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FREE LATTICE-ORDERED MODULES

A. BlGARD

The aim of this paper is to show that the theory of
free lattice-ordered groups developed by E. C. Weinberg in
the abelian case can be generalized to modules over a totally
ordered Ore domain A. The main result is that for every
torsion-free ordered A-module M, there exists a free /-module
over M. The generalization given will be seen to be, in a
certain sense, the best possible.

All rings and modules considered will be assumed to be unital
Let A be a partially ordered ring and A+ its order. If, M is a left
A-module, we say that P g J I ί i s a n order on M if:

P + P^P, A+P s P, and P Π -P = {0}. If such a P is given,
we say that M is a partially ordered (or ordered) module. If P is
a total order on M, that is, if M = PU — P, we say that M is a
totally ordered module. Let M and N be partially ordered A-modules
and let / be a mapping from M to N. Then / is an o-homomorphism
if / is a monotonic homomorphism of A-modules. The o-homomorphism
/ is an o-isomorphism if / is one-to-one and if f"1 is an o-homomor-
phism.

l Some properties of /-modules* In this section, A will
denote a directed p.o. ring. An A-module M which is lattice-ordered
by the order P is called a lattice-ordered module or i-module. Pro-
ducts of lattice-ordered modules are defined in a natural way. If
M and N are Z-modules, an homomorphism / from M to JV is called
a ϊ-homomorphism if, for x,ye M:

f{x Vy) = f{x) Vfiy) and fix Ay) = fix) Λfiv) .

An /-module M is a lattice-ordered module which is a subdirect pro-
duct of totally ordered modules. This definition was first introduced
in [1] and [3].

Recall that a convex Z-subgroup S in a commutative l.o. group
G is called prime if G/S is totally ordered. The following theorem
gives useful characterizations of /-modules.

THEOREM 1. Let M be a lattice-ordered module over a unital
directed ring A. The following are equivalent:

( 1 ) M is an f'-module.
i 2) For x,yeM and O ^ λ e i , x(x V y) = Xx V \y and Xix Ay) =

Xx A Xy-
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(3) x A V = 0 implies Xx A V = 0 /or αϊϊ O ^ λ e i .
(4) Every minimal prime subgroup of M is a submodule.

Proof. (1) implies (2): This is clear since (2) is satisfied in a
totally ordered module.

(2) implies (3): If x A y = 0, then we have:

0 ^ Xx A y ^ (λ V I)x A (λ V I)y = (λ V I){x A y) = 0 .

(3) implies (4): Let S be a minimal prime subgroup. Then,
xe S if and only if there exists yίS with α? Λ V — 0. [2]. Thus, if
xe S and O ^ λ e i , we have Xx e S. Since A is directed, S is a
submodule.

(4) implies (1): Let (Si)ieI be the family of all minimal prime
subgroups of M. Then each quotient M/Si is a totally ordered
module and M i s a subdirect product of these modules.

If A is not unital, then (1), (3), and (4) are equivalent but con-
dition (2) is weaker (see [3]).

In the sequal, we shall be concerned mainly with torsion-free
modules, that is modules in which Xx = 0 implies X = 0 or x = 0.
The following property is useful:

PROPOSITION 1. If A is totally ordered, every torsion-free f-
module F is a subdirect product of torsion-free totally ordered
modules.

Let S be a minimal prime subgroup of F. Suppose that X Φ 0
and Xx e S. We may assume X > 0, as A is totally ordered. As in
the proof of Theorem 1, there exists y g S with Xx A y = 0. This
implies X(x A y) = Xx A Xy = 0, and hence x A y = 0. As ί/?S, we
obtain xe S. This proves that M/S is torsion-free and the theorem
follows.

As in the theory of ordered groups, P is an isolated order on M
if X > 0 and Xxe P implies xe P.

PROPOSITION 2. Every torsion-free f-module is isolated.

Proof. If X > 0 and Xx ̂  0, we have X(-x V 0) = -Xx V 0 = 0,
hence - » V 0 = 0 and a? ̂  0.

Conversely, it is clear that when A is totally ordered, every
isolated module is torsion-free.

2* Embedding an order in a total order* In this section, we
consider only torsion-free modules over a totally ordered unital ring
A. This is not as restrictive as it seems, since the existence of a
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nontrivial torsion-free module implies that A has no zero divisors,
and an /-ring with no zero divisors is totally ordered.

LEMMA 1. Let M be a torsion-free A-module. For every x e M,
A+x is an order.

Proof. Suppose that yeA+x Π — A+x, so that y = Xx = — μx.
The relation (λ + μ)x = 0 implies λ + /̂  = 0 or x = 0. In the first
case, X = —μeA+f] —A+ so in each case y = 0.

LEMMA 2. Let P and Q be two orders on M. Then P — Q is
an order if and only if P ΓΊ Q = 0.

Proof. The condition is necessary, since P f l Q S (P— Q) Π (Q — P)
For the converse, suppose P n Q = 0 and let ye (P — Q) Π (Q — P).
Then y — p — q — qf — pf, and p + p' = q + q'ePf)Q = Q' Hence,
p = - p ' e P π - P = 0, q = -q' e Q n - Q = 0, and it follows that
V = 0.

The ring A is said to be a left Ore domain if A admits a left
quotient field. Equivalently, A has no zero divisors and satisfies the
following condition:

( I ) If p Φ 0 and σ Φ 0, Ap Π Aσ Φ 0.
Clearly, when A is totally ordered, this condition can be replaced by
the following:

(II) If 0 < p and 0 < σ, A+ρ n A+σ Φ 0.

THEOREM 2. Le£ A be a totally ordered ring with no divisors
of zero. The following are equivalent:

(1) A is a left Ore domain.
(2) In a torsion-free A-module, every order is contained in a

total order.
(3) In a torsion-free A-module, every order is contained in an

isolated order.

Proof. (1) implies (2): By Zorn's lemma, every order is con-
tained in a maximal order. It remains to show that each maximal
order P is total. If not, suppose bίP{j-P. As PaP+A+b
(strictly), P + A+b fails to be an order. By Lemma 2, P Π —A+b Φ 0
and there exists p > 0 with pbe —P. Similarly, P — A+b is not an
order, P Π A+b Φ 0, and there exists σ > 0 with σb e P. By condi-
tion (II), there exists λ > 0 and μ > 0 with Xp = μσ > 0. Hence
Xpb = μσbeP ΓΊ — P = 0. This implies b = 0, which is a contradic-
tion. Hence P is a total order.

(2) implies (3): This is clear from Proposition 2.
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(3) implies (1): Consider A as a left-module on itself. Take
0 < p and 0 < σ. If A+p Π A+σ = 0, A+p — A+σ is an order by-
Lemma 2. Hence it is contained in an isolated order P, and thus
pleP and σ{ — T)eP. Then l e P and — l e P , which is a contra-
diction.

COROLLARY 1. Let A be a totally ordered left Ore domain. Let
f be an o-homomorphism of the torsion-free module M ordered by P
into a torsion-free totally ordered module T. There exists a total
order Po which contains P such that f(x) > 0 implies x e Po.

To see that S = {x \f(x) > 0} (J {0} is an order on ikf, note that
5 + S g S and SO -S = {0}. Also for λ > 0 and 0 Φ xe S, f(x) > 0
and hence f(Xx) = Xf(x) > 0 since T is torsion-free. As P Π —S=0,
P + S is an order by Lemma 2. The corollary then follows from
Theorem 1.

COROLLARY 2. Let A be a totally ordered left Ore domain and
let M be a torsion-free A-module ordered by P. The intersection of
all total orders containing P is the set P of elements x e M for
which there exists λ > 0 with Xx e P.

Each total order containing P is isolated and hence contains P.
Suppose x ί P, so that P Π A+x = 0. By Lemma 2, P — A+x is an
order. By Theorem 2, P — A+x is contained in a total order Q. Since
— x G Q and x Φ 0, x$Q.

THEOREM 3. Let A be a totally ordered left Ore domain. If M
is an A-module ordered by P, these are equivalent:

(1) P is isolated.
(2) M is torsion-free and P is an intersection of total orders.
(3) M can be embedded in a direct product of totally ordered

torsion-free modules.
(4) M can be embedded in a torsion-free f-module.

Proof. (1) implies (2): This follows directly from Corollary 2,
as P = P.

(2) implies (3): Let (Pi)ieI be the set of all total orders con-
taining P. If we denote by M{ the module M ordered by Pi9 there
is a canonical embedding of M into the direct product of the
modules Aff.

(3) implies (4): Clear.
(4) implies (1): This follows from Proposition 1.
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3* Free /-modules* Let A be a totally ordered left Ore domain,
and let M be a torsion-free A-module ordered by P. A torsion-free
/-module L will be called free over M if:

(1) There exists an injective o-homomorphism φ from M to L.
( 2) For every torsion-free /-module F and every o-homomorphism

/ from M to F, there exists a unique ϊ-homomorphism / from L to
F such that / © φ = /.

It is not difficult to show that L is determined up to an l-
isomorphism. To show that such an L exists, we use the two fol-
lowing lemmas:

LEMMA 3. If xaβ(a eR, βeS) and xrδ(y e U, δ e V) are two finite
families of elements in a lattice-ordered module,

V A x«β - V A xn = V . π A (%«β - Xmwβ.r)))

aeRβeS γeUδeV (a,σ) e Rx ( 7 ά xt/) (/S,/) e 5 x i 7

Proo/.

V Λ ^ - V Λ % = V Λ Λ V ( ^ - r̂.) = V A V ( ^ - »r.)
= V V A (Xaβ — %{ϊ){o{β,r)))

R oe (vSX-U) S xU

— V „ ττ A \χaβ — x(r)(σ(β,γ)))

LEMMA 4. Let N be a f-module and K a submodule of N. The
f-submodule generated by K is the set Kr of all elements V«eτz Aβesχaβ
with xaβ e K.

Proof. By Lemma 3, Kf is an i-subgroup of N. If λ ^ 0, it
follows from Theorem 1 that: λ VΛ As ̂ u = VΛ A s ^ Since the
ring is assumed to be directed, K' is a submodule.

THEOREM 4. Let {P^iei be the set of all total orders on M con-
taining P, and denote by Mi the module M ordered by P{. Let φ be
the canonical map of M into T[ieJ M^ Then the f-submodule L of
TlieiMi generated by φ(M) is free over M.

Proof. Suppose / is an o-homomorphism from M into a torsion-
free /-module F. If xeL, then by Lemma 4, x= VR KsΨ{χaβ)
where xaβ e M.

Let f(x) = yB Asf(χaβ) To show that / is a mapping, it is
sufficient to show, by Lemma 3, that yB As Φ{χaβ) = 0 implies
V* AsfiXaβ) = 0.

By Proposition 1, we may assume that F is totally ordered. By
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Corollary 1 of Theorem 2, there exists a total order PQ containing P
such that f(x) > 0 implies x e Po.

If Vie Asf(%aβ) > 0, there exists aeR such that for each βeS,
f(%aβ)>0> which implies xaβeP0. It follows that VΛΛ*&«JB>0

(modulo Po) and V^ AsΦ{%aβ) ^ 0. Alternatively, if V* Asf&aβ) < 0,
there exists for each aeR, a βe S such that /(#αi8) < 0. Thus xaβe
— Po and it follows that \/B As%aβ < 0 (with respect to Po). Hence
VΛ AsΦiXaβ) =£ 0. Now, it is clear that / is a mapping. By Lemma
3, / is a group homomorphism. The theorem follows easily.

COROLLARY. Let A be a totally ordered ring with no divisors of
zero. The following are equivalent'.

(1) A is a left Ore domain.
(2) For every torsion-free ordered module M, there exists a free

f-module over M.

Proof. By Theorem 4, (1) implies (2). Conversely, if φ is the
o-homomorphism of M into the free /-module L over M, the positive
cone of M is a subset of Q = {x \ φ(x) ^ 0}, which is an isolated order.
Thus, (2) implies (1) by Theorem 2.

Note that φ is an o-isomorphism of M into L if and only if M
is isolated.

It is now easy to construct the free /-module over an arbitrary
set E. Let M be the free module generated by E, and trivially
order M by P = {0}. The free /-module L generated by M is a free
/-module over E, with obvious definitions.
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SUBNORMAL OPERATORS IN STRICTLY CYCLIC

OPERATOR ALGEBRAS

RICHARD BOLSTEIN AND WARREN WOGEN

It is shown that a subnormal operator cannot belong to a
strictly cyclic and separated operator algebra unless it is normal
and has finite spectrum. Further, a subnormal operator not
of this type cannot have a strictly cyclic commutant.

1* Let έ%f be a complex Hubert space, and let Stf be a subset
of the algebra &{έ%f) of all bounded linear operators on Sίf. A
vector x e Sίf with the property that Sxfx = {Ax: A e Ssf) is the full
Hubert space is said to be a strictly cyclic vector for j ^ and J&f is
said to be strictly cyclic if such a vector exists. A vector x is called
a separating vector for ,$/ if no two distinct operators in j y agree
at x. The set J ^ is said to be strictly cyclic and separated if there
is a vector x which is both strictly cyclic and separating for s^.

