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FREE LATTICE-ORDERED MODULES

A. BIGARD

The aim of this paper is to show that the theory of
free lattice-ordered groups developed by E.C. Weinberg in
the abelian case can be generalized to modules over a totally
ordered Ore domain A. The main result is that for every
torsion-free ordered A-module }, there exists a free f-module
over M. The generalization given will be seen to be, in a
certain sense, the best possible.

All rings and modules considered will be assumed to be unital.
Let A be a partially ordered ring and A, its order. If M is a left
A-module, we say that P < M is an order on M if:

P+P<c P, AL PSP, and PN —P = {0}. If such a P is given,
we say that M is a partially ordered (or ordered) module. If P is
a total order on M, that is, if M = PU —P, we say that M is a
totally ordered module. Let M and N be partially ordered A-modules
and let f be a mapping from M to N. Then f is an o-homomorphism
if f 1s a monotonic homomorphism of A-modules. The o-homomorphism
f is an o-isomorphism if f is one-to-one and if f™' is an o-homomor-
phism.

1. Some properties of f-modules. In this section, A will
denote a directed p.o. ring. An A-module M which is lattice-ordered
by the order P is called a lattice-ordered module or l-module. Pro-
ducts of lattice-ordered modules are defined in a natural way. If
M and N are l[-modules, an homomorphism f from M to N is called
a [-homomorphism if, for z, ye M:

fleVy) =f) Vi) and f@Ay) = @) AF©) -

An f-module M is a lattice-ordered module which is a subdirect pro-
duct of totally ordered modules. This definition was first introduced
in [1] and [3].

Recall that a convex I-subgroup S in a commutative l.o. group
G is called prime if G/S is totally ordered. The following theorem
gives useful characterizations of f-modules.

THEOREM 1. Let M be a lattice-ordered module over a wunital
directed ring A. The following are equivalent:

(1) M is an f-module.

(2) Forz,yeMand 0<he A, Mz Vy)=reV Ay and Mz A y) =
AL A NY.
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(8) zAy=0 implies \e ANy =0 for all 0 < e A.
(4) Every minimal prime subgroup of M is a submodule.

Proof. (1) implies (2): This is clear since (2) is satisfied in a
totally ordered module.
(2) implies (8): If 2 A y = 0, then we have:

0=MmAYSOVHDz2AAMVDy=OVIHzAYy)=0.

(3) implies (4): Let S be a minimal prime subgroup. Then,
xe S if and only if there exists y¢ S with « A ¥y = 0. [2]. Thus, if
xeS and 0 < e A, we have xxec S. Since A is directed, S is a
submodule.

(4) implies (1): Let (S));.; be the family of all minimal prime
subgroups of M. Then each quotient M/S; is a totally ordered
module and M is a subdirect product of these modules.

If A is not unital, then (1), (3), and (4) are equivalent but con-
dition (2) is weaker (see [3]).

In the sequal, we shall be concerned mainly with torsion-free
modules, that is modules in which Az = 0 implies A =0 or z = 0.
The following property is useful:

ProposiTION 1. If A is totally ordered, every torsion-free f-
module F is a subdirect product of torsion-free totally ordered
modules.

Let S be a minimal prime subgroup of F. Suppose that %= 0
and e S. We may assume ) > 0, as A is totally ordered. As in
the proof of Theorem 1, there exists y¢ S with xx A y = 0. This
implies Mz A y¥) = A A Ay =0, and hence x Ay =0. As y¢ S, we
obtain x¢S. This proves that M/S is torsion-free and the theorem
follows.

As in the theory of ordered groups, P is an isolated order on M
if x> 0 and Az < P implies z ¢ P.

PROPOSITION 2. Ewery torsion-free f-module is isolated.

Proof. If x>0 and xx =0, we have M(—2V0) = -V 0=0,
hence —2 vV 0 =0 and = = 0.

Conversely, it is clear that when A is totally ordered, every
isolated module is torsion-free.

2. Embedding an order in a total order. In this section, we
consider only torsion-free modules over a totally ordered unital ring
A. This is not as restrictive as it seems, since the existence of a
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nontrivial torsion-free module implies that A has no zero divisors,
and an f-ring with no zero divisors is totally ordered.

LEMMA 1. Let M be a torsion-free A-module. For every xe M,
A.x 1s an order.

Proof. Suppose that ye A,z N —A.x, so that y = o = —p.
The relation (A + )z = 0 implies » + ¢ =0 or x = 0. In the first
case, A= —pe A, N —A, so in each case y = 0.

LEMMA 2. Let P and @ be two orders on M. Then P — Q 1is
an order if and only if PN Q = 0.

Proof. The condition is necessary, since PNQ S (P—Q)N(QR—P).
For the converse, suppose PN Q =0 and let ye (P — Q) N (Q — P).
Then y=p—qgq=¢q¢ — 9, and p+p =q+¢dePNE=0. Hence,
p=—pePN—-P=0,9g=-qcQ@n—-Q =0, and it follows that
y = 0.

The ring A is said to be a left Ore domain if A admits a left
quotient field. Equivalently, 4 has no zero divisors and satisfies the
following condition:

(I) If p*0 and 0 +0, ApN Ao = 0.

Clearly, when A is totally ordered, this condition can be replaced by
the following:

(II) If0<pand 0 <o, A,0N A 0=+0.

THEOREM 2. Let A be a totally ordered ving with no divisors
of zero. The following are equivalent:

(1) A is a left Ore domain.

(2) In a torsion-free A-module, every order is contained in a
total order.

(38) In a torsion-free A-module, every order is contained in an
isolated order.

Proof. (1) implies (2): By Zorn’s lemma, every order is con-
tained in a maximal order. It remains to show that each maximal
order P is total. If not, suppose bg PU —P. As Pc P+ A.b
(strictly), P + A.b fails to be an order. By Lemma 2, PN —A4,b+#0
and there exists o > 0 with pbe —P. Similarly, P — A.,b is not an
order, PN A,b+# 0, and there exists ¢ > 0 with obe P. By condi-
tion (II), there exists x>0 and ¢ >0 with Ao = po > 0. Hence
Aob = pobe PN —P = 0. This implies b = 0, which is a contradic-
tion. Hence P is a total order.

(2) implies (3): This is clear from Proposition 2.
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(8) implies (1): Consider A as a left-module on itself. Take
0<pand 0<o. If A pNAc6=0, A,0— A,0 is an order by
Lemma 2. Hence it is contained in an isolated order P, and thus
ple P and o(—1)e P. Then 1¢ P and —1e P, which is a contra-
diction.

COROLLARY 1. Let A be a totally ordered left Ore domain. Let
f be an o-homomorphism of the torsion-free module M ordered by P
into a torsion-free totally ordered module T. There exists a total
order P, which contains P such that f(x) > 0 tmplies x e P,.

To see that S = {«|f(x) > 0} U {0} is an order on M, note that
S+S=Sand SN —S=1{0}. Also for x>0and 02¢S, f(x) >0
and hence f(\x) = \f(x) > 0 since T is torsion-free. As PN —S =0,
P+ S is an order by Lemma 2. The corollary then follows from
Theorem 1.

COROLLARY 2. Let A be a totally ordered left Ore domain and
let M be a torsion-free A-module ordered by P. The intersection of
all total orders comtaining P is the set P of elements xe M for
which there exists N > 0 with Az e P.

Each total order containing P is isolated and hence contains P.
Suppose z¢ P, so that PN A,x = 0. By Lemma 2, P— A.x is an
order. By Theorem 2, P — A x is contained in a total order Q. Since
—zxe@Qand z#0, x¢ Q.

THEOREM 3. Let A be a totally ordered left Ore domain. If M
1s an A-module ordered by P, these are equivalent:

(1) P s isolated.

(2) M s torsion-free and P is an intersection of total orders.

(3) M can be embedded in a direct product of totally ordered
torsion-free modules.

(4) M can be embedded in a torsion-free f-module.

Proof. (1) implies (2): This follows directly from Corollary 2,
as P= P.

(2) implies (3): Let (P;);.; be the set of all total orders con-
taining P. If we denote by M; the module M ordered by P;, there
is a canonical embedding of M into the direct product of the
modules M.

(3) implies (4): Clear.

(4) implies (1): This follows from Proposition 1.
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3. Free f-modules. Let A be a totally ordered left Ore domain,
and let M be a torsion-free A-module ordered by P. A torsion-free
f-module L will be called free over M if:

(1) There exists an injective o-homomorphism @ from M to L.

(2) For every torsion-free f~-module F' and every o-homomorphism
f from M to F, there exists a unique I-homomorphism f from L to
F such that fop = f.

It is not difficult to show that L is determined up to an I-
isomorphism. To show that such an L exists, we use the two fol-
lowing lemmas:

LEMMA 3. If z(ae R, BeS) and x,(ve U,0e V) are two finite
Jfamilies of elements im a lattice-ordered module,

V A2 — V A, = \' § A (s — Ziyosm) -
aeR Bes yeU sev (a,0) e RX(VSXU) (8,7)eSxU
Proof.
VAZs—VAZ:=VAAY @ —23) =V AV @us — %)
R 'S vy R S U V R SXU V
=V Vv A @as — Tiioem)
R pe(v8XU) SXU

I

(Tap = Zrriocs,m) -
(a,0) e Rx(VSXU) (8,71 e SXU

LEMMA 4. Let N be a f-module and K a submodule of N. The
f-submodule generated by K is the set K' of all elements Vacr Ases ®as
with Lnp € K.

Proof. By Lemma 3, K’ is an [l-subgroup of N. If =0, it
follows from Theorem 1 that: A Vi As % = Vi As M. Since the
ring is assumed to be directed, K’ is a submodule.

THEOREM 4. Let (P;);.; be the set of all total orders on M con-
taining P, and denote by M; the module M ordered by P;. Let ® be
the canonical map of M into [[ic; M;. Then the f-submodule L of
Tl:c: M; generated by (M) is free over M.

Proof. Suppose f is an o-homomorphism from M into a torsion-
free f-module F. If ze L, then by Lemma 4, = Vz AsP @)
where x,,¢ M.

Let f(x) = Vz Asf(@.). To show that f is a mapping, it is
sufficient to show, by Lemma 3, that V; As®P(@.:) =0 implies
Ve Asf(@as) = 0.

By Proposition 1, we may assume that F' is totally ordered. By
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Corollary 1 of Theorem 2, there exists a total order P, containing P
such that f(z) > 0 implies e P,.

If Vi Asf(®.) > 0, there exists ae R such that for each ge S,
f(®ep) > 0, which implies @,,€P,. It follows that V; As2..>0
(modulo Py) and Vi AsP(.) # 0. Alternatively, if V. Asf(@.,) <0,
there exists for each ae R, a Be S such that f(x,;) < 0. Thus x,¢
—P, and it follows that V; As®.; <0 (with respect to P,). Hence
Vz As?@.;) # 0. Now, it is clear that f is a mapping. By Lemma
3, f is a group homomorphism. The theorem follows easily.

COROLLARY. Let A be a totally ordered ring with no divisors of
zero. The following are equivalent:

(1) A is a left Ore domain.

(2) For every torsion-free ordered module M, there exists a free
f-module over M.

Proof. By Theorem 4, (1) implies (2). Conversely, if @ is the
o-homomorphism of M into the free f-module L over M, the positive
cone of M is a subset of @ = {x|®(x) = 0}, which is an isolated order.
Thus, (2) implies (1) by Theorem 2.

Note that @ is an o-isomorphism of M into L if and only if M
is isolated.

It is now easy to construct the free f-module over an arbitrary
set E. Let M be the free module generated by E, and trivially
order M by P = {0}. The free f-module L generated by M is a free
f-module over E, with obvious definitions.
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SUBNORMAL OPERATORS IN STRICTLY CYCLIC
OPERATOR ALGEBRAS

RICHARD BOLSTEIN AND WARREN WOGEN

It is shown that a subnormal operator cannot belong to a
strictly cyclic and separated operator algebra unless it is normal
and has finite spectrum. Further, a subnormal operator not
of this type cannot have a strictly cyclic commutant.

1. Let & be a complex Hilbert space, and let .o~ be a subset
of the algebra <#(57°) of all bounded linear operators on 5% A
vector x € 57 with the property that .o7z = {Ax: A e .} is the full
Hilbert space is said to be a strictly cyclic vector for .o and & is
sald to be strictly cyclic if such a vector exists. A vector z is called
a separating vector for .o if no two distinet operators in .7 agree
at #. The set .o is said to be strictly cyelic and separated if there
is a vector x which is both strictly cyclic and separating for .o

Strictly cyclic operator algebras have recently been investigated
by Mary Embry [2] and Alan Lambert [3]. Let .’ denote the
commutant of the set .7 that is, .’ is the set of all bounded linear
operators which commute with every operator in .o Note that if x
is a ecyelic vector for .o (meaning &7z is dense in S5#°), then g is
separating for .o/,

LEMMA 1. Let .7 be a strictly cyclic subset of #(57). If s
1s abelian, then it is maximal abelian, .o = .&7'. Thus, a strictly
cyclic abelian subset is automatically a weakly closed algebra.

This lemma, which indicates the severity of the condition of strict
cyclicity, is a sharper form of a result of Lambert [3].

Proof. Let x be strictly cyclic for .o and let Be.w”’. Then
there exists A ¢.o” such that Ax = Bx. But .o < .’ by hypothe-
sis, so Ae.o7'. Since z is separating for .o/’, we have B = A ¢ .o,
and the proof is complete.

If o7 is strictly cyclic and abelian, then it is strictly cyclic and
separated by Lemma 1. Mary Embry [2] showed that the converse
holds if . is the commutant of a single operator. Thus, if 4 is
normal and {4} is strictly cyclic and separated, then {A} consists
of normal operators by Fuglede’s theorem. In a private communication
to the authors, Mary Embry asked if “normal” could be replaced by
“subnormal” in this statement. An operator is called subnormal if

7
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it is the restriction of a normal operator to an invariant subspace.
To this end, we show that if A is subnormal then strict cyclicity of
{A} already forces A to be normal, and, moreover, its spectrum is a
finite set. Thus, the commutant of a subnormal operator cannot be
strictly cyclic and separated unless the underlying Hilbert space is
finite-dimensional (since the commutant is then abelian and hence the
operator, which is normal, must have simple spectrum). More generally,
it is shown that a uniformly closed subalgebra .o of <& (5#) which
has a separating vector x# with the property that .oz is a closed
subspace of 57 (this is the case if x is also strictly cyclic) contains
no subnormal operators except possibly for normal operators with finite
spectrum.

2. Let ¢ be a finite positive Borel measure in the plane with
compact support X, let H*() be the closure of the polynomials in
L*y), and put H*(¢) = H*(¢) N L=(). The next theorem, which is
used to derive the main result, may be of independent interest.

THEOREM 1. H<>(u) = H*(y) if, and only if, X is finite.

Proof. The sufficiency is trivial. Assume now that X is infinite.
Note that the inclusion map of H>(y¢) into H?*(#) is continuous. We
will show that the inverse map is not continuous, and hence, by the
Open Mapping Theorem, that H=(t) + H*(%).

Since X is compact and infinite, its set X’ of accumulation points
is compact and nonempty. Choose A, e X' such that |A,| = max{|\|:
re X'}, and let D, = (AN = [N [}. By the choice of A, X\D, is a
countable set. Therefore, we can choose a closed disk D, which con-
tains D, and is tangent to D, at )\,, in such a way that the boundary
of D, intersects X only at A,. Now note that we may as well assume
that D, is the closed unit disc 4, and that », = 1.

Now X\4 is a countable set {y,, %, --+}, and if this set infinite,
we must have limy, = 1. Let K = 4y (X\4). Then K is a compact
set which does not separate the plane. Define a sequence of functions
{fa} on K by

2" zed
fu(2) =10: 2=y, 1=1=mn
1: z=y,i>n.
Then, for each =, f, is continuous on K and analytic in its interior.
By Mergelyan’s theorem, each f, is the uniform limit on K of a

sequence of polynomials. Hence each f, € H*(y).
Let x denote the function which has the value 1 at the point 1
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and the value zero elsewhere. Clearly, f, — % pointwise, and hence in
the metric of L*(#) by dominated convergence. In particular, ¥ € H=(%).
However, the point 1 is an accumulation point of the support of g,
and hence ||f., — Xl|l. = 1 for every n. Thus, {f,} converges to y in
H*(#t) but not in H=(x).

THEOREM 2. Let S be a subnormal operator on the Hilbert space
27, let 7 be the uniformly closed algebra generated by S. If &7 has
a separating vector x such that 7z is a closed subspace of 57, then
the spectrum of S is a finite set, and hence S is normal.

Proof. Let <# be the uniformly closed algebra generated by S
and the identity operator I. Since .<#x is the sum of .z and the
one-dimensional space spanned by x, and since we assume that &7z
is closed, we also have that .« is a closed subspace of 5£

Now Zx is invariant under S and the restriction operator

. = S| .7z is subnormal. Since the uniformly closed algebra <z
generated by S, and I contains % | <Zz, it follows that x is a strictly
cyelic vector for <&, that is, “Fx = &«. By the representation
theorem for subnormal operators with a cyclic vector, Bram [1], S, is
unitarily equivalent to the operator of multiplication by the identity
function on some H?*(y) space. Furthermore, the unitary equivalence
can be constructed so that x corresponds to the constant function 1.

Now ., corresponds via the unitary equivalence to the algebra of
multiplication operators M, : f— ¢f on H*(#t), where ¢ belongs to the
L=(¢)-closure of the polynomials. Since any such function ¢ belongs
to H=(p), it follows that the constant function 1 is a strictly cyclic
vector for {M,: ¢ e H=(¢)}, and hence that H=(¢) = H*(¢). By Theo-
orem 1, H*) is finite-dimensional.

It follows that <&z is finite-dimensional, and, since &7 C £#, so0
is .o7®. Since x separates .o, it follows that .97 is finite-dimensional.
So there is a polynomial p such that p(S) = 0. Since p(g(S)) = a(p(S))
= {0}, o(S) in finite and hence S is normal.

COROLLARY 1. Let .o be o uniformly closed subalgebra of <& (57)
which has a separating vector x such that 7% is a closed subspace of
7. (This is the case if &7 is strictly cyclic and separated.) Then
7 contains no subnormal operator with infinite spectrum.

Proof. Suppose Se.o” is subnormal, and let . (S) be the uni-
formly closed algebra generated by S. Since .o/ (S) < .&, « separates
7 (S). Since the linear transformation A — Az of .o onto w7z is
continuous and one-to-one, and since .oz is closed by hypothesis, the
transformation has a continuous inverse by the Open Mapping Theorem.
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Therefore, .7 (S)x is closed, and the result follows from Theorem 2.

COROLLARY 2. The commutant of a subnormal operator S is strictly
cyclic if, and only if, S is normal and has finite spectrum.

Proof. Suppose {S} has a strictly cyclic vector . Then x
separates {S}”’, and it follows from [2, Lemma 2.1 (i)] that {S}"z is
a closed subspace. Thus, by Corollary 1, S has finite spectrum and
hence is normal. ‘

Conversely, if a(S) = {\,, ++-, A}, then each ; is an eigenvalue
and 2% is the direct sum of the corresponding eigensubspaces 7.
It follows that {S} = ZF (&) P --- § Z(5#,). Hence any vector
x=2 + -+ + 2, where 0 = 2;€ 575, =1, ---, n, is strictly cyclic
for {S}.

COROLLARY 3. Let S be a subnormal operator on a Hilbert space
S7. If {SY is strictly cyclic and separated, then 57 is finite-dimen-
stonal.

Proof. By Corollary 2, S is normal, its spectrum is finite, and
{SY = F(SA)D -+ - D Z(5#,) with notation as in the proof of that
corollary. If x is strictly cyclic for {S}, then ¢ = %, + .-+ + 2, where
0 == x;€ 57, all j. If some 5% has dimension greater than 1, then
there is a nonzero operator B; on S#; which annihilates x;, and hence
there is a nonzero Be{S} such that Bx = 0. Therefore, if {S} is
strictly cyclic and separated, each 2%} is one-dimensional and hence
& = SZPD - P SZ, is finite-dimensional.

COROLLARY 4. Let S be a subnormal operator on a Hilbert space
7. If {SY' is strictly cyclic, then 57 1is finite-dimensional.

Proof. If x is strictly cyclic for {S}’ (S}, then it is strictly
cyclic and separating for {S} and the result follows from Corol-
lary 3.

An operator A is said to be strictly cyclic if the weakly closed
algebra generated by 4 and I has this property. Since this algebra
is contained in the second commutant of A, it follows that the second
commutant of a strictly cyclic operator is strictly cyclic. In view of
Corollary 4, we have

COROLLARY 5. There exist no strictly cyelic subnormal operators
on an wmfinite-dimensional Hilbert space.
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IRREDUCIBLE SUMS OF SIMPLE MULTIVECTORS

HERBERT BUSEMANN AND D. EDWARD GLASssco II

Denoting by V*(F') the n-dimensional vector space over
the field F' of characteristic 0, let V*(F') be the linear space
of all r-vectors B over VXF) and Gr(F) the Grassmann cone
of the simple r-vectors R in V*(F'). The sum B = 3*_, Ri(R; ¢
G?(F)) is irreducible if R is not the sum of fewer than k
elements of G*(F'). (Duality reduces the interesting cases to
2 <r <n/2.) Such sums are trivial only for » = 2, because
/\’{:1 R; # 0 while always sufficient for irreducibility is then
also necessary. Extension of F' does not influence irredu-
cibility if » = 2 but it can for r > 2.

The sets W2(F, k) of those B in V2(F) which are irre-
ducible sums of % terms behave as expected when r = 2, but
have the most surprising properties for larger r. Although
VF) = Ui, WiF, k) and Wi(F, 3) + ¢, the sets Wi(R or C, 2)
have interior points as sets in V3(R resp. C) and so does
Wi R, 3) but Wi(C, 3) does not.

The paper is based on the thesis [1] with the same title by the
second author.

The smallest number k for which V(F, k) = UL, W2(F, ©) coincides
with V(F) is denoted by N(F, n, r) which by duality equals N(F, n,
n — r). Obviously N(F, n, r) < (Z}) But in spite of various inequa-
lities relating these numbers which show that (Z}) is much too large,

the precise value of N(F, n, r) is known only in the two cases implied
by the above statements: namely N(F', n, 2) = [n/2] and N(F, 6, 3) = 3.

The values N(C,7,3) =5, N(C, 8,3) =17, and N(C, 9, 3) =10 have
been claimed but questioned, see Schouten [3, p. 27] and [1].

The purpose of our investigation is to elucidate why the case
r =2 is so much simpler than 2 <+ < % — 2. In addition to the
already mentioned facts we show that V}(F, k) is an algebraic variety,
because, if R® is the ith exterior power of E, then R** =0 is
necessary and sufficient for R e Vr(F, k) when r = 2, but merely neces-
sary when r > 2. This implies dimV7?(R resp. C, k) < dimV}(R resp.
C, kk+1) for 1 £k < [n/2] in contrast to the case n =6,r =3. In
fact we show that V(Ror C,k)isforr>2 k>1,and n= (k — 1)r + 3
not even a closed set.

An irreducible representation B = 3%, R, k > 1, is for » = 2
never unique, but for » > 2 it is (up to a permutation) if A%, R, =0
and £ =< r. The condition k¥ < r is probably superfluous but enters
—like n = (k — 1)r + 3 (instead of n = » + 3) above—because we use
the Pliicker relations for simple vectors which get out of hand for

13
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large k. A coordinate-free approach would therefore be preferable,
but in many cases we were not able to devise one.

We will continue using capitals (R, S, T) with a tilde and with
or without subscripts for general multivectors and omit the tilde only
when the vectors are known or assumed to be simple.

2. Results for general F, n,r, k. The following agreement will
prove convenient. e, e, -+ are used for elements of a base. If two
spaces V™ C V* occur, then the base e, ---, ¢, of V* is chosen so that
e, +++, ¢, is a base of V™. We begin with some simple remarks.

(2.1) If ReGy then R=R + S Ne, with ReGy* and Se
G

For, with suitable v;e V™ and B;

3

=y
I

(v; + Bien)

i=1

v; + [i(_ 1)%_i,3i7]1/\ e AV AV A\ ces AV Ae,
=1

S
Il

[
>

If the v; are dependent, the bracket reduces to one term; if not, the
bracket is an (» — 1)-vector in the r-space spanned by v, -+, v, and
hence is simple.

We apply (2.1) to prove

(2.2) Be WrEF, k)if and only if BA epir A v+ Aeyome Wrin(F, k).

It suffices to prove this for m = 1. We show if Be Wr(k) and B A
€nin € WriX(1), then | = k. Trivially B A e,., € Vrii(k), whence I < k.
By (2.1) and the hypothesis B A e,, = S0, B, = 3L, (R + Si A €,4)
with R; ¢ G*t}, R.e¢ G*.,, and S; ¢ G*. Therefore, YR =0 and BAey, =
(2S) A €,41, which implies B = 3}, S; and k = 1.

COROLLARY 2.3. N(F,n + 1,r +1) = N(F, n, 7).

Anticipating N(F, n, 2) = [1#/2] we see that both equality and
inequality occur. N(2m,2m — 2) = N(2m, 2) > N2m —1, 2) = N2m — 1,
2m — 8). Similarly N@m + 1, 2m — 1) = N@2m, 2m — 2). Also
N(n,r) = [(n — r + 2)/2], but this lower bound is for » > 2 too small
to be useful.

A consequence of (2.1) is the generalization

2.4 If ReVik), then BR=FR + S Ne, with B e Vr'(k) and
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Se vrik).

By hypothesis B = 3}, Ri(l < k, R, G7). Applying (2.1) to each
R; yields R = 3., (Ri + 8; A ¢,) = S R + (54, S) A e, with Rie
Gr ' and S; e GrZ!, which is the assertion.

With k = N(F, n, r) we deduce from (2.4):

2.5) NF,n,r)<NEF,n—1,7 +NF,n—1r—1).

For r» = 2 equality holds when 7 is even and inequality holds
when % is odd.

A linear map f: U™— V" induces a homomorphism f*: Ur—V?»
given by f*(u, A+« Au,) = fU) A +++ A f(u,). The map f* is
surjective when f is. We note

(2.6) If f*(R)+ -+ + f*(R,) tis trreducible in V?, then so is
B+ ««« + R, in Ur.

We apply this first to the projection f:V***— V* defined by

ntk % A
f: 21‘ a‘e.; _ 21 a’ei
i= =

and find:

2.7 If R.eG:F) and 3k, R, is irreducible in V*(F'), then it is
wrreducible in VrHE(F).

Hence
2.8) N(F,n+1,7v)= NF, n,r).

The case r = 2 shows again that both inequality and equality can
occur in (2.8). Next we apply (2.6) to the map f: V*** — V" given by

n+k n

ntk
fi X e, —— X dle; + (3 ade,y,
7=1 =1 t=n+1
and find using (2.2):

2.9 If 3, R, is irreducible in VXF), them >, R, A e,.; is
irreducible in V*IE(F).

Two important facts will now be proved together:

THEOREM 2.10. If AL, R; =0, then >k, R; is irreducible. The
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converse holds only for r = 2.

THEOREM 2.11. If Re VXF, k) then B%* =0. The converse
holds only for r = 2.

If » is odd then B® = 0 for any ¢ > 1 so that B¢*+v = o imposes
no condition. If » is even the relation Ok, R)**Y = 0 is obvious,
so that the first part of (2.11) holds. Since

2.12) L. R)® = k! AL, R; for even r

it follows that >t , R;e Wr(k) when AL, R; + 0. Applying (2.9) we
see that this also holds for odd 7.

If ALR,=0,r=2, and R, = v; A w; then one of the v; or w;
depends on the rest, say v, = >0 v, + SVE, paw; so that

k k=1
Z R; = ; [vi A w; + (vovs + paw) A w] .

Each bracket represents a simple vector because it is a 2-vector in
the space spanned by v;, w;, and w,.

That AL, R; = 0 is necessary for irreducibility only when » = 2
follows from (2.2). This establishes (2.10).

It remains only to prove the second part of (2.11). Let r =2
and R* = 0. Then Re Wr(k + i) with i = 1 is impossible because
(2.10) and (2.12) would imply R**? s 0. That B** = 0 is not suffi-
cient for Re V*(F, k) is obvious for odd » and follows from (2.2) for
even r > 2.

Corollaries of (2.10) resp. (2.11) are:

(2.13) N(F, n, 2) = [n/2].

(2.14) If Re Wi(F, k) then also BRe WF,, k) for any extension
field Fy, of F. This is not true for r > 2.

The latter means that for each n — 2 > r > 2 there are B k' <
k, FC F, with Re W(F, k) and Re W}(F,, k'), and follows from (5.9)
and (2.2). Note: The first part of (2.14) does not mean, for example,
that Re VX(F), Be W;(F,, 2), hence B = R, + R, with R,e G}(F,),
imply R; e G¢(F), but only that R]e Gy(F) with R = R, + R, exist,
compare (4.3).

Whereas in (2.2) and (2.9) the number of summands is the same
in hypothesis and assertion, it is different in the next theorem which
is therefore harder to prove.
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THEOREM 2.15. Let Re WHF, k), E; = Niwyurimnrs(i = 1,44, 7),
then R + 3i_, E; € Wri(F, k + j).

Evidently it suffices to prove this for j = 1, or with E = E, that
R+ EeWr(k+1). Let B+ E=3r,8;, S;e G, and denote by
S; the projection of S; on V. Then S; is simple and B = 37, S.
Therefore, B e Wr(k) implies m =k and that for m =% all S;=0. We
show that m = k is impossible.

There are at least two S; which do not lie in G*. For, S;eG?,
if 4>1, would entail S, =S, + E with S A E+#0, but S| + E is
not simple by (2.10). Assume that S, and S, do not lie in G?. For
w = > a'e, put w = D, e, and w' = Srr., e,

Then

Si= A w; = Alw: + w))
i=1 j=1
and we may assume further that w;, = 0 and w;, == 0.

There are subseripts 4, 7, k, I with ¢ == k such that wi; A wy, = 0.
Otherwise w) AwY, =0 for k-0 so that wj, = »,wi for k = 1.
Similarly w}, = pwl for k # 2, so that w!, = g wil.

This, with A, =1 and A, = g\, gives

S; = A (w; + Nwlh) .
j=1

But then X'S; cannot produce E. Thus we may assume (with a possible
change of notation) that w) A wy = 0. Then e, A -+ Ae, A wy, A Wy =
e, N\ <+ ANe, AN wiAwy = 0and there is a base {e;} of V" with ¢} = ¢,
for i< m,e,., = w,, and e,.,= w,. Then with the original R,
E, S, -+, S,

R+E)Nep s A€o =(Sg+ coo +S) Aeh A€y
1.e.,
Eney Ne,e Wrizk— 1)
contradicting (2.2) and (2.7),

3. The sets V*(F, k). Let F, be a topological field. Obviously
GYF,) =V™F,, 1) = W*F,, 1) is a closed set in V*(F,). It is clear
that for &k < N(F,, n, r) the set V*(F,, k) cannot be open, but one
might expect it to be closed. This is true for » = 2, see below, but
in general not for » > 2. To show the latter it is not necessary to
study general n and » > 2 because of the following:

THEOREM 3.1. If for a topological field F, the set VIF, k) is
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not closed in V*(F,) then for m=zn,s=r,m—s=n—7r and 7 =0
the set VIis(F, k + j) s mot closed in VIt (F).

First let 7 =0, m>n and Re V*F,, k). By (2.7) Re VI(F, k) so
that the latter is not closed. For any m we conclude from R e V™(F,, k)
and (2.2) that

EBANey N voor Negne VIEEEF, E)

Since V(F,, k) is not closed there are B, in VMF, k)(y =1,2, +-+)
such that B, — Re Wr(F,, k') with k' > k.
Then by (2.2)

Rv/\em—l-l/\ b /\em+h”—__>g/\em+l/\ e /\em-i-h,e W:n:h(Ft)k’)

so that Vri(F,, k) is not closed. This settles the case j = 0 or that
Vr(F,, k) is not closed.
With the notation of (2.15) we see with the same argument

Vet (Fy b+ )3 R, + 3 B— R + 3, Ere Wr'(F, K + )

which proves (3.1).

In §5 it will be shown that N(F, 6, 3) =3 and V(R resp. C, 2)
is not closed in V(R resp. C). Probably no V(R resp. C, k) with
3<r=<mwn—38and 1<k< N(R resp. C, n, r) is closed, but from (3.1)
we obtain (with 2 + j = k) this best possible result only for k = 2.

THEOREM 3.2. The sets V(R k) and V(C, k) are not closed in
VE(R) resp. VHC) when k=2,r= 3, and n = (k — )r + 3.

The mentioned best result would require a direct treatment of
the case k > 2 instead of reduction to k¥ = 2. The fact that we use
Pliicker relations in §5, which become very involved for large =, 7, k,
is responsible for our incomplete result in the case k > 2.

We now discuss the case r = 2. The by (2.11) necessary and
sufficient condition R** = 0 for Re V(F, k) amounts to polynomial
conditions on the components a®* of B = 3 ;<. @e; A .. The set
ViF, k) is therefore an algebraic come in V(F) and hence closed
when F' carries a topology.

It is also clear that for 1 < k < k' < [n/2] the set VJ(F, k) is a
proper subset of V}(F, k') and plausible but, since we do not know
whether VJ(F, k) is an irreducible manifold, not a priori certain, that
the dimension in the sense of algebraic geometry (denoted by a-dim)
and consequently in the case of R resp. C also the topological dimen-
ston (=dim), of V(F, k) is less than that of V(F, k'). That a proof
is necessary may be seen from the case » = 3 (see §§5 and 6). In
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spite of N(F, 6, 3) = 8 the sets WJ(R resp. C, 2) and WJ(R, 3) have
nonempty interiors in V(R resp. C) so that

dim V¥R resp. C, 2) = dim V{(R resp. C)

dim Wi(R, 2) = dim WXR, 3) = dim V(R) = 20 .
But W#(C, 3) has no interior points and hence by a theorem in dimen-
sion theory (see [2, p. 46])

dim W3(C, 3) < dim W(C, 2) = dim V¥C) = 40 .

