¥, and holds X fixed. Since
Z, in 7,(X) must converge in Y to some point y, &, must converge
to some element in f (y). Therefore, X is contained in X,, and
f =Ff|nX is the desired function.

COROLLARY 42A. If Xis a space such that for every &, in S7x(X),
the family (G:G = X — Z, Z in F,} has no locally finite open refine-
ment which covers X, then wX is the smallest paracompactification
contained in BX.

THEOREM 43. Let X be dense in a Hausdor{l completely regular
extension Y such that all &, in x(X) converge in Y. Then Y
contains a paracompactification of X. Further, if Y — X consists only
of limit points of the &, in (X) then Y is paracompact.

Proof. Let f:X— Y be the identity map, let f be the Stone
extension of f into BY, and let X, = /- [Y]. If f,=f]| X, then f, is
a closed continuous extension of f onto Y, and f[X, — X] is contained
in Y- X. (See §§10.13 and 10.15 in [7].)

We show that X, contains #X. Let p be an element in X — X,
let y, be an element of Y such that A” converges to y, in Y, and let
y = f(p). Suppose that ¥ is not identical to ¥,. Then there are
disjoint open neighborhoods V(y) and V(y,) in Y. If V(p) = F[V®)],
G = f-[V(¥,)], then we must have V(p) N G empty. Since A’ converges
to y, there is a Z, in A that is contained in V{(y,), and hence G, since
f is the identity. But V(p) is a neighborhood of p in 7X, so that
there is an element Z, of A” contained in V(p). Hence Z, does not
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intersect Z, which is impossible so y, = %, and 7X is contained in X,.
The set f,[xX] contains X, and is g-paracompact in Y, since f, is
a closed continuous function. Therefore, f,[xX] is a paracompactifi-
cation of X contained in Y.
The second assertion follows, since if Y satisfies the given condition,
flzrX] =Y, and X, = nX.

THEOREM 44. Let X be a space such that for every &, in x(X),
the family {G: G = X — Z, Z in F,} has no open locally finite refine-
ment which covers X, and let X be dense in a Hausdorfl completely
regular extemsion Y. Then Y contains a paracompactification of X
if and only if Y — X contains a limit point for every %, in p(X).

Proof. The proof follows from Theorems 41 and 43.

THEOREM 45. If Y is a Hausdorff paracompactification of X such
that some Z, in H(X) does not converge in Y, then there is an X
locally finite partition of unity & contained in L5 ).

Proof. Suppose that &, is in .9(X) and does not converge in
Y. Then {cl, Z:Z is in #,} has void intersection and generates the
free z-filter ¥ * onY. Let € ={G:G=Y — Z,Z in &# *}. Then
& is an open cover of Y. Since Y is Hausdorff, there is a locally
finite partition of unity subordinate to &, call it &. If fis in &,
then Z,(f) contains some Z from .#.* Hence f| X is in Z3[#;], and
there is the subfamily & = {f | X:fisin &} of Z5[.#,] which is an
X locally finite partition of unity.

THEOREM 46. Fach 7, in 7x(X) has the property that the family
(G:G=X—Z, Z1isin F,} has no locally finite open refinement which
covers X only if Z7[F ] contains no locally finite partition of unity.

Proof. A locally finite partition of unity which is contained in
Z71.,] yields a locally finite open refinement of {G:G = X — Z, Zin
.} by cozero sets.

THEOREM 47. A space X is nonparacompact iof and only if for
each free z-filter & there is a family &* which consists of comple-
ments of elements of & and has no locally finite open refinement.

Proof. Necessity. Let &# be a free z-filter, and let & = {G;:J
is in J} be an open cover of X which has no open locally finite
refinement. For each z in X, let G, be an element of & which contains
2. Let Z be a zero set which contains x in its complement, and such
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that the complement of Z is contained in G,. For each z in X let Z,
be that element of . which contains z in its complement. Then the
family * ={X - F,:F,=ZU Z,, « in X} is the desired family of
open sets.

Sufficiency. This is immediate.

J. Van der Slot {12] and H. Herrlich ([8], [9], [10]) have done work
pertaining to extensions of spaces. If g is a property of topological
spaces a G-extension of X is a space YX containing a dense homeo-
morphic image of X and having property 8. A pB-extension vX of X
is maximal if for each continuous function f of X into a space Y
having property @ there is a continuous extension of f to all of vX.
A space X is g-regular if it is homeomorphic to a subspace of a space
which is the product of spaces each having property 8. The following
theorem is due to Van der Slot [12].

THEOREM 48. Let 8 be a property possessed by Hausdorff spaces.
Then a B-regular Hausdorff space has a maximal S-extension if and
only if B s closed hereditary and productive.

From the above theorem and the fact that paracompactness is not
productive we have the following:

THEOREM 49. A Hausdorff space X does not in general possess
a mazimal paracompactification.

It would be of interest to obtain a characterization of those spaces
X which have A (X) such that if F is in Ax(X) then {G:G =X — Z,
Z in F} has no locally finite open refinements. It would also be
interesting to know if it is true in general that zX is the smallest
paracompactification of X contained in gX.
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