Strictly cyclic operator algebras have recently been investigated
by Mary Embry [2] and Alan Lambert [3]. Let j ^ ' denote the
commutant of the set Jzf, that is, s^fr is the set of all bounded linear
operators which commute with every operator in j ^ Note that if x
is a cyclic vector for S*f (meaning szfx is dense in £έf), then x is
separating for

LEMMA 1. Let s$? be a strictly cyclic subset of &(<βέf). If
is abelian, then it is maximal abelian, J$? = Szf\ Thus, a strictly
cyclic abelian subset is automatically a weakly closed algebra.

This lemma, which indicates the severity of the condition of strict
cyclicity, is a sharper form of a result of Lambert [3].

Proof. Let x be strictly cyclic for j ^ and let B e J ^ ' . Then
there exists A e S^f such that Ax = Bx. But J ^ c jy" by hypothe-
sis, so A e Szff. Since x is separating for jy", we have B = Ae j y ,
and the proof is complete.

If j y is strictly cyclic and abelian, then it is strictly cyclic and
separated by Lemma 1. Mary Embry [2] showed that the converse
holds if Szf is the commutant of a single operator. Thus, if A is
normal and {A}' is strictly cyclic and separated, then {A}' consists
of normal operators by Fuglede's theorem. In a private communication
to the authors, Mary Embry asked if "normal" could be replaced by
"subnormal" in this statement. An operator is called subnormal if
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it is the restriction of a normal operator to an invariant subspace.
To this end, we show that if A is subnormal then strict cyclicity of
{AY already forces A to be normal, and, moreover, its spectrum is a
finite set. Thus, the commutant of a subnormal operator cannot be
strictly cyclic and separated unless the underlying Hubert space is
finite-dimensional (since the commutant is then abelian and hence the
operator, which is normal, must have simple spectrum). More generally,
it is shown that a uniformly closed subalgebra J^ of &(βl?) which
has a separating vector x with the property that s/x is a closed
subspace of ^f (this is the case if x is also strictly cyclic) contains
no subnormal operators except possibly for normal operators with finite
spectrum.

2* Let μ be a finite positive Borel measure in the plane with
compact support X, let H2(μ) be the closure of the polynomials in
L\μ), and put H°°(μ) = H\μ) Π L~(μ). The next theorem, which is
used to derive the main result, may be of independent interest.

THEOREM 1. H°°(μ) = H2(μ) if, and only if, X is finite.

Proof. The sufficiency is trivial. Assume now that X is infinite.
Note that the inclusion map of H°°(μ) into H2(μ) is continuous. We
will show that the inverse map is not continuous, and hence, by the
Open Mapping Theorem, that H°°(μ) Φ H2(μ).

Since X is compact and infinite, its set X' of accumulation points
is compact and nonempty. Choose λ o e Γ such that |λo | = max{|λ|:
λ e X'}, and let A — {λ: | λ | ^ | λ01}. By the choice of λ, X\Dι is a
countable set. Therefore, we can choose a closed disk D2 which con-
tains D1 and is tangent to Dλ at λ0, in such a way that the boundary
of D2 intersects X only at λ0. Now note that we may as well assume
that D2 is the closed unit disc A, and that λ0 = 1.

Now X\Δ is a countable set {yl9 y2, •••}, and if this set infinite,
we must have lim yn = 1. Let K — A U (X\A). Then K is a compact
set which does not separate the plane. Define a sequence of functions
{/.} on K by

Then, for each n, fn is continuous on K and analytic in its interior.
By Mergelyan's theorem, each fn is the uniform limit on K of a
sequence of polynomials. Hence each fn e H°°(μ).

Let χ denote the function which has the value 1 at the point 1
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and the value zero elsewhere. Clearly, fn —• χ pointwise, and hence in
the metric of L\μ) by dominated convergence. In particular, χ e H°°{μ).
However, the point 1 is an accumulation point of the support of μ,
and hence \\fn — χ |L = 1 for every n. Thus, {fn} converges to χ in
H\μ) but not in H~{μ).

THEOREM 2. Let S be a subnormal operator on the Hubert space
βέf, let Sf be the uniformly closed algebra generated by S. If *Sf has
a separating vector x such that Sϊfx is a closed subspace of £ίf, then
the spectrum of S is a finite set, and hence S is normal.

Proof. Let & be the uniformly closed algebra generated by S
and the identity operator /. Since ^x is the sum of Szfx and the
one-dimensional space spanned by x, and since we assume that Jϊfx
is closed, we also have that &% is a closed subspace of Sίf.

Now ^x is invariant under S and the restriction operator
50 — SI &x is subnormal. Since the uniformly closed algebra ^
generated by So and I contains & \ ^x, it follows that x is a strictly
cyclic vector for &0, that is, ,^ox = ̂ x. By the representation
theorem for subnormal operators with a cyclic vector, Bram [1], So is
unitarily equivalent to the operator of multiplication by the identity
function on some H2(μ) space. Furthermore, the unitary equivalence
can be constructed so that x corresponds to the constant function 1.

Now ^ corresponds via the unitary equivalence to the algebra of
multiplication operators Mφ:f—>Φf on H\μ), where φ belongs to the
.//"(//(-closure of the polynomials. Since any such function φ belongs
to H°°(μ), it follows that the constant function 1 is a strictly cyclic
vector for {Mφ: φ e H~(μ)}, and hence that H°°(μ) = H\μ). By Theo-
orem 1, H2(μ) is finite-dimensional.

It follows that έ%x is finite-dimensional, and, since j / c ^ , so
is Ssfx. Since x separates j y , it follows that j y is finite-dimensional.
So there is a polynomial p such that p(S) = 0. Since p(σ(S)) = σ(p(S))
= {0}, σ(S) in finite and hence S is normal.

COROLLARY 1. Let Ssf be a uniformly closed subalgebra of .<
which has a separating vector x such that J^fx is a closed subspace of

(This is the case if s*f is strictly cyclic and separated.) Then
contains no subnormal operator with infinite spectrum.

Proof. Suppose Se j y is subnormal, and let Jzf(S) be the uni-
formly closed algebra generated by S. Since j^f(S) c j y , x separates
Ssf(S). Since the linear transformation A—>Ax of J^f onto s^x is
continuous and one-to-one, and since Szfx is closed by hypothesis, the
transformation has a continuous inverse by the Open Mapping Theorem.
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Therefore, s*f(S)x is closed, and the result follows from Theorem 2.

COROLLARY 2. The commutant of a subnormal operator S is strictly
cyclic if, and only if, S is normal and has finite spectrum.

Proof. Suppose {S}' has a strictly cyclic vector x. Then x
separates {S}", and it follows from [2, Lemma 2.1 (i)] that {S}"x is
a closed subspace. Thus, by Corollary 1, S has finite spectrum and
hence is normal.

Conversely, if σ(S) = {Xl9 •••, λn}, then each λy is an eigenvalue
and 3ίf is the direct sum of the corresponding eigensubspaces £Zfά.
It follows that {S}'= ^ ( ^ ) © ••• φ ^ ( ^ ) . Hence any vector
x — xι + + xn where 0 Φ x3- e £ίfά, j = 1, , n9 is strictly cyclic
for {Sy.

COROLLARY 3. Let S be a subnormal operator on a Hilbert space
£%f. If {Sy is strictly cyclic and separated, then Sίf is finite-dimen-
sional.

Proof. By Corollary 2, S is normal, its spectrum is finite, and
{S}f = &(<%O(B "•• Θ ^ ( ^ t ) with notation as in the proof of that
corollary. If x is strictly cyclic for {£?}', then x — x± + + xn where
0 Φ Xj G β^ , all j . If some β^ has dimension greater than 1, then
there is a nonzero operator Bj on ̂  which annihilates xj9 and hence
there is a nonzero Be{S}' such that Bx = 0. Therefore, if {S}' is
strictly cyclic and separated, each ĝy is one-dimensional and hence

is finite-dimensional.

COROLLARY 4. Let S be a subnormal operator on a Hilbert space
If {S}" is strictly cyclic, then §ίf is finite-dimensional.

Proof. If x is strictly cyclic for {S}"c{S}', then it is strictly
cyclic and separating for {S}' and the result follows from Corol-
lary 3.

An operator A is said to be strictly cyclic if the weakly closed
algebra generated by A and / has this property. Since this algebra
is contained in the second commutant of A, it follows that the second
commutant of a strictly cyclic operator is strictly cyclic. In view of
Corollary 4, we have

COROLLARY 5. There exist no strictly cyclic subnormal operators
on an infinite-dimensional Hilbert space.
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IRREDUCIBLE SUMS OF SIMPLE MULTIVECTORS

HERBERT BUSEMANN AND D. EDWARD GLASSCO II

Denoting by Vn(F) the ^-dimensional vector space over
the field F of characteristic 0, let Vΐ(F) be the linear space
of all r-vectors R over Vn(F) and G?(F) the Grassmann cone
of the simple r-vectors R in V?{F). The sum R = ΣUi -B»(Λ< e
G?(F)) is irreducible if R is not the sum of fewer than k
elements of G?(F). (Duality reduces the interesting cases to
2 ^ r S n/2.) Such sums are trivial only for r = 2, because
Λ*=1 Ri Φ 0 while always sufficient for irreducibility is then
also necessary. Extension of F does not influence irredu-
cibility if r = 2 but it can for r > 2.

The sets W?(F, k) of those R in Vΐ(F) which are irre-
ducible sums of k terms behave as expected when r = 2, but
have the most surprising properties for larger r. Although
yj(jfP) = ULi W&F, k) and Wl(F, 3) * 0, the sets W&R or C, 2)
have interior points as sets in Vl(R resp. C) and so does
Wl(R, 3) but WtiC, 3) does not.

The paper is based on the thesis [1] with the same title by the
second author.

The smallest number k for which V?(F, k) = \Ji=1W?(F, i) coincides
with Vr(F) is denoted by N(F, n, r) which by duality equals N(F, n,
n — r). Obviously N(F, n, r) ^ ί ̂ Ί . But in spite of various inequa-
lities relating these numbers which show that (n) is much too large,
the precise value of N(F, n, r) is known only in the two cases implied
by the above statements: namely N(F, n, 2) = [n/2] and N(F, 6, 3) = 3.

The values N(C, 7, 3) - 5, N(C, 8, 3) = 7, and N(C, 9, 3) - 10 have
been claimed but questioned, see Schouten [3, p. 27] and [1].

The purpose of our investigation is to elucidate why the case
r = 2 is so much simpler than 2 < r < n — 2 In addition to the
already mentioned facts we show that Vl(F, k) is an algebraic variety,
because, if R{i) is the ith exterior power of R, then Rik+1) = 0 is
necessary and sufficient for R e V?(F, k) when r = 2, but merely neces-
sary when r > 2. This implies dimF2

%(iί resp. C, k) < dimV?(i? resp.
C, & + 1) for 1 ^ k < [n/2] in contrast to the case n = 6, r = 3. In
fact we show that F?(JB or C, A) is for r > 2, & > 1, and w ̂  (& - l)r + 3
not even a closed set.

An irreducible representation R = Σf=i ^», ^ > 1> is for r — 2
never unique, but for r > 2 it is (up to a permutation) if ALi -R; =£ 0
and k ^ r. The condition A; ̂  r is probably superfluous but enters
—like n JΞ> (k — l)r 4- 3 (instead of ^ >̂ r + 3) above—because we use
the Plϋcker relations for simple vectors which get out of hand for

13
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large k. A coordinate-free approach would therefore be preferable,
but in many cases we were not able to devise one.

We will continue using capitals (R, S, T) with a tilde and with
or without subscripts for general multivectors and omit the tilde only
when the vectors are known or assumed to be simple.

2* Results for general F, n, r, k. The following agreement will
prove convenient. el9 e2, are used for elements of a base. If two
spaces Vm c Vn occur, then the base el9 , en of Vn is chosen so that
el9 , em is a base of F m . We begin with some simple remarks.

(2.1) // R e G* then R = R' + S A en with R' e G r 1 and S e
G n—l

r-i

For, with suitable ^ e Vn~ι and &

R = A (vt + βiβu)

= A Vi + [Σ (- 1)""'/3Λ Λ Λ ^_! Λ vi+1 A Λ vr] A en .

If the Vi are dependent, the bracket reduces to one term; if not, the
bracket is an (r — l)-vector in the r-space spanned by vl9 , vr and
hence is simple.

We apply (2.1) to prove

(2.2) R e W;(F, k) if and only ifRA en+1 A Λ en+m e W#:(F, k).

It suffices to prove this for m = 1. We show if R e W"{k) and R A
en+1 6 ϊΓ ίί(i), then I = k. Trivially R A en+1 e F?ίί(fc), whence I ^ fc.
By (2.1) and the hypothesis R A en+1 = Σί=i Λ* = ΣUi ( ^ + ^ Λ <WX)
with JS, G Gn

rχ\, R\ e G%19 and S, e Gn

r. Therefore, ΣR\ = 0 and β Λ en+1 =
*) Λ eΛ+1, which implies R = Σί=i S< and k ^ I.

COROLLARY 2.3. N(F, n + 1, r + 1) ^ JV(-P, n, r).