Although we need only the expression for B* in the case r = 2,
we give, owing to its potential usefulness, the expression of AL, R;
of k different r-vectors in terms of the components of the R;,. The
rather long proof can be found in [1, p. 51].

Put J:{jly "',jr} where 1§.71< e <j,.§n,7’l/gk’l'.

Let af = arir(i =1, -+, k) be indeterminates and define for a per-
mutation = of {1, «+., 7}

Qi) = qlFInm = gon ol

H{H="h,h,}withlh <o <h,<nandJ,U--UJ,=H
(disregarding order) then J, NJ,. = ¢ for vy = ¢ and J,, ++-,J, in this
order is a permutation of H whose sign is denoted by

)

We then define

-
FH(C&, “ee, a,) = Z f: k-—Ja
JiUs+u
where «, stands for {«/: J < H}. If z is a permutation of {1, ... k},

then
F¥(a,...0) = (Sgn )" F(a, + -, ) .

THEOREM 3.3. If R;=S,cyaje, with N={1,---, n}, then
FoRy = Spey F(ay, « o+, a)eq.

Consequently, if Q7(a) originates from F#(ay, +--, ) through
replacing each «; by the same a = {a’}, then we obtain

COROLLARY 3.4, If B =3,y a’e;, then B® = k! S ,cy Q% (Q)ey.

From (3.4) one deduces with the conventions <g> = @) =0,
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n n — 2k
a-dim V2(F, k) = - 1<k< [ﬁ]
2 2
(see [1, p. 65]). Hence

dim Vi(R, k) = (2) - (n _2 2k>, dim V(C, k) = 2[(:) - (" _2 2kﬂ

and so

dim V(R resp. C, k) < dim V(R resp. C, k + 1) for 1 < k < [%J
in contrast to the case r = 3.

4. Uniqueness. Let R,e Gr(F),{(1=1,---, k). The sum >\, R;
is called unique in V2(F) if S;eG*(F){(i =1, .-+, k) and 3 R, = XS;
imply that S.; = R(i=1, ---, k) for a suitable permutation 7 of
{1, .-, k.

Obviously:

(4.1) If >k R; is unique then it is irreducible.

4.2) If 3k R, is irreducible resp. unique then so is >\i_, R; for
j<k.

The converse of (4.1) does not hold; in particular:

43) If r=2k>1, AL R, =+ 0 then > R; is not unique,
1.e., no wrreducible sum of 2-vectors is unique.

Because of (4.2) it suffices to observe that
e Ne+eNe = (e, +e)Ne+e AN(—e+e).

However, if ¥ > 2 and AL, R; + 0, then >%, R, probably is unique.
Because the Pliicker relations are hard to handle for large k& we were
able to prove only:

THEOREM 4.4. If r > 2, k<7, and A, R; # 0, then >t R, s
unique.

Here both the field F' and the dimension » of the space (except
that n = rk is, of course, implied) are deliberately omitted because
they are immaterial.

First we convince ourselves that » is unimportant and at the end
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of the proof we indicate why F' is.

Let B, = vi_npr A\ voe A0 (=1, <o« k), A v; = 0. It suffices to
prove (for a given F) that YR, is unique in the space V spanned by
v, +++, V. For, let also

R=3R =R, RieVy, V'OV,

Under projection of V" on V let R — Ri. Then ¥R} — 3R, R — R,
A R — A R/ so that R = YR} and if (4.4) holds in V then {R}} is a
permutation of {R;}. Therefore, A R+ 0 and hence A R} = 0. If
Rf = v} ... A -+ A v} then because (4.4) holds in the space spanned
by o, ---,v5 we have R}; = R, for a suitable permutation 7 of
{3, =+, k}.

In the proof of (4.4) we therefore assume that » = rk and R =

¥, R, with

Ry =einrni/\ vo0 N € = €1 s
where
Lyy={—-Dr+1:-,0r} w=1,---k).
We further put
I=1{,--- 4} with 1<i <--- <, =7k,
also
Iv) = I/{i}, I, 1 = I/{1,, i} ete .

It will prove convenient and causes no ambiguities to use I{y) for
{1y, <=+, tyy Tupy, *++, 3} even if 4, is not defined.

2 is the set of all I with 4,e L)y =1, --+, k), and I»)ecQ
means i, € L(y¢) for p = v.

We also use

) = MNicrw @ € = Nieres ete.

The sign depends on the order but will prove irrelevant. Finally
E(v) and F(v) are the spaces spanned by the ¢, with 7e L(v) or ¢
L(y) respectively.

From now on we will often use the Pliicker relations (see [3, p.
23] and [4, p. 27]) which in our type of notation may be stated as
follows:

Let P={p, -+, p,}, 1 = p;: < n, P(i) = P/{p}

af = P Pr = sgn TP (1) Prlr)

for a permutation z of {1, ---, r} and similarly for Q. The vector
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1 )
— 2 afep = 3 a"Tre, N\ v Ne, €V!
rl F 1€M< <ppEn ! r

is simple if and only if for any P, Q
Pliicker: afa® + 5., (— 1)iafnuig’<@ = (),
We prove several lemmas beginning with

(4.5) Let T= X7, and suppose TAR=0. If k<, ork=
r but T is simple, then ¥* =0 only if IcQ. Thus simple T = 0
implies ¥* = 0 for at least one Ie Q.

If & < r the assertion follows from

R A T = é}l[euy) AN ( > ¢7191>] ’

INLw)=

o N e+ eym Ne for vs=p and k<r,

and the observation that IN L(y) = ¢ for some y is equivalent to

Ie¢g.
If & = r then the terms in B A T with er., as a factor are

ermn N [2 Yer + (— D% (ere + <0 + eL(k))] .

9y>r

Therefore, v* = 0 if 7, > r (hence I¢ Q) and ¥** 4 (— 1)"v*® = 0 for
v>1. Generally v =0 if, I¢ Q and I is no L(y); moreover,

YEO L (= Dy =0 if p#uyp.

If r is even then ¥ = 0 for all v so that ¥ = 0 only for Ie Q.
If » is odd then 7** =\ for all y and thus

T:)\,R—I—Z'Y[@I.

Iep

We show T is simple only if A = 0 which completes the assertion.
Let IcQ and assume 4, # r. Then with

LA, 7, ={1, «ee,r—1, 14}
one of the Pliicker relations for the simplicity of 7 is
0 — "YL(“'YI + i (__ l)s,-YL(i,r)is,Y'rI(s) — )\471 R
s§=1
for v*®mis = (0 because L(1,r)e -, L) U R for s > 1, and L, 1),

contains a repeated index (since ¢, = 7). If ¢, = r just permute L(1)
so that » is not the last element. Thus ' =0 for all Ie®, or
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A = 0. Since 7' = \E would not be simple we must have \ = 0.
Let H=1{hy, -+, by} With 1 S b, < vee < Iy, S 1k
4.6) If S =3 B, and B A S is simple then, for
Ie .Q, Bl(s)lgl(t) =0
if 8+t

The terms in the expansion

B A § = Jaiirtig,

R Y

which contain e; as a factor are given by

4.7 e A [ B Meruy =+ o0 £ B Perpipl

where L(v, i) = L()/{i,}. Consider the Pliicker relation for B A S
beginning with

aI,L(s.'Ls)aI,L(t,'it) — Bl(s)Bl(t) .

The terms not written down all vanish. The first £ — 1 that follow
vanish because the first factor has a repeated superscript. From the
(k + 1)st term on, the last element of L(i, 4,) is the first superseript
of the second factor @ which then vanishes because it does not appear
in (4.7). (This requires » = 3. The first « also vanishes and for a
similar reason.)

The following is the decisive step in our long argument:

(4.8) If both S=3p%ey; and RA S are simple and some B’V =0
(I(1) € Q) then pirv*i—2 =0 for 4,€ L(1) and any v,(s =1, «--, k — 2).
Briefly Se F(1),_,.

Take any %, ¢ L(1) and join it to I(1). This produces an Ic Q.
We prove inductively.

gttt = (0 for all v, and Mk — 2.

If k =2 we have g = g'® = 0 by (4.6) and g'® = 0.
If ' = 38 we make

Step 1. Consider the Pliicker relation
0= BI(I)BVI(IG—LM — Bl(l,k)u‘gikl(k—l.k) + Bl(l,k)ilﬁikvl(l,lc—-l,k)

. BI(I,k)izlgika(Z,k—l,k) 4 eee Bl(l,k)ik_28ika(k—2,k—1.k) .

Except for order
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oIk — 1, k) = Ik — 1), and IQ, k)i, = I(k)

so that the second and third terms vanish by (4.6). The remaining
terms vanish because the sets I(1, k)i, ---, I(1, k)i,_, contain repeated
elements. If k¥ = 3 we are finished. If £ > 3 we make

Step 2. Take the Pliicker relation

— I(1) pupl(k—2,k~1,k) __ I(L,k)y Qigppl(k—2,k—1,k)
0=p"g BB
+ Bl(l.k)/tﬁikvl(k—&k—l,k) — BI(I.k)illgikuyl(l,k——z,k—l,w

I(1,k)e iyl (2,k—2,k—1,k) __ .., I(1,k)ep_3 Qigvpl(k—38,k—2,k—1,k)
+ B & Bk -

Except for order

oIk — 2,k — 1, k) = pl(k — 2,k — 1)
and

wllk — 2,k — 1, k) =vI(k — 2,k — 1)

so that the second and third terms vanish by Step 1 (that £ — 1, k
are replaced by k — 2, k — 1 is immaterial since the argument of Step
1 is the same for any permutation of {2, ---, k}). The fourth term
vanishes because of (4.6) and I(1, k)i, = I(k). In all following terms
the sets of superscripts in the first factor @ contain repeated elements
and these terms vanish also. This completes the argument in case
I =4. If k> 4, the process clearly continues.

(4.9) If both S = 3B%e; and B A S are simple and B'* = 0 for
some It)e Q then Se F(t),_.. If S=w, N +++ A w,_, then each w;e
F(t).

The first part is a consequence of (4.8). The second statement
follows from the general lemma.

(4.10) If m<n, V*"C V" v;e V" Niciv; =0 and A=, v;e V" then
v,e V"j =1, ---5).

Setting v; = v} + B, (¢ =1, -+, s) in the proof of (2.1) yields
the case m = n — 1 from which the general case follows.

THEOREM 4.11. If E<r,S= A w; #0 and B AS is simple
then w; e F(t) for a suitable t.

If S = Yp"ey; then it suffices by (4.9) to show that /' = 0 for
a suitable I(t) e . Because B A Sis a simple (» + k — 1)-vector there
is a vector v = 3%, &%, such that RASAv=0and SAv==0. If
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T=8SAv=27v"¢ then
v =X & gIWol .

By (4.5) there is at least one Ie Q2 with +' = 0, hence g’ = 0 for
some ¢.
After these preparations we are ready to prove (4.4). First observe

(4.12) If B =3k, v,,(v;e V) then A, v; = 0.

Each v; = 0 because 3%, e, = R is irreducible. Assme A v; =0
and let {w;},1 <j<\N<kr, be a2 maximal set of independent wv,.
Since the w, span a proper subspace V' of V, an e, with w,A --- A
w; N\ e, # 0 exists, and the w; together with e, span a space V" with
V'cV”"cV. Now Yv,,, is irreducible in V and V’, and therefore (see
(2.2) and (2.7)) 3;., A e, is irreducible in V" and in V. Butif pe L(s)
then B A e, =S, e0m A €

4.13) If B=3l,vmmeV), kxr, I={i,--, ,}eQ then
v;, € E(n(t)) for a suitable permutation m of {1, «--, k}.

First v;,, = 0 by (4.12). Next
N Vi) = Vi A Vpey # 0

is simple. Therefore (4.11) yields v; € F(n(s)), (v # s) for a suitable
number 7(s), (1 < 7(s) < k). We must show that m(s) defines a per-
mutation of {1, ---, k} or that 7(s) = m(¢) for s = t. Assume 7(s) = 7(¢)
for some s = t. Then v; € F(n(s)) forv =1, ---, k because I(s) U I(t) =
I whence v, € F(n(s)), and B A v; = e A v; # 0 contradicting B A
v, = 0. Thus v;, € Mi,er0 F@(s) = N F(r(s) = E(x(?)).

This establishes the uniqueness of Xe;,,. For, consider Ic Q and
put I' = {j,, %5, <+, %} with j,€ L(1). Then I'¢ 2. Since v; € E(n(v))
for v > 1 it follows from (4.13) that v, € E(x(1)). Thus v; € E(x(1))
for all j,e L(1) and v;4) = Qlrnuy-

Generally, v,,, = a,e,., whence @, = 1(v =1, -+, k) and unique-
ness follows.

The condition v;¢ V which entered the proof of (4.12) because we
applied (2.2) can now be eliminated; Je,.,, retains its form after
extension of the underlying field and therefore remains unique after
the extension. This justifies the formulation of (4.4) which does not
mention a field.

5. The case n =6,r =3, The remainder of the paper deals
with the case » = 6, r = 3 whose importance was noted in connection



26 HERBERT BUSEMANN AND D. EDWARD GLASSCO II
with (3.2). We first show N(F, 6, 3) = 3 which may be new for F =
C. Our inequalities (2.3) and (2.5) give only

2= N(F,5,2) < N(F,6,3) < N(F,5,3) + N(F,5,2) = 4.

With e;;, = e; A ¢; A\ e, we prove:
(5.1) S = ey + €uo + € s Wrreducible; whence N(F, 6, 3) = 3.
This proof rests on the observation:
(5.2) If R=S8 A 3L, Be; is simple then g' = g* = §° = 0.

(The converse is trivial but not needed.) If

Skl
R=__ > ae,
Ikl

124i<j<k<i<=6

then

K_(Ksaljkeeu‘ka = eu A [ — (e + )] «
<J

Therefore one of the Pliicker relations for R is
0 — a1624a1635 . a1623a4165 + a1'625a4613 o (61)2 .

Similarly, g* = g = 0.

Assume S were reducible, S = v, + v (Where again v, = v; A
v; A v,) with v; = 3%, Bfe,. Then S A v; is simple, so that by (5.2)
BE =0 for k <3, whence

S = [det (81) + det (83ti)]ews »

which is false because S A € = €. # 0.
To show N(F,6,3) <3 we need the lemma:

(5.3) Given R;e VAF)i=1, .-, m) there are ;e F and R;e
GL{(F)(@ =0, «++ m) such that R.=R +MR(i=1,--+,m).

If B, is simple then R, = B, »; = 0 will do, so we assume that no
R, is simple. G is a quadratic cone and a hypersurface in Vi(F).
Therefore, R,c G exists such that the tangent hyperplane of G} at
R, does not contain any £; and no line through R, and R, intersects
G! (as a locus in Vi completed to a projective space) at infinity. Then
the line through R, and R, intersects G} in a second point R so that

R, =0 - 2R, +NnB =R, + MR, .

This argument does not require extending F because it amounts to
solving a quadratic equation of which one root is F.
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Now let B = . ;icicizs %5 € VE(F) be given. A simple calcul-
ation shows that either Re V&(F, 2) or a base {¢;} exists in terms of
which

R= 3, Bl + 3, 87 = S, Ane+ 8 A

159<7s 153754
with S;e Vi By (5.3) there are S;c Gi and A\;¢ F such that
B= (S +MS) A&+ (S:+MS)A &
=S A&+ S A&+ S A (M8 + Ngg) e VI(F, 3) .
Thus:
(5.4) N(F,6,3) = 3.
By a similar argument we prove
(5.5) S NF,7,3)<5.

The left inequality follows from 3 = N(6, 3) < N(7, 3), see (2.8).
For the right inequality one shows (see [1, p. 90]) that either Re
VI(2) or with a suitable base {&;}

5
R= 3 p%a;+ 3 B 6w+ > B78m+ 3, B .
151<554 1Z9<554 1Zi<js4 =1
The last sum is simple and applying (5.3) to the first three terms on
the right yields N(F, 7, 3) < 5. This method does not extend to N(u,
3) with n > 7.

We now study a special type of Re V3¥C) which will confirm
some of the important assertions made previously.

Let Y be the set of triples

Y = {128, 126, 185, 156, 234, 246, 345, 456}
and suppose that the o, I€ Y, satisfy the inequalities

a123a156 + a126a135 ¢ O s a123a246 + a126a234 i 0 ,
(5 . 6) a123a345 + a135a234 i O , a234a456 + a%ﬁaﬂﬁ 73 0 ,
a135a456 + a156a345 =+ 0 , a126a456 + a158a246 i O s

and that the roots X, ¢ of
(5'7) (amax — a234)(a156m — a456) + (amex + a246)(a135 €@ _{_ a345) — 0
are distinct. They are different from zero.
THEOREM 5.8. If B = 3., ale; € VE(C) and the o satisfy (5.6),

then B =Ry + R,, Ry = Scy Bler, Ry = Siier Y'er, where R, and R,
are simple with Ry A\ R, = 0. Hence the representation R; + R, is
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unique (by (4.4)).
If N\, 1t are the solutions of (5.7) them the B* and Y (IeY) are
gwen by

13“'7' _ #alij — ot ’ i il — Nt ,
7Y 7Y
Béii — )\]Blij , ,YM']" — #,711']' .

No B' or v'(Ie Y) vanishes.

This representation was found by using Pliicker relations (see [1,
pp. 98-106]), but after it is explicitly given one readily verifies that
R; and R, are simple and that B; A R, = 0. In fact, it is easy to
factor R, and R,, see [4, p. 21]: Since g’ = 0 if Ie Y, letting v =
(8" we find

Ry =u Av A w= Jue, N\ Jvie; N Jw'e;
with
ui — u1823i, ,vi — vBlEi’ wi — 1)16)121'
(see also [1, p. 102]), and similarly for R,.

First we confirm the statement in the introduction that 7rreduci-
bility may depend on the field.

(5.9) If the o’ in (5.8) are real and \, [t are not, then B e W(C, 2)
but Re WiR, 3).

For because R; + R, is unique, Ke ViR, 2) is impossible, and
this with N(R, 6, 3) = 3 entails the assertion.
Next we observe that the vector

E(Y]):61/\(62+€5)/\66+61/\63/\65+7762/\e4/\es
+ (e 4+ e) N e A ey (n =+ 0)

is a special case of (5.8) and that \, ¢ are real when 7 < 0. Letting
7 — 0" we find

R(0~)291A(32+95>Aes+31/\93/\95+(62+65)/\33/\e4
which by (5.1) lies in W(R or C, 3). Therefore:

(5.10) The sets Vi(R, 2) resp. VI(C, 2) are not closed in VI(R)
resp. VH(C).

Theorem (3.2) whose proof used (5.10) is therefore completely
established.
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We now prove a surprising fact for € which has no analogue for
R (see (6.3)):

(6.11) The interior of Wi(C, 3) as a set in Vi(C) is empty.

We show that if R = R, + R, + R,, R; ¢ G¥(C), is irreducible then
it is the limit of elements in V{(C, 2).

R; and R;(% ++ j) have no nonvanishing 2-vector as a common factor,
because R; + R; would then be simple. Thus two cases are to be
considered:

(1) R; N R; #0 for some 1,7, say B, A R, # 0,

(2) R; and R; have for 7 = j a vector v, = 0 (but no 2-vector =
0) as a common factor where (7, j, k) is a permutation of (1, 2, 3).

In the latter case the v, are either parallel or no two »; are
parallel. If they were parallel we could choose ¢; parallel to the v;
so that B = S A ¢ with Se V¥(C), and SR; would be reducible since
N(F,5,2) = 2. If no two »; are parallel then with suitable u;

R1:ul/\’vz/\”:«»Rz:uz/\vl/\vsyR:s:us/\v1/\Uz-

The vectors u;, v; are independent, for otherwise YR, would be a 3-
vector in a space of dimension less than 6 and by N(F,5,3) =2
reducible. The proof of (5.10) shows R can be approximated by elements
of Vi, 2).

In case (1) there are vectors w,, +«-, w;s, v, ., v, such that w,, w,,
w, are parallel to R, w,, w;, w, are parallel to R,, B,= v, A v, A v, and

V= QW+ QW Vy = QW T+ GsWs, Vs = QWs + QW «

If AL,w;#0 then R =3, a’w, and [[i.,a; # 0 is equivalent to
(5.6), so we have a special case of (5.8) (see [1, p. 83]) and hence B ¢
Vi(C, 2) contrary to the hypothesis. If Ai,w; = 0 and/or JIi,a; =0
we can choose w; and a] arbitrarily close to w,; resp. a; such that
© L w,= 0 [IL,a; = 0 and ) # #, so that R is the limit of elements
in ViC, 2).
For kr < n let Z*(F, k) be the set of B = 3k, R, with AL, R; #
0. Then Z*(F, k)yc W»(F, k) by (2.10).

(5.12) Z*(R resp. C, k) ts dense in V(R resp. C, k).

This is nearly obvious: If B = 37, R,eZ"(4),j <k, then R,,,,
«oo, R, exist with AL, R; #+ 0 and

E:lim(ﬁ—f—&zk, R) as 6—0.

i=j+1

If B=Si, ReWsi), i<k AisRi=0 and B = Ajo Vuoyren then
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w; — v; With AfZ w; = 0 exist and 3V, Aoy Wipres — B.
Because

Vi(€) = Z(C, 2) U VI(C, 2)/Z5(C, 2) U W3(C, 3) ,

(5.11, 12) show that Zj(C, 2) is dense in VJ(C), so that V{(C)/Z:(C, 2)
has no interior points, and hence has dimension less than 40 (=
dim V§(C)), see [2, p. 46]. In the next section we will see that Z$(C, 2)
is open. Thus

(5.13) The set ZY(C, 2) is open and dense in VIC), hence
Vi(0)]Z5(C, 2)
is closed and dim Z(C, 2) = 40, dim V(C)/Z(C, 2) < 40.

Note that W¥(C, 3) < V{C)/Zi(C, 2) and that therefore the closure
of WC, 3) has dimension less than 40.

6. The sets Z}(R resp. C, 2) and W{(R, 8). We now prove that
ZYR resp. C, 2) is open. Actually our next theorem provides much
more information which will allow us to show that W{(R, 3) has a
nonempty interior.

THEOREM 6.1. Let F=R or C. If R, R,e GYF) and R, N\ R,#0
then there is a meighborhood U(R,) of R,= R, + R, in V¥F) such
that for Re U (Fdo) there are simple R/, R, with R = R! + R!. Further-
more, given neighborhoods UyR;) of R; in G3(F) there is a mneighb-
orhood U'(R) < U(R,) such that Re U'(R,) implies Ric U(R;) and
R AR,=0. Consequently Rec ZF,2) and by (4.4) R, + R, is unmique.

Necessary for (6.1) to work is that G% x Gf and V?{ have the

same dimension, which is the case because a-dim G? = r(n — r) + 1,
a-dim V! = <Z_"> and 2{3(6 — 3) + 1] = 20 = (g) But this argument
is far from sufficient as similar situations for other dimensions show;
the structure of G¢ enters.

Since R, A R, # 0 we can choose a base so that R, = e¢,;, R, = e,.
A mneighborhood of R, on G¢ consists of the simple R/ = Ypg%; =
Susi<i<kss 875, with g close to 1 and the remaining A7 close to 0,
80 B =0 may be assumed. Similarly for R;= 2v’e; and v**2 0. The
components of B, are 1,0, .-+, 0, 1.

The special properties of G¢ arise from the Pliicker relations which

(see [1, p. 69]) with » = (B8'¥)™* are equivalent to
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ik B Bk , . .
B = £\ g ok 1<i<3,4j<k=<6,(,0,0) =1(,23),
,8124 18125 6128

B = \? 16)134 3135 Bl = B.
6234 18235 8235
Similarly with g = (v*%)

,Yipk 7jpk
,Y'iak ,onk

145 245 345
7 7

V= 4 p 1<i<j<8,45k=<6,(0,0,k) =7n4,5,6),

7
Y = g g8 e el — (O
I 6 856

If now Ja’e, = R = R, + R, = 3B8%, + 3v'e, then af = BY + %, and
substitution gives

aB = ,3123 +C,
- " ik ek .
at =g rpl T 11<i<j<3,45k=6,(0,0,k) =1(4,5,6),
7’“7 7!7
. Bim' Bipk
W= Ny gl FT 1S 153,455 <kS6,(,0,0 =7(1,2,3)

o' = B L %6

Thus the 20 components of R are expressed in terms of 5, the
nine B with 1<7<8,4<j<k<6, theninev with 1=51<j<3,4<
k <6, and v**. Evaluation of the functional determinant at (1, 0, -- -,
0,1) gives the value 1. Therefore, the implicit function theorem is
applicable and yields the assertion. The details of the calculation may
be found in the thesis, [1, pp. 93-97].

As a corollary we have

(6.2) The set Z{(R resp. C, 2) is open in V(R resp. C).
But in contrast to (5.11):
(6.3) The interior of W(R, 3) is not empty.

For take any R, = 3.y @’e; of (5.8) for which the a’ are real
but A, £ are not. Then
R0:R5+RT with R,g/\R,;tO.

By (6.1) for Re U'(R,) < V&C)
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B =R + R, with R, A R, 0, R; close to R; and R; close to R,
so that R, and R; cannot be real either. Also R, + R} is unique by
(4.4) and this implies as in the proof of (5.9) that

RBe WiR,3) for ReU'(R)NVIR),

where we consider V§(R) as a subset of Vi(C).
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COUNTABLY COMPACT GROUPS AND FINEST
TOTALLY BOUNDED TOPOLOGIES

W. W. COMFORT AND VICTOR SAKS

The first main result formalizes the general principle that
each totally bounded group G is dense in some group H, not
much larger than G, in which every subset of small cardi-
nality has a complete accumulation point. For example: If
G is totally bounded and |G| = n = Y,, then G is dense in a
countably compact group H such that |H| < n®. A corollary:
If K is an infinite compact group with weight not exceeding
2", then K contains a dense, countably compact subgroup H
with |H| < n¥o,

The following results are given in §2: If ¢ is the finest
totally bounded topological group topology on an infinite
Abelian group G, then every subgroup of G is t-closed and
(G, t) is not pseudocompact (both conclusions can fail for G
non-Abelian); a closed subgroup of a pseudocompact group
need not be pseudocompact; if {(G, ¢;}: 1€ I} are nontrivial
Abelian groups with their finest totally bounded topologies
and (G, ") is their product, then .7~ =1t if and only if
171 < No.

1. Countably compact groups. Throughout this section the
word group refers to a topological group which satisfies the Hausdorft
separation axiom. Such spaces are known to be completely regular
topological spaces. A group is said to be totally bounded if for each
non-empty open subset U of G there is a finite subset {x,:%k < n} of
G for which G = Ui« 2:- U. Each subgroup of a compact group is
totally bounded, and Weil [26] has shown the converse: Each totally
bounded group G is (homeomorphic with) a dense subgroup of a compact
group and this compactification is unique to within a topological iso-
morphism leaving G fixed pointwise. We refer to this compactification
of G as the Weil completion of G, and we denote it by the symbol G.

A completely regular Hausdorff space X is countably compact if
each of its infinite subsets has an accumulation point, and pseudo-
compact if each continuous, real-valued funetion on X is bounded
(equivalently: each locally finite family of open subsets of X is finite).
It is easy to see that each countably compact space is pseudocompact,
and (as in [6], for example) that each pseudocompact group is totally
bounded. Examples abound of pseudocompact groups which are not
countably compact; see for example Kister [18] or H. Wilcox [28].

A number of theorems in the works of Itzkowitz [16], [17], and
H. Wilcox [28] are devoted to showing that (in various settings and
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under various hypotheses) between a totally bounded group G and its

Weil completion G there is a pseudocompact group which is in a certain

precise sense not much larger than G. The principal result of this

section is a theorem of compactness type which has a number of

corollaries improving these results. We show, specifically, that the

groups of Itzkowitz and H. Wilcox may be chosen countably compact.
Notation. If m is a cardinal and S is a set, then

F(S)={AcCS:|A| < m}.
If m and n are cardinals then
nt = > {n':f is a cardinal and f < m}.

It is well-known and easy to prove that if m and n are infinite
cardinals and m < nt, then

| T =n= = m .

(Here as usual, the symbol n* denotes the smallest cardinal greater
than n.)

Recall that if X is a space and Y < X, then a point p of X is a
complete accumulation point of Y provided that

unY|=1Y]

for each neighborhood U of p in X. It is obvious that if X is compact,
then each infinite subset of X has a complete accumulation point in X.

The weight and density character of a space X are denoted wX
and dX, respectively.

DEFINITION. Let m and n be cardinal numbers with W, < m < n.
The space X is [m, nj-compact in the sense of complete accumulation
points provided: If Yc X and m < |Y| < n, then Y has a complete
accumulation point in X.

The term we have just used is often defined as above except that
it is required that |Y | be a regular cardinal. Even this weaker property
is strong enough to yield a compactness condition of covering type;
in the interest of completeness we give a proof below. For positive
results in the converse direction, see Alexandroff and Urysohn [2]
and Aleksandrov [1], and for negative results in the converse direction
see Mishchenko [21].

We note that in our terminology the spaces which are [¥,, W.l-
compact in the sense of complete accumulation points are the countably
compact spaces: each countably infinite subset has a (complete) accumu-
lation point.
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PROPOSITION. Let m and n be cardinal numbers with Y, < m < n
and let X have the property that if YC X and mZ (Y| < n and |Y|
is regular then Y has a complete accumulation point in X. Then for
each open cover ZZ of X such that m < |Z/| < n and |Z/| is regular,
there is a cover " C % and |77 < | % |.

Proof. Suppose that Z = {U.: ¢ < | % |} is a counterexample, and
for £ < |%| choose recursively p.e X and f(&§) < |% | as follows:

(i) pye X\U, and p,€ Uy s

(ii) if p, and f(») have been defined for all » < &, then

D: € X\,LJ,(U” UUsn) and pee Uy -
Then with Y = {p: £ <|Z |} we have |Y| = | % | so there is a complete
accumulation point p of Y in X. If v is chosen so that pe U,, then

there exists & > 7 such that p.e U,. This contradiction completes
the proof.

THEOREM 1.1. Let G be a totally bounded group such that |G| =
n=> W, and let m be a regular cardinal for which m < n*. Then
there is a group H, with G < HC G, such that H is [W,, m]-compact
in the semse of complete accumulation points and |H| < n=.

Proof. For_A e Z(G) with |A] = W, let p, be a complete accumu-
lation of 4 in G, and for Sc G let

F(S)=SU{p,:Ae Z(S), 1Al = Ry} ;

and for Sc G let {(S) denote the subgroup of G generated by S.
Now let H, = G and H, = {F(H,))> and recursively, if £ < m and
H, has been defined for n < &, let

H; = (F(J H)) -

We show by induection |H,| < n® for & < m. This is true for £ =
0 because

|H,| = u<n”
and for £ = 1 because
\F(H)| = | F(Hy)| = nz .
If |H,| < n” for n» < & then |U,<: H,| < [&]-n% = nZ, so
IF(HH”)] < (mo)E =no;

this last equality holds because m is regular (see Bachmann [3], pp.
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152-153). Thus |H;| < n=.
Now let
H=H..

§<m

Then H is a group and Gc Hc G and

|H| < 3 [H | <m-n? =n".

And if Ae #(H) with [A]| = W, then because m is regular there is
& < m such that A cC H,, and we have

ps€eF(H)C H, ., C H;

thus H is [W,, m]-compact in the sense of complete accumulation points.

Our first corollary, but with “pseudocompact” in place of “countably
compact”, was given in the general case by H. Wilcox [28] and earlier,
for Abelian groups G, by Itzkowitz [16], [17].

COROLLARY 1.2. Let G be a totally bounded group such that |G| =

n= }50. Then there is a countably compact group H such that G C
Hc G and |H| < wh,

Proof. This follows from Theorem 1.1, upon taking m = W,.

COROLLARY 1.3. For each infinite cardinal n there is a totally
bounded group H which is [¥,, n*]-compact in the sense of complete
accumulation points but mot compact, and for which dH <n and
|H| < 2~

Proof. Let K be the compact group 2*'. According to a well-
known result of Hewitt [11] and Pondiczery [22] there is a dense
subset S of K with |S| =un. Let G be the subgroup of K generated
by S, so that |G| = n and K = G by Weil’s theorem. The result now
follows from Theorem 1.1, upon taking m = n* and noting that

nt =n" =2,

COROLLARY 1.4. There is a separable, countably compact group
which 18 not compact.

Proof. This is the case n = ¥, of Corollary 1.3.
COROLLARY 1.5. Let 1 be a cardinal and let K be a compact

group such that Y, < wK < 2°. If m is a regular cardinal for which
m Z ut, then K contains a dense subgroup H which is [¥,, m]-compact
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in the sense of complete accumulation points such that |H| < no.

Proof. According to Kuzminov [20] there is a continuous function
f from the compact group 2”% onto K. (For an English-language proof
that K is the continuous image of 2* for some cardinal n when K is
compact and Abelian, see Hewitt and Ross [12], pp. 423-424. That
n may be chosen to be wK follows from general topological con-
siderations as in Engelking [9] p. 162.) Again by the theorem of
Hewitt [11] and Pondiczery [22] there is a dense subset D of 2¥%
with |D| < n. Then f[D] is dense in K, so there is a dense subgroup
G of K such that |G| =n. Then K = G by Weil’s theorem, so the
result follows from Theorem 1.1.

The following two corollaries, with “countably compact” in place
of “pseudocompact”, are given by H. Wilcox [28]. The first of these
is given by Itzkowitz [16], [17] for the case in which K is Abelian.

COROLLARY 1.6. Let n be a cardinal and let K be a compact
group such that Y, < wK < 2". Then K contains a dense, countably
compact subgroup H such that |H| < v,

Proof. This follows from Corollary 1.5, upon taking m = W,.

We note that Corollary 1.6 may be proved by appealing to Wilcox’s
theorem in place of the result of Kuzminov. If K is given as in
Corollary 1.6 and H is a dense, pseudocompact subgroup of K with
|H| < o (as afforded by H. Wilcox [28]) then according to Corollary
1.2 above applied to the pair (H, K) there is a countably compact
group H' for which

HcHcCcH=K

and |H'| £ (n¥0)¥o = ¥,

COROLLARY 1.7. Assume the generalized continuum hypothesis. If
n is a cardinal and K is an infinite compact group such that K| =
2%, then there is a demse, countably compact subgroup H of K such
that |H| < o,

Proof. It is known that |K| = 2“%. (A direct proof is given by
H. Wilcox [27]. Earlier Hulanicki [14] [15], using essentially an
argument of Cech and Pospisil [4], showed that |K| = 2°% where 6K
denotes the smallest cardinal which is the cardinality of a family %
of open subsets of G such that |} % | = 1. Since 0K = wK—see
Hewitt and Ross [13], pp. 99-100—we have again | K| = 2*%,) From
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the generalized continuum hypothesis it follows that wK = 2%, so
Corollary 1.6 applies.

We have shown in this section that several of the pseudocompact
groups considered in [28] may in fact be taken to be countably
compact. We close with an example showing that not all of the
conclusions of [28] may be strengthened in this manner.

We continue the notational convention used earlier: If G is a
group and S C G, then {(S) denotes the subgroup of G generated by
S. For e G we write () in place of {{x}).

Here and later the symbol 7 denotes the circle group

T = {#z:z is a complex number and |z| = 1},
and @ is the “rational subgroup” of T—i.e.,

Q = {zc T: arg z is rational} .

DEFINITION. Let G be a group and xeG. Then z is a metric
element of G if cl,{z) is metrizable.

THEOREM 1.8. Let M be the set of metric elements of the group
T, Then M s not a countably compact group.

Proof. We have QC T, and hence @ T™. It is easy to see
that every element of 7™ is the limit of a sequence of elements of
@, (In detail: Let pe T™ and for & < W, and each integer n > 0
let ¢/ be chosen in @ so that

167 — pef < 1/m .

Then ¢ € @%, and ¢™ — p.) Thus it suffices to show

(a) Q™ c M; and

(b)y M< T™.

For (a) let x e @™ and let S ¥, have the property that |S| <
W, and for each & < W, there is ne S such that z; = z,, We claim
that the natural projection w: T™ — T is one-to-one on {x). If g™ +#
z* there is & < W, for which «I" = 27, and then choosing 7 e S such
that z; = x, have

(@(@™), = (&), = (@") = (") = (@")y = (7(2")y ;

thus 7#(z™) # 7(2") and the claim is established.

We claim next that m is one-to-one on the closure in 7™ of <{x).
Indeed if p, g e cl {x) with p; # ¢. for some & < W,, then upon choosing
ne S such that x, = x, we note that the projections 7, and 7, from
T™ onto T. and T, respectively agree on x, hence on <{z), hence on
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cl (x>, hence at p and gq. Thus
((p))y = 7y(p) = Te(p) = pe # ¢ = Te(q) = 7(Q) = (7(q)), »

so (p) # m(q).

Thus 7w is a one-to-one, continuous function from the compact
group cl {x) into the metrizable group T'%.

Thus the function 7, when restricted to the compact group cl {z),
is a one-to-one continuous function into the metrizable group T¢.
This restricted function is then a homeomorphism, cl <z is metrizable,
and x e M. Assertion (a) is proved.

For (b) it suffices to cite from [12] pp. 407-408 the familiar fact
that there exists xe T* such that cl<z) = T™. Since T™ is not
metrizable, we have xe T™\M.

2. Finest totally bounded topologies. Throughout this section
the word group refers simply to a non-empty set together with a
multiplication and inversion satisfying the usual group axioms; no
topology is assured. Topological groups are denoted by the symbols
(G, 97), (G, t) and the like. It is assumed that these satisfy the Haus-
dorff separation axiom.

It is known (see for example Dixmier [8], p. 296 ff.; Kurosh [19],
p. 157; von Neumann [25]; T. Wilcox [29]; and Hewitt and Ross [12],
pp. 348-351) that there are groups G with the property that for no
topology .9~ on G is (G, . 77) a totally bounded topological group.
But if G is an Abelian group then, because there are sufficiently many
homomorphisms from G to the circle group T to separate points of G,
the group G may be embedded algebraically into a product of copies
of T and therefore there is a totally bounded topology .7~ on G
relative to which (G, .77) is a topological group. According to Comfort
and Ross [5], the totally bounded group topologies on the Abelian
groups G are precisely the topologies induced on G by point-separating
group of homomorphisms into T; the finest such topology is the one
induced by the group of all such homomorphisms.

It is well-known [8] that if a (not necessarily Abelian) group G
admits a totally bounded group topology .7~ then it admits a (neces-
sarily unique) finest such topology. We denote this latter topology
on G, when it exists, by the symbol ¢. It is not difficult to see that
(G, t) has the property that each homomorphism from (G,%) to a
totally bounded group is continuous. Indeed ¢ may be defined as
follows: Let {(H;, f:): %€ I} be a listing of all pairs (H, f) with H a
totally bounded topological group and f a homomorphism from G onto
a dense subset of H, and let

e:G— P =[lic; H;
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be defined by the rule
(ex); = fi(®) ;

then ¢ is a one-to-one map because (G, id) is one of the pairs (H;, f.),
and t is the topology induced on G (more precisely: on ¢[G]) by P.

It is clear from the foregoing remarks that the finest totally
bounded group topology t on G is characterized by the property that
each homomorphism from G to a totally bounded group is ¢-continuous.

In this section we prove that for each infinite Abelian group G
the topological group (G, t) is not pseudocompact. This improves
an observation made in 1.8 of [5]. We show also that a product of
infinitely many nontrivial totally bounded Abelian topological groups
does not have its finest totally bounded topology.

LemMMA 2.1. Let G be an Abelian group and H a subgroup of
G. Then H 1is t-closed in G.

Proof. If xeG\H then H and xzH are different elements of G/H
so there is a homomorphism X from G/H into T such that X(zH) = 1.
If @ denotes the natural mapping from G onto G/H then Xo® is a
homomorphism from G to T and

we (o) ({(IHDH.

The result now follows from the fact that X-® is ¢-continuous, so
that (Xo®)™*({1}) is a closed subset of (G, %).

THEOREM 2.2. Let G be an infinite Abelian group. Then (G, t)
18 not a pseudocompact topological group.

Proof. It is well-known and easy to prove from standard struec-
ture theorems (see for example [12], page 227) that there is a sub-
group H of G such that |G/H| =W, If (G, t) were pseudocompact then
G/H in the usual quotient topology would be pseudocompact (being the
continuous image of @), a Hausdorff space (because H is closed by
Lemma 2.1), and countable. Since G/H is a pseudocompact, Lindelof
space it is countably compact ([10], Exercise 3D); indeed, it is compact
([10], Theorem 8.2 and Exercise 5H). But this is impossible, since
an infinite countably compact group has cardinality at least 2% ([12],
page 31).

REMARKS 2.3. (a) An early version of this paper showed only
that (G, t) as in Theorem 2.2 could not be countably compact, and
left unsettled the question whether (G, t) might be pseudocompact.
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We are grateful to Lew Robertson for formulating the argument
given above, which shows in effect that a pseudocompact group never
contains a closed, normal subgroup of countably infinite index.

(b) If the word Abelian is omitted from Lemma 2.1 or from
Theorem 2.2, the resulting statements are false. It has been pointed out
to us by Lew Robertson that according to a result of van der Waerden
[24] the real, special orthogonal group SO(3, R), which is an infinite,
compact, connected, Lie group, admits no discontinuous homomorphism
into any compact group. (It follows from (22.13), (22.14), and (22.22.h)
of [12] that the complex special linear group SL(2, C) admits no
algebraic isomorphism, continuous or discontinuous, into any compact
group. Such a group is said to be minimal almost periodic; see [25].)
According to the discussion preceding 2.1, then, this compact, metric
topology on the (non-Abelian) group SO(3, R) is the finest totally
bounded topology ¢ on SO(3, R). Since SO(3, R) contains copies of
T—and hence also non-closed copies of @—not every subgroup of
S0(3, R) is t-closed.

There is another property relating to finest totally bounded
topologies which, though it fails for the non-Abelian group SO(3, R),
holds for each Abelian group: According to Theorem 2.2 those closed
copies of T inside SO(3, R) do not inherit their own finest totally
bounded topology. But if H is any (necessarily t-closed) subgroup of
a topological group (G, t) with G Abelian then the topology induced
on H is its finest totally bounded topology. To prove this it suffices,
according to Theorem 1.7 of [5], to show that each homomorphism
f: H— T is continuous in this induced topology. Because T is divisible
such a homomorphism f extends to a homomorphism f: G — T; since
f is t-continuous on G its restriction to H is also continuous.

Our next result answers a question suggested by 2.1 and 2.2.
The construction follows an argument given in Theorem 2.3 of [28],
and is clearly susceptible to substantial generalization.

THEOREM 2.4. There is an Abelian pseudocompact group with a
closed subgroup which is not pseudocompact.

Proof. Let K = T™ and let
H={reK:[{{ < Wiw# 1} = N}

(H is an example of what Corson [7] calls a X-space.) That H is
countably compact is seen as in [7] or [18]: If Ac H and |A|= W,
then for some countable subset S of W, we have

AC (Tlees Te) X Tleewps {1} C H,
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so that each countable subset of H is contained in a compact subspace
of H.

Let ze T have the property that z” == 1 for each integer n and
let p be that element of K for which p. = 2z for all £ < W,; and let
J denote the subgroup of K generated by p.

Now let G be the subgroup of K generated by H and J. Clearly

(*) G={xeK:|{t< N:®: # 2" =W, for some integer n} .

We complete the proof by showing

(a) the group G is pseudocompact;

(b) J is a closed subgroup of G; and

(e) J is not pseudocompact.

For (a) we note that H is dense in G (because Hc G K andH
is dense in K) and that H is countably compact and hence pseudo-
compact. Thus G is pseudocompact.

For (b) we note that since the subgroup of T generated by z is
dense in T, we have

**) clyJ={xeK:ix. =, forall §n<W}.
From (*) and (**) it follows that

CIKJﬂG:J,

so that J is closed in G.

For (¢) we note that J is (homeomorphic with) the group {z" ¢ T: »n
is an integer}. This countable, infinite group is obviously not pseudo-
compact.

The proof is complete.

THEOREM 2.5. Let {(G;, t):1€ I} be a family of groups G; each
with its finest totally bounded topology t;.. If |I| < W, and (G, 9)
is the product of the spaces (G, t;), then the totally bounded topology
7 is the finest totally bounded group topology for G.

Proof. 1t suffices to treat the case I = {1, 2}. Let f be a homo-
morphism from G = G, X G, to a totally bounded group H, and let
U be a neighborhood in H of the identity ¢ of H. Let V be a
neighborhood of e such that V2 U, and let f, and f, be defined from
G, and G, respectively to H by the rules

fi(g) = f(g,, &), f(9:) = fley, g2) -

Because ¢, and t, are the finest totally bounded topologies on G, and
G, respectively, the homomorphisms f, and f, are continuous. Thus
there are neighborhoods W, and W, of the identity elements ¢, and e,
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such that
fl[WI]CV and leWz]CV.

It is now clear that
fIW, xW,jcVv:cU.

We conclude that f is continuous on (G,.77). Thus .7 is the finest
totally bounded topology for G.
Our final result is in contrast with Theorem 2.5.

THEOREM 2.6. Let {(G,;, 9;):1¢€ I} be a family of totally bounded
Abelian groups with |G;| = 2 for 1€l. If |I| = W, and (G, 7) 1is
the product of the spaces (G;, 7;), then the totally bounded topology
7 1s not the finest totally bounded group topology for G.

Proof. Let e¢; be the identity element of G,, and let
H={xeG: |{iel:o; + e} <N

Then H is a dense, proper subgroup of (@,.7 ). The result now
follows from Lemma 2.1.
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MAXIMAL INVARIANT SUBSPACES OF STRICTLY
CYCLIC OPERATOR ALGEBRAS

MARY R. EMBRY

A strictly cyclic operator algebra .7 on a complex
Banach space X(dim X = 2) is a uniformly closed subalgebra
of & (X) such that %« = X for some z in X. In this paper
it is shown that (i) if .7 is strictly cyclic and intransitive,
then &7 has a maximal (proper, closed) invariant subspace
and (ii) if 4e€ ¥ (X), A # zI and {A}' (the commutant of 4) is
strictly cyclic, then A has a maximal hyperinvariant subspace.

1. Notation and terminology. Throughout the paper X is a
complex Banach space of dimension greater than one and &~ (X) is
the algebra of continuous linear operators on X. .o will denote a
uniformly closed subalgebra of &°(X) which is strictly cyclic and x,
will be a strictly cyclic vector for .7 that is, 72, = X. We do not
insist that the identity element I of <“(X) be an element of .o/

If &# c & (X), then the commutant of <& is <&’ = {E: E e Z#(X)
and EB = BE for all B in &}. We shall use the terminology of
“invariant” and “transitive” as follows: if Mc X and <& c &~ (X),
then (i) M is invariant under <% if ZM = {Bm: Be <& and me M} C
M, (ii) M is an invariant subspace for <& if M is invariant under
& and M is a closed, nontrivial (= {0}, X) linear subspace of X,
(iii) &# is tramsitive if <% has no invariant subspace and intransitive
if <# has an invariant subspace. Further, if Ae¢ &(X) and {4} is
intransitive, then each invariant subspace of {4} is called a hyperin-
variant subspace of A. Finally an invariant subspace of <7 is maximal
if it is not properly contained in another invariant subspace of <%

2. Introduction. Strictly cyclic operator algebras have been
studied by A. Lambert, D. A. Herrero, and the auther of this paper.
(See for example [2]-[6].) One of the major results in [2, Theorem
3.8], [3, Theorem 2], and [6, Theorem 4.5] is that a transitive sub-
algebra of &(X) containing a strictly cyclic algebra is necessarily
strongly dense in 22(X). In each of three developments the following
is a key lemma: The only dense linear manifold invariant under a
strictly cyclic subalgebra of ~(X) is X. In Lemma 1 we shall
present a generalization of this lemma which will be useful in the
study of maximal invariant subspaces and noncyclic vectors of a
strictly cyclic algebra .o

LEMMA 1. If M is invariant under S and x,< M, then M = X.
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(It should be noted that we do not require M to be linear nor do
we require, as was done in Lemma 3.4 of [2], that Ic¢ .o The proof
given here is a slight modification of that given in [2].)

Proof. We shall show that o7z, M and thus X = .wx,C M.
Let {x,} be a sequence in M such that lim,_,., z, = ©,. By [2, Lemma 3.1
(ii)] there exists a sequence {A,} in . such that A%, =z, — 2,
and lim,..|/4,|| = 0. Thus for »n sufficiently large, ||4.]|| <1 and
I—A,)™" =>5.(A,)" Consequently, &7 (I — 4,)™C . and since
z=U— A, 2, we have wz,=.({I—-A)w,C.¥2,CM, as
desired.

For the sake of future reference we restate and reprove the
transitivity theorem.

THEOREM 1. If . is a strictly cyclic transitive subalgebra of
A (X), then &7 is strongly dense in F(X).

Proof. Using Lemma 1 we can show (as in [2, Lemma 3.5]) that
each densely defined linear transformation commuting with .o~ is
everywhere defined and continuous. Further, again using Lemma 1,
we can show that if Fe.o” and z e og{¥), then either 2] — E is not
one-to-one or does not have dense range. Thus if .27 is transitive,
necessarily E = zI. Consequently, it follows from [1, p. 636 and Cor.
2.5, p. 641] that .o~ is strongly dense in & (X.)

3. Maximal invariant subspaces. In [2, Theorem 3.1} it is
shown that every strictly cyclic, separated operator algebra . has
a maximal invariant subspace. (&7 is separated by «, if A =0
whenever Ac .o and Ax, = 0.) Theorem 2 allows us to obtain the
same result without the hypothesis that .o~ be separated, provided
57 is intransitive.

THEOREM 2. An intransitive, strictly eyclic subalgebra &7 of
Z(X) has a maximal invariant subspace.

Proof. Let .~ ={M: M is an invariant subspace of .o7}. By
hypothesis ..z +@. We shall order .~ by set inclusion and show
that each linearly ordered subset of _# has an upper bound in _#.
To this end we let {JM,} be a linearly ordered subset of _#. Then
U. M, is invariant under .oZ By Lemma 1, if .M, = X, then
U. M,= X and consequently x,e M, for some value of a. Since this
last implies that X = .&/v,C o M, < M, and contradicts the fact that
M, is a proper closed linear subspace of X, we see that |J. M., is not



MAXIMAL INVARIANT SUBSPACES 47

dense in X. Thus |, M, is an element of _# and is an upper bound
for {M,}. By the Maximality Principle .# has a maximal element.

Lemma 1 and the Maximality Principle can be combined to arrive
at other similar results. For example, (i) if .97 is intransitive and
strictly cyclic, then .o~ has a proper maximal invariant subset (this
will be discussed further in §4) and (i) if X is a Hilbert space and
.57 has a reducing subspace (that is, an invariant subspace of .o~
which is also invariant under .&* = {A*: A€ .%}), then .o~ has a
maximal reducing subspace.

In [2, Theorem 3.7] it is shown that if A is not a scalar multiple
of I and {A} is strictly cyclic, then A has a hyperinvariant subspace.
This result combined with Theorem 2 yields the following:

COROLLARY 1. If A is mot a scalar multiple of I and {A} is
strictly cyelic, then A has a maximal hyperinvariant subspace.

We shall now turn our attention to intransitive, strictly cyclic
operator algebras on a Hilbert space X. If M is a closed linear
subspace of X, P, will denote the orthogonal projection of X onto M
and M* the orthogonal complement of M: M* = {y: {y, m) = 0 for all
m in M}. Furthermore, .o7* = {4*: Ae .o},

In the Hilbert space situation we are able to conclude that .o7*/M
is strongly dense in & (M*) when M is a maximal invariant subspace
for .o/ This remains an open question if X is an arbitrary Banach
space and is a particularly interesting one if X is reflexive. For in
that case if M is a maximal invariant subspace of .o, then M* =
{x*: 2*(M) = 0} is a minimal invariant subspace of .o7*.

THEOREM 3. Let .o be a strictly cyclic operator algebra on a
Hilbert space X. If M is a mawximal invariant subspace of o7, then

(i) (I— Py)r (I — Pym, = M* and (i) 7 *(I — P,,) is strongly
dense in < (M*).

Proof. Note first that (I — P,).>7 (I — Py) = (I — Py).%7, so that
() is immediate. Since M is a maximal invariant subspace for .o/, M*
is a minimal invariant subspace for .o~*. Thus each of .o *(I — P,)
and (I — P,).57 (I — P,) is transitive on M*-. Thus the uniform closure
of I — Py (I— Py, in <2 (M*) is transitive and by (i) is strictly
cyclic; hence by Theorem 1 (I — P,).s7 (I — P,) is strongly dense in
(M), which concludes our proof of (ii).

THEOREM 4. Let X be a Hilbert space, Ac ¥ (X) and {4}
strictly cyclic. If M is a maximal invariant subspace for {A},
then there exists a multiplicative linear functional f on {A}' such
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that for each E in {A)", (E — f(E))(X)c M.

Proof. As we noted in the proof of Theorem 3,
Z = (I - PM){A}’(I"' Py)

is strongly dense in &“(M') and thus its commutant consists of the
scalar multiples of the identity operator on M*. Since {A4}" c {4}
and M is invariant under {4}, we know that (I — P,){A}'(I — Py)
is contained in the commutant of <& on M* and hence (I — P,){A}'(I —
P,)c{z2(I — P,)}. Thus for E in {A}"’, there exists a complex number
z such that (I — P,)E({ — Py,) = z(I — P,). Therefore, (I — P, }(E —
zI) = 0 since M is invariant under {A}"’; or equivalently (F — zI)(X) C
M. Since M is a proper subset of X, it is now obvious that the
number z for which (F — zI)(X)c M is unique. Define f(E) = z.

That f is linear follows immediately from the fact that f(E) is
the unique number for which (F — f(E)I)(X) < M. Furthermore, since
M is invariant under {4}, (FE — f(E)F}X)c M for all E, Fe{A}".
Consequently (by uniqueness again), 0 = f(FE — f(E)F) = f(FE) —
f(E)f(F) and thus we see that f is multiplicative.

COROLLARY 2. Let Aec (X)) where X is a Hilbert space. If
the range of A — zI is dense in X for each complex z, them {A} is
not strictly cyclic.

Proof. Except for one minor technicality, Corollary 2 follows
immediately from Theorem 4. For, if {4} is strictly cyclic and
intransitive, by Theorem 4 there exists a complex number f(A4) such
that the range of A — f(A)I is contained in a proper subspace of X.
By Corollary 1 the only other way in which {4} can be strictly cyclic
is when A = zI for some complex z, in which case the range of 4 —
zI is certainly not dense in X.

In [2, Lemma 3.6] and [3, Proposition 2], it is shown that if
Ee . o7, where & is strictly cyclic and 2 € 6(E), then either zI — E
is not one-to-one or zI — E does not have dense range. Corollary 2
now adds to our knowledge of o(A) where {A}' is strictly cyclic: in
this case we know that for at least one value of 2z, the range of
A — zI is nondense. Indeed we have the stronger result:

COROLLARY 3. Let Ae ¥ (X) where X 1s a Hilbert space. If
{A} s strictly cyclic, then there exists a common eigenvector for {A*}".

Proof. The case in which {4} = &°(X) is trivial. Thus we
assume A # zI. By Theorem 4 if Eec{A}’, there exists a complex
number f(E) such that (EF — f(E)I)(X)C M where M is a maximal
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invariant subspace of {4}'. Therefore, E*(I — P,)x, = f(E)*(I — Py)x,
and (I — Py)z,# 0 since z, is cyclic for {A} and M is a proper
invariant subspace for {4}.

4. Noncyclic vectors of .&. In this last section of this paper
we shall discuss briefly several properties of the set of noncyclic vectors
of a strictly cyclic operator algebra .9 A vector x is noncyclic for
S if w7z is not dense in X. These results are summarized in
Theorem 5. Parts (i) and (iii) of Theorem 5 also are found in [5,
Theorem 2].

THEOREM 5. Let N be the set of moncyclic vectors of a strictly
cyclic operator algebra .o

(i) 4 ¢ N, then x is a strictly cyclic vector for .7,

(ii) N s invariant under .57,

(iii) N s closed in X,

(iv) N is the unique proper maximal invariant subset of .57

(v) if N is not linear, then N + N = X, where N + N = {x +
y: 2, y€ N}.

Proof. (i) If x¢ N, then .o/ = X and thus by Lemma 1 since
7% is invariant under .&7; we have .&x = X and « is strictly cyeclie.
(ii) Assume that x € Nand A e . Then.w Ax C .97« and consequently
¥ Ax # X. That is, Axe N for each 4 in .o which proves (ii).
(iii) By (ii) & Nc N. Since .o has a strictly cyclic vector, we know
by Lemma 1 that N contains no strictly cyclic vector for .oz Thus
by (i) N contains only noncyclic vectors for .97 which says that N is
closed. (iv) By (i) N is invariant under .. By hypothesis .o~ has
a strictly cyclic vector so that N = X. These two observations essen-
tially prove (iv) since an element x of a proper invariant subset of
57 is necessarily an element of N. (v) If N is nonlinear, then
since N is homogeneous, we know that N # N + N. Therefore, since
N + N is invariant under .o (by (ii) we know that N + N = X by
(iv)).

To see that there exist strictly cyelic operator algebras for which
N is linear and those for which N is nonlinear let us reconsider
Example 1 of [2].

ExAMPLE. Let X be a Banach space, dim X = 2 and let z,¢ X,
2, # 0. Let each of z* and y* be a continuous linear functional on
X such that z*(z) = y*(®,) = 1. For each z in X define 4, by

Ay = w*@ly — y* W] + y* @)
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and let &7 = {4,:ze X}.

It was observed in [2] that .o is a strictly cyclic operator algebra
with strictly cyclic, separating vector .

A simple argument shows that a vector y, of X is cyclic (and
hence by Theorem 5 strictly cyclic) if and only if y*(y,) # 0 and z*(y,) =
0. Thus the set N of noncyclic vectors coincides with ker y* U ker z*.
Consequently, N is linear if 2* and y* are dependent and nonlinear
otherwise.
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CONGRUENCE LATTICES OF SEMILATTICES

RALPH FREESE AND J. B. NATION

The main result of this paper is that the class of con-
gruence lattices of semilattices satisfies no nontrivial lattice
identities. It is also shown that the class of subalgebra
lattices of semilattices satisfies no nontrivial lattice identities.
As a consequence it is shewn that if 27~ is a semigroup variety
all of whose congruence lattices satisfy some fixed nontrivial
lattice identity, then all the members of &/ are groups with
exponent dividing a fixed finite number.

Given a variety (equational class) .27 of algebras, among the inter-
esting questions we can ask about the members of 27" is the following:
does there exist a lattice identity 6 such that for each algebra A e %,
the congruence lattice &(A) satisfies 6? In the case that 9" has dis-
tributive congruences, many strong conclusions can be drawn about
the algebras of .2 [1, 2, 7]. In the case that .o has permutable con-
gruences or modular congruences, there is reason to hope that some
similar results may be obtainable [4, 8].

A standard method of proving that a class of lattices satisfies
no nontrivial lattice identities is to show that all partition lattices
(lattices of equivalence relations) are contained as sublattices. The
lattices of congruences of semilattices, however, are known to be
pseudo-complemented [9]. It follows that the partition lattice
on a three-element set (the five-element two-dimensional lattice)
is not isomorphic to a sublattice of the congruence lattice of a semi-
lattice, and in fact is not a homomorphic image of a sublattice of the
congruence lattice of a finite semilattice. Nonetheless we shall show
in this paper that the congruence lattices of semilattices satisfy no
nontrivial lattice identities. This solves Problem 6 of [10]. Using
a theorem of T. Evans [6], we also show that if 7" is a variety of
semigroups all of whose congruence lattices satisfy some fixed non-
trivial lattice identity, then all the members of 7° are groups with
exponent dividing a fixed finite number.

In §1 we give definitions and a few basic facts about the con-
gruences of semilattices. In §2 we prove our main theorem, and in
§ 3 we apply it to obtain the corollary about varieties of semigroups.

1. A semilattice is a commutative idempotent semigroup. We
may impose a partial ordering on a semilattice S by defining

r=y if a2y=2.
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Under this ordering, any two elements «, y € S have a greatest lower
bound, namely their product xy. S is called a meet semilattice. It
may be that © and y have a least upper bound we S; if so, we define

Tt+Y=w.

Thus + is a partial operation on S, and x + y is called the join of
and y. If S is finite, and if x and ¥ have a common upper bound,
then z + y exists and

c+y=IMHzecS:z2=2 and z = y} .

The least element of a semilattice, if it exists, is denoted by 0; the
greatest element, if it exists, by 1.

A dual ideal of a semilattice S is a set D & S satisfying (i)
d,, d, €D implies dd,e D, and (ii) * = de D implies xe D. We will
denote the principal dual ideal above x by 1/, i.e.,

ljx ={zeS: 2= z}.
For reference we note that if © + v is defined, then
ljeNljy=1z+y.

If S and T are semilattices, then S x T will denote the (external)
direct product of S and 7. We shall use round symbols (), J) for
set operations, and sharp symbols (A, V) for lattice operations.

The following theorem is basic to the study of semilattice con-
gruences.

THEOREM 1. [9] Let 2 denote the two-element semilattice. If
S is any semilattice and D is a dual ideal of S, then the mapping
f:S— 2 defined by

1 o weD
T@ =10 i weD
1s a homomorphism. Thus 2 1s the only subdirectly irreducible semi-
lattice, and the dual of @(S) is a point lattice (O(S) is a copoint
lattice).

In the rest of this section we note some easily provable facts
about the congruence lattice of a semilattice S.

(1) Suppose O(S) is atomic, and let A be the set of atoms of
6(S). Let x* denote the pseudo-complement of x. Then if ac 4, a*
is a coatom of @(S), and 0 is a unique irredundant meet of {a*:ac A}.
Hence S is a unique subdirect product of | A | copies of 2, but of no
fewer.
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It is not hard to show that if # covers 0 in 6(S) then ¢ covers
0 in 77(S), the partition lattice on S. From this and Theorem 1 it
follows that

(2) 6(S) is semimodular and if @(S) is finite and ¢ is the number
of coatoms of ©(S) then

dim@(S) =¢ = |S| — 1.

(3) 6(S) is relatively pseudo-complemented [9].

A lattice L is called locally distributive if the quotient sublattices
u,/a is distributive for all a e L, where u, is the join of the elements
covering a. In a compactly generated lattice, local distributivity is
equivalent to the conjunction of semimodularity and relatively pseudo-
complementation [3]. Hence

(4) 6(S) is locally distributive.

The problem of characterizing all lattices isomorphic to congruence
lattices of semilattices remains open. The above conditions are not
sufficient, even in the finite case.

2. In this section we prove the main result of this paper.

THEOREM 2. Let 6 be a nontrivial lattice identity. Then there

exists a finite semilattice S(0) such that 6 fails in the congruence
lattice B(S(0)).

The theorem is an immediate consequence of Lemmas 1 and 4 to
be proven below.

LEMMA 1. Let S be a finite meet semilattice, and let .S7(S) be the
lattice of (partial) join-subalgebras of S, with 0€ S considered as a
distinguished element. Then the congruence lattice O(S) is dually
isomorphic to S7(S).

A vpartial join subalgebra of S is a subset containing 0 and closed
under joins, whenever they exist.

Proof. The dual atoms of @(S) are the partitions v, = (1/d)
(S — 1/d) for 0 = d e S. On the other hand, the atoms of .&7(S) are
the subalgebras &, = {0, d} for 0 = d€ S. We want to show that the
mapping +r, — &, induces a dual isomorphism of #(S) onto .&7(S). Since
6(S) is a copoint lattice and .<7(S) is a point lattice, it is sufficient to
show that their closure operations are duals under the mapping, i.e.,
that

"ll‘cz"#dl/\"'/\"l/\dk if and Only if Ecéédl\/"'vsdk.
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This is equivalent to
Yo =Yg, N oo Ny, if and only if celd, «--, d,)

where {d,, -+ +, d,» denotes the join subalgebra generated by {d,, « -, d,}.
Notice that the equivalence classes of +y A <++ A ¥y, are

(Nvd - U va,)

jel

for IS {1, <+, k}. If 4o = g A +++ Ay, then each of these classes
is contained in either 1/c or S — 1/c. Considered the 4oy A <+ A g, —
class which contains ¢. Then ¢ is the least element of that class,
and thus
¢c=>,d;, forsome IS{l,--- k}.
1el

Hence ce<d,, «+-, d,).

Conversely, if cedd, «--,d,>, then ¢ = 3., d; for some [<
{1, «++, k}. Thus the congruence A;.;v, has one class equal to 1/c
and the rest contained in S — 1/c. Hence

wgi{\lwizw/\ cee A g, -
This completes the proof of Lemma 1.

Suppose ¢ < 7 is a nontrivial lattice identity, i.e., ¢ < = does not
hold in a free lattice. Then we construct a finite semilattice S(o)
(depending only on o¢) such that ¢ < = fails in $”(S(s)). Combined
with Lemma 1, this will prove Theorem 2.

Let X ={x,y,#, ---} be a countable set, and let FL(X) donote
the free lattice on X. For each element ¢ FL{X) we will define
a finite semilattice S(o). First of all we write each ¢c FL(X) in
canonical form. Then we define

Sy =2 for xe X
S(o, VV ;) = S(o)) X S(g,)
S(o, N\ 03) = S(o,) X Sloy) — I”
where
I'=1/(1,0) U 1/(0,1) — {1, 1} .

Let us look more carefully at the construction. If S(o,) and S(a,)
are lattices, then S(o,) x S(s,) — I" is meet-closed and has a unit
element; hence it is a lattice. It follows by induction that S(o) is
a lattice for each o0 ¢ FL(X). We need to know how to compute joins
in S(o). In S(o, V 0, joins are of course taken componentwise. In
S(o, N\ 0;) we have
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(*) (ry, 1) + (s, 8)
_ r+s,r+s) if r,+s+#1 and r,+ s #1
@, if »+s=1o rm+s=1.
In any S(o) let us denote (1, 1) by 1.
For each o € FL(X) we now define a homomorphism @, of FL(X)
into &7(S(0)). We do this by associating with each y ¢ X a join-sub-
algebra ®,(y) of S(o), and extending this map to a homomorphism in

the (unique) natural way. Once again we proceed inductively, with
o ¢ FL(X) written in canonical form. For ye X we set

S) if y==
{0y if y+u
Pova,(¥) = {(ry, 12): 7 € P, (¥), 72 € Po(y)}
Poinas(¥) = {(ry, 12): 1 € P (y) — {1}, 12 € P, () — {1}

U 4P, (v), Po,(¥))

P.(y) =

where

@ if 1¢A and 1¢B

A(A, B) =
4, B) {1} if 1eA or 1leB.

Our computations will be based upon the following lemma.

LEMMA 2. If pe FL(X), then
(1) Pove(0) = Po(0) X Po,(0)
(1) Poney(0) — {1} = {(r, 5) € P, (0) X Poy(0): 7 = 1 and s + 1}.

Proof. We prove (ii); the proof of (i) is similar but easier. We
proceed by induction on the length of po. For p = ye X the lemma
is immediate from the definitions. Now note that since 0e T for

every T e .&”(S(0)), we have
TV T,={t+ t:t,el,t,eT,}.
Hence if 0 = 0, VV 0,, then by (*) we have

g)al/\uz(p) - {1} = gz)al/\az((ol) V ¢gl/\g2(l02) - {1}
= {(r,, s) + (75, 85): (7, ;) € @ol/\a2((ol) ,
(T2 82) € Poypa,(00), T2 + 1o # 1,8, + 8 # 1} .

By the inductive hypothesis we have
(T3, 82) € Poinay(0:) — {1} = P, (0) — {1} X P, (0;) — {1}

for © = 1,2 and hence
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Porna(0) — {1} = {(r, 8) € P, (0) X P(0):7 #1 and s=#1}.
On the other hand, if p = o, A 0,, then

QDal/\az(p) - {1} = ¢01A02(Pl) - {1} N @al/\az(loZ) - {1}

and the conclusion of the lemma follows.
LeMMA 8. If pe FL(X), then 1e ®,(0).