Anticipating ^(ί 7, w, 2) = [n/2] we see that both equality and
inequality occur. N(2m, 2m-2) = N{2m, 2) > N(2m - 1, 2) = ΛΓ(2m - 1,
2m - 3). Similarly N{2m + 1, 2m - 1) = ΛΓ(2m, 2m - 2). Also
iV(w, r) ^ [(n — r + 2)/2], but this lower bound is for r > 2 too small
to be useful.

A consequence of (2.1) is the generalization

(2.4) If Re Vΐ(k), then R = R' + S A en with R'e Vr\k) and
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By hypothesis R = Σ U R$ ^ K Ri e G>) Applying (2.1) to each
R, yields R = Σ U (R\ + S, A en) = Σ U Λί + ( Σ U S<) Λ en with i2{ e
G^"1 and JS< e Gjzί, which is the assertion.

With k = iV(F, w, r) we deduce from (2.4):

(2.5) N(F, n, r) ^ N(F, n - 1, r) + AΓ(JF w - 1, r - 1).

For r = 2 equality holds when n is even and inequality holds
when n is odd.

A linear map / : Um —• F w induces a homomorphism / * : ϋJΓ-^^r
given by / * ( ^ Λ ••• Λ ur) = f{uy) Λ ••• Λ /(w r). The map / * is
surjective when / is. We note

(2.6) If f*{R^ + . . . + f*(Rk) is irreducible in Vΐ, then so is
Rλ+ + Rk in U?.

We apply this first to the projection / : Vn+i —> Vn defined by

and find:

(2.7) // Ri e Gn

r(F) and ΣiU Ri is irreducible in V:(F), then it is
irreducible in Vr+k(F).

Hence

(2.8) N(F, n + l,r)^ N(F, n, r).

The case r = 2 shows again that both inequality and equality can
occur in (2.8). Next we apply (2.6) to the map / : Vn+k -+Vn+ι given by

and find using (2.2):

(2.9) If ΣLiRi is irreducible in V?(F), then Σ*=i i2» Λ eΛ+< is
irreducible in V™Zk{F).

Two important facts will now be proved together:

THEOREM 2.10. If ALi ^ ^ 0, then ΣίU-Rί is irreducible. The
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converse holds only for r = 2.

THEOREM 2.11. If R e V?(F, k) then Rik+ι) = 0. The converse
holds only for r = 2.

If r is odd then R{i) = 0 for any i > 1 so that R{k+1) = 0 imposes
no condition. If r is even the relation (Σ?=i RiYk+ί) = 0 is obvious,
so that the first part of (2.11) holds. Since

(2.12) (Σ?=i Ri){k) = ft! Λf=i Λ* /or even r

it follows that Σ i i ^ e Wn

r{k) when A?=i#* Φ 0. Applying (2.9) we
see that this also holds for odd r.

If Λί=i i?i = 0, r = 2, and Ri — Vi A w{ then one of the ^ or wf

depends on the rest, say vk = Σ*=ί λ Λ + Σ?=i PWi so that

Σ Λ< = Σ K Λ Wi + (λ^i + μtWi) Λ wfc] .

Each bracket represents a simple vector because it is a 2-vector in
the space spanned by vi9 wi9 and wk.

That Ai=iRi ^ 0 is necessary for irreducibility only when r = 2
follows from (2.2). This establishes (2.10).

It remains only to prove the second part of (2.11). Let r = 2
and R{k+ι) = 0. Then R e W?(k + i) with i I> 1 is impossible because
(2.10) and (2.12) would imply Rik+i) Φ 0. That R{k+1) = 0 is not suffi-
cient for R e V?(F, k) is obvious for odd r and follows from (2.2) for
even r > 2.

Corollaries of (2.10) resp. (2.11) are:

(2.13) N(F, n, 2) = [n/2].

(2.14) / / Λ e WsPCF, fc) then also R e W2

n(F0, k) for any extension
field Fo of F. This is not true for r > 2.

The latter means that for each n — 2 > r > 2 there are R, k! <
k,F(zF0 with Λ e TΓ^ίF, fc) and JB e W?(F0, k'), and follows from (5.9)
and (2.2). Note: The first part of (2.14) does not mean, for example,
that Re V?(F), Re W?(FQ, 2), hence R = R1 + R2 with R{ e Gζ(F0),
imply R{ e Gΐ(F), but only that R\ e Gζ(F) with R = R[ + R'2 exist,
compare (4.3).

Whereas in (2.2) and (2.9) the number of summands is the same
in hypothesis and assertion, it is different in the next theorem which
is therefore harder to prove.
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THEOREM 2.15. Let R e W?(F, ft), E, = Λί=i en+{i_1)r+ι(ί = 1, . . , j),
then R + Σ ΰ E< e W?+rj(F, ft + j).

Evidently it suffices to prove this for j = 1, or with E = E1 that
R + Ee Wΐ+r(k + 1). Let R + E = ΣH=i $, S< 6 G?+r, and denote by
S the projection of S{ on F r\ Then SI is simple and # = ΣΓ=i S .
Therefore, jβ e W?(k) implies m ̂  k and that for m = k all $ ^ 0. We
show that m = k is impossible.

There are at least two S* which do not lie in G% For, S< e G?,
if i > 1, would entail S, = S[ + E with SJ Λ J& Φ 0, but S; + E is
not simple by (2.10). Assume that Sλ and S2 do not lie in Gn

r. For

w = Σ?ίΓ a%> Put w' = Σ?=i a% a n ( i ^ " = Σ?ΐΓ+i a%
Then

S< = A % - ΛK + O
i=i i=i

and we may assume further that w[[ Φ 0 and w'2[ Φ 0.
There are subscripts i, i , A, Z with i =̂ k such that te JJ Λ w'li Φ 0.

Otherwise w[J /\w"x = 0 for & ̂  0 so that w"z = Xkιw[[ for ft =̂  1.
Similarly wĵ  = μklw'2[ for ft ^ 2, so that w" = μuX^Wu.

This, with λ u = 1 and Xu = /̂ izλ21, gives

S* = A (w; + λiyw i) .

But then î S^ cannot produce E. Thus we may assume (with a possible
change of notation) that w[[ Λ wf

2[ Φ 0. Then e1A ΛenΛwnΛw21 =
eι A ••• Λen ΛWUΛW'ZΊΦ 0 and there is a base {ê } of F w + r with e\ = e{

for i ^ n, e'n+ι = wn, and e^+2 = w2ι. Then with the original Ry

E, Sίf , Sfc,

(JB + E) A e'n+i A e'n+2 = (S3 + + Sk) A e'n+ί A e'n+2 ,

i.e.,

R A e'n+1 A e'n+2 e W:t2

r(k - 1)

contradicting (2.2) and (2.7),

3* The sets V?(Ft9 ft)* Let Ft be a topological field. Obviously
Gΐ(Ft) = F*(Ft, 1) = W?CFt, 1) is a closed set in V?(Ft). It is clear
that for ft < N(Ft, n, r) the set V?(Ft, ft) cannot be open, but one
might expect it to be closed. This is true for r = 2, see below, but
in general not for r > 2. To show the latter it is not necessary to
study general n and r > 2 because of the following:

THEOREM 3.1. If for a topological field Ft the set V?(Ft, ft) is
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not closed in V?(Ft) then for m^n, s^r,m — s'ϊtn — r and j ^ 0
the set VΓ+js(Ft, ft + j) is not closed in VΓ+js(Ft).

First let j = 0, m ^ n and R e V?(Ft, k). By (2.7) R e V?(Ftf k) so
that the latter is not closed. For any m we conclude from R e V?(Ft9 k)
and (2.2) that

R A em+1 A Λ βm+A e TOίΉ, k) .

Since F r

m (^, ft) is not closed there are Rv in V?(FU k)(v = 1, 2, . . . )
such that R»-*Re W?{FU kf) with ft' > ft.
Then by (2.2)

R, A em+1 A Λ βm+, > R A em+1 Λ Λ em+h e W?tf(Ft, k')

so that FΓΛ î77*, fe) is not closed. This settles the case j = 0 or that
V?{FU k) is not closed.

With the notation of (2.15) we see with the same argument

VΓ+js{Ft, h+fiBR+ΣEi >R + ΣE{e WΓ+js(Ft, k! + j)

which proves (3.1).
In § 5 it will be shown that N(F, 6, 3) = 3 and Vξ(R resp. C, 2)

is not closed in Vξ(R resp. C). Probably no Vΐ{R resp. C, k) with
3 <J r ^ n — 3 and 1 < & < JV(Λ resp. C, n, r) is closed, but from (3.1)
we obtain (with 2 + j = k) this best possible result only for k = 2.

THEOREM 3.2. I%e seίs V?(R, k) and V?(C, k) are not closed in
Vΐ{R) resp. Vn

r(C) when k ^ 2, r ^ 3, omcί n ^ (ft - l)r + 3.

The mentioned best result would require a direct treatment of
the case k > 2 instead of reduction to ft = 2. The fact that we use
Pliicker relations in §5, which become very involved for large n, r, ft,
is responsible for our incomplete result in the case ft > 2.

We now discuss the case r -— 2. The by (2.11) necessary and
sufficient condition R{k H1) = 0 for R e F?(JP, ft) amounts to polynomial
conditions on the components aik of R = Σis«*sn <***£• Λ ek. The set
F2

Λ(JF, ft) is therefore an algebraic cone in Vί(F) and hence closed
when F carries a topology.

It is also clear that for 1 g ft < ft' ^ [n/2] the set V?(F, ft) is a
proper subset of V?(F, ft') and plausible but, since we do not know
whether V?(F, ft) is an irreducible manifold, not a priori certain, that
the dimension in the sense of algebraic geometry (denoted by a-dim)
and consequently in the case of R resp. C also the topological dimen-
sion ( = dim), of V?(F, ft) is less than that of V?(F, ft'). That a proof
is necessary may be seen from the case r = 3 (see §§5 and 6). In
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spite of N(F, 6, 3) = 3 the sets Wξ{R resp. C, 2) and W£(R, 3) have
nonempty interiors in V£(R resp. C) so that

dim V!{R resp. C, 2) - dim F3

6(/2 resp. C)

dim TF3

6(i2, 2) = dim W$(R, 3) - dim V!(R) = 20 .

But W£(C, 3) has no interior points and hence by a theorem in dimen-
sion theory (see [2, p. 46])

dim W«(C, 3) < dim Wξ{C, 2) - dim V£(C) = 40 .

Although we need only the expression for R{h) in the case r = 2,
we give, owing to its potential usefulness, the expression of ΛiU #;
of k different r-vectors in terms of the components of the R{. The
rather long proof can be found in [1, p. 51].

Put J = {j\, , jr} where 1 ̂  j\ < <jr<,n,n^kr.

Let αf = aiv"jr(i = 1, •••,&) be indeterminates and define for a per-
mutation π of {1, , r)

av
J) = αΓ : ( 1 ) - i r r ( r ) = sgnπαf .

If {£Γ = Alf , ̂ Ar} with 1 ̂  h,< --• <hkr<, n and J x U U Jk = H
(disregarding order) then J v Π Jμ = φ f or v Φ μ and Ju , Jk in this
order is a permutation of i ϊ whose sign is denoted by

Λ Λ

We then define

H
a{!

where α v s tands for {αί: JczH}. If π is a permutat ion of {1, •••, A:},

t h e n

THEOREM 3.3. / / ^ = Σ j e ^ α ^ mίA ΛΓ = {1, ••, n}, then

A i i ίti = ΣHCZN FH(au , ak)eH.

Consequently, if QH (a) originates from FH (al9 , ak) through
replacing each a{ by the same a = {aJ}, then we obtain

COROLLARY 3.4. If R = Σ/c^ aJeJy then R{k) = k\ ΣJH^N QH{a)eH.

From (3.4) one deduces with the conventions (H) = f i ) = 0,

\ΔJ \ΔJ
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(see [1, p. 65]). Hence

(I) - (n-2

2k),^v;{c,k) = 2 [(;
and so

dim Vζ{R resp. C, k) < dim V?(R resp. C, & + 1) for 1 ^ k < Γ—
1— ZJ '

in contrast to the case r = 3.

4* Uniqueness. Let R, G G?tF), (i = 1, , k). The sum ΣίU #•
is called umgw in F;(F) if S{ e Gn

r{F){i = 1, , fc) and Σ Rt = ΣSt
imply that Sπii) = R{(i = 1, •••,&) for a suitable permutation π of

{1, ••-,*}.
Obviously:

(4.1) If Σf=1 i?i is unique then it is irreducible.

(4.2) 7f Σ*=i -K* ^ s irreducible resp. unique then so is X|= 1 i^ /o7̂
i < k.

The converse of (4.1) does not hold; in particular:

(4.3) If r = 2, k > 1, A'URi ^ 0 ίΛβ^ Σ i i ^ is m>£ unique,
i.e., no irreducible sum of 2-vectors is unique.

Because of (4.2) it suffices to observe that

eι Λ e2 + e3 Λ e4 = (ex + β3) Λ e2 + β3 Λ (— e2 + e4) .

However, if r > 2 and Λί=i -R* ^ 0, then Xf=1 JŜ  probably is unique.
Because the Pliicker relations are hard to handle for large k we were
able to prove only:

THEOREM 4.4. If r > 2, & ^ r, and Λf=i ^ =£ 0, ίfeew Σ i i -B* i

Here both the field F and the dimension n of the space (except
that n^rk is, of course, implied) are deliberately omitted because
they are immaterial.