Proof. As usual we proceed by induction on the length of p.
If o = ye X the lemma follows from the definitions. If o= p, V 0,
then 1e®,(0;) (¢ =1, 2), and thus by Lemma 2 (i) we have

(1,0)eP,(0) and (0, 1) ePu(0r)

from which it follows that 1e®,(0) V P.(0,) = Po(0).

If o= p A 0, We can again assume le @, (0;) for © =1,2. We
need to show that le®, ,.,(0). We prove a slightly stronger state-
ment: if 1e®,,(0), then 1€ P, A, (0). If 0 = ye X this is immediate.
Suppose ¢ = 0,V 0,, then le®,(0,) V P, (0,) and hence 1 = ¢, + i,
where t; € P, (o). If ¢, # 1,¢ # 1, then by Lemma 2 (i) we have

1=(,0) + (&, 0) € Pono,(0) V Pone,(0:) = C/Dpl/\pz(o‘) .
If ¢, =1 for some ¢ then by induction 1e®,(c;) implies
1 € @Pll\Pz(ai) g ¢91AP2(0‘) M

Suppose ¢ = 0, A 0,. Then le®,(0,) NP, (0:). By induction 1le
Po,ne(0:) for ¢ = 1,2 and we are done.

LEMMA 4. If 0 £ 7 in FL(X), then 1¢ ®,(7).

Assume we have proven Lemma 4. Then Lemmas 3 and 4 com-
bine to yield: 1 e ®,(7) if and only if ¢ < 7 in FL(X). Hence ¢,(0) &
?,(7) if and only if ¢ < 7 in FL(X), and Theorem 2 follows.

Proof of Lemma 4. Suppose the lemma is false. Let o be a
word of minimum length such that 1e®,(7') for some 7’ such that
o0 £ 7 in FL(X). Let 7 be of minimal length such that ¢ £ v and
le®p,(r). We will show that these conditions lead to a contradiction.
The cases 0e X,0 =0,V 0,,06 =0, N0, and te X or T = 7, AT, are
easy to handle. Let us assume, then, that 6 =0, A0, and 7 = 7,V 7.
Then since ¢ £ © we have

c%£7t, and 0%£7, and o, £7 and o, £ 7.
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Since 1€ ?,(t)=P,(t)) V P,(7,), there exist t; € #,(z;) such that ¢, +¢,=1.
If t;, =1 for some 7 then by the minimal length of = we have ¢ < 7,
a contradiction. Thus ¢, 1 and by Lemma 2 (ii) we can write
t; = (1, s;) where ;e @,(r;) and s;€ P.,(7;). Now either », + », =1 in
S(g)), which means 1e®,(z) V P, (7,) = P,(r) and hence o, < 7, or
s, + s, =1and 0, < 7. Both these statements are contradictions.

Since the semilattices S(o) constructed above are in fact lattices,
they are join semilattices. Thus, the above proof shows that any
nontrivial lattice identity fails in the subalgebra lattice of some finite
semilattice.

Now the congruence lattices of lattices satisfy every nontrivial
lattice identity, while those of semilattices satisfy no identity. It is
reasonable then to ask if there is some “natural” restricted class .2~
of semilattices such that the congruence lattices of semilattices in
27 satisfy some lattice identity.

One such class is known [53]. A simple argument based on
Theorem 1 shows that #(S) is nonmodular if and only if S contains
a pair of noncomparable elements with a common upper bound. Hence
if S is finite #(S) is either nonmodular, or else it is isomorphic to
the Boolean algebra of subsets of some set.

Ot the other hand, the semilattices S(o) constructed in § 2 are in
fact lattices; in particular, the join of every pair of elements is de-
fined. It follows from Theorem 1 that S(¢) can be imbedded as a join
semilattice into a Boolean algebra B(o). Considering B{o) as a meet
semilattice, we see that every nontrivial lattice identity fails in the
(semilattice) congruence of some finite Boolean algebra.

3. We can now prove an interesting corollary about varieties of
semigroups. Let R denote the two-element semigroup with multipli-
cation law a2y = y; L the two-element semigroup with multiplication
law xy = x; and C the two-element semigroup with constant multipli-
cation. The following theorem is due to T. Evans [6].

THEOREM 3. The atoms of the lattice of wvarieties of semigroups
are the varieties generated by R, L, C, 2 (the variety of all semilat-
tices), and the cyclic groups of prime order. If a montrivial variety
of semigroups does not contain R, L, C, or 2, then it is a subvariety

of Z ., the variety of groups of exponent dividing n, for some finite n.
Now if T is a semigroup in the variety generated by R, L, or C,
then &(T) is just the partition lattice on 7. Hence Theorems 2 and

3 combine to give the following corollary.

COROLLARY. If 77 s a semigroup variety all of whose congruence
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lattices satisfy some fixed mnontrivial laitice identity, them 7° is a
subvariety of <&, for some finite n.
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A NONASSOCIATIVE EXTENSION OF THE
CLASS OF DISTRIBUTIVE LATTICES

E. FrRIED AND G. GRATZER

Let Z ={0,1,2} and define two binary operations A and
vV on Z as follows: 0AN1=0,0v1I=11A2=1,1v2=
2,2A0=2,2V 0=2, both operations are idempotent and com-
mutative. This paper deals with the equational class Z gen-
erated by the algebra <Z; A, V>. The class Z contains the
class of all distributive lattices and Z is a subeclass of the
class of weakly associative lattices (frellis, T-lattice) in the
sense of E. Fried and H. Skala.

The purpose of this paper is to prove that Z shares the
most important properties of the class of distributive lattices.

A tournament (T; <) is a set T with a binary relation < such
that for all a,be T exactly one of a« =b,a < b, and b < a holds.
Equivalently, a tournament is a directed graph without loops such
that exactly one directed edge connects any two distinct points. Just
as chains (linearly ordered sets) can be turned into lattices we can
define meet and join on a tournament {T; <) by the rule:

fex<y, thenz=2Ay=yAzandy=2Vy=yVez,
and = 2 A v = 2 \V « for all x.

Since for all x,ye T, x #+ y, we have ¢ < y or y < = the above rule
defines A and VV on T.

Of course, the algebra <{T; A, V) we constructed is not a lattice:
neither A nor \/ is associative unless {(T; <> is a chain, that is, <
is transitive. However, as it was observed in E. Fried [5], the two
operations are idempotent, commutative; the absorption identities hold
and also a weak form of the associative identities.

The smallest example of a nontransitive tournament is the three-
element cycle {0, 1, 2}; <> in which 0 < 1,1 < 2, and 2 < 0. In the
corresponding algebra Z neither A nor \/ is associative.

Z plays the same role for tournaments as the two-element lattice
does for distributive lattices. A tournament (algebra) {T; A, V) is
not a chain if and only if it contains Z as a subalgebra.

In this paper we investigate the equational class Z generated
by the algebra Z. Observe that C, = ({0, 1}; A, V) is a subalgebra
of Z, in fact, it is a two-element chain. Therefore, Z contains as
a subclass the class D of all distributive lattices. (Indeed, D is
generated by C,.)

The results of this paper can be summarized as follows: many of
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the most important properties of D generalize to Z, and, in fact, Z
is the only equational class (other than D) generated by tournaments
to which these results generalize.

In Part I, we discuss congruences in, and identities of Z. Section
2 contains some preliminary results and some important concepts, in-
cluding the proper form of distributivity for tournaments. In §3 the
minimal congruence relation ©(a, b) is described in Z and is applied
to show that the Congruence Extension Property and the Amalgamation
Property hold for Z. In §4 it is shown that the result of §3 charae-
terizes the class Z. This is applied in §5 to find a finite set of
identities (in fact, two) characterizing the class Z'. Part II contains
the structure theorems. In §6 we describe the structure of finite
algebras in Z: they are all of the form D x Z*, where D is a uniquely
determined distributive lattice. Section 7 gives the structure of free
algebras over Z: the free algebra on n generators is of the form
Fy(n) x Z*, where F(n) is the free distributive lattice on n generators
and k,=3""*—2"4+1. We prove in §8 that every algebra in Z can be
embedded in an injective one. The injectives in D are known to be
the complete Boolean lattices. The injectives in Z are the extensions
of Z by complete Boolean lattices.

ExAMPLES. An “evaluation” of elements of a set 4 is a map @
of A into another set S, equipped with a binary relation <, meaning
“better than”. We say that b is better than a(a, be A) if ap < bP.
If we want to be able to compare any two elements of A, then we
have to assume that {S; <) is a tournament.

Evaluating a sample {a,, ---,a,> of elements of A we get an
“evaluation vector”: {a,®, +--, a,#>. The study of the equational class
generated by <(S; A, V) is the investigation of the algebra of the
evaluation vectors. Thus Z is the “algebra” of the evaluation vectors
over Z.

Given a set X we can consider the set P(X) of all partitions
{X,, X;> of X into two sets. If (X, X,>,<Y, Y,) e P(X) we can set
(X, X)) =Y, Y if and only if X, &Y,. This makes P(X) into a
distributive lattice. Any distributive lattice is a sublattice (up to
isomorphism) of some P(X).

Now consider the set Z(X) of all partitions of X into three subsets
(X;, X, Xpp. For (X, X,, X;),<Y,, Y, Y;) € Z(X) we declare {X,, X,,

1 The results of this paper were announced in the Notices of the American Mathematical
Society 18 (1971), 402 and 548. Independently, in 1971 K. Baker announced in a lecture
a general result, namely that every equational class of finite type in which the algebras
have distributive congruence lattices and which is generated by a finite algebra can be
defined by a finite set of identities. Our result in §5 is a very special case of Baker’s
result. Of course, the general method of Baker yields more complicated identities for Z.
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X> =Y, Y,Y)ifand only if X, =Y, UY, X, &Y, UY, and X, &
Y,UY, Again, Z(X)eZ, and any member of Z will be (up to
isomorphism) a subalgebra of some Z(X). Observe that Z(X) contains
P(X) as a subalgebra under the correspondence {X,, X,> — <X, X,, @).

PArT I. Congruences and Identities.
2. Preliminary results. An algebra (4; A, V) is called a weakly

associative lattice (WA-lattice) if it satisfies the following set of
identities

(1) rAx=x and z2Vae==a (idempotency) ;
(2) sANy=yAzxz and 2Vy=yVe (commutativity) ;
(3) rA@Vy)=2 and 2V @AY =2

(absorption identities) ;

(@A2)V@HA2)Vz=2z and

(4) (V2 A@WV=e)Az==z (weak associativity) .

This axiom system was discovered independently by E. Fried [5]
(he called these T-lattices) and H. M. Skala [16] (she called them
trellis).

(1)-(4) are not independent. (8) implies (1), and (4) and (1) imply
(8). Observe, that the first identity (and, similarly, the second identity)
of (4) can be written in the form

(@A VAR Vez=@ A2V (YA2V2)

which justifies the name weak associativity.
It is easy to see that in a WA-lattice the polynomial p(z, ¥, 2) =
(A y)V (YA 2)V (2 A 2x) satisfies the identities

x = p, v, y) = p@,y,x) = py, )
implying (B. Jonsson [13]) that

LEMMA 1. The congruence lattice of a WA-lattice is distributive.

If A and B are WA-lattices, ® a congruence relation of 4, @ a
congruence relation of B, then we can define a congruence relation
O x @ on AX B:{a,by={a,by® x @) if a=a,(0) and b = b (D).
Let C(D) denote the congruence lattice of D. Lemma 1 is known to
imply

COROLLARY. FEwery congruence relation of A X B is of the form
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6 x @ with © € C(A) and @ € C(B). Therefore, C(A x B) = C(A) x C(B).

Combining Lemma 1 with another result of B. Jonsson [13] we
get the crucial

LEMMA 2. Let A be a finite WA-lattice and let K be the equational
class gemerated by A. Then every algebra in K 1is isomorphic to a
subalgebra of an algebra of the form At X «++ X Aln, where I, +++, I,
are arbitrary sets and A, ---, A, are homomorphic tmages of sub-
algebras of A.

In a WA-lattice A we can define
cr<yifandonlyif =2 Ayifandonlyif y=2Vy.

The equivalence of the second and third clauses follows from the
absorption identities. Observe that x <z, and 2 < y and y < z imply
r=y. Also, 2=xVy,y=<2Vy, and it follows from (4) that x < ¢
and ¥y < ¢t imply 2 \V y < ¢; these can be summarized by stating that
2V y is the least upper bound of x and y. Dually, Ay is the
greatest lower bound of z and y. These properties give an alternative
definition of WA-lattices in terms of < (E. Fried [5] and M. H. Skala
[16]).

We conclude from this immediately, that any tournament is a
WA-lattice. Furthermore, since a homomorphic image of a tournament
A is isomorphic to a subalgebra of A we conclude from Lemma 2:

LEMMA 3. Let A be a finite tournament. Then the equational
class K generated by A consists of subalgebras of direct powers of A.
In particular, every subdirectly irreducible member of K is a sub-
algebra of A.

Applying this to Z and to the equational class Z it generates we
conclude that every member of Z is isomorphic to a subalgebra of
some Z’. The subdirectly irreducible algebras in Z are Z and C..
Thus Z contains D, in fact, Z covers D.

Given an algebra A and a, bc A there is a smallest congruence
relation ® under which a = b(@). This congruence relation is denoted
by O(a,b); it is called a principal congruence relation. Principal
congruences of distributive lattices are described in G. Gratzer and
E. T. Schmidt [10] and G. Gratzer [8]:

LEMMA 4. Let L be a distributive lattice, a, b,¢,de L, a < b, and
¢ <d. Then the following conditions are equivalent:
(i) c¢=d0(a,d);
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(ii) e=@VvVeAdand d=(bVe)yAd
(iii)y aAec=aAdand bV ec=20bVd.

The most important result of this paper, namely Theorem 2, is
patterned after Lemma 4.

Lemma 4 implies that any distributive lattice L has the property
that ¢ = d(6(a, b)) can be decided in the sublattice generated by a, b,
¢, and d. This property has an important consequence by A. Day [4]:

LeMMA 5. Let K be an equational class of algebras with the
property that for any Ac K and a,b,c,dc A, c = dO(a, b)) can be
decided im the subalgebra gemerated by a,b,c, and d. Then K has
the Congruence Extension Property, that is, if A, Be K, A a subalgebra
of B and if O is a congruence relation on A, then there is a congruence
relation @ on B such that @ restricted to A is O.

Another property of distributive lattices we need to generalize
is the uniqueness of relative complements.
Let T denote the equation class generated by all tournaments.

LEMMA 6. The distributive law
(5) s AYVa=@Ay) V@A) AWV ?2)
holds in T.

Proof. Let A be a tournament, z,y,z€ A. If two of z,y, and
z are equal, then (5) holds since it is true in lattices. If {=, v, 2} is
a chain, again, (5) is trivial. So we can assume that {z,y, 2} is
isomorphic to Z. Since (5) is symmetric in y and 2, we can assume
that y < 2. Therefore, y <z <2 <y. In this case, z A (¥ V 2) =
sAz=zand (e AYVEADAHYV?E =(@V2)AZ=2 s0 (5 holds.
Thus (5) holds for all algebras generating T, so it holds for 7.

LEMMA 7. Let A be a WA-lattice satisfying (5). Then for a, b,
ced,aNb=aAcand a\Vb=aVc imply that b = c.

Proof.
b=>bA (e VD) by (3)
=bA(aVe) since a Vb=aVe

=({(dbAa)V(bAC) A(@Ve) by (5

=({(cANa)VbBAe) AN@Vb) sincebAa=cAaandaVe=aVb
=c¢Af(aVDb by (5)

=cA(aVe) sinceaVb=aVe

=¢ by (3,
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which was to be proved.

It should be pointed out that, unlike in lattices, (5) is not self-
dual. The independence of (5) and its dual is shown in [6].

In conclusion we mention that a list of identities describing T
was given in [9].

3. Principal congruences. In this section we state and verify
the analogue of Lemma 4 for Z. To facilitate the discussion we
introduce some notation. We define five polynomials in the variables
Xy, By, &y, Ty and 48

(6) D=L N\ %5y, Dy = % V By, Dy = (993\/“;5)\/374; and p, = @,
(7) p:(((ml\/pl)\/pz)/\p:%)/\p.i-

THEOREM 1. Let AcZ, and let a,b,c,dcA,a =b, and ¢ < d.
Then the following conditions are equivalent:

(i) ¢ =dO(a,bd);

(ii) e = »(a,a,b,c, d) and d = p(b,a, b, ¢, d);

i) aA@EEAd)=aANdAb and (@Ve)Vbdb=(aVdVb

REMARK. If A is a lattice, then p, < x, < p,; similarly, p, =
@y = p,..  Therefore, p = (¥, V (0, V 2)) A (s A D) = (@, V Do) N\ %5 =
(@, V (=, A 25)) A x5 reducing the first half of (ii) to the first half of
Lemma 4. (ii). The second half of (ii) can be handled similarly. As
for (ii), A and \/ are associative if 4 is a lattice, and soa A (¢ A b) =
bAc,aA({@dADb =aAd, and so on, yielding Lemma 4. (iii). Observe
the different placing of the parentheses in the two equations in (iii).

Proof. (i) implies (ii). We prove this implication in several steps.

(@) A is isomorphic to C, = {0,1}. Since C, is a lattice a re-
ference to Lemma 4 settles the matter. Or, equivalently, check the
implication fora =0, b =1land ¢=0,d=1, orc=d=0,orc=d =1,
and fora =b=1and ¢c=d =0 or ¢ =d =1 (seven cases).

(8 A is (isomorphic to) Z = {0, 1, 2}. If {a, b, ¢, d} # Z, then we
proceed as under (). If a = b, then we must have ¢ = d, thus we
can assume that a = b. By symmetry, we can assume thata = 0, b =
1. Since Z is simple, {¢, d) could be (2, 2, {1, 25, or <2, 0> (all other
pairs contradict that ¢ < d or that {a, b, ¢,d} = Z). Therefore, it is
sufficient to check the implication in Z*® for @ = <0, 0, 0>, b = (1,1, 1),
c=1<2,1,2% and d = {2, 2,0>. Compute:
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p=aANd={,2,0,2=aVec={0,1,0,p=0bVd Ve
=42,2,1> Vv 21,2 =422 2> p, =<2,2,0, p(a,a,b,c,d
= (((a VD)V D) A D) A Ds
= (((0,0,0> v {2,2,0>) v<0,1,00) A (22 25 AL 20)
= ((€0,0,0>Vv<0,1,05) A (22 25) A2 2 0)
= (€0,1,05 A <2,2,2)) N2, 2,0)
=2, 1,22A{,2,00=42,1,2> =¢,

and similarly, »(b, a, b, ¢, d) = d.

(7v) Assume the implication to hold for the algebras A4, «--, 4,,
and let B be a subalgebra of 4, X - x A4,. Then the implication
holds in B. Indeed, leta, b,¢,de B,a < b,¢ < d and let ¢ = d(6(a, b))
in B. By a result of A. I. Malcev (see Theorem 10.3 of [7]) there
is a sequence of elements z, = ¢, 2,, ++ -, 2, = d of B, and unary algebraic
functions p,, +++, p,. of B such that {p;(a), :(0)} = {2;, z;1,} for ¢ =
0,1, .+, m— 1,

For an element w of B let u‘ denote the ¢th component of u,
that is, v = w'?, .-+, u>. A unary algebraic function is of the form
Q(ty, +++, 2, v+, u,), Where u,, «--, 4, ¢ B and p is a polynomial. So
we can define p* a unary algebraic function on A; by qu®, .-, z,
cee, wi.

Using the sequence of elements of A;: z{", 2", --- 2 of B;, and
the unary algebraic functions: p”, ---, p,”,, we conclude that

a(i) = b(i)(@(c(i), d(i))) in A¢ .
Thus, by assumption,

c(i) — p(a(i)’ a(i)’ b(i)’ C(i)’ d(i)) and
d(’b) — p(b(i)’ a(i)’ b(i)’ C(i)’ d(i)) R

for 1=1,+--,n. Hence, ¢ = pla, a, b,e,d) and d = p(b, a, b, ¢, d),
which was to be proved.

Now we are ready to prove the implication. Let Ae Z, a,b,¢,d¢
A,a<b,c<d, and ¢ =d(O(a, b)). Invoking Malcev’s result used above
we can assume that A is finitely generated. Since Z is generated by Z,
an n-generated algebra can have no more than 3*" elements, hence it
is finite. Thus A is finite. By Lemma 3, A can be embedded in
some Z*. By (a) and (B) the implication holds in Z, hence by (v) it
holds in A, completing the proof.

(ii) ¢mplies (iii). This implication takes the form of a universal
Horn sentence (see, for instance, [7], §46), therefore, it holds in Z if
and only if it holds in Z. In Z, if @ = b, then the assumption implies
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¢ = d, hence the conclusion obviously holds. If a b (a < b), then the
functions a A (x A b) and (@ \V ) \V b are constants (¢ A (x A D) =a
and (¢ V x) V b = b), so the conclusion is obvious.

(iii) tmplies (). Let ® = O(a, b) and let [¢]O@ denote the congruence
class of A containing z. Then

[aA(cADbIO=][aA(@dADb]E,
and so, using [a]@ = [0]O, and 2 A (y A ) = ¥y A =, we obtain, in turn:
[a]® A ([c]® A [0]O) = [a]® A ([d]O A [b]O)

(8) [a]® A [c]® = [a]® A [d]6 .
Similarly,
(9) []® V [c]® = [a]® V [d]6O .

Applying Lemma 7 to 4/0, (8) and (9) imply that [¢]® = [d]O,
that is, ¢ = d(0(a, b)), completing the proof of Theorem 1.

Observe, that Theorem 1 implies that the assumptions of Lemma
5 are satisfied in Z. Thus,

COROLLARY 1. Z has the Congruence Extension Property.

A class K of algebras is said to have the Amalgamation Property
if for any A, B,, B,c K, and embeddings f;: A— B;, 7 = 1, 2, there is
a Ce K and embeddings g;: B; — C, ¢ = 1, 2, such that f,g, = f.g.. For
a general discussion of the Amalgamation Property see B. Jonsson
[12].

COROLLARY 2. Z has the Amalgamation Property.

Proof. By Theorem 13.16 of [8] it is sufficient to prove that for
given A, B,, B, ¢ Z, embeddings f;:A— B;,2=1,2, and a,be B,,a #
b, there exist homomorphisms g¢;: B; — Z, © = 1, 2, such that f,g, = f.9:
and ag, # bg,. By Lemma 3, there is a homomorphism g¢,: B, — 4
satisfying ag, = bg,. Let © be the congruence relation of A induced
by ¢.. By Corollary 1, there exists a congruence relation ® on B,
satisfying @, = 6. Let g, be the natural homomorphism of B, onto
B,/6. By Lemma 3 again, there is a homomorphism g¢}: B,/0 — Z.
We define g, = gig). Obviously, f.g, = f.g. concluding the proof.

In closing this section, we mention that the polynomial p, which
plays a central role in Theorem 1, was found using free algebras. A
free algebra was used also to discover the identity (5) in order to
get Lemma 7.

Alternate forms of p suchas »p = (((z, V ¢.) A @) V @) A ¢, or any
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of the other possibilities can also be found using the free algebra
technique.

4. The characterization theorem. We started out in our research
trying to find a finite set of identities characterizing Z. Since we
believed that the equivalence of Lemma 4. (i) and (ii) is characteristic
of D we wanted to find the analogous result for Z hoping that it
would characterize Z. The next step would then be to find a set of
identities based on which the analogous result for Z can be proved.
As we shall see in §5, this runs into some problems. The situation
was saved by Theorem 1. (iii) and by the fact that Theorem 1. (iii)
can also be used to characterize Z. Since this is the result needed
in §5 we omit the original theorem and prove only the latter one.

THEOREM 2. Let K be an equational class of WA-lattices in which
forany AceK a,bc,decA,a b c<d, and ¢ =d(0(a, b)) tmply that
aAN@CAND)=aANAdAb)ard (aVec)Vb=(@Vd Vb Then K< Z.

Let A be a subdirectly irreducible algebra in K. We shall prove
that A = C, or A = Z. This obviously implies that K &< Z.

If |A] =2, then A = C, since A is a WA-lattice. Thus we can
assume that |4] > 2.

Since A is a subdirectly irreducible algebra with more than two
elements, A has a congruence relation @ -+ w with the property that
@ < O for any congruence relation @ of A with ©® + w. Since @ # w
there is a congruence class G of @ of more than one element.

We claim that there are elements a, b, ce A such that a, be G,
a<b,and ¢ <a or b <e¢. To prove this take z, ye G, x #+ y. Obvi-
ously, x AyeG and s 2 ANy or y=2x Ay. Set ¢’ =2 Ay and
V=x or b’ =y so that o’ = V. If o and b do not satisfy the
requirements with some ¢’ ¢ 4, then for all de¢ A we havead Ad =a’
and bV d =10, that is, ' <d < b’ for any de A,d #a’,d = b'. In
this case set c =d,a=d, and b =¥'.

So we can assume that we have

(10) c<a<babeG,

since the other case, ¢ < b < ¢ can be proceeded with similarly (dually).
By (10) ¢ # a, so O{c, a) = w. By the definition of @, we have
@ < O(c, a), and by the definition of G and (10) we must have

a = b6, a)) .
We apply the hypothesis of Theorem 2 to this congruence. We obtain:
evaVa=(VbVea,



68 E. FRIED AND G. GRATZER

that is, a = (¢ VV b) V «a, in other words,
(11) c<b=Za.
We claim that

12) c=cVb.

Assume, to the contrary, that ¢ <c¢ Vv b. Then O(c,c V b) + o,
and so as above we get

a=bBc,cVD).
Applying the hypothesis of Theorem 2 to this congruence we obtain:
13) cA@@ACVb)=cABAECVD).

By A1),a A(cVvV b)) =a and, by (10), e Aa=c so (13) yields ¢ =
¢ A\ b, or, equivalently,

(14) c<b.

On the other hand, by (11),¢ V b < a; combining this with (14) we
obtain b < a, contradicting (10). This verifies (12).

(10) and (12) jointly mean that {a, b, ¢} is a subalgebra of A and
{a, b, ¢} is isomorphic to Z.

We claim that A = {a, b, ¢}.

Assume to the contrary that there is an element d € A such that
dée{a, b,c}. We claim that d can be chosen to be comparable to one
of a,b, and c. Indeed, if there is no such d then for an arbitrary
ecA,a N\ e=a, since a A e <a implies that a A ¢ =¢ and so ¢ < e.
Similarly, ¢ VV e = a, implying that a = ¢, a contradiction. Thus, by
reason of symmetry and duality we can assume that there is an element
de A satisfying

(15) dela,b,c} and d<a.

Since a,bcG and b <c¢<a we conclude that ceG. Thus d +# a
implies the congruence

b = e(Od, a)) .
Therefore,
(16) ANBGBA=dAN(cAa).

But by (10) b Aae=a and ¢ Aa =¢; by (15), d A a = d, hence (16)
yields: d =d A c. Since ¢ # d this means that d <c¢. So we get
the congruence

a = b0, c)) ,
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which implies that

a7 @vaVe=@dVDbVe.
But dVvVa=a,aVec=c, hence (17) gives

(18) a=@dVvbVe.

Observe that d < c and b < ¢. Therefore,d \V b=<e¢, and so (dV b) Ve
= ¢, contradicting (18) and a # c.

This contradiction shows that A = {a, b, ¢}, that is, A = Z, which
completes the proof of Theorem 2.

5. ldentities for Z. We want to find a finite set ¥ of identities
characterizing Z. This set Y should express that Z is a class of
WA-lattices in which minimal congruences can be described by Theorem
1. It is easy to find identities which imply that the relation given
by Theorem 1. (ii) is reflexive, symmetric, and has the Substitution
Property for A and V. However, transitivity takes the form ¢«if
Theorem 1. (ii) holds for ¢, d, and for ¢, d,, and d = ¢,, then it holds
for ¢, d,” which we could not turn into an identity.

The trick is to find identities that prove that O(a, b) is in some
sense the transitive extension of the relation given by Theorem 1.
(ii). Then to show that this implies that Theorem 1. (iii) can be
used to describe O(a, b).

We need some notation. We shall use p, p,, <+, p, of (6) and (7)
without references. Two 4-ary polynomials derived from p will be
used often:

(19) q} = p(mly a"ly xl v xZ, x35 CU3 \/ x&)
(20) Q= D@,V By By, €V By By, By VD)

Finally, for the polynomials ¢, ¢, ¢, and ¢, let R(¢, ¢, t;, t,) denote
the identities

(21) t, = Q1(t1, tz, ts, t4) and t, Vit = Q2(t1, tz, ta, t, V t4) .

Y consists of three sets of identities. %, is a set of identities
for WA-lattices (for instance, (1)-(4)) and one more identity

(22) (VY VEADVEV=VHV)V2.
2, is the following eight identities:

(23) Rz, %, ; N\ %5, @5 N @), {2, 5} = {1, 2}

(24) R, ©, ¢: V @5, ¢; V ), {1, 7} = {1, 2} .
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X, consists of two identities
(25) AN @ V) =0 A (@A @ V)
(26) @ Va)V @V = Vag\V@®Va).

THEOREM 3. X = 3, U 3, U 2, defines the class Z.

Proof. First we have to see that X is satisfied in Z. 2%, is
obviously satisfied excepting (22).

It is sufficient to verify (22) in Z. Letea,b,ceZ. If |{a, b, c}| <
2, then they form a sublattice, in which (22) becomes (a¢ V b) Vv
(@Ve)=aV (bVe), a triviality., Thus we can assume that Z =
{a,b,¢}. If a=0,b=1,¢=2, then (0VILHVOA2)VOV2=
Av2dvo=2vo=0and (VD) VOV2=02V0HV2=0V2=0;
ifa=1,06=0,¢=2,then(LVOVAA2dD)VAV2=((Q1V])VI])V2=
1v2=2and (QVOVI)V2=0v1)v2=1v2=2 Al the
other substitutions agree with one of these two (up to automorphism)
showing (22) in Z. If z, =, \V @, then by (19), and (20), ¢, = ¢,
and so ¢, A % = ¢, A\ %;. In other words,

q N %= g N 2(0@, v, V1),
or
@A 2= (A %) V(G N 2) (O, 5, V) .
Applying Theorem 1. (ii) to this congruence we obtain

QN %= g, (2, %, V oy @y N\ @5, (@0 A 25 V (@ A\ )
(@ A ) V(@ A w) = o, @, V @ay @0 N\ T, (@0 N\ ) V(G A %)) -

By (21), these two are written in the form R(x, ©, \V %, ¢, A X5, @2 N Ty)-
The other six identities under (23) and (24) are similarly proved.
Finally, since ¢, = ¢.(O(x,, 2, V %,)), an application of Theorem 1. (iii)
proves (25) and (26).

Now let K be the class of all algebras satisfying Y. By what
we have proved above, Z & K.

Let AcK,a,be A,and ¢ < b. We define a binary relation @ on A:

¢ = d(®) if and only if there exists a sequence ¢ = r,, 7, *++, 7, = d
of elements of A such that, for all ¢=0,---, %2 —1,r, and 7, are
comparable and R(a, b, 7; A Ty, 73 V #ig)-

We claim that @ is a congruence relation, in fact, @ = 0(a, b).

@ is obviously symmetric and transitive. Next we show that @
is reflexive, in other words, for all ce A, R(a, b, ¢, ¢). By (19)-(21),
this means that
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27) »(a, a, b, ¢c,¢) = pb,a,b,ecec)=c.

Using (6) we compute: p, =a Ae¢e,p,=aVe,p=0BVe)Ve=bVe
(by (3)), p. =¢, and so

p(a,a,b,c,0) =(((aV(@Ae)VieVe)ADVe)Ac by (8)
={(@Ve)ADBVe)Ac=c by (4) .

For the second half of (27) compute: », = a Ae¢,p. =aVe p, =
bVveyve=bdVe p,=c and so

p(b, a, b,c, c)
=(((bV@ne)VeVe) AbVe)Ac since ¢ < b
=(((evdVieAe)VeVe) ANbVe) Ae
apply (22) with = a,y = b,and z = ¢
={(avdVve)VeADbVe) ANce
use the second half of (4) with z =
aV (bVe),y=2>5, and z =¢
=c.

To show the Substitution Property for A, let ¢ = d(®) with the
sequence 7, --+, 7, and let ee A. Consider the sequence e A ¢ = e A 7,
eNTYVEeAT),e NT,(eANT)V (EAT), eNTy <o+, e NT, =eNd.
For any given ¢, 0 < ¢ < =, either r; < r;., or r;., < 7;. Let us assume

that r; < r,,, (if 7y, < r; we proceed similarly). By the definition of
@, we have R(a, b, r;, 7:1,). By the definition of R, this means that

r, = ql(a, b’ 'ri, ,ri-(-l)

and
i = @@, b, v, Tipy) .
By (23),
R(a,b,q, Ne,g. Ne) and R(a, b, g. Ne q Ne,
that is,

R(a, b, r; Ne 1 Ne) and R(a, b, 7, Ae 1 Ae).
Therefore, by the definition of R:
R(a,b,7r; Ne, (r; A€V (ripy A €))
and

R, b,riey ANe,(ri Ae) V (15, A €),
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showing ¢ A e = d A e(®).

Using (24) rather than (23) we prove that ¢ Ve = d V ¢(D).

Thus @ is a congruence relation.

Observe that »(t,a,b,a,bd) = (tV a) Ab. Thus p(a,a,bd,a,bd) =
a and p(b, a, b, a, b) = b, proving a = b(D).

Finally, if a = b(0) for any congruence relation ©, then @ < 6,
thus @ = 6(a, b).

Now let ¢ = d(6(a, b)), ¢ = 7,, ++-, 7, = d as given in the definition
of @®. For a given 14, then 7, = q,(a, b, 7 A 7oy, 75 V 7:iy) and 7, =
gx(a, b, s N\ Tiyy, 7: V 7iyy).  Substituting these into (25) and (26) we
obtain the crucial equations:

aN@Ab) =aA(ry, ADb)
avr)Vb=(@@Vry)Vbd

for all ¢ =0, +«+-«,n — 1. Thus
aN(EAD)=an(@dADb)
and
a@veVb=(@vdVvhb.

In other words, we have shown that ¢ = d(6(a, b)) implies the two
previous equations, which is the hypothesis of Theorem 2.

Therefore, by Theorem 2, K =< Z. Combining this with Z& K
we conclude that K = Z, completing the proof of Theorem 3.

It should be noted that it is much easier to prove that Z can be
characterized by a finite set of identities. The proof given above
actually exhibits one such set.

No more than five variables were used in the identities in 2,
hence,

COROLLARY 1. Amn algebra {(A; N\, V) belongs to Z if and only
if every subalgebra of {A; N\, V) generated by five elements belongs
to Z.

It is easily seen, that in the Corollary, “five” cannot be replaced
by “three”. We do not know whether “four” would do.

Since two identities of an idempotent class can always be subs-
tituted by one, the finite set 3 of Theorem 3 can be reduced to three
identities. R. Padmanabhan [15] has shown that the three identities
can be replaced by two.

COROLLARY 2. There exist two identities characterizing Z.
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PArT II. Structure Theorems.

6. Finite algebras. The main result of this section is the
following.

THEOREM 4. FEvery finite algebra A of Z has a representation
of the form

A=Dx Z*,

where D is a (finite) distributive lattice and k a monnegative integer.
In this representation k is unique and D is unique up to isomorphism.
In fact, D is a maximal homomorphic image of A in D.

This result is based on three lemmas.

LEMMA 8. Let the algebra A be a subdirect product of the algebras
A, -+, A,. Let us assume that there exists a family p,,neAd of
polynomials satisfying the following two conditions:

(i) puz,y,y, -, y) =2 holds in all A;;

(i) for a,be A; there exist a, a, +--cA; and ned such that
pl(a9 Qyy Ay, * °) = b.

Let, further, A be a subdirect product of A, +--, A, with the
property that for each i,1 < 1 < m, there is an element {¢c,, +++,¢,» €
A such that {e,, *++, iy, @, C;yy, +++,C,0 €A for all ac A;. Then A 1is
the direct product of A, «-+, A,.

Proof. For m =1 the statement is obvious. Let us assume that
it has been proved for all k < n. Let A and A4, ---, A, be given as
in the lemma. Let B be the algebra we get from A by omitting the
first component of each element of A. Obviously, B is a subdirect
product of A,, ---, A, and this subdirect product satisfies all the
hypotheses of Lemma 8 (the element of B chosen for ¢,2<¢< n is
the element of A chosen for ¢ with its first component omitted).
Therefore, by induction hypothesis, B = 4, X -+ X A,.

It is also clear that A is a subdirect product of A4, and B, and
(using the hypothesis for 4, 4,, ---, A, and 7 = 1) there is an element
d e B such that {¢,d) € A for all ce A,. Now take an arbitrary {a, b) ¢
A, X B. Since A is a subdirect product of A, and B, there exist
ec A, such that {e, b) ¢ A. By (ii), there exist A e 4 and a,, a,, --- €
A, such that p;(e, a,, a,, +++) = a. Thus, e, b, <a,, d), {a, d), ---c A
and so (using (ii)):

p2(<ey b>’ <a13 d>, <a2y d>, °e ') = <p2(e’ Qyy Ay * ')7 pl(b, d: d, ° ')>
={a, b
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is also in A, proving 4 = A, x B. Thus,
A=A x4, x -+« X A4,,

completing the proof of the lemma.

LeMMA 9. Let us assume that for the algebras A, ---, A, the
polynomials p;, Me A exist satisfying (1) and (ii) of Lemma 8. In
addition, let us assume that for each a, b, ceA; b=+ c there is a
polynomial g satisfying g(a, b, ¢) = a for which g(x, y, y) = y holds in
A, -, A,. Then any subdirect product of A of A, -+, A, s is0-
morphic to a direct product of some of the A, +--, A,.

Proof. Again, we proceed by induction and the case n =1 is
obvious. For 1 < 7 £ n, consider the homomorphism #;: A — A% which
is the map omitting the 4th component. If, for some %, ®; is an
isomorphism, then A is isomorphic to a subdirect product of A4, ---,
A, Ay, oo+, A,, and by the induction hypothesis, the conclusions
of Lemma 9 holds for A. So we can assume that no ®; is an iso-
morphism.

Now we show that A4, A, --., A, satisfy the conditions of Lemma
8. We have assumed the existence of the p,, e 4.

Choose an 7,1 < ¢ < n. We want to prove that there exists a
{e,, +++, C,y €A such that (¢, +++, ¢, a, €y, =+, ¢,y A forall ae A,.

To simplify the notation let ¢ = 1. Since ®, is not an isomorphism
there are elements ¢, d € A such that ¢ # d and ¢, = dP,. In other
words, {e, ¢, +++,¢,>,<d, ¢y +++, ¢,y A for some ¢, A4,, --+,¢c, €A,
and ¢, de A, ¢+ d.

For an arbitrary ae€ A,, there are a,€ 4,, -+-,a,€ 4, such that
{a, @, ++-, a,» € A, since A is a subdirect product. Choose a polynomial
g satisfying g(a, ¢, d) = a (and, of course, g(x,y, y) = y). Then g(Ka,
Uy, * o0y By, €, Coy 200, €0y KAy Cyy w00, Cp) =K@, 6y * 0, C,) is In A, ver-
ifying the condition. Thus, by Lemma 8, A = A4, x -+« X A4,.

LEMMA 10. Any finite subdirect power of Z is tsomorphic to
some direct power of Z.

Proof. We shall verify that the hypotheses of Lemmas 8 and 9
are satisfied in Z. Let 4={1, 2}, p, =@V ¥y V) Az and p, =
(@ A y) A 2) Ve Itis obvious that (i) of Lemma 8 holds. Let, say,
a = 0. Then p,(0,0,0) =0, »,(0,2,1) =1, and p,(0, 1, 2) = 2, verifying
(ii) of Lemma 8.

We also select g, =V y) Az and g, = (& A 2) Vy. Obviously,
g:x,y,y)=vy,1=1,2. If b#¢c, then b <c or ¢ <b. In the first
case let b = 0 and ¢ = 1; then g,(a, b, ¢) = a for « = 0, L and g,(a, b, ¢) =
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a for @ = 2. In the second case, g,(a, b, ¢) = a for ¢ = 2 and g.(a, b, ¢) =
a for a = 0 and 1. This completes the proof of Lemma 10.

Now we are ready to prove Theorem 4. Let A be a finite algebra
in Z. The only subdirectly irreducible members of Z are C, and Z
therefore A is a subdirect product of two algebras D and E, where
D is a subdirect power of C, and E is a subdirect power of Z.
Obviously, D is a distributive lattice. By Lemma 10, E = Z* for
some integer k. Thus we have proved that A is (isomorphic to) a
subalgebra of D x Z*. We prove that, in fact, 4 = D x Z*.

Let 1 be the greatest element of D and ac £ = Z*. We show
that {1, a) e A. Indeed, since A is a subdirect product of D and E
there are elements be E and d<c D satisfying

(1,5 and <(d,ad>eA.
Define ec E by the rule:

e(t) = a(®) if b)) < a(?)

e(i) > b(t) if b3 > a?) .

Note that e(i), the ith component of e, is in Z so the condition e(s) >
b(i) uniquely determines e(7). Choose an fe D such that {f, e)c A.
Then

KL D) vV <f,ep) V<d,ayeA.
This element is obviously of the form <1, ¢>, and
g(1) = (b(3) V e®)) V a{t) = e(?) V a(i) = alt) .

Thus g = a, proving {1, a) € A.
Now take an arbitrary de D and ac E. Then <{d, b) € A for some
bc E. For a,bc E let us construct ec F as follows:

e(3) = a(i) i a(i) = b(4)
e(d) = a(i) and b() if a(i) = b(5) .

Then {1,a) and {1,e> e A and so
Kd, ) N<Le)) N{L,a) =<d,gpe A,

where g(7) = (b(1) A e(®)) A a(@). If a(i) = b(@), then e(®) = a(?), and
so g(t) = a(?). If a(i) < b(3), then (we are in Z) b(1) < e(?) < a(7) and
50 g(7) = (b(%) A e(®) A a(®) = b(9) A a(i) = a(@). Finally, if b(7) < a(7),
then a(i) < e(i) < b(?), hence g(i) = (b(z) A e(@)) A a(i) = e(@) A a(i) =
a(i), proving g = @ and {d, a) ¢ A. This completes the proof of the
first part of Theorem 4.

To prove the uniqueness of D we show that D is a maximal
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homomorphic image of A in D. It is obvious that D is a homomorphiec
image of A in D. Let © be an arbitrary congruence relation on A4
such that 4/© e D. By the Corollary to Lemma 1, @ = @ x 6, X +++ X
6, and

A/ = DO X Z,/0, X +++ X Z;/O,, where Z, =+ =27Z,=27.

Since Z/6; e D only if | Z/0;| = 1, we conclude that A/0 = D/O, proving
that D is a maximal homomorphic image. This implies the uniqueness
of D up to isomorphism. Knowing that D is unique, it obviously
follows that &k is unique. This concludes the proof of Theorem 4.

COROLLARY. The congruence lattice C(A) of any finite algebra A
in Z is a finite Boolean lattice.

Proof. Indeed, if A = D x Z*, then C(4) = C(D) x C(Z)* = C(D) x
Ct, and C(D) is known to be Boolean.

7. TFree algebras. The following results describe the structure
of free algebras over Z in terms of the free algebra over D.

THEOREM 5. Let Fp(n) and F,(n) denote the free algebra on =
generators over D and Z, respectively. Then

F,(n) = Fy(n) x Z*,
where k, = 3" — 2" + 1.

Proof®. Let F' = Fy(n) and D = Fp(n), and let X = {x,, ---, 2,
be a set of free generators of F. Obviously, F,(n) is a subalgebra
of Z*", hence finite. Thus by Theorem 4,

F=DxZ*,

for some nonnegative integer k. By the corollaries to Lemma 1 and
Theorem 4, k is the number of congruence relations O of F' satisfying
F|6 = Z.

Let », and #, be homomorphisms of F onto Z inducing the same
congruence relation . Then Xp, = Xp, = Z and 9,, v = 1, 2, partitions
X into X, Xi Xi by setting Xi = jp;!. Since these partitions are
the restrictions of the @-classes to X, they agree. It is easily seen
that for ac¢ X and be X! the fact that ap; < bp; is expressed by
aV b= b@). Therefore, for some automorphisms «a of Z, we have
P, = P,x. Since the converse is obvious, we conclude that k equals

2 'We would like to thank R. Quackenbush for a considerable simplification of the
original proof.
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the number of maps of X onto Z up to automorphisms of Z, or
equivalently, all maps ® of X onto Z satisfying #,92 = 0. There are
altogether 3" maps of {x,, ---, 2,-,} into Z. Of these, 2" does not
have 1 in the image and 2! does not have 2 in the image, the
overlap being one map (the constant 0 map). Therefore, &k = 3" —
2.2%1t + 1 =3t — 2" 4+ 1, as claimed.

We can apply Theorem 5 to describe all finite projective algebras
in Z.

COROLLARY. A finite algebra A is projective in Z if and only if
it 1s isomorphic to some P x Z* where k is a nonnegative integer and
P is projective in D.

REMARK. By R. Balbes [2] (see also G. Gratzer and B. Wolk
[11]) a finite distributive lattice is projective in D if and only if the
join of any two meet irreducible elements is again meet irreducible.

Proof. 1t is well-known that A is projective if and only if it is a
retract (idempotent endomorphic image) of a free algebra. Firstly, let
A = P x Z* where P is projective in D. Choose an integer » such that
P is a retract on Fr(n) and k < k,. Then, obviously, A is a retract
of F,(n). Conversely, let A be a retract of some F,(n). By Theorem
4, A= D x Z*. Since D is a retract of A, we conclude that D is a
retract of F;(n). By the Corollary of Lemma 1, the retraction must
collapse all copies of Z, hence P is a retract of F,(n), showing that
P is projective in D. This concludes the proof.

8. Injective algebras. The algebra I of Z is called injective (see,
for instance, [8], §13) if for any A, Be Z, A a subalgebra B, any homo-
morphism ®: A — I can be extended to a homomorphism of B into I.

THEOREM 6. Z s injective in Z. Any direct power of Z 1is
injective in Z and, therefore, every algebra can be embedded in an
injective. An algedbra is injective if and only if it is isomorphic to the
extension of Z by a complete Boolean algebra.

Proof. Rather than giving a direct proof of these results we shall
employ a trick from [14] and then use a result of [3] to get the last
statement of Theorem 6, which implies the other two.

Let us denote by Z the algebra Z with three new nullary operations:
0,1, and 2. Let Z denote the equational class generated by Z. Just
as ip Lemma 2, every algebra in Z can be embedded in a direct power
of Z.

7 is generated by a finite simple algebra Z with no subalgebras
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and so by a result of A. Day [3], the injectives in D are exactly the
algebras Z[B] where B is a complete Boolean algebra (for this concept
see [7], §22).

Therefore, it suffices to prove the following statement:

An algebra A is injective in Z if and only if 0,1, and 2 can be
interpreted on A so that the resulting algebra A belongs to Z and A
is injective in Z.

Indeed, if A is injective in Z, then for some set J there is a
homomorphism (in fact, a retraction) » of Z7 onto A. We can inter-
pret 0,1,2 on Z’ as on (Z)’, and then on A by 09, 1¢, and 2¢. This
makes A a homomorphic image of (Z)’ €Z, and so AeZ. Since A
is a retract of (Z), it is injective in Z. The converse is obvious.
This completes the proof of Theorem 6.

It follows from Theorem 6 and B. Banasehewski [1] that every
algebra 4 in Z has an injective hull uniquely determined up to isomor-
phism (leaving A fixed).
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ON NUMERICAL RANGES OF ELEMENTS OF
LOCALLY m-CONVEX ALGEBRAS

J. R. GILES aAND D. O. KOEHLER

The concept of numerical range is extended from normed
algebras to locally m-convex algebras. It is shown that the
approximating relations between the numerical range and the
spectrum of an element are preserved in the generalization. The
set of elements with bounded numerical range is characterized
and the relation between boundedness of the spectrum and of
the numerical range is discussed. The Vidav-Palmer theory is
generalized to give a characterization of b*-algebras by numerical
range.

In a complex unital Banach algebra the numerical range of an
element is a set of complex numbers which can be used to approxi-
mate the spectrum of an element. In a complex locally m-convex
algebra with identity, for each element we define a set of numerical
ranges and establish similar approximation to the spectrum of the
element. In a normed algebra the spectrum and the numerical range
of each element are bounded sets, but in a locally m-convex algebra
the spectrum and the numerical ranges of an element may be un-
bounded. For a locally m-convex algebra with identity we characterize
those elements with a bounded numerical range as an important
normed subalgebra, and we discuss the relation between boundedness
of the spectrum and the numerical ranges. In the normed algebra
theory the study of hermitian elements, those with real numerical
range, has led to the important Vidav-Palmer theory characterizing
unital B*-algebras among unital Banach algebras. We generalize the
results of this theory to a characterization of b*-algebras by numerical
range.

We would like to thank Dr. T. Husain for the valuable discussions
we have had with him on this subject. We would also like to ex-
press our appreciation to the referee for his valuable suggestions.

1. The numerical ranges of an element. For a complex normed
algebra (4, || - |) with identity 1 where ||1]| = 1, i.e., a complex unital
normed algebra, we define the set

DA [ ={feA " f) =1 and [|f]l=1}.
Tor each ac A we define the numerical range of a as the set

s a) = {f(@):fe DA, {-]; D} »
79

V{4,

.
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and the numerical radius of a as
v(A, ||+ 10 =sup{{r:ne V(4 -[;a) .

The set D(4, ||-||; 1) is a convex weak * compact subset of A’ and the
numerical range V(4, || - ||; @) is also a convex compact subset of the
complex numbers, [2, p. 16]. The properties and applications of
normed algebra numerical ranges have been studied extensively and
the main results are conveniently presented by F. F. Bonsall and
J. Duncan in [2].

Locally m-convex algebras, i.e., l.m.c. algebras, are examined in
some detail by E. A. Michael in [4]. We call a l.m.c. algebra with
identity a unital l.m.c. algebra. It is our aim to extend the concept
of numerical range from complex unital normed algebras to complex
unital l.m.c. algebras. It is sufficient for our purpose to note that,
for a given l.m.c. algebra A with identity 1 there exists a separating
family of submultiplicative semi-norms {p,} on A which generates the
topology and is such that p,(1) =1 for all a, [3, p. 7]. Given such
an algebra, we denote by P(A) the class of all such families of semi-
norms on A, and by (4, {p.}) the algebra A with a particular family
of semi-norms {p.} e P(4).

Given (4, {p.}), for each a let N, denote the nullspace of p,, A,
denote the quotient space A/N,, and {|: ||, denote the norm on A4,
defined by ||x + N, |l = p«(x). For each « consider the natural linear
mapping x+— 2z, = 2 + N, of 4 onto A,. We note that 1, is the iden-
tity in 4, and that [|1.|. = 1 for each a. Michael has given the
significant result that A is isomorphic to a subalgebra of the product
of the normed algebras (4., || - |lo), Proposition 2.7, [4, p. 13]. Using
this characterization of l.m.c. algebras we are able to generalize much
of the numerical range theory for normed algebras directly to a theory
of numerical range for l.m.c. algebras.

Given (4, {p.}), we define the set

DA, psl) ={fcA:fQ) =1 and |f(x)| < p.(x) for all xe A4},
and we write
D(4, {p}; 1) = U {Du(4, pe; 1)} -
For each ae A we write
Vu(A, pa; @) = {f(@): f € Du(4, pa; 1)}
and define the numerical range of a as the set

V(A, {p.}; @) = U {Va(A, Do; @)} .
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To each linear functional f on (A4, p,) which annihilates N,, we
can define the linear functional ¥ on A, by F(z,) = f(z), and to each
linear functional F on A, we can define the linear functional f on
(4, p,) by f(®) = F(x,). Consequently, from the definition of the norm
in A, we see that D,(A, p.; 1) is isomorphic to D(A,, || * ||« 1.), and
for ac A

VA, Doy @) = V(Ag, || * |las @)

Hence, we have the numerical range of a characterized by the normed
algebra numerical ranges of the a, in that

V(4, {pa; @) = U {V(A,, [ - [l a2)} -

Both D(4, {p.}; 1) and V(A4, {p.}; @) depend upon the particular family
of semi-norms {p.}c P(A) chosen to associate with A. It is clear
that when {p,} is a directed family, D(4, {p.}; 1) is a convex subset
of A" and the numerical range V(A4, {p.}; @) is a convex subset of the
complex numbers.

For each ac A we write

Va(A, Pa; @) = sup{|N[: v e Va(4, po; a)} 5
and we define the numerical radius of a as
v(4, {p}; @) = sup {IN[: 1 e V(4, {p.}; @)} .

We note that v.(4, p.; a) < p.(a) for each «, and we allow
v(A4, {p}; @) = . We have that

v(4, {p; @) = sUp va(4, pa; )
= sup 2(As, [ + [lai a0) -
It is clear that the numerical range and the numerical radius have
the following properties. For ac A and A, g complex

V(A, {p; Ma + 1) = ANV(A, {pa}; @) + ¢
and
(A4, {Da}; M 4+ 1) = [N [v(A4, {pa); @) + [ 2]

and for a,bc A
V(A, {pa}; a + b) = V(A’ {pa}; a) + V(A, {pa}; b)

and
'D(A, {pa}’ a + b) g V(A, {pa}! a) _[_ ’I)(A, {pa}; b) *

2. The numerical ranges and the spectrum. In a unital Banach
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algebra the numerical range of an element approximates its spectrum.
We now establish similar approximating relations between the nu-
merical ranges and the spectrum of an element in a complete unital
l.m.c. algebra.

We recall that, given an algebra A with identity, for each a € 4,
the spectrum of a is defined as the set

0(4; a) = {M:a — )\ is not invertible} .

THEOREM 1. Let A be a complete unital l.m.c. algebra. Given
(A, {pa)), for each aec A

0(A, a) S V(A, {p.}; @) -

Proof. For each a let A, denote the completion of 4,. We have
from Corollary 5.3(a), [4, p. 22] that

0(4; a) = U o(A; a,) -

But from Theorem 2.6, [2, p. 19] we have that
0(Au @) S V(de, ||+l @) »
and from Theorem 2.4, [2, p. 16] that
V(A [+ lles @) = V(A [+ [les @)
so it follows that
o(4; 0) s U{V(4s, || - |la; a0}
= V(4,{p.}; a) .

THEOREM 2. Let A be a complete unital l.m.c. algebra. For each
acA

coa(4;a) S N{V(4, {p.}; @): {p} € P(A)} S co0(4; a) .

Proof. From Theorem 1 we have that
cod(4; a) S N{V(4, {pd}, @); {p.} € P(A)} .

If coo(A; a) is not all the complex plane then, for any A ¢ co o(A4; a)
there exists an open disec D; center )\ such that D, can be strictly
separated from co o(4; a) by a straight line L. Since

o(4;0) = U o4, a),
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D, is strictly separated from o(4.; a,) for any a, by the straight line
L. However, for each «, 6(A4,; a,) is a compact set so there exists an
open disc D, 2 0(A4,; a,) which is strictly separated from D, by the
same straight line L. We have from [2, p. 23] that, for each «, there
exists a norm || - ||, equivalent to |||, on A, such that

0(4y; a) S V(Ae, ||+ 1e @) S Da -
Now for each «,
V(Ae, ||+ |l @) = VA, || - |25 @) -
Defining the semi-norm ) on A by
Pe(®) = [[ @l 5
it is clear that the family {p.}e P(4), and
VA, {pi}; @) = U{V(4x | - [l a0} -

@

So D, is strictly separated from V(A4, {p.}, @) by the straight line L.
It follows that D, is strictly separated from M {V(4, {p.}; @): {p.} €
P(4)}, and this implies that

N{V(4, {p.}; a): {p.} € P(A)} S Co0(4; a) .
3. Elements with bounded numerical range. We now establish
an important set of inequalities which are generalizations of an in-

equality from the normed algebra theory, and we use them to char-
acterize elements with bounded numerical range.

LeMMA 1. Let A be a wunital l.m.c. algebra. Given (A4, {p)),
for ac A and each «a

v(4, {p.}, a) = %Pa(a) .

Proof. From Theorem 4.1, [2, p. 34] we have, for each «
. 1
Q)(Aw H ° Hm aa) = 'e_‘HaaHa .

So
(A, {pa)s @) = sup V(Ao ||« llas @)

v

Ll = Loa),
[ e

for each a.
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From the fact that every {p.} € P(4) is a separating family we can
make the following deduction.

COROLLARY 1. If for a given ac A, there exists an (A, {p.}) such
that V(A, {p.}; @) = {0} then a = 0.

We can also make a statement about elements with bounded
numerical range.

COROLLARY 2. Given (A, {p.}), if for aec A, V(A, {p.}; a) ts bounded
then sup, p.(a) < oo.

For the characterization of the set of elements with bounded
numerical range we also use the following lemma.

LEMMA 2. Let A be a unital l.m.c. algebra. Given (A, {p.}) we
have, for each ac A

inf
sup Re V(4, {p.}; a) = 121>r:1 }%{sgp Po(l + Na) — 1} .

A0+

Proof. 1t is clear that for any fe D(A4, {p.}; 1) and A > 0

1
Ref(a) = T{SEP Dol + Na) — 1}

and therefore,

1

(1) sup Re V(4, {p.}, a) < inf_{sup Pu(l + Na) — 1} )
>0 N\ a

It follows that the result holds when V(A4, {».}; @) is unbounded. We
consider the case when V(A4, {p.}; @) is bounded, and write for every «

7o = sup Re V(4 || + lls; @)
and

7 = sup Re V(4, {p.}; @) .
Now by [2, p. 18], for every «

%{II 1o+ Mo lle — 1} £ (1 — M) ~ca + M a2 ]l

when 0 <\ < |la.|lz'. Since V(4, {p.}; @) is bounded we have from
Corollary 2 to Lemma 1 that there exists an M > 0 such that M =
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sup, P.(a). Then, for every «
_i_{paa +a@) =1} < (L — ND){e + AU
when 0 < ) < 1/M. Therefore,

lim—i—{suppa(l + na) — 1} <z.

A0+ a
Together with inequality (1), this completes the proof.

Let A4 be a unital l.m.c. algebra. Given (4, {p.}) we can define
the subalgebra

B= {weA: sgppa(m) < oo} .

Now p(x) = sup, p.(x) is a norm for B since {p,} is a separating family
and we note that 1e B and p(1) = 1.

It can be seen from the proof of Theorem 2.3, [1, p. 32], that if
A is a complete unital l.m.c. algebra then given (4, {p.}), the normed
subalgebra (B, p) is complete. However, an examination of the se-
quence {x,} where z, = {1,2,8, +++, %, ==+, m, ++-}, in the algebra A of
Example 2 below, shows that there exists an incomplete unital l.m.c.
algebra A with {p,} e P(4) such that (B, p) is complete.

Given (4, {p.}), we can characterize elements with bounded num-
erical range as elements of (B, p).

THEOREM 3. If A is a unital l.m.c. algebra then given (A, {p.}),
B ={xec A: V(4, {p.}; ) 1s bounded}
and when {p,} is a directed family, for every ac B

V(A, {p.}; @) = V(B, p; a) .

Proof. 1If, for a given ac 4, V(A4, {p.}; @) is bounded then Corollary

2 to Lemma 1 implies that ae B. If ae B then sup,p.(1 + \a) =
(1 + ra) for all A, so

inf

sup Re V(4, {p}; @) =

I

= sup Re V(B, p; a) .

%{pa +xa) — 1)

Hence, since V(B, p; M) = A V(B, p; @) and V(A4, {p.}; Ma) = ANV (A, {p.}; @)
for all » complex, |A| = 1, we deduce that every a < B has bounded
numerical range V (A, {p.}; ). When {p,} is a directed family, both
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numerical ranges are convex sets so we deduce from the Krein-Milman
Theorem that for every ac B

V(A9 {pa}; CL) = V(B) p; a) *

The following result relates boundedness of the spectrum to bound-
edness of the numerical range.

THEOREM 4. Let A be a complete unital l.m.c. algebra. For any
ac A, g(4; a) is bounded if and only if there exists an (A4, {p.}) such
that V(A, {p.}; a) is bounded.

Proof. If for ac A there exists an (4, {p,}) such that V(4, {p.}; @)
is bounded, then it follows from Theorem 1 that ¢(A4; a) is bounded.

Conversely, consider a e A with ¢(4; a) bounded. There exists a
disec D in the complex plane such that ¢(4;a) S D. Now ¢(4;a) =
U.0(4,; a). From [2, p. 23], for each a there exists a norm ||-|[,
equivalent to || - ||, on A, such that

0(As; 0 S V(Au ||+ [l 0) €D
For each «, defining the semi-norm p,, on A by

(@) = || @alla »
the family {p.} e P(4) and

0(4;0) = V(A, {p.}; a) = U V(Ay ||+ 1lay aa) E D

Further to the relation between boundedness of the spectrum and
the numerical range given in Theorem 4, the following example shows
that there exist l.m.c. algebras A where o(4; a) is bounded for a given
ac A but where there exists (A4, {p.}) such that V(A4, {p.}; @) is un-
bounded.

ExAMPLE 1. Let A be the algebra of all sequences of complex
numbers, £ = {\, My =*+y Ny, =++} With pointwise definition of addition
and multiplication by a scalar, but with convolution multiplication
and with unit 1 ={1,0,---,0, ---}. A sequence of submultiplicative
semi-norms {p,} is defined on A by

and the sequence satisfies p,(1) = 1 for all n, and is separating. Con-
sider ae€ A such that », - 0. Then p,(a) — =, so by Lemma 1
V(A4, {p.}; @) is unbounded. But o(4; a) = {\,}, which is bounded.

It is worth noting that a complete unital l.m.c. algebra with a
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bounded numerical range property has the following property.

THEOREM 5. If A is a complete unital l.m.c. algebra where there
exists an (A, {p.}) such that V(A, {p.}; a) is bounded for all ac A, then
o(4; a) is compact for all ac A.

Proof. We note that B = A and so ¢(4; a) = d(B; a), for every
ac A. Since A is complete it follows that (B, p) is complete and so
o(B; a) is compact for every aec A.

However, the algebra A of Example 1 has o(4; a) compact for
all ae A but there exists an (4, {p,}) such that V(A, {p.}; @) is not
bounded for all ac A.

It is known that there exist non-normable l.m.c. algebras where
o(4; a) is compact for all ac 4, [4, p. 80]. The following example
gives the further information that there exist non-normable l.m.c.
algebras A where, for a certain (A4, {p.}), V(A4, {p.}; @) is bounded for
all ae A.

EXAMPLE 2. Let A be the algebra [ of all bounded sequences
of complex numbers, & = {\;, Ay, **, Ay =+ +}, With pointwise definition
of the algebra operations and with unit 1 ={1,1, +«+, 1, «-+}. A se-
quence of submultiplicative semi-norms {p,} is defined on A by

and the sequence satisfies p,(1) = 1 for all », and is separating. Now
p, defined by

p(x) = sup {pa(2)}

is the usual I”-norm on A4, so B = A and from Theorem 3, V(A4, {p.}; a)
is bounded for all ac A. However, it is clear that (4, {p.,}) is non-
normable.

4. A characterization of b*-algebras by numerical range. A
lom.c. * algebra A is a l.m.c. algebra with a continuous involution *.
We let S(4) denote the set {xe A:x = x*}, the selfadjoint elements
of A. A b*-algebra A is a complete l.m.c. * algebra where there ex-
ists a family {p.}e P(A) such that p,(x*x) = p.(x)* for all xe A and
every «, [1, p. 81].

In a unital normed algebra (4, || - ||), the set of hermitian elements
H(A,||-]) is the set of elements a with real numerical range
V(A4, ||+ |; @). For a unital l.m.c. algebra A, given (4, {p.}) we define
the set of hermitian elements H(A, {p.}) as the set of elements a with
real numerical range V(A4, {p.}; a). It is clear from the definition of
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the numerical range in (A4, {p,}) that ae H(4, {p.}) if and only if
a.€ H(A,, ||+ ||.) for all a.

One of the outstanding successes of the normed algebra numerical
range theory is the Vidav-Palmer Theorem [2, p. 65] which charac-
terizes unital B* algebras as unital Banach algebras which have an
hermitian decomposition. We now consider a generalization of this
work to the characterization of unital b*-algebras amongst the com-
plete unital l.m.c. algebras.

We need the following property of the hermitian elements.

LEMMA 3. Let A be a complete unital l.m.c. algebra. Given
(4, {p.}), the set H(A, {p.}) is closed.

Proof. Consider i a cluster point of H(A, {p.}). Then, for each
a, h, is a cluster point of H(A,, || - ||.). But by Lemma 7, [5, p. 198],
H(A, ||+ |lo) is closed in (A, ||+l S0 h.€ H(A4 ||+ |l). Since
VA, {p}; h) = U V(Ag, |l - llas ko) We have that ke H(4, {p.}).

THEOREM 6. Let A be a complete unital l.m.c. algebra. Given
(4, {p.}), the following statements are equivalent.

(i) A = H(A, {p.}) + tH(A, {p.}), a direct sum,

(ii) There is an involution * on A such that A is a l.m.c. * al-
gebra where S(A) = H(A, {p.}),

(iii) There is an involution * on A such that A is * isomorphic
to a * subalgebra of a product of B*-algebras (A, ||« |lo),

(iv) There is an involution * on A such that A is a b*-algebra,

(v) There is an tnvolution on B such that (B, p) is a dense B*-
algebra.

Proof. (i)=(ii) Since 4 = H(A, {p.}) + tH(A, {p.}), we define the
involution * on A as follows: for © = h + itk where h, ke H(A, {p.})
put z* = & — tk. We need to show that * is continuous on A. Now
for every a, A, = H(A,, || * ||l.) + tH(A,, || - ||.) and * induces an involu-
tion * on A, where for 2, = h, + ik we have 2} = h, — tk,. But from
Lemma 5.8, [2, p. 50], since 4, & J(A,), we have for every «, that
* is continuous on A, and since p.(x) = ||x.]||. for all xe 4, * is con-
tinuous on A. It is clear that with this involution *, S(4) = H(A, {p.}).

(ii) = (i) Since H(A, {p.})) = S(4) we have A = H(A, {p.}) +
1H(A, {p.)) and so, for every o, A, = H(A,, || * ||o) + tH(A,, || * |l). But
by Theorem 8.2, [2, p. 74], A, is a pre-B*-algebra and so A, is a B*-
algebra for every a. Our result follows from Michael’s characteriza-
tion of l.m.c. algebras, Proposition 2.7, [4, p. 13].

(iii) = (iv) For every a, since (4, |- |l is a B*algebra and
Pa(8) = || 2, ||, for all xe€ A, we have p.(x*x) = p.(x)® for all x e A; that
is, A is a b*-algebra.
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(iv) = (v) This is proved as Theorem 2.3, [1, p. 32].

(v) = (i) Since (B, p) is a unital B*-algebra, B = H(B, p) +
1H(B, p). For any h, ke H(B, p), we have from Theorem 3, that &,
ke H(A, {p.}). But then for every a, h,, k.€ H(A,, |-, and since
|| 22 lle = Da(x) for all xe A, we have from inequality (1), [2, p. 50]
that

Pokh) = epoth + 1K) .

This inequality implies that for any net {4, + ¢k,} in B convergent to
2z in A, both {,} and {k,} converge to say % and k. But by Lemma
3 the set H(A, {p.}) is closed in A so h, ke H(A, {p.}) and x = h + ik.
Since B is dense in A, we have A = H(A, {p.}) + tH(A,{p.}).

It should be noted that this theorem gives in (v) = (iv), a con-
verse to Theorem 2.3, [1, p. 32], and in (iv) = (iii), a simpler proof
for Theorem 2.4, [1, p. 82], by using numerical range techniques.

The following is an application of Theorem 6 and is a generaliza-
tion of Theorem 7.6, [2, p. 71].

THEOREM 7. Let Q be a locally compact Hausdorff space and let
A = & () be the algebra of all complex continuous functions on L.
If A is an F-algebra under the compact-open topology, then any l.m.c.
topology gemerated by a family of semi-norms {p.} such that p.(f) =
(1) for all fe A and p.(1) =1 for all a, under which A is an F-
algebra, is the compact-open topology.