First we convince ourselves that n is unimportant and at the end
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of the proof we indicate why F is.
Let Ri = v{i_ι)r+ι Λ Λ vir(i = 1, , k), A v* =£ 0. It suffices to

prove (for a given F) that 2*2^ is unique in the space V spanned by
^i, *, vkr. For, let also

Under projection of Vn on V let Rt — JBJ. Then 2Ή? — 2Έ;, 5 — 5,
A Rΐ -> A #/ so that β = 272{ and if (4.4) holds in V then {R$ is a
permutation of {jβj. Therefore, A -B* ̂  0 a n ( i hence A R* ^ 0. If
R* = vJl-Dr+i Λ Λ i\> then because (4.4) holds in the space spanned
by vf, -",Vrk we have R*{i) = Ri for a suitable permutation π of
{i, . . ,fc}.

In the proof of (4.4) we therefore assume that n = rk and R =

Σf=i Λi with

ϋk = e«_i)r+iΛ Λ e ί r = eIΛi) ,

where

L(v) = {(v - l)r + 1, , yr} (y = 1, , ft) .

We further put

•ί" = {̂ i, *', h} with 1 £ i, < < ik £ rk ,

also

I(v) = 7/{i}, I(v, μ) = I/{%, ίμ}, etc .

It will prove convenient and causes no ambiguities to use I(v) for
{il9 , ίv_!, %+1, , ΐ&} even if iv is not defined.

Ω is the set of all / with % e L(v){v = 1, , A;), and I(v) e Ω
means ίμ e L(μ) for μ Φ v.

We also use

The sign depends on the order but will prove irrelevant. Finally
i?(z;) and i^(v) are the spaces spanned by the β̂  with ί e L(v) or ΐ ί
L(v) respectively.

From now on we will often use the Plϋcker relations (see [3, p.
23] and [4, p. 27]) which in our type of notation may be stated as
follows:

L e t P = {Pl, . . . , p r } , l^Vi^

ap = aPl"'Pr =

for a permutation π of {1, , r} and similarly for Q. The vector
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-ί- Σ uPeP - Σ αP l-p 'eP l Λ Λ ep e V?

is simple if and only if for any P, Q

Plϋcker: apaQ + Σί=i ( - iγaP{r)qiap-Q{ί) = 0.

We prove several lemmas beginning with

(4.5) Let ¥=ΣA Ϋβi and suppose T A R = 0. If k < r, or k =
r but T is simple, then Ί1 Φ 0 only if IeΩ. Thus simple f Φ 0
implies Ί1 Φ 0 for at least one IeΩ.

If k < r the assertion follows from

β Λ T - Σ Γβ^, Λ ( Σ 7%)] ,

eL(») IWiΦ eLίμ} A e7 for y ^ μ and k <r ,

and the observation that / Π L(j ) = φ for some i; is equivalent to
IίΩ.

If k = r then the terms in R A T wi th eL{ί) as a factor are

eLω Λ Γ Σ ^ Z + ( - l)r7L(1)(eχ(2) + •••
Lii>r

Therefore, 7 J = 0 if \ > r (hence Ig Ω) and 7L(1>) + ( - l) rτL ( 1 ) = 0 for
v > 1. Generally 71 = 0 if, 7gi2 and I is no L(y); moreover,

ΊL{μ) + ( - l) rτL ( 1 / ) = 0 if μ Φ v .

If r is even then yL{v) = 0 for all v so that 71 Φ 0 only for J G Ω.
If r is odd then 7L(ι° = λ for all v and thus

We show T is simple only if λ — 0 which completes the assertion.
Let IeΩ and assume iλ Φ r. Then with

one of the Plϋcker relations for the simplicity of T is

0 = 7L(1)77 + Σ ( - l)57L(1' rH" s7 r/( s ) = λ7z ,
8 = 1

for yw"' = 0 because L(l, r) e \Jl=, L{v) U Ω for s > 1, and L(l, r)i t

contains a repeated index (since ixφ r). If \ = r just permute L(l)
so that r is not the last element. Thus 71 — 0 for all IeΩ, or
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λ = 0. Since T = XR would not be simple we must have λ = 0.
Let H = {hl9 , Ajfc-J with 1 <£ Ax < < /^_! ^ rk.

(4.6) If S = Σ βHeH cmd R A S is simple then, for

IeΩ,βr{8}βI(t) = 0

if s Φ t.

The terms in the expansion

R A S = ̂ a<1""*'+*-1e4...<r+Jfc_1

which contain eτ as a factor are given by

(4.7) eΣ A [± βmeLMύ ± ± βIik)eLlk,ik)]

where L{v, iv) = L(y)/{ίJ. Consider the Plϋcker relation for R A S
beginning with

The terms not written down all vanish. The first k — 1 that follow
vanish because the first factor has a repeated superscript. From the
(k + l)st term on, the last element of L{i, i8) is the first superscript
of the second factor a which then vanishes because it does not appear
in (4.7). (This requires r ̂  3. The first a also vanishes and for a
similar reason.)

The following is the decisive step in our long argument:

(4.8) If both S = ΣβHeH and R AS are simple and some βI{1) Φ 0
(I(ΐ) e Ω) then β^v-^-ϊ = o for ix e L(l) and any vs(s = 1, ., k - 2).
Briefly S

Take any \eL{l) and join it to 1(1). This produces an IeΩ.
We prove inductively.

βvv~vλnk-x.....k) = Q for a u Vs a n ( j x £ k - 2 .

If Jc = 2 we have /3*1 = /9Z(2) - 0 by (4.6) and βI{1) Φ 0.
If k ̂  3 we make

Step 1. Consider the Plϋcker relation

0 _ βl(l)βvl{k-l,k) βl(l,k)vβikl(k-l,k) _j_ βl{l,k)iιβik»I{l,k-l,k)

I[2,k-l,k) _}_ # . . + oI(l,fc)i^2

Except for order
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ikl(k -l,k) = I(k - 1), and /(I, k)ix =

so that the second and third terms vanish by (4.6). The remaining
terms vanish because the sets 1(1, k)i2, , 1(1, k)ik_2 contain repeated
elements. If k = 3 we are finished. If k > 3 we make

Step 2. Take the Plίicker relation

0 = OKI)β»μI{k-Z,k-l,k) _ βI(l,k)vβikμHk-2,k-l.k)

_j_ βl(l,k)μβik»l(k-2,k-l,k) βl(l,k)iγβikvμl {l,k-2,k-l,k)

_j_ βl{l,k)i2βik»μl{2,k-2,k-l,k) . . . _|_ β 1 ^ k)ik-3gipj«Λfc-3,k-2,k-l,k)

Except for order

ikμl(k - 2, k - 1, k) = μl(k - 2, k - 1)

and

ikvl(k - 2, k - 1, k) = vl(k - 2, k - 1)

so that the second and third terms vanish by Step 1 (that k — 1, k
are replaced by k — 2, k — 1 is immaterial since the argument of Step
1 is the same for any permutation of {2, •••,&}). The fourth term
vanishes because of (4.6) and 1(1, k)\ — I(k). In all following terms
the sets of superscripts in the first factor β contain repeated elements
and these terms vanish also. This completes the argument in case
k = 4. If k > 4, the process clearly continues.

(4.9) If both S = ΣβHeH and R A S are simple and βI{t) Φ Ofor
some I{t) e Ω then Se F(t)k^. If S = w1 Λ Λ wk_λ then each wt e
F(t).

The first part is a consequence of (4.8). The second statement
follows from the general lemma.

(4.10) If m<n,Vmcz Vn, vά e Vn, AUvi ^ ° a n d AU v* e VT then
v3e Vm(j = 1, -- s).

Setting Vi = v\ + βiβn (i = 1, •••, s) in the proof of (2.1) yields
the case m = n — 1 from which the general case follows.

THEOREM 4.11. If k ̂  r, S = A&1 w* ̂  0 and R Λ S is simple
then Wi e F(t) for a suitable t.

If S = ΣβHeH then it suffices by (4.9) to show that βI{t) Φ 0 for
a suitable I(t) e Ω. Because R Λ S is a simple (r + k — l)-vector there
is a vector v = Σlίi ^X such that β Λ S Λ v = 0 and S Λ ^ O . If
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T = S A v = ΣjJeJ then

ΊJ = Σ ± βJ{t)δjt .

By (4.5) there is at least one IeΩ with 71 Φ 0, hence βI{t) Φ 0 for
some t.

After these preparations we are ready to prove (4.4). First observe

(4.12) If R = Σϊ=i VL(»(Vi e V) then Λίii v< Φ 0.

Each Vi Φ 0 because Σ£=ι eL[v) — R is irreducible. Assme A vi — 0
and let {wy}, 1 ^ j ^ λ < fcr, be a maximal set of independent v{.
Since the ^ span a proper subspace F ' of F, an ^ with wxA ••• Λ
Wλ Λ eμ Φ 0 exists, and the ^ together with β̂  span a space F " with
V c F " c F. Now ΣvL{v) is irreducible in F and F', and therefore (see
(2.2) and (2.7)) 2 ^ ) Λ eμ is irreducible in F " and in F. But if μ e L(s)
then R A eμ = Σ , ^ s eL(1/) Λ e .̂

(4.13) If ft = Σί=i vL(v) (v e F), A; ̂  r, / = {il9 . . . , iΛ} e fl ίAβw
^ G E(π{t)) for a suitable permutation π of {1, , &}.

First v7(β) ^ 0 by (4.12). Next

-β Λ viω = vL(β) Λ v/(β) ^ 0

is simple. Therefore (4.11) yields viv e F(π(s)), (v Φ s) for a suitable
number π(s), (1 <̂  ττ(s) ^ A:). We must show that π(s) defines a per-
mutation of {1, , k} or that π(s) Φ π(t) for s Φ t. Assume π(s) = π(t)
for some s Φ t. Then i;ίy e F(π(s)) for 1; = 1, , k because I(s) U I(t) =
/ whence vΣ e F(π(s))k and R A vx = eL(ff(β)) Λ 7̂ ^ 0 contradicting β Λ
^ = 0. Thus vit e Πήβz(S) F(π(s)) = Πs*t F(π(s)) = E(π(t)).

This establishes the uniqueness of ΣeL{v). For, consider /e Ω and
put /' = {jl9 i2, , ik) with j \ e L(l). Then Γ e Ω. Since ^ v e E{π(v))
for v > 1 it follows from (4.13) that vhe E(π(l)). Thus v3[eE(π(ΐ))
for all j\eL(l) and vLω = a.e^^.

Generally, vL{v) — aveUπ{v)) whence av — l(v = 1, , k) and unique-
ness follows.

The condition v{ e V which entered the proof of (4.12) because we
applied (2.2) can now be eliminated; ΣeL,v) retains its form after
extension of the underlying field and therefore remains unique after
the extension. This justifies the formulation of (4.4) which does not
mention a field.

5* The case n = 6, r = 3* The remainder of the paper deals
with the case n = 6, r = 3 whose importance was noted in connection
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with (3.2). We first show N(F, 6, 3) = 3 which may be new for FΦ
C. Our inequalities (2.3) and (2.5) give only

2 - N(F, 5, 2) ^ N(F, 6, 3) rg N(F, 5, 3) + N(F, 5, 2) = 4 .

With eίifc — et A βy Λ efc we prove:

(5.1) S = e145 + e246 + 6356 is irreducible; whence N(F, 6, 3) >̂ 3.

This proof rests on the observation:

(5.2) If R= S Λ Σ t i β% is simple then βι = β2 == /S3 = 0.

(The converse is trivial but not needed.) If

1

then

Σ_ _ fc6βlifc6 = β l β Λ [/36β45 - / S 1 ^ + β ω ) ] .
l<i<A<6

Therefore one of the Plϋcker relations for R is

0 = α1624α1635 - α1623α4165 + α1625α4613 = (β1)2 .

Similarly, β2 = /33 = 0.
Assume S were reducible, S = vm + ^456 (where again vijk = v4 Λ

Vy Λ f̂c) with v4 = Σ L i iS*efc. Then S Λ v< is simple, so that by (5.2)
β\ = 0 for fc <: 3, whence

S = [det (#+*) + det (/33

3ΐi)]^56 ,

which is false because § A e6 = β1456 ^ 0.
To show iV^, 6, 3) <̂  3 we need the lemma:

(5.3) Given R{ e Vi{F){i = 1, , m) ίΛere are X^ei^ and ^ 6
G\{F){i = 0, m) sucft ίΛaί Λ< = i?4 + λίi?0(ί = 1, , m)

If ^ is simple then i^ = 5<, \ = 0 will do, so we assume that no
Ri is simple. Gg is a quadratic cone and a hypersurface in Vl(F).
Therefore, Ro e G2 exists such that the tangent hyperplane of G\ at
Ro does not contain any Ri9 and no line through R{ and i?0 intersects
G\ (as a locus in Vt completed to a projective space) at infinity. Then
the line through Ri and Ro intersects G\ in a second point R\ so that

This argument does not require extending F because it amounts to
solving a quadratic equation of which one root is F.
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Now let R = Σi<;ί<i<^6 oci5keijk e V%{F) be given. A simple calcul-
ation shows that either R e Vξ{F, 2) or a base {e"J exists in terms of
which

R = Σ /3ίi5ei3 5

with Si e F2

4. By (5.3) there are Si e G\ and λ; e i*7 such that

R = (Sλ + \So) Aeδ + (S2 + X2S0) A eβ

= S,Ae5 + S2Λeβ + S0Λ (\eδ + λ2e6) e V3

6(F, 3) .