Proof. We can introduce the exponential function in 4, expa =
1+ S, 1/nla* and it is clear that (exp a), = exp a,, for every a.
Now if g is a real continuous function on 2 then for real » and for
each «a

|| exp (1\ga) lle = || (€XP NG [e
= Pa(€Xp tAg)
= Po{| €XD I7Ag |)
= pa(l) = 1.

Therefore, by Lemma 5.2, [2, p. 46], g.€ H(4,, || - ||.) for every «, and
so ge H(A, {p.})). We have then A = H(A, {p.}) + tH(A, {p.}) and by
Theorem 6 we conclude that A is a b*-algebra. Now, by Theorem
4.2, [1, p. 36], A with the compact-open topology is also a b*-algebra.
So by Theorem 3.7, [1, p. 35], the l.m.c. topology generated by {p.}
is the compact-open topology.

In the above theorem we note that A with the compact-open topolo-
gy and A with the l.m.c. topology generated by the semi-norms, must
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both be F-algebras; one of these being an F-algebra is not sufficient.
We are indebted to the referee for the following examples which
illustrate this point.

ExaMpLE 3. Let 2= [0, 1] with the usual topology and let {K,}
be the set of compact countable subsets of 2. A family of semi-norms
{p.} defined on A by

PoT) = sup {Ilf@) 1},

satisfies the conditions of the theorem except that A with this topology
is not an F-algebra, [4, Example 3.8, p. 19]. However, A with the
compact-open topology is a Banach algebra, so it is clear that the to-
pology generated by the family of semi-norms is not the compact-open
topology.

ExXAMPLE 4. Let 2 be the set of ordinal numbers smaller than
the first uncountable ordinal, with the order topology. With norm p
defined on A by

p(x) = ggg{lf(w) I} s

A is a Banach algebra. However, A with the compact-open topology
is not an F-algebra, [4, Example 3.7, p. 19], so it is clear that the
norm topology on A is not the compact-open topology.

Note added in proof. We are indebted to Dr. R. T. Moore for
pointing out, in connection with Example 2, that the following result
can be deduced from Theorem 3 by the Open Mapping Theorem.

THEOREM. A wunital F-algebra A 1s normable if and only if
there exists an (A, {p.)) such that V (A, {p.}; a) s bounded for all
ac A.
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ON DOMINANT AND CODOMINANT DIMENSION OF
QF — 3 RINGS

Davip A. HILL

In this paper the concept of codominant dimension is
defined and studied for modules over a ring. When the ring
R is artinian, a left R module M has codominant dimension
at least n in case there exists a projective resolution

P,—P, 14—+ —>P—>M—0

with P; injective. It is proved that every left R-module has
the above property if and only if E has dominant dimension
at least n. The concept of codominant dimension is also
used to study semi-perfect QF — 3 rings.

Let R be an associative ring with an identity 1. Denote by
o (resp. Ry;) the left (resp. right) R-module R. Using the termino-
logy of [5], we have the following definitions:

(1) R is left QF — 3, if R has a faithful projective injective
left ideal.

(2) R is left QF — 38* if the injective hull E(;R) is projective.

(38) R is left QF — 3’ if E(,R) is torsionless, i.e., there exists
a set A such that E(R) < [I, R.

In general (1)=(3). For perfect rings the three conditions
are equivalent for left and right QF — 3 rings. (See [5].)

The dominant dimension of a left (resp. right) R-module M,
denoted by dom. dim (M) (resp. dom. dim (My)) is at least n, if there
exists an exact sequence

0 M X, X,

of left (resp. right) R-module where each X; is torsionless and injec-
tive for i =1, .-+, n. See [3] for details.

Note that this says when dom.dim (zR) =1 and R is left-
artinian that E(Re;) for i =1, -+, n is projective where {¢;}, =1, -+, n
is a complete set of orthogonal idempotents, and that each X, is
projective.

We define codominant dimension as follows:

Let M be a left R-module. The codom.dim of M is at least =
in case there exists an exact sequence

P, > P, o P, M 0

where P; is torsionless and injective for ¢ =1, «+., m.
Following the notation of [3], we say that if such an exact

93
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sequence exists for 1 < ¢ < n, but no such sequence exists for 1 <
1< n + 1, then codom. dim (M) = n. If such a sequence exists for
all n then codom.dim (M) = «. If no such sequence exists codom.
dim (M) = 0.

An R-module U is defined to be a cogenerator if for any module
M we can embed it in a product of copies of U. We have:

LEMMA. Let U, V be left injective cogenerators then the
codom. dim (U) = codom. dim (V).

The proof follows easily from properties of injective cogenerators
and shall omit it.

Let U be a left injective cogenerator. If the codom.dim (U) = =,
we say that R has l.codom.dim (;R) = #. In a similar manner one
defines 7. codom. dim (R;). Note that if ,R is artinian, products of
projectives are projective and direct sums of injectives are injective.
Hence l.codom.dim (R) = » is equivalent to the existence of a
resolution

P, P, <o P, U 0

where P, is projective and injective and U = E(S) @ --- @ E(S,)
where S;:i =1, ..+, n is a copy of each simple left R-module.

In §1 we characterize semi-perfect QF — 8% rings in terms of
their finitely generated projective, injectives.

In §2 we show that l.dom. dim (R) and l.codom.dim (,R) are
the same for artinian rings. Hence, if R is artinian QF — 3 then
the l.-dom. dim (r-dom. dim) 1. codom. dim (r-codom. dim) are the same.

For notation we use J to donote the Jacobson radical, and R“(R“)
denotes a direct sum (resp. direct product) of A-copies of R. Also
E(M) will be used to denote the injective hull of an R-module M
and P(M) will denote the projective cover of M when M has a pro-
jective cover. For a left R-module M, we let 4(M)={xc R|z-M =0},
and .y(l) ={xeM|I.x =0} where IS RER. We will use T(M) to
denote M/J(M) where J(M) is the Jacobson radical of M.

1. QF — 3 Rings. Recall that if R is noetherian rt-QF — 3 =
- QF — 3*. (See [1] and [6].)
To begin with we shall prove that under those hypotheses
1t QF — 8% —= 1t QF — 3’ .

PROPOSITION 1.1. Let 4R be moetherian. If E(Ry) s torsion-
less then E(Ry) 1s projective.
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Proof. Given that 0 — E’i R4 is monic, where A is an indexing
set. We show that there exists a finite number of R,’s, ac A say
R., «--, R., such that 76|, =0 where = is the projection R*—
@ >~ R,, is monic. Let S be the set of all finite intersections of
right ideals {K,}.., where K, = ker (7, 0 |;). Note that M., K., induces
a natural embedding of

0— R|() K, — R™ .
Thus R/Ni. K., is torsionless. Hence by [2, Thm. I, p. 350]
Q K, = zm/m(\él Kai> .
Now since R noetherian, the set {#(N, K.,)} has a maximal element

%&(N. K.,) where rn]KaieS. Thus .oa(N K.) = N K., 1s a
i=1

minimal right ideal in S. But then e N, K., = ® € Naes Koo Thus
», K, =0. This implies that # is monic. But then nf is monic
since ker (76) N R = 0 if ker (zf) = 0. This shows E is projective.
We next show that QF — 3t = QF — 3 for semi-perfect rings.
First we need the following lemma.

LEMMA 1.2. Let K be finitely generated. Suppose there exists
an exact sequence

0 K K E,

where B(K) = K, E;,, = E(E;) for 1 <1< n— 1 and each E; s pro-
jective. Then K, -++ FE, are all finitely generated.

Proof. This follows easily from the proof of [4, Lemma 1].

PRrROPOSITION 1.3. Suppose R is semi-perfect. If R isleft QF —
3" then R is left QF — 8.

Proof. By Lemma 1.2 E(R) is finitely generated. Since R is
semi-perfect E(R) = @ >, Re;, where each ¢; is an indecomposable
idempotent.

Let Re, ---, Re, be a subset of Re, ---, Re,, where the set
{Re,, -+, Re,} is a complete set of isomorphism classes of {Re,, -+, Re,}.
Then U= Re, @ -+ @ Re, is a minimal projective injective.

Now we come to the main theorem of this section.

THEOREM 1.4. Let R be semi-perfect. The following are equiva-
lent:
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(a) R is left QF — 3+.

(b) EGR) is finitely generated and every finitely generated left
injective has an injective projective cover.

(¢) Ewvery finitely generated left projective has a projective
wngective hull.

Proof. (b)= (a): Consider
P(E(R)) — E(R) — 0 .

Embed REE'(R) then by the projectivity of R there exists a map
0': R— P(E(R)) such that ¢’ is monic.
Consider the following diagram:

0 — R—. E(R)
0" ,/
l z/ 9//

P(E(R)) .

Here 6”(r) = ¢'(r) for all rc R. Also 6" is monic. The injectivity
of E(R) forces E(R) to be a direct summand of P(E(R)), hence
projective.

(@) = (c): Consider R™, R™ < E(R)™. Thus E(P)< E(R)", where
PP P = R™, as a direct summand. Hence E(P) is projective. The
converse is trivial.

(a) = (b): By Lemma 1.2 E(R) is finitely generated.

Consider P(E) A E — 0 where P(F) is finitely generated injective.
Let R™ -2 E— 0. Combining the above maps we have the following
diagrams:

«(n)

0 — R 2 B(R)™

,/
Yy
o| i

E.
So we have 0 epic and o -’ = p. Further we have
E(R)™
;;'/ l o
P(E) -2 E—0

Noting that 0" is epic and P(F) is projective, P(E) is a direct
summand of E(R)™. Hence injective.

A ring is perfect in case every module has a projective cover.
We show that QF — 3* rings can be characterized in terms of the
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projective cover of E(zEK).

THEOREM 1.5. Let R be perfect. Then every indecomposable
summand of P(E(,R)) is injective if and only if R is left QF — 3*.

Proof. = Consider the following diagram:

?RR
1 l%
/ i
P(E(zR)) — E(;E) — 0.

Here 7 is a monomorphism and = is epic. Since R is projective there
exists on f such that zf = 7. Clearly f is monie. Since R is perfect
P(E(3R)) == Y.c 4 Re., where e, are primitive idempotents of R. Now
Im(f) is contained in >}*_, Re, for = a positive integer, since R
is cyclic.Thus using the hypothesis, E(,R) is projective and R is left
QF — 3%, < This is trivial.

2. Codominant dimension of rings. We begin with a lemma
which holds the key to the main results of this section.

LeEMMA 2.1. Let R be a ring. The following conditions are
equivalent.

(1) For every projective left R-module P, there ewists an exact
sequence

0 P E, E,

where E;, 1 <1< n, are injective and projective.
(2) For every injective left R-module @, there exists an exact
sequence

P, > P, cee P, Q 0

where P;, 1 <1< n, are injective and projective.

Proof. (1)=(2). For n =1 a modification for the proof of
Theorem 1.4 will suffice. We assume the lemma is true for the nth
case and prove the » + 1 case. So consider the following exact
sequences.

(1) 0—P,,-m -t g ... g,

(2) PP,

b P 0—0.

Here @ is an arbitrary injective module and
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P, P, B, -, FE,,

are both projective and injective and P,., is projective.

Also E, is the injective hull of Cok (J,).

Denote by K the image of 6,. Using the injectivity of P,, there
is a map 6, E,— P, such 6,J, = ¢,,,6, where t,,, is the embedding
of K into P,. The injectivity of P,_, and the exact sequence 0 —
E/P,,.— E, induce a map 6,: E,— P,_, which one can easily check
has the property 6.J, = 1,0,.

In like manner we can define 4,: E,_, — P,.,_, such that

OJos = tnssiOhy s k=2, m+ 2.

This information is summed up in the following diagram:

Jz J’n+1
0 4 P'n+1 - ? El > Ez cee En+1 > Lipiy
e e e

h h h 4

7 7 g
01 "+/1’ 0> il 03 On+1 /1' Or2
/, l // l l /,/ l
/ /
¢ Tntl L g, v i
Pn Pn——«l tee Pl Q 0 *

ek
%

Having constructed 6,.,, the projectivity of E,,, induces a map
h: E,,,— P, such 2,h, = 0,.,. Now consider the map AJ,,, — 0,..: E,—
P1- We have il(hlJn—H - 0n+1) = 0n+2 nt1 T i10n+1 = 0. SO Im (hlJ'ﬂ+1 -
0.+, = ker (i,).

Now consider the following diagram:

E,
// lh1Jn+1—0n+1
Pz"‘"’IH’l(%)—*O .

We can construct h, using the projectivity of E,. By a similar
argument we can show that Im (2,J, — 0,) < ker (¢,). By a recur-
sive argument we can construct A,J,.o — Opie fOr B =1, n
in like manner. In particular we have h,J, — 6,: E,— P, where
Im®,J, — 6,) < K. We need only show equality to complete the
proof. Let ke K. Then there exists an x ¢ P,,, such that 6,(x) = k.
Thus (h,J, — )(J(—x) = 0,J,(x) = 0,(x) = k. Thus h,J, — 6, maps
on to K. The proof (2) = (1) is similar. This completes the proof.

Noting that for left artinian rings products of projectives are pro-
jective, and direet sums of injectives are injective one can easily show
that dom. dim (R) = » implies dom. dim. (P) = » for all projective P.



ON DOMINANT AND CODOMINANT DIMENSION OF QF — 3 RINGS 99

Likewise letting I = @ 3, E.(S,) be the minimal injective cogenerator
of R, we find that codom. dim(I) = » implies codom. dim (@) = = for
all injectives Q. Thus we have:

THEOREM 2.2. Let R be left artinian then the following are
equivalent:
(1) The inf {m e Z|dom. dim (P) = m for all P projectives} = n.
(2) The inf{me Z|dom. dim (@) = m for all Q injectives} = n.
(3) l.dom.dim (zR) = n.
(4) L codom.dim (rR) = n.
If no such n exists we say 1. dom. dim (R) = o

Proof. (3) = (1), (4) = (2) by our previous discussion. (1) = (3):
There exists a projective module P such dom. dim (P) = n.

Now P=&>,. Re, {e. primitive idempotents such that for
some ¢; dom. dim (Re;) < n + 1 where ¢;e{e,}. Since Re; < R, n+1>
dom. dim (R) = wn. This yields the desired result. (2) = (4) is similar.
(1) = (2): By Lemma 2.1 inf {m € Z | codom. dim (@) = m} = n. If inf of
the above set is strictly greater than =, another application of the
lemma forces inf{me Z|m = dom.dim (P), P projective} > n which
is impossible. (2) = (1) is similar.

Let R be left artinian and both left and right QF — 8. Then
by [4, Thm. 10] 1. dom. dim (R) = r. dom. dim (R;). Thus in view of
2.2 we have:

PROPOSITION 2.3. Let R be artinian and QF — 8. Then
1. domdim (yR) = r. domdin (R;) =1. codomdin (R)=r. codomdim (R;) =n.

Acknowledgement. The author wishes to thank the referee for
his proof to Theorem 1.5 which is simpler than the author’s original
version.
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ROUND AND PFISTER FORMS OVER R(?)

J. S. HsiA AND ROBERT P. JOHNSON

An anisotropic quadratic form ¢ is called round if ¢ = a¢
whenever ¢ represents a = 0. All round forms over E(t) are
completely determined. Connections with Pfister’s strongly
multiplicative forms and with the reduced algebraic K-theory
groups k, of Milnor are studied.

The concept of a round form was introduced by Witt (see [5] and
[8]) to give new simple proofs of results of Pfister on the structure
of the Witt ring over fields. In a previous paper [3] we determined
all round forms over a global field. In this paper we completely
determine all round forms over R(t), the field of rational functions
in one variable over the reals.

We now describe our main results.

Let ¢ be an anisotropic form of dimension > 1 over R(f). Then
¢ is round if and only if ¢ = (n x (1, 1)) D (1, f9) for some f, gc R(t)
such that f is a product of distinct linear factors and ¢ is a product
of irreducible quadratic factors. Our proof gives a method of com-
puting f and g, which are essentially unique (see 2.5 and 2.6). We
study a generalization of a round form, called a group form, over
R(t) and measure how far group forms are from being round (see [3]
for group forms over global fields).

In the last section we show that a form of dimension 2"(n = 2)
is a Pfister form if and only if it is a round form of determinant
one. Such a form can be written uniquely as 2" x (1, f) for some
fe R[t] which is = a product of distinct monic linear factors. From
this and a theorem of Elman and Lam we see that every element of
k,.R(t) can be written uniquely as I(—1)""'l(—f) with f as above.

1. Preliminaries. We will consider only quadratic forms (often
simply called “forms”) over a field F' of characteristic = 2. We write
6 @ for the orthogonal sum and ¢ @« for the tensor product of
quadratic forms [5, p. 8]. We call ¢ hyperbolic if ¢ =m x (1, —1),
i.e., ¢ 18 a direct sum of hyperbolic planes.

Define D¢ = {a e F'| ¢ represents a} and G¢ = {ac F'| ag = ¢} where
F = F — {0}). An anisotropic form ¢ is called round if and only if
D¢ = Gg¢ (or equivalently Dg = Gg¢); an isotropic form is called round
if and only if it is hyperbolic [5, p. 22]. A form ¢ is called a Pfister
form if 6 =(1,a)® - ®(, a)(aeF).

We will frequently refer to [4] for results on quadratic forms
over F' = R(t). The valuations of ¥ which are trivial on R are of

101
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three types: if the prime element is ¢ — a(ac R), the valuation is
called real; if the prime element is an irreducible quadratic polynomial
it is called complex; if the prime element is ¢t it is called infinite.
A spot is an equivalence class of valuations [7]. If p is a real or
infinite spot then the completion F, of F' at p is isomorphic to R((x))
(@ real series field) where m is a prime element. If p is complex,
F,= C((n)) is called a complex series field. See [4] for results on
quadratic forms over series fields.

If ¢ is a quadratic form over R(t) and if a e R, we define “¢ at a”
to be the quadratic form over R obtained by replacing ¢ by « in the
matrix of 4. Thus ¢ at a is well-defined for almost all «e R. The
following result is Proposition 2.1 of [4] and is due to Witt.

1.1. A nonsingular quadratic form of dimension = 3 over R(t)
is 1sotropic if and only if for almost all ac R, the form at « 1s
gsotropic over R. Thus if ¢ is a quadratic form of dimension = 2
over R(t) and if 0+ f(t)e R(t), then ¢ represents f(t) < for almost
all ¢e R, ¢ at a represents f(a).

If we write ¢ = (a,, »+-, @,) over a field F' then det ¢ = a,--- a,
modulo F?. When F = R(t) we assume det ¢ is written as =+ a pro-
duct of distinct monic irreducible polynomials.

The following result generalizes Proposition 2.2 of [4].

1.2. Let ¢, be quadratic forms over R(t). If ¢ = at a for
almost all ac R and if det ¢, det 4 have the same irreducible quadratic

factors, then ¢ = .

Proof. Clear for dim¢ = 1. We assume this result is true when-
ever dim ¢ < » and prove it for dim¢ =n>1. Let ¢ represent a = 0.
Then ¢ @ (—a) is isotropic so by 1.1, « @ (—a) is isotropic. Thus
represents a. Write ¢ = (a) D ¢, and + = (a) @+, and apply the
induction hypothesis.

1.3. Let f(t) e R[t] and a € R with f(a) = 0. Then (f(t)) = (f(a))
(one-dimensional quadratic forms) over the completion of R(t) at the
spot with prime element t — a.

Proof. Write f(t) = ay + a,(t — @) + +++ + a,(t — @)™ and apply
the Local Square Theorem [7, 63: 1la], noting f(a) = a,.

2. Round forms over R(t). We will need the following result,
which determines all round forms over a series field.

2.1. Let ¢ be an anisotropic quadratic form over a real or com-
plex series field F.
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(a) If F is complex, then ¢ is round = ¢ represents 1.

(b) Let F be a real series field. Then F is pythagorean and
Sormally real. So if dimg is odd, ¢ is round = ¢ = (1, --+, 1). If
dim ¢ = 2m is even then ¢ is round = ¢ =m X (1,1) or m x (1, + 7).

Proof. (a) By [4, 1.2], dim¢ < 2 whenever ¢ is anisotropic
over a complex series field. Now apply [5, 2.4].

(b) It follows easily from the Local Square Theorem [7, 63: 1a]
that F s pythagorean. Now apply [5, 2.4] and [4, 1.6].

Now let F be a field of characteristic = 2 and let 2 be a set of
discrete or archimedian spots on F' (see [7] for terminology). We say
that (F, 2) satisfies the Weak Hasse-Minkowski Theorem if whenever
o and 7 are quadratic forms over F' with o, = 7, for all pe 2, then
0 =7 (0, denotes the form ¢ viewed over the completion F, of F

at p).

2.2. Let (F, Q) satisfy the Weak Hasse-Minkowski Theorem. Let
¢ be anisotropic over F. Then ¢ is round <= for all pe 9,

(1) ¢, s round
or (2) ¢, is isotropic and ¢, (the anisotropic part of ¢,) ts round
and universal.

Proof. (=): Assume ¢ is round. Let pe Q. We first assume
¢, is anisotropic and show ¢, is round. Let beD(ngp). Approximate
b by aeDgs. By the Local Square Theorem, we can obtain ae¢ bF"j.
Thus ¢ = ap = ¢, = bg, s0 ¢, is round.

Now assume ¢, is isotropic and not hyperbolic. Write ¢, = ¢, R H
with H hyperbolic. We will show ¢, = bg), for all be F, and so (2)
holds. Now ¢, represents b so we find that ¢, = bg, by the argument
of the preceding paragraph. Thus ¢, = bg,.

(==): Let ae Dé. Applying (1) or (2), we have ¢, = ag, for all
pe 2. By the Weak Hasse-Minkowski Theorem, ¢ = a¢, so ¢ is round.

ExampLES 2.3. The Weak Hasse-Minkowski Theorem holds in the
following cases:

(1) Let F = K(t) where K is an arbitrary field of characteristic
# 2 and let 2 be the set of all spots on F' that are trivial on K.
Using [6, Theorem 5.3] one can show that (F, 2) satisfies the Weak
Hasse-Minkowski Theorem.

(2) Let F be a global field and let 2 be the set of all non-
trivial spots on F. We have the following precise results in this
case [3, 2.4]: let ¢ be an anisotropic form over F and let dim ¢ > 2.
Then ¢ is round if and only if: (1) dim¢ = 0 mod 4, (2) at all real
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spots (if there are any) ¢ is hyperbolic or positive definite, and (3)

det 4 = 1. We note that the Strong Hasse-Minkowski Theorem holds

for (F, 2), i.e., if a form ¢ is isotropic for all pe 2 then ¢ is isotropic.
(3) Cassels, Ellison, and Pfister (J. Number Theory, 3 (1971),

p. 147) have recently shown that the Strong Hasse-Minkowski Theorem

fails for F' = K(t) where K = R(x) (x, ¢ independent indeterminants

over R) though the weak theorem holds as we have mentioned in (1).
The next two results determine all round forms over R(t).

2.4. There is mo odd-dimensional round form over R(t) except
the form ¢ = (1).

Proof. Note that R({) is non-pythogorean since ¢*+ 1 is not
a square. Now apply [5, 2.4].

THEOREM 2.5. Let ¢ be an anisotropic form of dimension 2m
over R(t). Then the following are equivalent:

(1) ¢ ¢s round.

(2) ¢=((m—-1) x @, N)BAQA,[fg) for some f, g R[t] such that
f is a product of distinct linear factors and f or —f is monic, and
g s a product of momnic irreducible quadratic factors (we allow f =1
or —1 and allow g = 1).

(3) For almost all acR, ¢ at a is hyperbolic or positive
definite.

(4) ¢, is round for all real or infinite spots p on R(t).

Proof. (1) = (4) follows from 2.2 since there is no universal
anisotropic form over a real series field. We will show (2) = (4) =
8) = (2). (2)=(4) follows from 2.1 and 1.3.

(4) = (3): Assume (4). Write ¢ = (fi(t), « «+, fen(t)) With the fi(t) e
R[t]. Let ac R such that fi(a) = 0 for all 4. Let p be the real spot
with prime element ¢t — a. By 1.3, ¢, = (fi(a), +++, fen(@)). By 2.1,
,=Zmx (1, 1) or mx (1, —1). So by [4,1.6], ¢ at ¢ is =m x (1, 1)
or m X (1, —1).

8y = (2): Write ¢ = (f,, -+, fon) with the f;e R[t]. Let S be the
set of all ae R such that fi(a) = 0 for some 7. Write S = {a,, *++, a;}
with o, <a; < +++ <a;. If I is any of the intervals (— oo, a),
(ay, @), +++, (az, o) then ¢ at a is hyperbolic for all a e I or is positive
definite for all e I. The idea now is to merge together adjacent
intervals if ¢ at « looks the same in the adjacent intervals. If ¢ at
« is positive definite (respectively, hyperbolic) for almost all ae R
then we let f = 1 (respectively, —1). Otherwise, there is an ordered
subset {b, < b, < -+« < b;} of S such that if J is any of the intervals
(— o0, by), (b, by), +++, (b;, o) then ¢ at « is hyperbolic for almost all
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a e J or is positive definite for almost all @« €J, and such that whenever
¢ is hyperbolic in one of these intervals then it is positive definite in
the adjacent intervals. Now let f= (¢ —b)---(t — b;) if ¢ at « is
positive definite for almost all &« > b;, and let f = —(t —b,) +++ (t — b))
otherwise. Let g be the product of all the (monic) irreducible quad-
ratic factors of det ¢. Then by 1.2, ¢ = (m — 1) X (1, /)) B A, fg).

REMARK 2.6. (1). Part (2) of the above theorem gives us a
canonical form for an anisotropic round form of even dimension over
R(t), i.e., f and g are uniquely determined. This fact follows easily
from 1.2. The proof of (8) = (2) gives us a constructive method of
finding f and g (provided we know the decomposition of the f; into irre-
ducible factors).

(2) Part (3) of the theorem provides us with the easiest way
to check whether a given anisotropic form ¢ of even dimension over
R(t) is round. If ¢ = (f, ++-, fon) With the fie R(t) and if {a, <
a, < +-+ < a,} is the ordered set of all real roots of the f;’s, we
need only compute ¢ at & for one value of « in each of the intervals
(_ o, al)’ (aly aZ), *t (ak’ oo),

As in [3], we call a quadratic form ¢ over a field F a group
form if D¢ is a subgroup of F. Every round form is clearly a group
form. We now briefly investigate group forms over R(t).

2.7. Let F be a field with a set 2 of discrete or archimedean
spots on F. Assume (F, Q) satisfies the Strong Hasse-Minkowski
Theorem (local isotropy tmplies isotropy). Then a quadratic form ¢
over F' is a group form <= ¢, is a group form for all pe Q.

Proof. (=): See the proof of 3.2 of [3]. (=): Let a, be Dg.
Then abe D¢, for all pe Q2 so abe Dg.

By [4, 2.3] and [7, 42:11], R({) satisfies the Strong Hasse-
Minkowski Theorem with respect to the set of all real and complex
spots. Thus by 2.7 and 1.1, we have:

2.8. Let ¢ be a quadratic form over R(t). Then ¢ is a group
form = ¢ represents 1. If dimg¢ = 2 then ¢ is a group form < ¢
at a represents 1 for almost all aec R.

If ¢ is an anisotropic group form over any field then ¢ is round
the factor group D¢/G¢ = 1. Thus this factor group measures how
far an anisotropic group form is from being round. We now investi-
gate this factor group.

2.9. Let ¢ be a group form over R(t) and assume ¢ is not round.
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Then Dg|Ge is infinite unless ¢ = (m x (1, —1)) P (1, —g) where m = 1
and g is a product of monic irreducible quadratic factors. In this
latter case Dg/Gg = 1.

Proof. (1) We first assume dimg¢ is odd and > 1. Clearly
Gp = F*. If f is any monic irreducible quadratic polynomial over R,
then fe D¢ by 1.1. Thus Dg/Gs is infinite.

(2) Now assume dimg¢ is even and ¢ is anisotropic. Then
there is an interval I = (a, b) such that if ael, then ¢ at a is =
(m x (1)) B (n x (—1)) for fixed positive integers m, n with m = n
(to see this, apply (3) of 2.5 and (2) of 2.6). Let a <2z <y < b and
define f,,(t) = (t — 2)(t — y) € R[t]. Then f,,(@)>0 if a¢ I so f,,(t) e
D¢ by 1.1. Let y <y, <b, so that Sou,(t) € D¢ also. Let h(t) = Sa(t) =
Seu(t)  Then h(t) ¢ G¢ by 1.2 since h(a) < 0 for y < @ < y,. It is now
clear that if we choose an infinite sequence of numbers y <y, <
Y, < +++» < b then we obtain an infinite number of distinct cosets of
G¢ in Dg.

(8) Let dim ¢ be even and let ¢ be isotropic (but not hyperbolie),
and assume that ¢ at « is non-hyperbolic for infinitely many ae¢ R.
Then there is an open interval I such that for all ael ¢ at « is
isotropic but not hyperbolic. Thus by the proof of (2) above, D¢/G¢
is infinite.

(4) Finally, assume dim ¢ is even and ¢ is isotropic (but not
hyperbolic), and assume that ¢ at « is hyperbolic for almost all ac R.
Then by 1.2, ¢ = (m x (1, —1)) (1, —g) where g is a product of
monic irreducible quadratic factors. By 1.1, D¢ = F (where F' = R(t).
Now G¢é = G(1, —g) = F by 1.2 so Dg/Gp = 1.

3. Pfister forms and k, over R(f). We first consider Pfister
forms over R(?).

3.1. Let ¢ be a quadratic form over R(t) with dim ¢ = 2"(n = 2).
Then the following are equivalent:

(1) ¢ ts a Pfister form.

(2) ¢=2v"x (1, f) for some fe R[t] which is = a product of
distinet monic linear factors (we allow f = +1).

(3) ¢ is round and det ¢ = 1.

Proof. (1)=(3) is clear. (8) = (2) by 2.5 (if ¢ is isotropic, let
f=—-1). (2) = (1) is clear.

In (2), f is uniquely determined by ¢ (see 2.6).
We now consider, for the field F' = R(t), the algebraic K-groups
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k. F = K, F/2K,F of Milnor [6]. k, is generated additively by the ele-
ments I(c,)- - -l(c,)(c;€ F). We have [(—a)-+-U(—a,)=1(—b,)-- U(—b,)=
Lo QRNLa)=1L bR - R®(Qb,) [2, Main theorem 3.2].

Let » > 1. By 3.1 and [2, 3.2], every element of k,F can be
written uniquely in the form I(—1)""*l(—f) for some fe F whichis + a
product of distinct monic linear factors or is = 1. Thus k,F is
isomorphic to the subgroup of F/F® consisting of the square classes of
products of linear polynomials (note that I(—1)" ' l(—f)+U(—1)""l(—g)=
1(—=1)""'l(fg)). Furthermore, there is a natural isomorphism s, of k&,
onto I"/I"+' where I is the ideal of the even-dimensional forms of the
Witt ring W(F') [2, 6.1].

REMARK 3.2. By [6, 2.3], for » = 1 and for any field E there
is an isomorphism K,FE(t) = K, E @ (B K,_.E[t]/(r)) where the second
direct sum extends over all nonzero prime ideals (w) of E[t]. Now
let £ = R and let » = 2. The above isomorphism induces an isomor-
phism k,R(t) = k,R B (@ k,_.R[t]/(r)) where the second direct sum
extends over all the polynomials 7 =t — &, «ac€ R (note that k,_, of
the complex numbers is 0). Now k,R and k,_,R are groups of order
2 by [6, 1.6] or [2, 3.2]. Thus there is an isomorphism k,R(t) =
Z, P (BrZ:). This isomorphism is given explicitly as follows:
W(—=1)""*l(—f)(where f is * a product of distinct monic linear factors)
maps to a @ (B a.)(@e R) where a is 0 if and only if f is monic, and
a. is 1 if and only if ¢ — « divides f.

REMARK 3.3. Let us briefly see what happens when we let our
field F be a global field and let # = 3. Then we have:

(1) Every Pfister form of dimension 2" over F' is isometric to
a form 2" x (1, ) for some ac F. Also 2" x (1, a) = 2" x (1, b) =
abe F? for all real spots p on F. These facts follow easily from the
Weak Hasse-Minkowski Theorem.

(2) By (1) and by [2, Main Theorem 3.2], we see that every
element of k,F can be written as I(—1)"""l(—a) for some ac F, and
U=1)""U—a) = (—1)""'l(—b) = abe F? for all p real. Thus k,F =
@ k,F, where the direct sum extends over all real spots p (note that
k. F, = Z,). This fact was first proved by Tate (see appendix of [6]).
Elman and Lam [1] gave a simple proof (using the Strong Hasse-
Minkowski Theorem) which does not depend on [2].

(8) There are round forms ¢ over F' of dimension 2" (with
det ¢ = 1) which are not Pfister forms [3, 2.6].

Added im proof. In connection with Example 2.3(3), we point
out here that, without using elliptic curves theory, examples of
rational function fields which do not satisfy the Strong Hasse-Min-
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kowski Theorem can be found in the article: “On the Hasse Principle
for Quadratic Forms”, P.A.M.S., 39 (1973).

The results in §2 have been generalized recently by R. Elman
in his article: “Rund forms over real algebraic function fields in one
variable” (to appear). Instead of using the local-global method as we
have done, Elman’s approach is entirely different; he uses the alge-
braic theory of Pfister forms.
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EQUALLY PARTITIONED GROUPS

I. M. Isaacs

It is proved that the only finite groups which can be
partitioned by subgroups of equal orders are the p-groups of
exponent p. The connection between equally partitioned
groups and Sperner spaces is discussed. It is also proved that
finite groups partitioned by pairwise permutable subgroups are
abelian.

1. Let G be a group and let /I be a collection of proper sub-
groups of G. Then I is said to partition G if every nonidentity
element of G is contained in exactly one Hell. If G is a p-group
of exponent p and |G| > p, we may let I7 be the set of cyclic sub-
groups of G. Then /7 is a partition consisting of subgroups of equal
finite orders. Our main result is that the p-groups of exponent p are
the only finite groups which can be equally partitioned.

The methods of proof in this paper depend strongly on the finiteness
of the group and give no information about which infinite groups
can be partitioned by subgroups of equal finite orders.