Thus:

(5.4) N(F, 6, 3) - 3 .

By a similar argument we prove

(5.5) 3 ̂  N(F, 7, 3) £ 5 .

The left inequality follows from 3 = JV(6, 3) ^ iV(7, 3), see (2.8).
For the right inequality one shows (see [1, p. 90]) that either Re
Vl{2) or with a suitable base {ej

R= Σ /3^V ί i5+ Σ / 3 ί i 6 ^ 6 + Σ βiύ7eiύ7 + Σ /3 ί 6 7^6 7 .
l^i<i^4 l^i<^4 l^i<i^4 i

The last sum is simple and applying (5.3) to the first three terms on
the right yields N(F, 7, 3) ^ 5. This method does not extend to N(n,
3) with n > 7.

We now study a special type of, R e Vξ{C) which will confirm
some of the important assertions made previously.

Let Y be the set of triples

Y = {123, 126, 135, 156, 234, 246, 345, 456}

and suppose that the a1, Ie Y, satisfy the inequalities

^123^156 + ^126^135 φ Q ? ^123^246 _j_ u™^ φ Q ,

(5.6) ama™ + α 1 3 5α 2 3 4 Φ 0 , amam + aU6a™ Φ 0 ,
^135^456 + ^156^345 φ Q ^ ^^6^456 + ^156^246 φ Q ?

and that the roots λ, μ of

(5.7) (a123x - α234)(α156ίϋ - α456) + (a126 x + α246)(α135£ + α345) = 0

are distinct. They are different from zero.

THEOREM 5.8. If R = Σ/er α 1 ^ e F3

6(C) α^d ίfee a1 satisfy (5.6),
β = Rβ + Rr, Rβ = Σ/€Γ βτel9 Rr = Σ/er 7Jβ/, w/̂ erβ i2^ αnώ i?r

simple with Rβ A Rr ̂  0. Hence the representation Rβ + i?r is
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unique (by (4.4))
If λ, μ are the solutions of (5.7) then the β1 and γ7(/e Y) are

given by

βiίj _ tl(X a jiij _ if AjCX

μ — λ μ — X '

No β1 or T Z (/G Y) vanishes.

This representation was found by using Plucker relations (see [1,
pp. 98-106]), but after it is explicitly given one readily verifies that
Rβ and Rr are simple and that Rβ A Rr Φ 0. In fact, it is easy to
factor Rβ and Rr, see [4, p. 21]: Since β1 Φ 0 if IeY, letting v =
(βm)-2/3 we find

Rβ = uΛvΛw = Σu% A Σv% A Σw%

with

(see also [1, p. 102]), and similarly for Rr.
First we confirm the statement in the introduction that irreduci-

bility may depend on the field.

(5.9) If the a1 in (5.8) are real and λ, μ are not, then R e Wi(C, 2)
but Re W!(R, 3).

For because Rβ + Rr is unique, R e F3

6(i?, 2) is impossible, and
this with N(R, 6, 3) = 3 entails the assertion.

Next we observe that the vector

R(V) = β i Λ (e2 + e5) A e6 + eγ A e3 A e5 + ^β2 Λ e4 Λ e6

+ (e2 + eβ) Λ e3 Λ β4 (̂ 7=7̂  0)

is a special case of (5.8) and that λ, μ are real when η < 0. Letting
η —> 0~ we find

β(0~) = βi Λ (e2 + eβ) Λ e6 + e : Λ β3 Λ e5 + (e2 + e6) Λ β3 Λ β4

which by (5.1) lies in Wξ(R or C, 3). Therefore:

(5.10) The sets Vξ{R, 2) rβsp. F3

6(C, 2) are πoί cZosβrf in Vξ{R)
resp. Vξ{C).

Theorem (3.2) whose proof used (5.10) is therefore completely
established.
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We now prove a surprising fact for C which has no analogue for
R (see (6.3)):

(5.11) The interior of Wξ{C, 3) as a set in Vl(C) is empty.

We show that if R = R, + R2 + iϋ3, R* e G\{C), is irreducible then
it is the limit of elements in Vξ{C, 2).

Ri and R,(i Φ j) have no nonvanishing 2-vector as a common factor,
because R4 + Rό would then be simple. Thus two cases are to be
considered:

( 1 ) Ri Λ R3 Φ 0 for some i, y, say Rx A R2Φ 0,
( 2 ) i^ and Rά have for i Φ j & vector vk Φ 0 (but no 2-vector ^

0) as a common factor where (i, y, fe) is a permutation of (1, 2, 3).
In the latter case the vt are either parallel or no two Vi are

parallel. If they were parallel we could choose eQ parallel to the Vi
so that R = S A e6 with Se VFί{C), and ΣRt would be reducible since
N(F, 5, 2) = 2. If no two ^ are parallel then with suitable u{

Rx = u : Λ v2 A vB, R2 = ^2 Λ Vi Λ v3, i?3 = ^ Λ ^i Λ ^ •

The vectors w<, ̂ y are independent, for otherwise ΣRi would be a 3-
vector in a space of dimension less than 6 and by N(F, 5, 3) = 2
reducible. The proof of (5.10) shows R can be approximated by elements
of Vϊ{C,2).

In case (1) there are vectors wu , w6, vu vz, v3 such that wu w2,
wB are parallel to Rl9 wiy w6, w6 are parallel to R2, R3 = vλ A v2 A vd and

Vl = a1w1 + α4^4, v2 = a2w2 + α5^5, v3 = α3î 3 + α6^6 .

If ΛS^Wί^O then Λ = Σ/6F^ 7 ^/ and ΠS=i α< =̂  0 is equivalent to
(5.6), so we have a special case of (5.8) (see [1, p. 83]) and hence Re
Vl(C, 2) contrary to the hypothesis. If AS=i w* = 0 and/or ΠS=i α» = 0
we can choose w\ and α arbitrarily close to w{ resp. α< such that
A?=1 wl Φ 0 ΠS=i αί ^ 0 and XΦ μ, so that β is the limit of elements
in F3

6(C,2).
For fcr ^ n let Z?(F, k) be the set of R = Σ t i Ri ™tth A*=i ̂  ^

0. Then Z?(F, k) c TΓ?(F, ft) by (2.10).

(5.12) Z?CR ^esp. C, fc) is cίewse m F?(Λ ^e^p. C, fc).

This is nearly obvious: If R = YJi=ι Ri e Zn

r{j), j < k, then jRi+1,
, Rk exist with A*=i -22*̂ =0 and

= lim (5 + δ Σ Λ<) as δ -> 0 .

If 5 = Σί=i Ri 6 W?(ί), i ^ &, Λl=i Λ* = 0 and Rt = Λί=i v( i_1)r+i then
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Wi—+Vi w i t h Aίιwi =£ 0 exis t a n d Σ ί = i Λί=i w ( i_1 ) f.+ A—»jβ.

Because

V!{C) = Z!(C, 2) U F3

6(C, 2)IZξ{C, 2) (j W7(C, 3) ,

(5.11,12) show that ZH(C, 2) is dense in V!{C), so that V!(C)/Z!(C, 2)
has no interior points, and hence has dimension less than 40 ( =
dim F3

6(C)), see [2, p. 46]. In the next section we will see that ZI(C, 2)
is open. Thus

(5.13) The set Zξ(C9 2) is open and dense in V£(C), hence

VΪ(Q/ZΪ(C, 2)

is closed and dim ZI{C, 2) = 40, dim Vξ(C)/Zi(C, 2) < 40.

Note that Wξ{C, 3) c Vξ{C)IZI{C, 2) and that therefore the closure
of W*(C, 3) has dimension less than 40.

6. The sets Zt(R resp. C, 2) and W3

6(R, 3). We now prove that
Z\{R resp. C, 2) is open. Actually our next theorem provides much
more information which will allow us to show that Wl(R, 3) has a
nonempty interior.

THEOREM 6.1. Let F=R or C. If Rl9 R2e Gξ(F) and R,/\R2Φθ
then there is a neighborhood U(R0) of Ro = Rx + R2 in V$(F) such
that for R e ϋ(R0) there are simple R[, R[ with R = R[ + R[. Further-
more, given neighborhoods Ui(Ri) of R{ in Gl(F) there is a neighb-
orhood U'(R0) c U(R0) such that R e U'(R0) implies R\ e Ui(Ri) and
R[/\R'2Φ 0. Consequently Re Zξ(F, 2) and by (4.4) R[ + R[ is unique.

Necessary for (6.1) to work is that Gl x Gl and Vξ have the
same dimension, which is the case because α-dim G> = r(n — r) + 1,

α-dim V? = (fy and 2[3(6 - 3) + 1] = 20 = (f). But this argument

is far from sufficient as similar situations for other dimensions show;

the structure of Gl enters.
Since Rί Λ R2 =£ 0 we can choose a base so that iJL = β123, R2 = em.

A neighborhood of JBX on Gl consists of the simple R[ = Σβτeτ =
Σî ί<i<A:g6 βίjkeijk with /S123 close to 1 and the remaining β1 close to 0,
so βm Φ 0 may be assumed. Similarly for R'2 = Σy^j and τ456 ^ 0. The
components of -Ko are 1,0, , 0, 1.

The special properties of Gl arise from the Pliicker relations which
(see [1, p. 69]) with λ = (/5123)"1 are equivalent to
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β%9h = ± λ ^ i g 3, 4 ̂  j < A; ̂  6, (i, p, σ) = π(l, 2, 3) ,

£124 ^125 £ 1

ygiw £135 £ 1= λ 2

Similarly with μ = (γ456;

7"* = ± ί« 7 , 1 7 1 1 S i < 3 Π 3, 4 ̂  A; ̂  6, (p, σ, k) = ττ(4, 5, 6) ,

= c.

If now Σa'ej = R = R[ + R[ = Σβ'βj + Σj'βj then a1 = /Sz + 7J, and

substitution gives

rγiσk

,γl45

^146

ry245

7 2 ί 6

rγ256

Λ^345

7 3 4 6

/y356

123 = £ 1

^ = + λ
-iσj βi

^Ki^3,4^ί;^6,(ftσ,i;) = ττ(4, 5, 6) ,

^ 6 , ( i , p , σ ) = τr(l, 2, 3),

Thus the 20 components of R are expressed in terms of /5123, the
nine β1 with 1 ̂  % ̂  3, 4 ̂  j < fe ̂  6, the nine γ7 with l ^ ΐ < i ^ 3 , 4 ^
k < 6, and 7456. Evaluation of the functional determinant at (1,0, ,
0, 1) gives the value 1. Therefore, the implicit function theorem is
applicable and yields the assertion. The details of the calculation may
be found in the thesis, [1, pp. 93-97].

As a corollary we have

(6.2) The set Z!(R resp. C, 2) is open in VI{R resp. C).

But in contrast to (5.11):

(6.3) The interior of Wξ{R, 3) is not empty.

For take any Ro = Σ/6F^zβi of (5.8) for which the a1 are real
but λ, μ are not. Then

Ro = Rβ + Rr with Rβ A Ry Φ 0 .

By (6.1) for R e U'(R0) c Vξ{C)



32 HERBERT BUSEMANN AND D. EDWARD GLASSCO II

R = R[ + R[ with R[ A R[ Φ 0, R[ close to jβ, and R[ close to Rr

so that R[ and Rf

2 cannot be real either. Also R[ + R[ is unique by
(4.4) and this implies as in the proof of (5.9) that

R e Wξ(R, 3) for R e U'(R0) Π V*{R) ,

where we consider V\{R) as a subset of F6

3(C).
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COUNT ABLY COMPACT GROUPS AND FINEST
TOTALLY BOUNDED TOPOLOGIES

W. W. COMFORT AND VICTOR SAKS

The first main result formalizes the general principle that
each totally bounded group G is dense in some group H, not
much larger than G, in which every subset of small cardi-
nality has a complete accumulation point. For example: If
G is totally bounded and \G\ = n ̂  ^0» then G is dense in a
countably compact group H such that \H\ ̂  n**o. A corollary:
If K is an infinite compact group with weight not exceeding
2", then K contains a dense, countably compact subgroup H
with I iί | ^ n*o.

The following results are given in §2: If t is the finest
totally bounded topological group topology on an infinite
Abelian group G, then every subgroup of G is ^-closed and
(G, t) is not pseudocompact (both conclusions can fail for G
non-Abelian); a closed subgroup of a pseudocompact group
need not be pseudocompact; if {(G<, U}: iel} are nontrivial
Abelian groups with their finest totally bounded topologies
and (G, J7~) is their product, then J7~ = t if and only if

\i\ < No.

1* Countably compact groups* Throughout this section the
word group refers to a topological group which satisfies the Hausdorff
separation axiom. Such spaces are known to be completely regular
topological spaces. A group is said to be totally bounded if for each
non-empty open subset U of G there is a finite subset {xk: k < n} of
G for which G — \Jk<n%k U. Each subgroup of a compact group is
totally bounded, and Weil [26] has shown the converse: Each totally
bounded group G is (homeomorphic with) a dense subgroup of a compact
group and this compactification is unique to within a topological iso-
morphism leaving G fixed pointwise. We refer to this compactification
of G as the Weil completion of G, and we denote it by the symbol G.