I began to consider equally partitioned groups after attending a
lecture by Prof. A. Barlotti on Sperner spaces. Examples of these
geometric objects (which generalize affine spaces) are provided by such
groups. In fact the Sperner spaces which arise from finite equally
partitioned groups are exactly those which Barlotti and Cofman [2]
call translation spaces. This will be discussed further in § 3.

2. Only finite groups will be considered. A great deal is known
about partitioned groups. (We mention in particular the papers [1]
and [5].) Our theorem, however, is much more elementary and does
not depend on the deeper results.

The following easy lemma (which appears in [1]) is crucial to
the study of partitioned groups.

LEMMA 1. Let G be partitioned by II and let z, ye G — {1} with
xy = yx. Suppose x and y lie in different elements of [I. Then x and
Yy have equal prime orders.

Proof. Suppose o(x) < o(y). Then (xy)® = y*®@ 1. Let ye H
e Il then (2y)°® ¢ H and hence zyec H. Thus z e H, a contradiction.
Therefore o(x) = o(y). Similarly, o(z") = o(y) = o(x) for positive inte-
gers n < o(x). It follows that o(x) is prime.

LeMMA 2. Let G be equally partitioned by II and let X = G be
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a subset, X Z {1}. Then there exists He Il such that H contains no
conjugate of X.

Proof. Suppose that the lemma is false and for each Hell,
choose X, conjugate to X with X, & H. Let Ny = N,(X) so that
H contains at least | H: Ny | conjugates of X. Let N = N, (X). Then
if |G|=gand |H|=h for He Il, we have

|G:N| =|G:NfXy)|=|G: Ny | =|G:H||H: Nyl
and hence
|H:N,|=h|G:Nl|/g.
Now |G : N| is the number of conjugates of X in G and thus

|G:N| =z Xyen|H: Ny
= [IT]|G:N|hig .

However, | 7| = (9 — 1)/(h — 1) > g/h and this yields a contradiction.

Note. It follows from Lemma 2 that if G is equally partitioned
by II, then no element of I/ can contain a full Sylow p-subgroup of
G for any p||G|. Otherwise, every He I would contain an S, sub-
group, violating the lemma.

LEMMA 3. Let G be equally partitioned. Then every element of
G has prime order.

Proof. Suppose that x e G has composite order and let .2 be the
conjugacy class of x. Let I be the given partition. By Lemma 2,
there exists He Il with HN 9% = ¢. By Lemma 1, no element of
H centralizes any element of .27". Thus H acts semi-regularly on .27~
and hence |H|||.22"|.

Now pick Ke Il with xe K. Then K acts semi-regularly by con-
jugation on 9%~ — K so that |K|||(2 — K)|. Since|H| = |K]|, we
conclude that |K|||2# N K|. This is a contradiction because
0<|Z NK|<|K|

The next two results are routine applications of standard facts.
We include them for completeness.

LEMMA 4. Suppose G has a nontrivial normal p-subgroup where
p 1s the largest prime divisor of |G|. Assume that every element of
G has prime order and let Pe Syl (G). Then either P= G or |G:P|
18 prime and P <] G.
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Proof. Let 1+ U<]G where Uis a p-group. Now G can contain
no subgroup, W, of order qr where q and » are (possibly equal) primes
different from p. This is so since otherwise Cy(w) = 1 forall 1 = we W
and this forces W to be cyclic (Satz V. 8. 15b of [3]).

There is nothing to prove if P = G so suppose P < G and let ¢
be the smallest prime divisor of |G|. Let Qe Syl,(G). Then |Q| =g¢
and thus G has a normal ¢-complement, M.

If M = P, the proof is complete. Suppose that P < M. Then
@ normalizes some ReSyl. (M) for »+# p. Thus |R| =7 and
|QR| = gr, a contradiction.

COROLLARY 5. Assume that every element of G has prime order.
Let P e Syl (G), where p is the largest prime divisor of |G|. Then P
s a T. I. set (i.e., PN P* =1 for all x¢ N(P)).

Proof. Assume that the corollary is false and let 1 < D = PN P~
where P = P and | D] is maximal. Then Ny (D) = N does not have
a unique Sylow p-subgroup. This violates Lemma 4 as applied to N.

THEOREM 6. Let G be equally partitioned. Then G is ¢ p-group
of exponent p.

Proof. Let p be the largest prime divisor of | G| and let P e Syl (G).
By Lemmas 3 and 4, N(P) = PC where either C =1 or |C| =gq, a
prime. By Corollary 5, P is a T. I. set.

We establish some notation. Let |G| =g, |P| = p* and |C| = c.
Let II be the given partition and let | H| = & for all HeIl. Let p*
be the p-part of h.

Since P is a T. I. set, it follows that PN UeSyl,(U) for all
subgroups US G with PN U= 1. Thus |PNH| = p* for all Hell
such that PN H=1. Since P = Ug(PNH), it follows that
(p* — 1) | (p* — 1). We can also conclude from the fact that Pisa T. IL.
set that G contains exactly g(p® — 1)/p’c elements of order p.

Now by Lemma 2, we may choose He Il with Hn C? =1 for all
geG. Let P,eSyl,(H). We may assume that P, < P. Since P is a
T. I. set, Ny(P,) S N4P) = PC. It follows that N,(P,) = P,C, where
C,= C’ for some g. Thus C,=1 and P, = Ny(P,). By Sylow’s
Theorem it follows that #/p* = 1 mod p.

Let Ke Il and let P, e Syl,(K). Reasoning as above, we conclude
that Nx(P,) = P.C, where C, = C~ for some x. Thus 2/(p*|C,|) =1
mod p and hence |C,| =1 mod p. However, |C,| =1 or ¢ where ¢
is a prime < p. It follows that C, = 1 and thus every K e /T has self-
normalizing Sylow p-subgroups.

Since the Sylow p-pubgroups of Ke Il are T. I. sets, it follows
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that each such K contains exactly i(p® — 1)/p* elements of order p.
Since [IT] = (g — 1)/(h — 1), this yields

(1) 9(p* — V)/p'e = (¢ — Dh(p* — D/(h — 1)p° .
Since g/h < (9 — 1)/(h — 1), we conclude from (1) that
lje > (9* — D/p’e > (p* — 1)/p* =1 —1/p" = 1/2
and thus ¢ = 1. Now (1) yields
(2) (9 — Dh(p® — 1)p* = (h — Dg(®* — 1)p" .
Since ((g — 1), gp*) = 1 and (p* — 1)/(p* — 1) is an integer, we obtain
gp" | hp" .

The p-parts of gp® and hp® are equal and 4 |g. It follows that Ap’|gp®
and thus

(3) hp® = gp* .
Combining this with (2) yields
(4) (=D —1)=(g—D@ -1

and subtracting (4) from (3), one obtains
h+p =g+ p°.
Since & |g and & < g, we have
92=g—h=p" —p"<p.

Since p’| g, we conclude that p® = g and the result follows.

NoTE. Once it was established that ¢ = 1, above, the proof could
have been finished using Frobenius’ Theorem, ([3], Hauptsatz V. 7. 6).
Since P is a self-normalizing T. I. set, Frobenius’ Theorem yields a
normal p-complement, U, for G. Also Cy(x) =1 for all 1==xecP. If
U=+1, it follows from the fact that P has exponent p that |P| = p.
A contradiction now results by applying the note following Lemma 2.

3. In this section we discuss the connection between Sperner
spaces and equally partitioned groups.

DEFINITION. ([4].) A Sperner space is a set, S, of “points” and
a collection, .2, of proper finite subsets of S, called “lines” such that

(@) every two points determine a unique line,

(b) all lines have equal numbers of points,
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(¢) an equivalence relation (called “parallelism”) is defined on &¥
and

(d) for each xe S, there is exactly one line which contains % in
each parallel class.

If G is a group which is equally partitioned by II, we may define
a Sperner space by taking S = G, ¥ = {Hx| He Il, x ¢ G} and setting
(Hz) || (Ky) if and only if H = K. It is routine to check that this does
define a Sperner space. We denote this space by S(G, II).

Given a Sperner space, (S, &), we consider the groups, G(S, &),
consisting of all those collineations of S which map each line to a line
parallel to itself. Since no two distinet parallel lines of (S, &) can
intersect (by condition (d)), it follows that if g e G(S, &) fixes a point,
xe€ S, then g fixes every line through z. It now follows easily that
only the identity of G(S, &) fixes two points of S.

Let G(S, &) = {1} U{ge G(S, &¥) | g fixes no points of S}. In
[2], Barlotti and Cofman call a Sperner space (S, &) a translation
space if G,(S, &) is a group which is transitive on S. If S is finite,
it follows from Frobenius’ Theorem ([3], Satz. V. 8. 2 (a)) that (S, &) is
a translation space if and only if G(S, &) is transitive on S. If (G, II)
is a finite equally partitioned group and (S, &) = S(G, II), then G(S, &)
contains right multiplications by elements of G and hence is transitive.
It follows that S(G, IT) is a translation space and G,(S, &) is the group
of right multiplications.

We claim that if (S, &) is any finite translation space then
(S, &¥) = S(G, II) for some equally partitioned group (G, I7I). Let
G = Gy(S, &) and choose a point ecS. For le.&#, let H, be the
(setwise) stabilizer of I in G and let I = {H,|le &¥ and ecl}. If
e,vcland ge G with eg = z, then xel N lg and thus I = lg and g € H,.
It follows that H, is transitive on [ and |H,| = |l|. Therefore, all
He Il have equal order. If H, Kell with H =+ K, then HN K fixes
¢ and hence HN K =1. Also

|G| =|S|=1+23{1l|—1|le< and ecl)
=1+ 3(H|-1|Hell} = |U I

and thus 7 is a partition for G.

To see that S(G, II) = (S, &), define 6: G~ S by 6(9) = eg. It
is routine to show that ¢ is an isomorphism of Sperner spaces.

One further remark on the correspondence between finite transla-
tion spaces and finite equally partitioned groups is in order. If (G, II)
and (G, II,) are two equally partitioned groups such that S(G, II) =
S(G,, I1)), then G = G, and this group isomorphism can be chosen so
as to carry 7 to I7,. This follows since G = G,(S(G, II)) and under
this (natural) isomorphism, I7 corresponds exactly to the set of
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stabilizers of the lines through 1.

Let (S, &°) be a finite translation space. By Theorem 6, | S| = p°
for some prime, p, and |l]| = p* for le &¥. Also, (p* — 1)|(p* — 1)
and as is well known, this forces a |b. We may define the dimension
of (S, &) to be b/a.

Let ¢ = p* and let K = GF(q). Let V be a vectorspace of di-
mension n over K and let I7 be the set of one-dimensional subspaces
of V. Then IT equally partitions V and of course S(V, II) is an affine
space of dimension n. This suggests the question of which translation
spaces, (S, &), correspond to abelian equally partitioned groups.
These are not necessarily affine although they do satisfy the following
condition:

(*) Letl,mex withlnm=g@. Letaxcland yem. Letl||l
with yel’ and m'|| m with zem’. Then I'Nm' = @.

It is easy to see that S(G, II) satisfies (*) if and only if for every
H, KelIl and every he H and k€ K we have Ht N Kh # . This con-
dition is clearly satisfied if G is abelian since then hk e Ht N Kh. In
the next section we prove that only in abelian groups does this con-
dition hold.

4. We begin with the following lemma.

LEMMA 7. Let H K< G. Then HK = KH if and only if for every
he Hand ke K we have Ht N Kh + 1.

Proof. Suppose HK = KH. Let he H and ke K. Then kh™'e
KH = HK and kh™ = h,~'k, for some h, e H and k, ¢ K. Thus hk =
k.he Hk N Kh.

Conversely, let € KH. Write = kh™ for some k¢ K and % € H.
Now choose ki = hke KhN Hk so that k,e K and h,e H. Then
x=Fkh™* = hk,e HK and KH < HK. The reverse inclusion follows
symmetrically and the proof is complete.

The main result of this section is the following.

THEOREM 8. Let G be a finite group partitioned by II. Assume
that HK = KH for all H Kell. Then G is an elementary abelian

D-group.

Note that we do not assume that all elements of I7 have equal
order. Theorem 8 and Lemma 7 prove the claim made at the end of § 3.
To prove Theorem 8, we strengthen it somewhat and use induction.

THEOREM 9. Let G be finite and partitioned by II. Suppose
Aecll and AH = HA for all HelIl. Then A <G.
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Proof. We use induction on |G|. If A< L < @G, then L is par-
titioned by II, ={HN L|Hell}. If Hell, then AH is a group and
AHNL =AHNL). Thus A(HNn L) = (HN L)A and by induction
A<]L. LetN= N(A). If Hell and AH < G, it follows that 4 <]{AH
and H< N.

Assume N< Gandlet II, ={Hell | HZ N}. Then HA = G for
all Hell, and hence | H| = |G :A| for these H. Also for HeIl,, we
have N= A(NN H) and thus (NN H|=|N:A4]|.

Now

G- N=U{H—-(HNN)|Hell}
and since this union is disjoint, we obtain
|G|~ |N|=|IL|(G:A|—-|N:4)).

Solving this yields |/7,| = Al
Now

UL =1+ |I[(G: 4] —-1)
=1+|G|—|A].

It follows that I7 = 7, U {4 } and every element of G — A lies in some
Hell,.

Let g e G. Toshow that A’ = A, it suffices to show that AN H =1
for all HeIl,. Choose HelIl,. Since G = AH, we may write g = ah
for some a€ A and he H. Then

A'NH=A'"NH=(ANH)"=1
and the proof is complete.

Proof of Theorem 8. By Theorem 9 we have H <G for all
Hell. Therefore, if H, Kell, H+ K we have K = C(H) and hence
G =HUC(H). Since H< G, we have G = C(H) and H < Z(G).
It follows that G is abelian. The result now follows by Lemma 1.

5. In this section we discuss a class of examples of equally
partitioned groups. Since every p-group of exponent p is equally
partitioned by its cyeclic subgroups, it is interesting to look for ex-
amples of groups partitioned by subgroups of order ¢ = p* > p. The
elementary abelian groups of order ¢" have this property. Nonabelian
examples are provided by the next result if p > 2.

THEOREM 10. Let n < p and q = p°. Then the Sylow p-subgroups
of GL(n, q) are partitioned by abelian subgroups of order q.
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Notre. If » > p, then the Sylow p-subgroups of GL(xn,q) do not
have exponent p and hence cannot be equally partitioned.

Proof of Theorem 10. Let K = GF(q) and let A be the space of
strictly upper triangular # x n matrices over K. Then P={I+ a|ac A}
is a Sylow p-subgroup of GL(n, q). For ac A, let M,(t) = exp (at)
for te K. This is well defined since (at)* =0 and »n < p. Since
M, ()M, (t) = M,(s + t), we conclude that P, = {M,(f) |t € K} in an abelian
subgroup of P.

We will show that if a,be A and exp (a) = exp (b), then a = b.
It will follow that |P,| = q if @ # 0 and that P, N P, = 1 unless b = at
for some te K; in which case P, = P,. Taking IT = {P,|0 # ac A}
we have |1 = (|A| — 1)/(g — 1) and

Ul =1(g—-1)+1=[A]=|P|
as desired.

Suppose then that exp (a) = exp (b). For m e Z, exp (ma) = exp (&)™
and thus exp (at) = exp (bt) for all t e GF(p). Let x be an indeterminate
and let E(x) = exp (ax) — exp (bx). Then E(x) is a matrix with poly-
nomial entries of degree < p. Since E(t) =0 for all te GF(p), it
follows that E(x) is identically 0. Comparing coefficients of x yields
a = b and the proof is complete.

We close with the following question: Does there exist a group
partitioned by subgroups of equal order not all of which are abelian?
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HYPERPOLYNOMIAL APPROXIMATION OF
SOLUTIONS OF NONLINEAR INTEGRO-
DIFFERENTIAL EQUATIONS

A. G. KARTSATOS AND E. B. SAFF

Consider the integro-differential equation
(%) Uw) =o' + Alt, 2) + StF(t, s, 2(s))ds = T(t), t € [a, b]

subject to the initial condition
G xa)=h.

Then a problem in approximation theory is whether a
solution z(¢) of ((*), (**)) can be approximated, uniformly on
[a,b], by a sequence of polynomials P,, which satisfy (**)
and minimize the expression [7(-) — U(P,)|l, where ||-| is a
certain norm. It is shown here that such a sequence of mini-
mizing polynomials, or, more generally, hyperpolynomials,
exists with respect to the L,-norm (1 < p = oo) and converges
to x(t), uniformly on [a,d], under the mere assumption of
existence and uniqueness of z(%).

The results of this paper are intimately related to those of Stein
[11], who studied the approximation of solutions of scalar linear in-
tegro-differential equations of the form

(1) Wiw) = Liz) - | bt s)a(s)ds = £(0),

(L(z) = 2™() + f.(@)z""1(E) + +-« + fa(t)x()) subject to the two-point
boundary conditions:

(2) WWEAW+EW+YW@WW=O,ﬁﬂﬁnwm

where A;(w) = X azu*(a), Bi(u) = ik, byu™ " (b). Namely, he
showed that under certain condition on L, &, f, if z(¢) is the unique
solution of (1), which satisfies the linearly independent boundary
conditions (2), then for every n = 2m — 1 there exists a unique poly-
nomial p, of degree at most %, which satisfies (2) and best approximates
the solution of (1) with respect to the L,-norm (1 < p < «). He then
considered the convergence of the sequences {p¥'}, k=12, +--, m — 1
to the solution x(¢) and its derivatives up to the order m — 1 respec-
tively. Extension of these results were also made for trigonometric
polynomials, or linear combinations of orthonormal functions. The
present paper extends the results of Stein and has points of contact
with the rest of the papers in the references.
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1. Preliminaries. Let R = (— oo, + ). For the system ((*), (**))
we assume the following: A(¢, u) is an m-vector of functions defined
and continuous on [a, }JXR™. F(t, s, u) is an m-vector of functions
defined and continuous on the set S = {(¢, s, w) € [a, b] X]a, b]XR™; s < t}.
T(t) is an m-vector of functions defined and continuous on [a, b].

Let By, k = 1, m, be the Banach space of all k-vectors of continuous
functions on [a, b] with norm

1£1ls, = sup |l FOII

where, for a vector u e R, ||u|| = maX,c;<; | ;|- By Bj; we denote the
Banach space of all functions f € B, which are continuously differentiable
on [a, b]. The norm now is
111, = max (I £1l5,} -

A sequence {g,} of functions in B is said to be linearly independent
if every finite number of the g,’s is linearly independent on [a, b].
A linearly independent sequence {g,} is said to be a d-sequence if the
set of all finite linear combinations of the g,’s is dense in B]. For
each 1=1,2 .--,m let {g,.:5, be a fixed d-sequence in B,. We
assume without loss of generality that g¢,;(a) %0, ¢t =1,2,---, m.
By a hyperpolynomial of degree at most ; we mean a function p of
the form

Y2 Ciifi,n Tt Confen ottt Ciagin
De Ciof1,2 T Cafe,e + o0 - Cjo05,
{ Pm Cr,m1,m -+ Co,mT2,m + oo A+ Ci,m9im

By 17, we denote the set of all hyperpolynomials of degree at
most % which satisfy the initial condition (**). For a function fe B,
we put

b i/p
sl =[{r@ra]”, 1sp< 4 .
We also make use of the symbol || f||.. instead of || f|l; .
2. Main results,

THEOREM 1. Let 1 < p < o and suppose that the system ((*), (**))
has a unique' solution x(t) defined on [a,bl. Then for each n suffi-

! Uniqueness means that any solution of ((*), (*¥)) which is defined on a subinterval
[a, ¢] of [a, b] must coincide with x(f).



HYPERPOLYNOMIAL APPROXIMATION OF SOLUTIONS 119

ciently large there exists a hyperpolynomial Q, € II, such that

(3) IT - U@, = inf || T — UP)]l, -

Furthermore, the sequence Q,(t) converges uniformly to x(t) on [a, b].
For the case p = « we have, in addition, that the sequence @.(%)
converges uniformly to «'(t) on [a, b].

The proof requires the following lemmas:
LEMMA 1. The set of all hyperpolynomials is dense in B.,.
Proof. Obvious.

LEMMA 2. Let fe B, satisfy (**). Then there exists a sequence
of hyperpolynomials p,ell,,n = 1,2, -+, such that

(4) lim [ £ = palls, = 0.

Proof. By Lemma 1 there exists a sequence {q,} of hyperpolynomials
such that

(5) lim || £ — g, 15, = 0 -
We can (and do) assume that each g, is of degree at most n, respec-

tively, where n =1,2, «..,
Put d, =% — ¢,(a) and let d,; be the ¢th component of d,. Set

Con81:(t)
Cn,201,2(t)
$a(t) = .
cn,mgl,m(t) ’
where ¢, ; = d,.:/9,,:{a). Since
Hd.ll = [k — q.(a)|| = || f(@) — g.(@)|| —> 0 as n — oo,

it follows that

lime,; =0, for each i=12 ...

s Sy ’
n—oo

Hence
(6) Ml —— 0 a8 m— oo .
Now define p,(t) = q,(t) + s,(t). Then

Pa(@) = ¢a(a) + s.(a) = ¢u(@) + d, = h,
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and so p,ell, foreachn = 1,2, .-.. From (5) and (6) it follows that
lim || f — palls;, =0 -

LEMMA 3. Let
Uap = Inf || T — UP)|], .
Pell,

Then t,,— 0 as n— oo.

Proof. It suffices to show that z,.— 0 as n— . By Lemma
2 there exists a sequence p,el,,n =1,2, +-+, such that

lim ||& — pullg, = 0.

Since «(t) satisfies (*) we deduce that

(7) 7yc0 é HT_— U(p-n)Hoo :<= ” & — p;,Hw + IIA(°’ .’X/') - A(', p’n)”oo
+ (b - a)aggfinF(t, s, 93(3)) - F(t, s, pn(s))[[ .

Obviously ||« — Dhlle < ||®, — Dullz, — 0 as n— . Also from the
uniform convergence of the p, to 2 and the continuity of the functions
A and F it follows that the last two terms in the right-hand member
of (7) tend to zero as n — oo. This proves Lemma 3.

LEMMA 4. If P,cll, is a sequence of hyperpolynomials such that

(8) m||T—-UP), =0, 1<p=ce,

then the P,(t) converge uniformly to a(t) on [a, bl. For the case p =
co we have, in addition, that the derivatives P,(t) converge uniformly

to z'(t) on [a, b].

Proof. The proof is similar, but not identical, to that of [2,
Thm. 3, p. 17]. We shall sketch the argument for the real line only.

Let M be a constant such that |«(¢)| < M for all t¢[a, b]. Note
that k| = |2(a)| < M. Set <& = [a, b}JX[— M, M]. Since the norms
I|U(P,) ||, are uniformly bounded, and the functions A(t, u) and F'(t, s, u)
are continuous, there exist constants K, and K, such that

L)@ — a6, wpdt = ke, uel- M, M1,
|F(t, s, uw)| = K, , a<s<tZbuec|— M M.

Let K = K, + K,(b — a)'**, and consider the curves C;: w = h + K(t —
a)?, Cy:u = h — K(t — a)"/?, where q satisfies the equation 1/p + 1/g =
1. Let tFf,a <t <b,i=1,2, be the abscissa of the second point of
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intersection of the curve C; with the boundary of the rectangle .2
Put t* = min (¢, t}). We shall show that for each » there holds

(9) |P.(t)| = M, tela, t*] .

Let t, be the abscissa of the first point to the right of a at which
the graph of P,(f) intersects the boundary of <Z Integrating the
equation

1) PU) = UPO ~ A, Pu(t) — | Ft, 5, Puo)ds
from @ to t,, we deduce that

Pt — bl = [N — A, Py lds + ("] 1FG, 5, Puo))dsit
= H' UP.)(1) — A(t, Pu(t) l"dt]“pun — ajus
+ Kz(b - a)(t'lb - a)
< K\(t, — a)'? + Kb — a)+ir(t, — a)l/q — K(t, — a)* .

Hence the point (¢,, P,(t,)) lies between the curves C, and C,. Thus
t, = t*, which proves (9).

It also follows from integrating the equation (10) that the sequence
P.(t) is equicontinuous on [a,t*]. Therefore, by Ascoli’s Theorem,
each subsequence of the P,(t) possesses a subsequence which converges
uniformly on [a, t*]. Suppose that y(f) is the uniform limit on [a, £*]
of the subsequence P,(t). From (8) and Holder’s inequality it follows
that

(1) lim | TP (2)de = S’T(z)dr, tela, bl .
k—oo Ja a
Taking the limit as k¥ — oo in the equation

Put) — h = S U(P,)(2)dz — StA(z', P,(c))dr — STF(z, s, Py(s))dsdz ,
we deduce from (11) and the continuity of the functions A and F
that

y(t) — h = S‘T(r)dr . S’A(r, y(©)dr — HF(T, s, y(s))dsdz
for tela, t*]. Thus y(t) satisfies the system ((*), (**)) on [a, t*] and
so must equal x(f) on this interval. Since y(t) was an arbitrarily
chosen limit function, the original sequence P,(t) must converge to
2(t) uniformly on [a, t*].
Considering the fact that the proof given above carries over under
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the more general hypothesis that the initial values of the P,(t) converge
to the corresponding initial value of x(f), one can show, as in the
proof of [2, Thm. 3, p. 17], that the sequence P,(t) converges to x(t)
uniformly on [a, b].

For the case p = o it follows immediately from equation (10)
that lim,_. P,(t) = #'(t) uniformly on [a, b].

Proof of Theorem 1. It is clear from Lemmas 8 and 4 that if
the minimizing hyperpolynomials @, exist, then they have the asserted
convergence properties.

We first show that if @, does not exist, then there is a hyper-
polynomial P, € Il, such that

(12) T = UP) I, < th,» + 1/k,
and
(13) [ Pelle > F -

If this were not the case, there exists a sequence of hyperpolynomials
w; € I, such that

(14) T = Um)ll, — thp 38 J— o,

and
7ille =k, V7.

It is not difficult to show that the set {re /.| ||7|l. =< k} is compact
in the B), norm. Hence there is a subsequence of the =; which
converges in the Bj, norm to a hyperpolynomial 7,€l,. From (14)
and the continuity of the functions A and F it follows that

T = Um)lp = i »

which is a contradiction.

Now suppose that there is an increasing sequence of positive
integers k such that @, does not exist. Then there is a sequence of
hyperpolynomials P, € IT, which satisfy (12) and (13). For this sequence
we have

(15) T —-UP),—0 as k—> =,
and
[|Pplle—— 00 as k— .

But from (15) and Lemma 4 we also have ||P,|l.—||z|l. as k— oo,
which is a contradiction.
Hence @, exists for n sufficiently large. This completes the proof
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of Theorem 1.
To prove the existence and convergence of best L, approximating
hyperpolynomials we impose Lipschitz conditions on the functions A4, F.

THEOREM 2. Suppose that

| AGt, w) — A, v)|| < Mllw — |, ¢, w, v) € [a, ] XR"XR" ,
”F(t’ 8, u’) - F(t, 8, ’U)H = 7\’2Hu - /U”, (ty 8, U, ’U) e SXR™ ’
where N\, \, are fived positive comstants. Let the system ((*), (**))

have the unique solution x(t) on [a, bl. Then for each n sufficiently
large there exists a hyperpolynomial Q, <€ I, such that

T — U@y =Pig£l[ T-Uup)l. .
Furthermore, the sequence Q,(t) converges uniformly to x(t) on [a, b].

The proof relies on the following analogue of Lemma 4:

LEMMA 5. If P,ell, is a sequence of hyperpolynomials such that
lim,..[|T — UP,) | = 0, then the P,(t) converge uniformly to x(t) on
[a, b].

Proof. Clearly,
latt) = o)l = [ 170) = UP)@d= + | 114G, () - A, Puo)lde

+ | 15 5, 0(6) — F(z, 5, Pu(e) | dsds
< 1T = Ul + 0| [la() = Pufe) | ds
+ (b = a) | lla(e) — P.(o)ldz .

From Gronwall’s inequality we deduce that
a(t) — PO = | T — UL, |, exp [(M + (b — a))(b — a)] .

Thus ||z — P,||l.—0 as n — oo.
Proof of Theorem 2. It follows from Lemmas 3 and 5 that if
the minimizing hyperpolynomials exist, then they converge uniformly

to 2(¢) on [a, b]. To establish existence one argues as in the proof
of Theorem 1.

REMARKS. Let A, F satisfy the conditions of Theorem 2 and, for
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1= p< o, let Q,€l, denote L,-norm-minimizing hyperpolynomials.
Concerning the degree of convergence of the @, to # it can be shown,
by use of Holder’s inequality and Gronwall’s inequality, that

12 = Qulle = 2a,n(b — @)™ exp [(M + Na(b — @))(b — a)] -

Also if the functions T(¢) — U(Q,)(t) satisfy a Lipschitz condition
on [a, b] uniformly w.r.t. n, the sequence @Q.,(t) converges uniformly
to #'(t) on [a, b]. The proof of this fact follows from Theorem 5 in
[13].

The results of this paper can be extended to integro-differential
equations with Fredholm integrals of the form

W(w) = o + A(t, %) + gbm, s, w(s))ds = T(t) .

It would be of interest to obtain similar results for equations of
the type (*) under linearly independent boundary conditions of the
form:

Bu(a) + C(b) + SbV(t)x(t)dt — 1,

where B, C are constant m x m matrices and V is a continuous m X
m matrix-valued function on [a, b].
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ON ELEMENTARY IDEALS OF ¢-CURVES IN THE
3-SPHERE AND 2-LINKS IN THE 4-SPHERE

SHIN’ICHI KINOSHITA

Let L be a polyhedron in an n-sphere S*(n = 3) that does
not separate S”. A topological invariant of the position of
L in S* can be introduced as follows: Let [ be an integral
(n — 2)-cycle on L. For each nonnegative integer d, the dth
elementary ideal E,(l) is associated to [ on L in S*. If [ and
I’ are homologous on L, then Ey(l) is equal to E.,(I’). Now the
collection of Ey(l) for all possible ! is a topological invariant
of L in S~,

In this paper the following two cases of E;(l) are considered:
(1) 1 is a 1l-cycle on a f-curve L in S?, and (2) [ is a 2-cycle
on a 2-link L in S% i.e., the union of two disjoint 2-spheres
in S, where each of two 2-spheresis trivially imbedded in S*.

The dth elementary ideal E (I) of I on L is defined as follows
(more precisely see [3]): Let G be the fundamental group (S — L)
and H the multiplicative infinite cyclic group generated by ¢t. Let
be a homomorphism of G into H defined by

gq/» — tlink(g.l) s

where link (g, ) is the linking number between g and I. Using Fox’s
free differential calculus, we associate to ¢ the dth elementary ideal
E, of the group G, evaluated in the group ring JH of H over integers.
This dth elementary ideal E, depends only on G and +, and hence it
depends only on the position of [ on L in S*. We shall denote it by
Ey ).

In this paper we shall prove the following two theorems.

THEOREM 1. Let f(t) be an integral polynomial with f(1) = 1.
Then there extsts a O-curve L, in S® and an integral l-cycle 1 on L,
such that

E) = E(l) = (0),

E() = (f@) and
(E,) =@Q), i d>2.

THEOREM 2. Let f(t) be an integral polynomial with f(1) = 1.
Then there exists a 2-link L, in S*, and an integral 2-cycle | on L;
such that

(1) each component of L, is a trivially imbedded 2-sphere in S,
and that
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(2) we have

Eo(l) = El(l) = (0) ’
E,(l) = (f(t) and
EM)=Q, if d>2.

COROLLARY. Let f(t) be an integral polynomial with f(1) = 1.
Then there exists an oriented 2-link L, in S* such that

(1) each component of L, is a trivial 2-sphere in S, and that

(2) the dth elementary ideal of Ly, in the usual semse and in
the reduced form, is as follows:

Eo(Lf) = El(Lf) = (0),
E\(Ls) = (f(t)) and
(E(L) =), i d>2.

REMARK. This kind of example was first considered in [1].

The construction of these two examples are closely related. They
are also closely related to the construction of 2-spheres in S* in [2].

1. Let P be the family of all integral polynomials f(¢) which can
be expressed in the following form:

t—‘(51+‘--+5n)(1 — t51) + t_(52+“'+5”)(1 — t52)
1
(1) FoeeeptTn(l — ) + 1,

where ¢, = =1 and 0;, =¢; or 6;, =0 for : =1,2, ---, n. We assume
that 1e P.

LEMMA. We have f(t) € P, if and only iof f(1) = 1.

Proof. If f(t) e P, then clearly we have f(1) = 1. Suppose that
f@) =1. Then we have
S@) —1=@1 — D) (aut™ + «++ + ay)
— @ = t)(but™ + +++ + by
=1 —t)at™ + - + ay)
+ (L = t)(But™ 4 e £ bit),

where a;, b, = 0 fori=1,2, ..+, n. This means that f(f) with f(1) =1
can be obtained from 1 by applying a finite number of operation:

g@t) —g@) + t*AL — 1),

where p= 0 and 6 = +1.
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We assume 1e P. Hence we should prove that if f(¢) € P, then
f(@) + t°(1 — t’) e P. Suppose that f(f) has form (1). Now let

p=—(E+ e+t Gt e+ Ea)s
where ¢,,; =¢; for ¢ =1,2, ... n and let

B=0,0= =0, =0 and O, =d
for t=1,2,---, n. Then clearly we have

gt tepb et bel ) (1 — 1)

+ oo A tkin(l — Phen) = t2(1 — ¢°) + f(2) .

Hence the proof is complete.
2. Let f(t) be an integral polynomial with f(1) = 1. Suppose

that f(f) is expressed as (1). Now we construct a l-dimensional
polyhedron K, in E*(c S® as follows: The left-most side of K; is

shown in Fig.1l. Then for each i (¢ =1, ---, n) we add step by step
one of the four figures in Fig. 2. This depends on values of ¢ and

'
'
L}
1
]
—————
H '
! |
| i
— b
' 1
_ :
i '
1 1
: :
) '
b 1
; |
Fig. 1. Fig. 3.
g=0;=1 e, =0 = —1 e,=10,=0 e, =-10,=
: ; i | :
! : ! H H
' ' :
1]
1
.
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0; as in Fig. 2. The right-most side of K, is shown in Fig. 3.