A completely regular Hausdorff space X is countably compact if
each of its infinite subsets has an accumulation point, and pseudo-
compact if each continuous, real-valued function on X is bounded
(equivalently: each locally finite family of open subsets of Xis finite).
It is easy to see that each countably compact space is pseudocompact,
and (as in [6], for example) that each pseudocompact group is totally
bounded. Examples abound of pseudocompact groups which are not
countably compact; see for example Kister [18] or H. Wilcox [28].

A number of theorems in the works of Itzkowitz [16], [17], and
H. Wilcox [28] are devoted to showing that (in various settings and

33
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under various hypotheses) between a totally bounded group G and its
Weil completion G there is a pseudocompact group which is in a certain
precise sense not much larger than G. The principal result of this
section is a theorem of compactness type which has a number of
corollaries improving these results. We show, specifically, that the
groups of Itzkowitz and H. Wilcox may be chosen countably compact.

Notation. If m is a cardinal and S is a set, then

&n(S) = {AaS:\A\ <m} .

If m and rt are cardinals then

π 5 = Σ {n?: ϊ is a cardinal and f < m] .

It is well-known and easy to prove that if m and tι are infinite
cardinals and m <^ π+, then

(Here as usual, the symbol rt+ denotes the smallest cardinal greater
than n.)

Recall that if X is a space and F c l , then a point p of X is a
complete accumulation point of Y provided that

\UΠY\ = \γ\

for each neighborhood U oί p in X. It is obvious that if X is compact,
then each infinite subset of X has a complete accumulation point in X.

The weight and density character of a space X are denoted w l
and dX, respectively.

DEFINITION. Let m and n be cardinal numbers with ^ 0 ^ m < it.
The space X is [m, tΐ]-compact in the sense of complete accumulation
points provided: If 7 c l and m ^ \Y\ < tt, then F has a complete
accumulation point in X.

The term we have just used is often defined as above except that
it is required that \Y\ be a regular cardinal. Even this weaker property
is strong enough to yield a compactness condition of covering type;
in the interest of completeness we give a proof below. For positive
results in the converse direction, see Alexandrofϊ and Urysohn [2]
and Aleksandrov [1], and for negative results in the converse direction
see Mishchenko [21].

We note that in our terminology the spaces which are [V$o, fc$i]-
compact in the sense of complete accumulation points are the countably
compact spaces: each countably infinite subset has a (complete) accumu-
lation point.
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PROPOSITION. Let m and n be cardinal numbers with #0^m < n
and let X have the property that if Yd X and m <; | Y\ < it and \ Y\
is regular then Y has a complete accumulation point in X. Then for
each open cover ^ of X such that m <, | <2S | < tt and \Ϋ/\is regular,
there is a cover T c ^ and \T\ < \ *%f |.

Proof. Suppose that ^ = {Uζ: ζ < | ^ | } is a counterexample, and
for ξ < 1^1 choose recursively ί ) { e l and f(ζ) < \%f\ as follows:

(i) poeX\Uo and p0e Z7/(o);
(ii) if p7 and f(r/) have been defined for all η < f, then

U ϋ>(9)) and ^ e ϋ>(e) .

Then with Γ = {̂ : f < | ̂ /1} we have | F | = | ̂  | so there is a complete
accumulation point p of Y in X If 37 is chosen so that p e Uη9 then
there exists ζ > η such that pξe Uη. This contradiction completes
the proof.

THEOREM 1.1. Let G be a totally bounded group such that \G\ =
rt ^ ^o and let m be a regular cardinal for which m rg rt+. Then
there is a group H, with G c H c G , such that H is [^0, m]-compact
in the sense of complete accumulation points and \H\ g π-.

Proof. For A e &m(G) with | A \ ̂  ^ 0 let pA be a complete accumu-
lation of A in G, and for SaG let

F(S) = S U {p,: A G ̂ m (S), i A| ^ «0}

and for SczG let <$> denote the subgroup of G generated by S.
Now let Ho = G and i^ = (F(H0)y and recursively, if f < m and

JE^ has been defined for rj < f, let

We show by induction \Hξ\ ^ π^ for <f < in. This is true for ξ
0 because

\HQ = it ^ π™

and for f = 1 because

If \Hη\ ^ n3 for 97 < f then H J ^ e ^ l ^ |c | ns = ns, so

|F(UH 9)l^(ti2)5 = n5;

this last equality holds because m is regular (see Bachmann [3], pp.
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152-153). Thus \H,\ ̂  n5.
Now let

H=[JHt.

Then H is a group and GaHaG and

IJEΓ| ^

And if A e &m{H) with | A | ^ y$0 then because m is regular there is
ξ < m such that A c Hζ, and we have

thus if is [y 0̂, m]-compact in the sense of complete accumulation points.
Our first corollary, but with "pseudocompact" in place of "countably

compact", was given in the general case by H. Wilcox [28] and earlier,
for Abelian groups G, by Itzkowitz [16], [17].

COROLLARY 1.2. Let G be a totally bounded group such that \G\ —
n ^> y$0 Then there is a countably compact group H such that G c
HczG and \H\ ̂  n*°.

Proof. This follows from Theorem 1.1, upon taking m = y^.

COROLLARY 1.3. For each infinite cardinal π there is a totally
bounded group H which is [^0, n

+]-compact in the sense of complete
accumulation points but not compact, and for which dH ̂  π and
H\ £ 2\

Proof. Let K be the compact group 22\ According to a well-
known result of Hewitt [11] and Pondiczery [22] there is a dense
subset S of K with |S | = n. Let G be the subgroup of K generated
by S, so that | G| = tt and K = G by Weil's theorem. The result now
follows from Theorem 1.1, upon taking m = n+ and noting that

x\5 = rtπ = 2" .

COROLLARY 1.4. There is a separable, countably compact group
which is not compact.

Proof. This is the case n = ^ 0 of Corollary 1.3.

COROLLARY 1.5. Let n be a cardinal and let K be a compact
group such that \ξ0 ̂  wK ^ 2\ If m is a regular cardinal for which
m ^ n+, then K contains a dense subgroup H which is [^0, vn\-compact
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in the sense of complete accumulation points such that | H | ^ π£.

Proof. According to Kuzminov [20] there is a continuous function
/ from the compact group 2wK onto K. (For an English-language proof
that K is the continuous image of 2" for some cardinal rt when K is
compact and Abelian, see Hewitt and Ross [12], pp. 423-424. That
n may be chosen to be wK follows from general topological con-
siderations as in Engelking [9] p. 162.) Again by the theorem of
Hewitt [11] and Pondiczery [22] there is a dense subset D of 2wK

with \D\ ̂  n. Then f[D] is dense in K, so there is a dense subgroup
G of K such that \G\ = rt. Then K = G by Weil's theorem, so the
result follows from Theorem 1.1.

The following two corollaries, with "countably compact" in place
of "pseudocompact", are given by H. Wilcox [28]. The first of these
is given by Itzkowitz [16], [17] for the case in which K is Abelian.

COROLLARY 1.6. Let n be a cardinal and let K be a compact
group such that ^ 0 ^ wK ^ 2Π. Then K contains a dense, countably
compact subgroup H such that \H\ ^ n**°.

Proof. This follows from Corollary 1.5, upon taking m = ̂ x .

We note that Corollary 1.6 may be proved by appealing to Wilcox's
theorem in place of the result of Kuzminov. If K is given as in
Corollary 1.6 and H is a dense, pseudocompact subgroup of K with
|jff| <; n*° (as afforded by H. Wilcox [28]) then according to Corollary
1.2 above applied to the pair {H, K) there is a countably compact
group H' for which

HcH' dH= K

and \H'\S (n*°)*° = rt*°.

COROLLARY 1.7. Assume the generalized continuum hypothesis. If
n is a cardinal and K is an infinite compact group such that \K\ —
22Π, then there is a dense, countably compact subgroup H of K such
that \H\ ^rt*°.

Proof. It is known that \K\ = 2wK. (A direct proof is given by
H. Wilcox [27]. Earlier Hulanicki [14] [15], using essentially an
argument of Cech and Pospίsil [4], showed that |JBΓ| = 2ΘK where ΘK
denotes the smallest cardinal which is the cardinality of a family <%/
of open subsets of G such that | Π ̂  I — l Since ΘK — wK—see
Hewitt and Ross [13], pp. 99-100—we have again \K \ = 2wK.) From
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the generalized continuum hypothesis it follows that wK = 2", so
Corollary 1.6 applies.

We have shown in this section that several of the pseudocompact
groups considered in [28] may in fact be taken to be countably
compact. We close with an example showing that not all of the
conclusions of [28] may be strengthened in this manner.

We continue the notational convention used earlier: If G is a
group and S c G , then (S) denotes the subgroup of G generated by
S. For xeG we write (x) in place of ({x}}

Here and later the symbol T denotes the circle group

T = {z: z is a complex number and \z\ = 1} ,

and Q is the "rational subgroup" of T— i.e.,

Q = {z e T: arg z is rational} .

DEFINITION. Let G be a group and x e G. Then x is a metric
element of G if c\G(x) is metrizable.

THEOREM 1.8. Let M be the set of metric elements of the group
T*1. Then M is not a countably compact group.

Proof. We have Q c T, and hence Q*1 c T*1. It is easy to see
that every element of Γ*1 is the limit of a sequence of elements of
QKl. (In detail: Let pe T*1 and for ξ < y$: and each integer n > 0
let q1^ be chosen in Q so that

\qr - pξ\<lln.

Then q{n) e Q*1, and q{n) —> p.) Thus it suffices to show
(a) Q^dM; and
(b) M S Γ * \
For (a) let xeQ*1 and let S c ^ d have the property that | S | ^

y$0 and for each ί < i^i there is η e S such that xξ = xη. We claim
that the natural projection π: TKl—> Ts is one-to-one on <#>. If xm Φ
xn there is ξ < fc^ for which xf Φ xn

ζt and then choosing rj e S such
that xζ — xη have

(π(x"))η - {xm)η = (x% Φ {x% = {x% = (π(xn))η

thus π(xm) Φ π(xn) and the claim is established.
We claim next that π is one-to-one on the closure in T*1 of (x}.

Indeed if p, q e cl {x} with pζ Φ qζ for some ζ < ^ L , then upon choosing
Ύ] G S such that xζ = xη we note that the projections πξ and πη from
T*1 onto Tξ and Tη respectively agree on x, hence on (oo), hence on
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cl <&>, hence at p and q. Thus

(π(p))η = πη(p) = πζ(p) = pξ Φ qζ = πξ{q) = πη(q) = (π(q))v ,

so π(p) Φ τc(q).

Thus π is a one-to-one, continuous function from the compact
group cl (x) into the metrizable group Ts.

Thus the function π, when restricted to the compact group cl (x),
is a one-to-one continuous function into the metrizable group Ts.
This restricted function is then a homeomorphism, cl (x} is metrizable,
and x e M. Assertion (a) is proved.

For (b) it suffices to cite from [12] pp. 407-408 the familiar fact
that there exists x e ΓK l such that cl <x> = T*1. Since ΓX l is not
metrizable, we have x e T^M.

2. Finest totally bounded topologies. Throughout this section
the word group refers simply to a non-empty set together with a
multiplication and inversion satisfying the usual group axioms; no
topology is assured. Topological groups are denoted by the symbols
(G, J7~), (G, t) and the like. It is assumed that these satisfy the Haus-
dorff separation axiom.

It is known (see for example Dixmier [8], p. 296 if.; Kurosh [19],
p. 157; von Neumann [25]; T. Wilcox [29]; and Hewitt and Ross [12],
pp. 348-351) that there are groups G with the property that for no
topology J7" on G is (G, ̂ ~) a totally bounded topological group.
But if G is an Abelian group then, because there are sufficiently many
homomorphisms from G to the circle group T to separate points of G,
the group G may be embedded algebraically into a product of copies
of T and therefore there is a totally bounded topology ^Γ on G
relative to which (G, ̂ ~) is a topological group. According to Comfort
and Ross [5], the totally bounded group topologies on the Abelian
groups G are precisely the topologies induced on G by point-separating
group of homomorphisms into T; the finest such topology is the one
induced by the group of all such homomorphisms.

It is well-known [8] that if a (not necessarily Abelian) group G
admits a totally bounded group topology J7~ then it admits a (neces-
sarily unique) finest such topology. We denote this latter topology
on G, when it exists, by the symbol t. It is not difficult to see that
(G, t) has the property that each homomorphism from (G, t) to a
totally bounded group is continuous. Indeed t may be defined as
follows: Let {(Hif /<): i e 1} be a listing of all pairs (H, f) with H a
totally bounded topological group and / a homomorphism from G onto
a dense subset of H, and let

e:G >P= UiezH,
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be defined by the rule

= fi(χ)

then e is a one-to-one map because (G, id) is one of the pairs (Hi9 /*),
and t is the topology induced on G (more precisely: on e[G]) by P.