Now we give a presentation of the fundamental group of E® — K,
(and that of S® — K, too). We use the Wirtinger presentation. If
(o, ***y Qyy Cop ** %y Cmy o, v++, d,y (M + m' = n) are paths in Fig. 4, and

Fig. 4.

alse, as usual, the paths which represent elements of the fundamental
group in question, then the presentation is given as follows:

Generators: Aoy =+, Gy,
Coy ***y Cp,y
doy o+, d(m +m = n).

Relations:
(i) If ¢,=1,06, =1, then

{ Cjy = ai—lcja;—ll ’
a; = ¢;o;_,c3t,
(iiy If ¢, = —1,0, = —1, then
{ C; = aicj-—la;l ’
Ay = C; ;07
(iii) If ¢, =1,4; = 0, then

d; = ai-—ld.f—lai—il ’
J

a; = dj(l,,-_ldfl ’

;. = dj—1aid;—l1 ’

di—l - aidja;l )
for each ¢ =1, ---, n, and

cria, = 1.

3. Let k; be a 1-cycle on K, such that
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link(ai,kf):o, for ’L'ZO,].,-",’YL,
lil’lk(C“kf)Zl, for ’i:o,l,--o’m,
link (d;, k;) =1, for i=0,1,.-+, m .
We consider the elementary ideals of %, on K 7 in 8% For each pair
a;, and a; the corresponding two rows in the Alexander matrix are

elementary equivalent to the following:
(1) If ¢ = 6,, then

@iy a; Cis ¢;
1 — ¢ 0 -1 1
P
(2) If 6, =0, then
iy a; d;_, d;
1 — ¢ 0 1 -1
[i tei -1 0 0 } .

From the last relation we have the following entries to the Alexander
matrix.

an CO cm

[1 1 —1]

Hence we have matrix (*) as an Alexander matrix of k;on K, in S3.
Matrix (*) is elementary equivalent to (**). Note that we add a
suitable number of rows of zeros. Matrix (**) can be reduced to (***)
by elementary operations. Now it is easy to see that

tn —1

.\\\\ . .

f 1
1] 1 ~1 0
11
CI . .
Y

1 -1

1 g 0 R P
11
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v -1
\\\\\ \\\ 0 O
‘g iy
1 —teeel —tinl 0 0
|
1 ¢ -1 1 0 {6‘ 7.}
““““ ] 00 5 =0
v —1
00
(***) \\\ \\\\
tn =1
1—¢treeel1—t211 0 0

Eks) = Ei(ks) = (0),
Eyky) = (t~ar (L — ¢21) + «»

+ (1 = t'n) + 1) = (@)
Byk) =), if d>2.

4. Proof of Theorem 1. Let f(t) with f(1) = 1 be given. First
construct K, in S® and k; on K;as in 2 and 3. The construction of
the corresponding f-curve L, is shown in Fig. 5. The l-cycle I, on

Fig. 5.

L; has coefficient 1 on the oriented arc ¢ and on the oriented arc d,
respectively, and coefficient 0 on the arc b. It is easy to see that



ON ELEMENTARY IDEALS OF 6-CURVES IN' THE 3-SPHERE 133

7n(S* — Ly) is isomorphic to 7(S* — K;) and E,(l,) = E,(k,) for every
nonnegative integer d.

REMARK. It is proved in [3] that if [ is a l-cycle on a f-curve
L in S3 then we have
E(l) = E(l) = (0), and
(B =(@1), if d=2,

where o is a trivializer (i.e., the operation to let ¢ = 1 in E,(l)(2)).

5. Proof of Theorem 2. Let f(t) with f(1) = 1 be given. First
construct K, in S*® and k; on K, as in 2 and 3. Then construct the
corresponding two arcs C and D in E® as in Fig. 6, where

¢
}Z

Fig. 6.

E(i = {(xly 932, x3) ] x]_ Z 0} .

Then the usual construction of the spinning of these ares around the
plane

{(9}1, Ty 3, 334) i €, = 0, Xy = 0}

gives rise to a 2-link L, in S*

Now the arc C represents a trivial knot in E%. A part of the
step to see this is shown in Fig. 7. From this it follows that the
2-sphere S;, which is the result of spinning C, is trivial in S% Clearly
the same is true for the 2-sphere S2, the result of spinning D.

We have

2(S*— K)=n(E. — CUD) ==x(S*— L)),

and to find a 2-cycle I, on L; that corresponds to %k, on K, is easy.
Then we have

E’d(kf) = Ed(lf)

for every d = 0. Hence the proof is complete.
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Fig. 7.

Proof of Corollary. We have L, = SZU S} in S* in the example
above. Then I, =1, + l;, where I, and [, are fundamental cycles of
S% and S2, respectively. This completes the proof.

REMARK. Let L be a 2-link in S* Then it is known that for
each 2-cycle I on L we always have

E(l)=E@l =0,
(E) =@, if d=2,

where o is a trivializer. (See [3] and [4].)
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CONVERGENCE OF BAIRE MEASURES
R. B. KIRK

Assume that there are no measurable cardinals. Then
E. Granirer has proved that if a net {m,} of finite Baire
measures on a completely regular Hausdorff space converges
weakly to a finite Baire measure m, then {m;} converges to
m uniformly on each uniformly bounded, equicontinuous sub-
set of C? the space of bounded continuous functions. In this
paper a relatively simple proof of Granirer’s theorem is given
based on a recent result of the author. The same method is
used to prove the following analogue of Granirer’s theorem.
Let {m;} be a net of Baire measures on X each having com-
pact support in the realcompactification of the underlying
space X, and assume that Sx fdm; — Sx fdm for every con-
tinuous function f on X where m is a Baire measure having
compact support in the realcompactification of X. Then {m,}
converges to m uniformly on each pointwise bounded, equi-
continuous Subset of C, the space of continuous functions on
X. (The situation in the presence of measurable cardinals is
also treated.)

In what follows, X will denote a completely regular Hausdorff
space, C will denote the linear space of all continuous real-valued
functions on X and C°® will denote the subspace of C consisting of all
the uniformly bounded functions in C. The Baire algebra is the
smallest g-algebra on X with respect to which each of the functions
in C is measurable. (Equivalently, it is the o-algebra generated by
the zero sets in X.) The linear space of all signed Baire measures
on X with finite variation is denoted by M,, and the set of nonnega-
tive elements in M, (i.e., the set of finite Baire measures) is denoted
by M}. The space M, and C® may be paired in the sense of Bourbaki

by the bilinear form (m, f) :g fdm:g Fdm —ﬂ fdm= for all
pg X JX

me M, and all feCl. By the weak topology on M,, will we mean the
topology a(M,, C*).

Let vX denote the realcompactification of X. (See [2], p. 116.)
A Baire measure m on X is said to have compact support in the
realcompactification of X if there is a compact set G CyX such that
for every zero set Z in vX with G Z, it follows that m(X N Z) =
m(X). Let M, denote the subspace of M, consisting of those elements
whose total variations have compact support in the realcompactifica-
tion of X. The set of nonnegative elements of M, is denoted by M.
It is not hard to verify that if m e M;, then C < L'(m). Hence the
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spaces M, and C may be paired in the sense of Bourbaki by the
bilinear form (m, f) :S fdmzs fdm+—§ fdm~ for all me M,
X X X

and all feC. By the weak topology on M,, we will mean the topology
d(M.,,C).

Let B be a subset of C. Then B is pointwise bounded if for
every e X, sup{|f(x)|:feB} < «. It is said to be wuniformly
bounded, if sup{||f|lx:fe B} < o where |/ fllx =sup{flx)]:zecX]}.
(Of course, if B is uniformly bounded, then Bc C®) The set B is
equicontinuous (or locally equicontinuous) if for every x e X and for
every positive number ¢, there is a neighborhood U of x such that
forall ye U and all fe B, |f(x) — f(y)| < e. Let & denote the family
of all pointwise bounded, equicontinuous subsets of C; and let &°
denote the family of all uniformly bounded, equicontinuous subsets
of C*. It is clear that if Be &?, then B is a d(C® M,)-bounded and
that C* = U {B: Be #*}. Hence it follows that the topology &° of
uniform convergence on the sets in &° is a locally convex topology
on M, which is compatible with the pair (M, C*. (See [7], p. 255.)
It is also the case that if Be &, then B is a ¢(C, M,)-bounded subset
of C. (This fact is proved in Proposition 2.2 below.) Since C =
U {B: Be &}, it follows that the topology ¢ of uniform convergence
on the sets in & is a locally convex topology on M, compatible with
the pair (M, C).

Recall that a set Y has a measurable cardinal if there is a pro-
bability measure defined on the algebra of all subsets of Y which is
zero on all singleton sets. Otherwise, ¥ is said to have a non-
measurable cardinal. It is consistent with the standard axiomatic
treatments of set theory to assume that all sets have nonmeasurable
cardinals. It is also known that if the continuum hypothesis holds,
then the continuum has a nonmeasurable cardinal. It is not known
whether or not the statement that there are no measurable cardinals
is independent of the axioms of set theory.

The completely regular Hausdorff space X is a D-space if whenever
d is a continuous pseudometric on X and Y is a d-discrete subset of
X, then Y has a nonmeasurable cardinal. The concept of a D-space
was introduced by Granirer in [3]. From the remarks made above
about measurable cardinals, it is clearly consistent with the usual
axioms of set theory to assume that every completely regular Haus-
dorff space is a D-space. The following result is proved by Granirer.
(See [3], Theorem 2.)

THEOREM A. Let X be a completely regular Hausdorff space.
Then X is a D-space if and only if whenever {m;} is a mnet in M}
which converges weakly to me M,, then {m;} converges to m for the
topology €.
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We will present a relatively simple proof of this theorem based
on Theorem 1.1 below which was recently obtained by the author.
(In fact, our main result, Theorem 1.5, is somewhat stronger than
Theorem A.) The advantage of our method is that it allows the
analysis to be carried out for nets of measures with finite support
and reduces the measure theory needed to a minimum. The same
method yields a proof of the following result which we believe to be
new.

THEOREM B. Let X be completely regular Hausdorff. Then the
following hold.

1. If X is a D-space, then whenever {m;} is a net in M; which
converges weakly to m in M,, it follows that {m;} converges to m for
the topology e.

2. Assume the continuum hypothesis. If X 1is wnot a D-space,
then there is a net {m;} in M} which converges weakly to some m in
M, such that {m;} is not convergent for the topology e.

1. Weak convergence in M,. Let L denote the subspace of M,
consisting of those elements whose total variations have finite support.
Hence me L if and only if there is a finite set A< X such that
m(B) = 0 for every Baire set B disjoint from A. Every element
me L has a unique extension to a finite signed measure m on the
algebra of subsets of X. For each me L, let & be the real-valued
function defined by &(x) = m({x}) for all xe X. In this way the space
L may be identified with the space of all real-valued functions on X
which vanish on the complement of a finite subset of X. We will
use this representation of L throughout the paper. For notational
purposes, we will use & to denote a generic element of L. The
restriction to L of the bilinear form pairing M, and C° is given by
& > = 2{&@)f(x):xe X} for all £e L and all fe C*. The set of non-
negative functions in L will be denoted by L*.

A Baire measure m on X is said to be separable if for every
continuous pseudometric d on X, there is a d-closed set Zc X such
that m(X — Z) = 0 and such that Z is d-separable. (Since every
d-closed set is a zero set in X, it follows that m(X — Z) is defined.)
An arbitrary element of M is separable if its total-variation is sepa-
rable. Let M, denote the subspace of M, consisting of the separable
elements of M,. The space M, was first introduced by Dudley in [1].
It can be shown that X is a D-space if and only if M, = M,. (Indeed,
if X is a D-space, then M, = M, is a consequence of Theorem III,
p. 137 in [8]. On the other hand, if X is not a D-space, then there
is a continuous pseudometric d on X and a d-discrete set Y < X such
that Y has a measurable cardinal. If z« is a nontrivial measure on
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the subsets of Y, let m be defined by m(B) = (BN Y) for every
Baire set B in X. It is clear that me M,. However, m is not d-
separable as can easily be seen so that m¢ M,.) Hence, again it is
consistent with the axioms of set theory to assume that M, = M, for
all completely regular Hausdorff spaces. The following result was
proved by the author in [6].

THEOREM 1.1. Let X be a completely regular Hausdorff space
and let M, be equipped with the topology € of uniform convergence
on the uniformly bounded, equicontinuous subsets of C°. Then the
following hold.

1. M, is complete.

2. L is dense in M,.

3. The dual space of M, is C°.

We will require several results from the theory of measures on
a topological space which we will now review briefly. (The reader is
referred to [9] for further details.) Reecall that a Baire measure m
is 7-additive if whenever {Z;:i¢c I} is a downward directed system of
zero sets in X with N{Z;:iel} = @, then m(Z;)— 0. (The family
{Z;: 1 e I} is downward directed if for each pair 1, 4, € I, there is 4,e T
such that Z; © Z; N Z,,.) Equivalently, m is net-additive if for each
upward directed system {U;: i1e I} of cozero sets (complements of zero
sets) in X with U {U;:te I} = X, then m(U;) — m(X). The support
of a Baire measure m is the set suppm = [ {Z: Z is a zero set in X
and m(X) = m(Z)}. If suppm = ¢, then m is said to be entirely
without support. The following result is proved in [5].

THEOREM 1.2. Let m be a Baire measure on X. If m is not
net-additive, then there is a Baire measure wm' on X such that 0 <
m < m and such that m' is entirely without support.

If d is a continuous pseudometric on X, define an equivalence
relation on X by 2 = y if d(z, y) = 0; and let X* denote the set of
equivalence classes. For Z, ye X*, define d*(Z, ¥) = d(z, y). Then
(X*, d*) is a metric space which we will call the metric space associated
with d. Let Q: X — X* be the quotient map. Since @ is continuous,
it follows that @ '[B] is a Baire set in X whenever B is a Baire set
in X*. If m is a Baire measure on X, define m(B) = m(Q'[B]) for
every Baire set in X*. Then m is a Baire measure on X*. The
following lemma is a consequence of Theorem 28 and Remark 4, p. 175
of Varadarajan in [9]. However, since the proof given below is
essentially different, we will include it for the sake of completeness.

LEMMA 1.8. Let d be a continuous pseudometric on X, and let
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m be a separable Baire measure on X. If {Ug:iel} is a cover of X
by d-open sets and if € is an arbitrary positive number, then there
is a finite set {t,, +++,1,} C I such that m(X — Ui, U,,) < e.

Proof. Let (X*, d*) be the metric space associated with d, and
let m be the Baire measure on X* corresponding to m. It will be
sufficient to prove that 7 is net-additive on X*. Indeed, assume that
7 is net-additive. Since U, is d-open, U, = Q[U;] is open in X*; and
hence it is a cozero set in X*. The family of all finite unions of the
sets in {U;:ie I} is then an upward directed family of cozero sets
whose union is X*. But then there is a finite set {¢,, -+, ¢,} © I such
that m(X — Up..U,) = m(X* — Ui, U;,) < ¢ since 7 is net-additive.

We will now show that m is net-additive. If this is not the
case, then by Theorem 1.2 there is a Baire measure ¢ on X* such
that 0 < ¢ < m and such that g is entirely without support. Then
there is a separable Baire measure m, on X such that m, < m and
such that 7, = #. Indeed, let E = {fcC'f = f*Q for some f*e

C*(X*)}; and define @(f) = g *f*dpc for each fe E where f = f*-Q.

Then #* is a linear functional on the linear space E. Furthermore,
®* is majorized on E by the subadditive functional p defined on C®

by »(f) = SX Stdm for all fe C’. Hence by the Hahn-Banach theorem,

there is a linear functional ® on C® which extends ®#* and which is
majorized by p on C°. It is not difficult to verify that ® is non-
negative and satisfies the integral property. (A nonnegative func-
tional @ on C° satisfies the integral property if for every decreasing
sequence {f,} < C® such that f, | 0 pointwise, it follows that ®(f,) | 0.)
It follows by the Alexandrov representation theorem (see Theorems
1.2 and 1.5 in [5]) that there is a Baire measure m, on X such that

P(f) = ngdmO for all fe C®. It is clear that m, £ m and that m, = ¢

as claimed. (Note that since m is separable and since m, < m, it
follows that m, is also separable.)

Since m, is entirely without support in X*, there is for each
Ze X* an open set Uz in X* with m,(Us) = 0. Since {U;: T ¢ X*} is
an open cover of X* and since X* is paracompact (being a metric
space), there is a partition of unity {f}:j € J} subordinate to the cover
{Uz: x e X*}. For each finite set v J, define f. = > {ff-Q:je}.
Then {f.} is easily seen to be uniformly bounded and equicontinuous.
Since the net {f,} converges to 1 pointwise, hence by Proposition 9.2

in [6], S fedm,— my(X). On the other hand, since f} has its support
X

in Uz for some 7 c X*, it follows that S fFoQdm, = S frdm, = 0.
pe x*
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Thus S f.dm, =0 for all z. Thus m,(X) = lim§ f.dm, = 0. This
pe X

contradicts the fact that m(X) = m,(X*) = #(X*) > 0. The proof is
complete.

We remark here that Lemma 1.3 is the only result from the
theory of measures in a topological space which will be required in
proof of Theorem 1.5 (the main result in this section). This theorem
is somewhat stronger than Theorem A. A proof of Theorem A itself
can be based on a result of Marezewski and Sikorski ([8], Theorem
III) without reference to Lemma 1.3. (This result of Marczewski and
Sikorski is also used by Granirer in his proof of Theorem B.)

For ¢e L and W C X, define the element (¢),, € L by (&)w(x) = &)
for xe W and (&)y(x) =0 for xe X — W. (That is, (&), = &- 25
where 575, is the characteristic function of the set W. We can now
prove the following.

PRrROPOSITION 1.4. Let X be a completely regular Hausdorf space,
and let {&;:1e€ I} be a net in L*. Assume that {&;} converges to me M,
wn the o(M,, C*-sense. Then {&} converges to m in the e*-sense.

Proof. We will show that {&} is an e¢~Cauchy net. The result
will then be immediate from Theorem 1.1. Assume without loss of
generality that m = 0. Fix a set Be &*® and a positive number ¢.
For z, y € X, define d(x, y) = sup {|f(x) — f(y) |: fC B}. Then it is easily
verified that since Be &?, d is a continuous pseudometric on X. Since
the net {{&;, 1>} converges to {m, 1>, we may assume without loss of gen-
erality that P =sup{|<§;, 1) |: 1€ I} is finite. Let M =sup{||f]|lx:f € B}
which is also finite since B is uniformly bounded.

Since d is continuous, there is for each ze X a d-open set U,
such that d(z, y) < eP™* for all ye U,. In particular, we then have,

(1) |f(@) — fly)| = eP™ forall yeU,feB.

By Lemma 1.3 there is a finite set {%,, +-+, ,} © X such that m(X —
U) <eM™ where U= U;-.U,. (Note that each U, is a cozero set
in X so that U is also a cozero set.) Since m is regular, there is
a zero set Z in X such that Zc U and such that m(U — Z) < eM™.
Let f,eC® be such that 0 < f, <1,f, =1 on X — U and f; =0 on Z.
Since {&;} converges to m weakly, there is an ¢, € I such that if 7 < 4,
then (& — m,foy| < eM™. Since & = 0, we have for 7 = 7,

0= {(Er 1) = <G >
=@ -mfy+ | fAmsedt+ mX - 2)
<eM + m(X — U) + m(X — Z) < 3eM™.
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Thus we have demonstrated the following inequality which we note
for future reference.

(2) (E)rw, 1> < 3eM™, for all >4, .

The set of vectors K = {(f(x,), - --, f(x,)): f € B} is a totally-bounded
set in R*. Hence there is a finite set A < B such that the set K, =
{((f(®), +-+,f(x,):fe A} is an eP'-net for K. Since {&} is weakly
convergent and since A is finite, there is an ¢, € I such that if ¢,5 = 14,
then

(3) [<& — &5, f>| <e, forall feA.

Let 4,e I be greater than both ¢, 4,. Fix 7,7 = 4, and let feB.
Choose f*€ A such that |f(z,) — f*@) | <eP*for all k=1,--+, m.
We then have by (2) and (3) that

&= &, =&, + & — &, 7 =T
e+ <& = Exvy | =D + &= &)y IF =D
e + LE)x—v, [F1 + 1 "D + LEDxmv, [F1 + 1D

+ & — o, [ — T
e+ 2M{(8)x—v, 1) + 2M{(E)x—v, 1)

+ & — Edo, [ =

= e+ 2MBeM™) + 2MBeM™) + (& — &)o, [ — 1
=13 + (& — &)o, [ — % .

Hence we have shown that,

A IA I

(4) <&—§&,/) =18+ & —&)o, F— %, forall ¢,5=4.

Let U, = U, for k=1,--+,n and let U, = @. By (1) and the fact
that |f(x,) — f*(x,) | <P for all k=1, -.--,n, we have for 7= 1,
that

(Eo, 1F = D>
= 3 {Euyvpr 1F = 17D

A
E'MS
M

£i(@) [ f@) — f*(@) |

=12eUp—Up_1

=3 S a@F@ — f@) |+ 1Fw) — @)

2eUp—Uj 1

+ [f* (@) — f*(@) [}
<3Py S &) < 3PE, 1) < 3.

k=1 2eUp—Up_1

That is, we have
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(5) E)o, f—f*> <8¢, forall 1=14,.
Combining (4) and (5), we obtain that for all 4, 7 = 4, and all fe B,

=&, 00 =1 + <K&y, [f =71 + Gy, [F —* ) = 1%

Since ¢ and B were arbitrary, it now follows that {£,} is an e*-Cauchy
net. The proof is complete.

THEOREM 1.5. Let X be completely regular Hausdorff. Then
the weak topology and the e'-topology are identical on M.

Proof. It is sufficient to show that if G is an eb-closed set in
M/, then G is weakly closed in M%. But this is immediate from
Proposition 1.4 and the fact that L* is weakly dense in M. The
proof is complete.

Theorem A now follows easily. Indeed, if X is a D-space, then
M, = M, as noted above; and Theorem A reduces to Theorem 1.5. If
X is not a D-space, then there is a Baire measure m with m ¢ M, — M,.
Since L* is weakly dense in M,, there is a net {&} in L* which con-
verges weakly to m. However, {£;} will not converge in the e¢’-sense
since otherwise {£;} would be an ¢’-Cauchy net which would imply by
Theorem 1.1 that me M,.

In [3] Granirer proves the following as an application of Theorem
A. It is also an immediate consequence of Theorem 1.1.

THEOREM 1.6. Let X be a completely regular Hausdorff space.
Then X is a D-space if and only if every uniformly bounded, equi-
continuous subset of C° is relatively o(M, C®)-compact.

Proof. If X is a D-space, then M, = M,. Since by Theorem 1.1
the dual of M, with the topology e’ is C?, it follows by the Banach-
Alaoglu theorem that B°° is ¢(C®, M,)-compact whenever Be &*. (Of
course, B°° denotes the bipolar of B for the pair.) On the other
hand, if X is not a D-space, then by Theorem 1.1, M, is a proper
closed subspace of M, for the topology ¢'. Hence by the Hahn-Banach
theorem, the dual space of M, for this topology is strictly larger
than C®. This implies by the Mackey-Arens theorem that there is
a Be &’ such that B°° is not ¢(C® M,)-compact. But, as is easily
verified, B°° e &®. This completes the proof.

2. Weak convergence in M,. The following is proved in [6],
Theorem 4.4. (The essence of the theorem is due to Hewitt in [4].)

THEOREM 2.1. The order dual of C ts isomorphic as a Riesz



CONVERGENCE OF BAIRE MEASURES 143

space to M,. The isomorphism is given by P—m where P(f) = S fdm
X
for all feC. In particular, CC L'(m) for all me M;.

We now prove the following as promised in the introduction.

PROPOSITION 2.2. If Be &, then B is a d(C, M,)-bounded subset
of C.

Proof. Fix me M;. It is sufficient to show that {S |fldm:fe B}
X
is bounded. If this is not so, then there is a sequence {f,} € B such
that S | fuldm — 4+, For each neN, define g, =sup{|f.|:k =
X

1,.--,n}and g =sup{|f.|: ke N}. Then g is a real-valued, continuous
function. Indeed, it is clear that g is real-valued since B is pointwise
bounded. In order to see that g is continuous, fix xe¢ X and ¢ > 0.
Let U be a neighborhood of x such that |f(x) — f(y)| < ¢/3 for all
ye Uand all fe B. We now claim that |g(z) — g(y)| < ¢ forall ye U.
Indeed, fix ye U, and choose kc N so large that |g(x) — g.(x)| < ¢/3
and |g(y) — ¢.(¥)| < ¢/3. Then there are 4,je{l, ---, k} such that
g:(®) = [fi(@) | and g,(y) = |fi(y)|. Hence we have that,

lg(x) — g(v) |
< lg@) — g.@ |+ 19:®) — 0:(w) | + [9:(y) — 9(v) |
<28+ |fil (@ — 1fil ()]
= 2¢/3 + max {||f;| (@) — [fil )|, [ fi]l (@) — [filw]}=e.

The proof is complete.

Define M,, = M, N M,. If X is a D-space, then M,, = M,. On
the other hand, if X is not a D-space, then for some continuous
pseudometric d on X, there is a d-closed subset Z C X with a measur-
able cardinal. It is known that if the continuum hypothesis holds and
if Z has a measurable cardinal, then there is a probability measure
on the algebra of all subsets of Z which is zero on all singletons and
which assumes only the values 0 or 1. From this it follows that
there is a point in vX such that the valuation functional on C cor-
responding to this point is represented (according to Theorem 2.1) by
a nonseparable element of M,. That is, M,, is a proper subspace of
M,. In summary then, it follows that if the continuum hypothesis
holds, then X is a D-space if and only if M,, = M,. The following
result is proved in [6].

THEOREM 2.3. Let X be completely regular Hausdorff, and let M,,
be equipped with the topology e of uniform convergence on the pointwise
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bounded, equicontinuous subsets of C. Then the following hold.
1. M,, is complete.
2. The dual space of M,, is C.
3. L is dense in M,,.

If X itself is realcompact, then obviously M,, = M,. Hence we
have the following.

PROPOSITION 2.4. Let X be realcompact, and let {£;:1el} be a
net in L*. If {&) converges to m e M, for the topology o(M,, C), then
{&;} converges to m for the topology e.

Proof. We will show that {&,} is an e-Cauchy net. The result
will then follow immediately from Theorem 2.3. Assume without
loss of generality that m = 0. Fix a set BC & and a positive number
e. Forz, ye X, define d(x, y) = sup{|f(x) — f(y) |: fe B}. Since Be &,
it follows that d is a continuous pseudometric on X. Let G be the
support of m which is a compact subset of X by assumption. Let
M = sup {||f |l¢: f € B} which is finite since B¢ &. For all ¢ X, define
h(x) = d(z, G) = inf {d(x, ¥): y€ G}. Then % is an element of C. Since
{&;} converges weakly to m, there is an ¢, € I such that |[<{&; —m, k)| Z ¢
for all ©=+¢. But » =0 on G sothat {(m, h> = 0. Hence we have
that,

(1) [, hy| e, forall iz4 .

Since the net {<§,;, 1)} converges to (m, 1>, we may assume that P =
sup{| <&;, 1) [: 1€ I} is finite.

For each x¢ G, let U, be a cozero set neighborhood of z such
that [f(®) — f(y) | <eP* for all ye U, and all fe B. Since G is compact,
there is a finite cover {U,,, +-+, U,,} of G. Define U= U, U---U U,,.
The set of vectors K = {(f(x,), --+, f(x,)): /€ B} is a totolly bounded
subset of R*. Let A be a finite subset of B such that the set K, =
{(f®), <+, f(®,):fe A} is an eP"-net for K.

Since {¢&;} is weakly convergent and since A is finite, there is an
i, € I such that,

(2) [ — &5, f>|<e forall 4,j=1 and all fecd.

Finally, as in the proof of Proposition 1.4, there is an i,e I such that,
(3) <($i)X—U, 1> <eMt, for all ¢ = ?:3 .

Now let i,€ I be greater than 4, 4, and 4,. Fix 7,7 = 4, and let
feB. Choose f* e A such that | f(x,) — f*(x,) | < eP'fork =1,+-, n.
We then have from (2) that,
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€ = &40 =X& =& ") + & — &5 —
Se+ L& —Ex-v [F =" D + G = &)u, IfF =D .
However, for 1 =1, letting U, = U, for k=1,..+,n and U, = @,
(@os 1F = £*1>
=3 3 @@ -]

2eUp—Up_1

(4)

= an. > &@ff@) = F@) | + [ f@) — @)+ @) — (@) 1}

=12eUp—Up_

<8Py, Y &(x) < 3PE, 1) < 3.

k=12e0p—Up._1

Thus we have shown that,
(5) (Edoy |F —F* 1> <36, forall i=1,.

Note that if fe B, then |f| <k + M. Hence for i = %, we have from
(1) and (3), that

Edx—o, [F =1
= 2(E)x—v, b + M) = 2{65, by + MK(E)x—v, D}
<2+ MeM™} < 4e .

Thus we have shown that,
(6) <(‘Ei)x-—z], lf —f* | > é 45, fOI' all ?/ g ’L.O .
Combining (4), (5), and (6), we have for ¢, j = 4, that,

i = &30 =6 + )z, [ =D + KEDxv, | = F*D
+<LEo, If =D + 1 EDx—v, | = ") = 15¢ .

It follows that {&]} is an e-Cauchy net as claimed. The proof is
complete.

ProposITION 2.5. Let X be a D-space. Then every continuous
pseudometric on X has a (unique) extension to a continuous pseudo-
metric on pvX.

Proof. Let X denote the completion of X for the finest uniform
structure on X compatible with the topology on X. Denote this
structure by Zf. Then every continuous pseudometric on X has
a unique extension to X since the set of all such pseudometrics is
a gauge for this uniformity. The proof will be complete if we show
that X = vyX. But since every continuous real-valued function on X
is Z//-uniformly continuous, it follows that X is C-embedded in X.
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Hence vX = vX (by [2], Theorem 8.6). If we can show that X is
a_D-space, then by Shirota’s theorem ([2], p. 229), it will follow that
X = vX; and the proof will be complete.

Assume that X is not a D-space. Then there is a continuous
pseudometric d on X and a d-closed, discrete subset Z of X which has
a measurable cardinal. Let d denote the restriction of d to X. For
each xe Z, define 0 < a(x) = inf {d(z, y): yeZ and ¢ # y}. Since X
is dense in X, there is for each point e Z a point v (x) e X such
that d(z, v(2)) < a(®)/3. (Such a function exists by the axiom of
choice.) Then the set Z = {y(v): xc Z} is a d-discrete subset of X.
Since 4 is clearly one-to-one, Z also has a measurable cardinal. But
this contradicts the assumption that X is a D-space. The proof is
complete.

We note that the fact X is a D-space in the above proof is a
special case of Remark 2, p. 11 in [3]. For feC, let f denote the
unique continuous extension of f to vX. If B is a subset of C, let
B = {f:feB}). We then have the following.

PROPOSITION 2.6. Let X be a D-space. If B is a pointwise
bounded and equicontinuous subset of C(X), them B is a pointwise
bounded and equicontinuous subset of C(vX).

Proof. For each pair z, y € X, define d(z, y) = sup{|f(x) —f(y) |: f €
B}. Since B is pointwise bounded and equicontinuous on X, it follows
that d is a continuous pseudometric on X. By Proposition 2.5 there is
an unique continuous extension d of d to vX. It then follows that for
all #, yevX and for all feB, |f(x) — f(y)| < d(x, y). But this implies
that B is equicontinuous and pointwise bounded on vX. The proof is
complete.

THEOREM 2.7. Let X be a D-space, and let {m;} be a net in M.
If {m;} converges weakly to me M,, then {m;} converges to m for the
topology e.

Proof. Since LT is weakly dense in M,, it is sufficient to show
that if {&} is a net in L* which converges weakly to m e M,, then
{&,} converges for the topology e. Hence fix Be &. For feC, let f
be its extension to vX; and let B = {f:fe B} as above. For each

m e M,(X) and for each f ¢ C, define #(f) = S fdm. Then by Theorem

2.1, there is an m e M,(vX) such that @(f) = S fdm for all fe C(X).
vX

Since {&;} converges to m for the o(M.(X), C(X)) topology, it follows
that {£;} converges to 7 for the o(M.(vX), C(vX)) topology. Since B is
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pointwise bounded and equicontinuous on X, it follows by Proposition
2.6 that B is pointwise bounded and equicontinuous on vX. Since
vX is realcompact, it follows from Proposition 2.4 that {£;} converges
to m uniformly over B. But it is then immediate that {&;} converges
to m uniformly over B. The proof is complete.

Theorem B now follows easily. Indeed, if X is a D-space, then
it reduces to Theorem 2.7. On the other hand, assume that X is not
a D-space. As we have noted above, if the continuum hypothesis
holds, it follows that M,, is a proper subspace of M,. Let me M; —
M,. Since L* is weakly dense in M;, there is a net {§;} in L™ which
converges weakly to m. However, by Theorem 2.3, M,, is complete
for the topology e so that {£;} does not converge for the topology e.
The proof is complete.

We can also prove the following analogue of Theorem 1.6
{Granirer’s Theorem 1).

THEOREM 2.8. Let X be completely regular Hausdorff. Then
the following hold.

1. If X is a D-space, then every pointwise bounded, equicontinu-
ous subset of C is relatively o(C, M,)-compact.

2. Assume the continuum hypothesis. If X is not a D-space,
then there is a pointwise bounded, equicontinuous subset of C which
18 not relatively o(C, M,)-compact.

Proof. 1. If X is a D-space, M,, = M,. Hence B°° is a(C, M,)-
compact for every Be ¥ by Theorem 2.3 and the Banach-Alaoglu
theorem.

2. If X is not a D-space, then the continuum hypothesis implies
that M,, is a proper subspace of M,. By Theorem 2.3, M, is a closed
subspace for the topology e. It follows by the Hahn-Banach theorem
that the dual space of M, for the topology e is then strictly larger
than C. Hence by the Mackey-Arens theorem, there is a Be & for
which B°° is not o(C, M,)-compact. But, as is easily verified, if
Bec &, then B°° ¢ &. The proof is complete.
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