It is clear from the foregoing remarks that the finest totally
bounded group topology t on G is characterized by the property that
each homomorphism from G to a totally bounded group is ί-continuous.

In this section we prove that for each infinite Abelian group G
the topological group (G, t) is not pseudocompact. This improves
an observation made in 1,8 of [5]. We show also that a product of
infinitely many nontrivial totally bounded Abelian topological groups
does not have its finest totally bounded topology.

LEMMA 2.1. Let G be an Abelian group and H a subgroup of
G. Then H is t-closed in G.

Proof. If x e G\H then H and xH are different elements of G/H
so there is a homomorphism X from G/H into T such that X(xH) Φ 1.
If φ denotes the natural mapping from G onto G/H then X°φ is a
homomorphism from G to T and

The result now follows from the fact that X°φ is ^-continuous, so
that (Xoφy^l}) is a closed subset of (G, t).

THEOREM 2.2. Let G be an infinite Abelian group. Then (G, t)
is not a pseudocompact topological group.

Proof. It is well-known and easy to prove from standard struc-
ture theorems (see for example [12], page 227) that there is a sub-
group H of G such that | G/H\ = #0. If (G, ί) were pseudocompact then
G/H in the usual quotient topology would be pseudocompact (being the
continuous image of G), a Hausdorίf space (because H is closed by
Lemma 2.1), and countable. Since G/H is a pseudocompact, Lindelof
space it is countably compact ([10], Exercise 3D); indeed, it is compact
([10], Theorem 8.2 and Exercise 5H). But this is impossible, since
an infinite countably compact group has cardinality at least 2*° ([12],
page 31).

REMARKS 2.3. (a) An early version of this paper showed only
that (G, t) as in Theorem 2.2 could not be countably compact, and
left unsettled the question whether (G, t) might be pseudocompact.
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We are grateful to Lew Robertson for formulating the argument
given above, which shows in effect that a pseudocompact group never
contains a closed, normal subgroup of countably infinite index.

(b) If the word Abelian is omitted from Lemma 2.1 or from
Theorem 2.2, the resulting statements are false. It has been pointed out
to us by Lew Robertson that according to a result of van der Waerden
[24] the real, special orthogonal group SO(3, R), which is an infinite,
compact, connected, Lie group, admits no discontinuous homomorphism
into any compact group. (It follows from (22.13), (22.14), and (22.22.h)
of [12] that the complex special linear group SL(2, C) admits no
algebraic isomorphism, continuous or discontinuous, into any compact
group. Such a group is said to be minimal almost periodic; see [25].)
According to the discussion preceding 2.1, then, this compact, metric
topology on the (non-Abelian) group SO(3, R) is the finest totally
bounded topology t on SO(3, R). Since SO(3, R) contains copies of
T— and hence also non-closed copies of Q—not every subgroup of
SO(3, R) is ί-closed.

There is another property relating to finest totally bounded
topologies which, though it fails for the non-Abelian group SO(3, R),
holds for each Abelian group: According to Theorem 2.2 those closed
copies of T inside SO(3, R) do not inherit their own finest totally
bounded topology. But if H is any (necessarily ^-closed) subgroup of
a topological group (G, t) with G Abelian then the topology induced
on H is its finest totally bounded topology. To prove this it suffices,
according to Theorem 1.7 of [5], to show that each homomorphism
f:H—*Tis continuous in this induced topology. Because T is divisible
such a homomorphism / extends to a homomorphism / : G •—> T; since
/ is ^-continuous on G its restriction to H is also continuous.

Our next result answers a question suggested by 2.1 and 2.2.
The construction follows an argument given in Theorem 2.3 of [28],
and is clearly susceptible to substantial generalization.

THEOREM 2.4. There is an Abelian pseudocompact group with a
closed subgroup which is not pseudocompact.

Proof. Let K = Γ* and let

H={xeK:\{ζ< «,: xξ Φ 1}| ^ «0} .

(H is an example of what Corson [7] calls a J-space.) That H is
countably compact is seen as in [7] or [18]: If AczH and
then for some countable subset S of y^ we have

Ac(Π f β 5 Γ { ) x I L K Λ S W ^ ^ '
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so that each countable subset of H is contained in a compact subspace
of H.

Let ze T have the property that zn Φ 1 for each integer n and
let p be that element of K for which pξ = z for all ξ < y$x; and let
J denote the subgroup of K generated by p.

Now let G be the subgroup of K generated by H and J. Clearly

( * ) G = {x e K: | {ξ < ^ αe =£ zn) | ^ fct for some integer n) .

We complete the proof by showing
(a) the group G is pseudocompact;
(b) J is a closed subgroup of G; and
(c) J is not pseudocompact
For (a) we note that H is dense in G (because HaGa K andiϊ

is dense in K) and that H is countably compact and hence pseudo-
compact. Thus G is pseudocompact.

For (b) we note that since the subgroup of T generated by z is
dense in Γ, we have

(**) c l * J - {x e K: x ξ = x η for a l l ξ,η< N J .

From (*) and (**) it follows that

so that J is closed in G.
For (c) we note that J is (homeomorphic with) the group [zn e T: n

is an integer}. This countable, infinite group is obviously not pseudo-
compact.

The proof is complete.

THEOREM 2.5. Let {(G^t^iiel) be a family of groups Gι each
with its finest totally bounded topology t{. If \I\<\$0 and (G,^)
is the product of the spaces (G, , t{), then the totally bounded topology
j ^ is the finest totally bounded group topology for G.

Proof. It suffices to treat the case I = {1, 2}. Let / be a homo-
morphism from G = G, x G2 to a totally bounded group H, and let
U be a neighborhood in H of the identity e of H. Let V be a
neighborhood of e such that V2 c U, and let f1 and f2 be defined from
Gλ and G2 respectively to H by the rules

Because ^ and t2 are the finest totally bounded topologies on Gx and
G2 respectively, the homomorphisms /\ and f2 are continuous. Thus
there are neighborhoods W, and W2 of the identity elements eι and e2
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such that

fλWάaV and / 2 [TF 2 ]cF.

It is now clear that

f[Wx xW2]aV2czU.

We conclude that / is continuous on (G, J7~). Thus J7~ is the finest
totally bounded topology for G.

Our final result is in contrast with Theorem 2.5.

THEOREM 2.6. Let {(Gi9 J7~i): ie 1} be a family of totally bounded
Abelian groups with |G<| ̂  2 for iel. If \I\ ^ ^ 0 and {G, J7~) is
the product of the spaces (Gif ^~,), then the totally bounded topology
J?~ is not the finest totally bounded group topology for G.

Proof. Let e{ be the identity element of Gif and let

H={xeG:\{ίeI:xiΦei}\ < * U

Then H is a dense, proper subgroup of (G, J7~). The result now
follows from Lemma 2.1.
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MAXIMAL INVARIANT SUBSPACES OF STRICTLY
CYCLIC OPERATOR ALGEBRAS

MARY R. EMBRY

A strictly cyclic operator algebra Sf on a complex
Banach space X(dim X ^ 2) is a uniformly closed subalgebra
ot£f(X) such that S/x = X for some x in X. In this paper
it is shown that (i) if S/ is strictly cyclic and intransitive,
then S/ has a maximal (proper, closed) invariant subspace
and (ii) if i e ^ ( I ) , A Φ zl and {AY (the commutant of A) is
strictly cyclic, then A has a maximal hyperinvariant subspace.

1* Notation and terminology* Throughout the paper X is a
complex Banach space of dimension greater than one and J*f(X) is
the algebra of continuous linear operators on X. Stf will denote a
uniformly closed subalgebra of £f{X) which is strictly cyclic and x0

will be a strictly cyclic vector for Suf: that is, StfxQ = X. We do not
insist that the identity element / of J5f(X) be an element of

If & c £f{X), then the commutant of & is &' = {#: # e
and JEB = BE" for all B in ^ } . We shall use the terminology of
"invariant" and "transitive" as follows: if Mc X and ^ c ^ ( J ι ) ,
then (i) ikf is invariant under & if &M = {Bm: Be ^ and m e ikf} c
M, (ii) Λf is an invariant subspace for ^ if M is invariant under
& and Λί is a closed, nontrivial (Φ {0}, X) linear subspace of X,
(iii) έ%? is transitive if ^ has no invariant subspace and intransitive
if ^ has an invariant subspace. Further, if A e J*f(X) and {A}' is
intransitive, then each invariant subspace of {A}' is called a hyperin-
variant subspace of A. Finally an invariant subspace of & is maximal
if it is not properly contained in another invariant subspace of ^ .

2* Introduction. Strictly cyclic operator algebras have been
studied by A. Lambert, D. A. Herrero, and the auther of this paper,
(See for example [2]-[6].) One of the major results in [2, Theorem
3.8], [3, Theorem 2], and [6, Theorem 4.5] is that a transitive sub-
algebra of J*f(X) containing a strictly cyclic algebra is necessarily
strongly dense in £f(X). In each of three developments the following
is a key lemma: The only dense linear manifold invariant under a
strictly cyclic subalgebra of Jίf(X) is X. In Lemma 1 we shall
present a generalization of this lemma which will be useful in the
study of maximal invariant subspaces and noncyclic vectors of a
strictly cyclic algebra

LEMMA 1. If M is invariant under s%? and x0 e M9 then M = X.
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(It should be noted that we do not require M to be linear nor do
we require, as was done in Lemma 3.4 of [2], that IeJ&l The proof
given here is a slight modification of that given in [2].)

Proof. We shall show that s^xQ c M and thus X = Ssfx0 c M.
Let {xn} be a sequence in M such that l im^^ xn = xQ. By [2, Lemma 3.1
(ii)] there exists a sequence {An} in Szf such that Anx0 ~ xύ ~ xn

and lim^βo 11 Aft 11 = 0. Thus for n sufficiently large, \\An\\ < 1 and
(/ — A*)"1 = ΣΓ=o (^n)* Consequently, j ^ ( / — An)~γ c J ^ and since
xo = (I - An)~ιxn, we have J Λ O = sf{I - An)~ιxn c s^xn c ikf, as
desired.

For the sake of future reference we restate and reprove the
transitivity theorem.

THEOREM 1. If s^f is a strictly cyclic transitive subalgebra of
then j y is strongly dense in

Proof. Using Lemma 1 we can show (as in [2, Lemma 3.5]) that
each densely defined linear transformation commuting with S^ is
everywhere defined and continuous. Further, again using Lemma 1,
we can show that if Eeszf and zeσ(E), then either zl — E is not
one-to-one or does not have dense range. Thus if s^ is transitive,
necessarily E = zl. Consequently, it follows from [1, p. 636 and Cor.
2.5, p. 641] that S^ is strongly dense in

3. Maximal invariant subspaces* In [2, Theorem 3.1] it is
shown that every strictly cyclic, separated operator algebra Szf has
a maximal invariant subspace. ( jy is separated by x0 if A = 0
whenever A e S^f and Ax0 = 0.) Theorem 2 allows us to obtain the
same result without the hypothesis that S^f be separated, provided

is intransitive.

THEOREM 2. An intransitive, strictly cyclic subalgebra jzf of
Jzf(X) has a maximal invariant subspace.

Proof. Let ^/f = {M: M is an invariant subspace of J^}. By
hypothesis ^^Φ0. We shall order ^// by set inclusion and show
that each linearly ordered subset of ^£ has an upper bound in ^ C
To this end we let {Ma} be a linearly ordered subset of ^y/ί. Then
\JaMa is invariant under J>Λ By Lemma 1, if (J« Ma = X, then
\JaMa= X and consequently x0 e Ma for some value of a. Since this
last implies that X = S/xQ c s^Ma c Ma and contradicts the fact that
Ma is a proper closed linear subspace of X, we see that \Ja Ma is not
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dense in X. Thus (J« -M« is an element of ^ C and is an upper bound
for {Ma}. By the Maximality Principle ^£ has a maximal element.

Lemma 1 and the Maximality Principle can be combined to arrive
at other similar results. For example, (i) if s$f is intransitive and
strictly cyclic, then s$f has a proper maximal invariant subset (this
will be discussed further in §4) and (ii) if X is a Hubert space and
J%? has a reducing subspace (that is, an invariant subspace of Ssf
which is also invariant under j y * = {A*: AeSsf}), then s^f has a
maximal reducing subspace.

In [2, Theorem 3.7] it is shown that if A is not a scalar multiple
of I and {Ay is strictly cyclic, then A has a hyperinvariant subspace.
This result combined with Theorem 2 yields the following:

COROLLARY 1. If A is not a scalar multiple of I and {A}f is
strictly cyclic, then A has a maximal hyperinvariant subspace.

We shall now turn our attention to intransitive, strictly cyclic
operator algebras on a Hubert space X. If M is a closed linear
subspace of X, PM will denote the orthogonal projection of X onto M
and ML the orthogonal complement of M: ML = {y: (y, m) = 0 for all
m in M}. Furthermore, J ^ * = { A * : i e j / } .

In the Hubert space situation we are able to conclude that jy*/M
is strongly dense in ^f(Mλ) when M is a maximal invariant subspace
for j ^ . This remains an open question if X is an arbitrary Banach
space and is a particularly interesting one if X is reflexive. For in
that case if M is a maximal invariant subspace of jy, then M1 =
{x*:x*(M) = 0} is a minimal invariant subspace of

THEOREM 3. Let j y be a strictly cyclic operator algebra on a
Hilbert space X. If M is a maximal invariant subspace of jy, then

( i ) (/ - PM)Sf{I - PM)x0 = M1 and (ii) j y *(/ - PM) is strongly
dense in

Proof. Note first that (I - PM)S^{I - PM) = (I - PM)^f, so that
(i) is immediate. Since M is a maximal invariant subspace for j ^ M1

is a minimal invariant subspace for jy* . Thus each of j y * ( I — PM)
and (/ — PM)j^(I — PM) is transitive on ML. Thus the uniform closure
of (/ - PM)j^(I — PM) in ^f(Mλ) is transitive and by (i) is strictly
cyclic; hence by Theorem 1 (/ — PM)jzf(I — PM) is strongly dense in

which concludes our proof of (ii).

THEOREM 4. Let X be a Hilbert space, A e J*f{X) and {A}'
strictly cyclic. If M is a maximal invariant subspace for {A}',
then there exists a multiplicative linear functional f on {A}" such
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that for each E in {A}", (E - f(E)I)(X) c M.

Proof. As we noted in the proof of Theorem 3,

& = (I - PM){A}'(I - PM)

is strongly dense in £?(Mλ) and thus its commutant consists of the
scalar multiples of the identity operator on M1. Since {A}"c{A}'
and M is invariant under {A}', we know that (/ — PM){A}"(I — PM)
is contained in the commutant of & on M1 and hence (I — PM){A}"(I —
PM) c {z(I — PM)}. Thus for E in {A}", there exists a complex number
z such that (I - PM)E(I - PM) = z(I - PM). Therefore, (I - PM)(E -
zl) = 0 since M is invariant under {A}"; or equivalently (E — zI){X) c
M. Since M is a proper subset of X, it is now obvious that the
number z for which (E — zI){X) a M is unique. Define f(E) — z.

That / is linear follows immediately from the fact that f(E) is
the unique number for which (E — f(E)I)(X) c M. Furthermore, since
M is invariant under {A}", (FE - f(E)F)(X) c M for all E, Fe {A}".
Consequently (by uniqueness again), 0 = f(FE - f(E)F) = f(FE) -
f(E)f{F) and thus we see that / is multiplicative.

COROLLARY 2. Let A e ̂ ?{X) where X is a Hilbert space. If
the range of A — zl is dense in X for each complex z, then {AY is
not strictly cyclic.

Proof. Except for one minor technicality, Corollary 2 follows
immediately from Theorem 4. For, if {A}' is strictly cyclic and
intransitive, by Theorem 4 there exists a complex number f(A) such
that the range of A — f(A)I is contained in a proper subspace of X.
By Corollary 1 the only other way in which {Ay can be strictly cyclic
is when A — zl for some complex z, in which case the range of A —
zl is certainly not dense in X.

In [2, Lemma 3.6] and [3, Proposition 2], it is shown that if
£ e j / / where j^f is strictly cyclic and zeσ(E), then either zl — E
is not one-to-one or zl — E does not have dense range. Corollary 2
now adds to our knowledge of σ(A) where {A}' is strictly cyclic: in
this case we know that for at least one value of z, the range of
A — zl is nondense. Indeed we have the stronger result:

COROLLARY 3. Let Ae^f(X) where X is a Hilbert space. If
{AY is strictly cyclic, then there exists a common eigenvector for {A*}".

Proof. The case in which {A}' = ̂ f(X) is trivial. Thus we
assume Aφzl. By Theorem 4 if Ee{A}", there exists a complex
number f(E) such that (E — f{E)I){X) c M where I is a maximal
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invariant subspace of {A}9. Therefore, E*{I - PM)x0 = f(E)*(I - PM)x0

and (I — PM) x0 Φ 0 since x0 is cyclic for {A}' and M is a proper
invariant subspace for {A}'.

4* Noncyclic vectors of J%C In this last section of this paper
we shall discuss briefly several properties of the set of noncyclic vectors
of a strictly cyclic operator algebra Ssf. A vector x is noncyclic for
Szf if S/x is not dense in X. These results are summarized in
Theorem 5. Parts (i) and (iii) of Theorem 5 also are found in [5,
Theorem 2].

THEOREM 5. Let JV be the set of noncyclic vectors of a strictly
cyclic operator algebra J ^

( i ) if x£ N, then x is a strictly cyclic vector for j ^ ,
(ii) N is invariant under Jϊf,
(iii) JV is closed in X,
(iv) JV is the unique proper maximal invariant subset of Jϊf,
(v) if N is not linear, then JV + JV — X, where JV + JV = {x +

y:xf yeN}.

Proof, (i) If x ί JV, then jzfx — X and thus by Lemma 1 since
S^fx is invariant under j ^ we have Ssfx = X and x is strictly cyclic,
(ii) Assume that xeN and A e S$f. Then s*f Ax c Ssfx and consequently
SxfAx Φ X. That is, AxeN for each A in j%f which proves (ii)
(iii) By (ii) jzfNa N. Since szf has a strictly cyclic vector, we know
by Lemma 1 that N contains no strictly cyclic vector for Ssf. Thus
by (i) N contains only noncyclic vectors for J^, which says that JV is
closed, (iv) By (ii) JV is invariant under J ^ By hypothesis j ^ has
a strictly cyclic vector so that N Φ X. These two observations essen-
tially prove (iv) since an element a; of a proper invariant subset of
Szf is necessarily an element of JV. (v) If JV is nonlinear, then
since JV is homogeneous, we know that JV Φ JV + JV. Therefore, since
JV + JV is invariant under J^(by (ii) we know that JV + JV = X by
(iv))

To see that there exist strictly cyclic operator algebras for which
JV is linear and those for which JV is nonlinear let us reconsider
Example 1 of [2].

EXAMPLE. Let X be a Banach space, dim X ^ 2 and let x0 e X,
x0 Φ 0. Let each of x* and y* be a continuous linear functional on
X such that x*(xQ) = y*(x0) = 1. For each x in X define Ax by

Axy = x*(x)[y - y*(y)x0] + V*(y)%
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and let J ^ = {Ax: x e X}.
It was observed in [2] that j y is a strictly cyclic operator algebra

with strictly cyclic, separating vector x0.
A simple argument shows that a vector y0 of X is cyclic (and

hence by Theorem 5 strictly cyclic) if and only if y*(y0) Φ 0 and x*(y0) Φ
0. Thus the set N of noncyclic vectors coincides with ker y* U ker a?*.
Consequently, N is linear if x* and y* are dependent and nonlinear
otherwise.
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CONGRUENCE LATTICES OF SEMILATTICES

RALPH FREESE AND J. B. NATION

The main result of this paper is that the class of con-
gruence lattices of semilattices satisfies no nontrivial lattice
identities. It is also shown that the class of subalgebra
lattices of semilattices satisfies no nontrivial lattice identities.
As a consequence it is shown that if 5^* is a semigroup variety
all of whose congruence lattices satisfy some fixed nontrivial
lattice identity, then all the members of 5^" are groups with
exponent dividing a fixed finite number.

Given a variety (equational class) J ^ of algebras, among the inter-
esting questions we can ask about the members of SίΓ is the following:
does there exist a lattice identity δ such that for each algebra A e S?~,
the congruence lattice Θ(A) satisfies S? In the case that 5ίΓ has dis-
tributive congruences, many strong conclusions can be drawn about
the algebras of J%Γ [1, 2, 7]. In the case that 3ίΓ has permutable con-
gruences or modular congruences, there is reason to hope that some
similar results may be obtainable [4, 8].

A standard method of proving that a class of lattices satisfies
no nontrivial lattice identities is to show that all partition lattices
(lattices of equivalence relations) are contained as sublattices. The
lattices of congruences of semilattices, however, are known to be
pseudo-complemented [9]. It follows that the partition lattice
on a three-element set (the five-element two-dimensional lattice)
is not isomorphic to a sublattice of the congruence lattice of a semi-
lattice, and in fact is not a homomorphic image of a sublattice of the
congruence lattice of a finite semilattice. Nonetheless we shall show
in this paper that the congruence lattices of semilattices satisfy no
nontrivial lattice identities. This solves Problem 6 of [10]. Using
a theorem of T. Evans [6], we also show that if ψ* is a variety of
semigroups all of whose congruence lattices satisfy some fixed non-
trivial lattice identity, then all the members of Y* are groups with
exponent dividing a fixed finite number.

In § 1 we give definitions and a few basic facts about the con-
gruences of semilattices. In § 2 we prove our main theorem, and in
§ 3 we apply it to obtain the corollary about varieties of semigroups.

1* A semilattice is a commutative idempotent semigroup. We
may impose a partial ordering on a semilattice S by defining

x <^ y if xy = x .
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Under this ordering, any two elements x,y e S have a greatest lower
bound, namely their product xy. S is called a meet semilattice. It
may be that x and y have a least upper bound w e S; if so, we define

x + y = w .

Thus + is a partial operation on S, and x + y is called the join of x
and 7/. If S is finite, and if x and y have a common upper bound,
then x + y exists and

x + y = 77{2 GiS ^ ί i ; and z*z y} .

The least element of a semilattice, if it exists, is denoted by 0; the
greatest element, if it exists, by 1.

A dual ideal of a semilattice S is a set D £ S satisfying (i)
di, dg G JD implies d ^ eD, and (ii) x^ deD implies xeD. We will
denote the principal dual ideal above x by 1/x, i.e.,

I/a? = ( ^ S : ^ ^ } .

For reference we note that if x + y is defined, then

I/a? Π 1/2/ = l/x + y .

If S and Γ are semilattices, then S x T will denote the (external)
direct product of S and T. We shall use round symbols (Π, U) £°r

set operations, and sharp symbols (A, V) ί ° r lattice operations.
The following theorem is basic to the study of semilattice con-

gruences.

THEOREM 1. [9] Let 2 denote the two-element semilattice. If
S is any semilattice and D is a dual ideal of S, then the mapping
f: S -> 2 defined by

l if xeD

0 if xϊD

is a homomorphism. Thus 2 is the only subdirectly irreducible semi-
lattice, and the dual of Θ(S) is a point lattice (Θ(S) is a copoint
lattice).

In the rest of this section we note some easily provable facts
about the congruence lattice of a semilattice S.

(1) Suppose θ(S) is atomic, and let A be the set of atoms of
Θ(S). Let x* denote the pseudo-complement of x. Then if aeA,a*
is a coatom of Θ(S), and 0 is a unique irredundant meet of {α*: a e A}.
Hence S is a unique subdirect product of | A \ copies of 2, but of no
fewer.



CONGRUENCE LATTICES OF SEMILATTICES 53

It is not hard to show that if θ covers 0 in Θ(S) then θ covers
0 in Π(S), the partition lattice on S. From this and Theorem 1 it
follows that

(2) Θ(S) is semi modular and if Θ(S) is finite and c is the number
of coatoms of Θ(S) then

άimθ(S) = c = | S | - 1 .

(3) Θ(S) is relatively pseudo-complemented [9].
A lattice L is called locally distributive if the quotient sublattices

uja is distributive for all ae L, where ua is the join of the elements
covering a. In a compactly generated lattice, local distributivity is
equivalent to the conjunction of semimodularity and relatively pseudo-
complementation [3]. Hence

(4) Θ(S) is locally distributive.
The problem of characterizing all lattices isomorphic to congruence

lattices of semilattices remains open. The above conditions are not
sufficient, even in the finite case.

2* In this section we prove the main result of this paper•

THEOREM 2. Let δ be a nontrivίal lattice identity. Then there
exists a finite semilattice S(δ) such that δ fails in the congruence
lattice θ(S(δ)).

The theorem is an immediate consequence of Lemmas 1 and 4 to
be proven below.

LEMMA 1. Let S be a finite meet semilattice, and let S^{S) be the
lattice of (partial) join-subalgebras of S, with 0 e S considered as a
distinguished element. Then the congruence lattice Θ(S) is dually
isomorphic to

A partial join subalgebra of S is a subset containing 0 and closed
under joins, whenever they exist.

Proof. The dual atoms of Θ(S) are the partitions ψd = (XId)
(S — 1/d) for 0 Φ d e S. On the other hand, the atoms of 6^(S) are
the subalgebras ξd = {0, d) for 0 Φ d e S. We want to show that the
mapping ψd —> ξd induces a dual isomorphism of Θ(S) onto £^(S). Since
Θ(S) is a copoint lattice and S^{S) is a point lattice, it is sufficient to
show that their closure operations are duals under the mapping, i.e.,
that

Ψe*£ Ψd, Λ Λ fdk if and only if ζc ^ ξdl V V ζdk



54 R. FREESE AND J. B. NATION

This is equivalent to

ψe :> ψdi Λ Λ ψdk if and only if ce (dχ, , dk}

where (d19 , dk} denotes the join subalgebra generated by {dly , dk}.
Notice that the equivalence classes of ψdχ A Λ ψdk are

(ίΊ l/d< - U 1/dy)
Vie/ jelc /

for J S {1, , fc}. If ψ\. ̂  α/rdi Λ Λ ψdjc then each of these classes
is contained in either 1/c or S — 1/c. Considered the ψdχ A Λ ψdk —
class which contains c. Then c is the least element of that class,
and thus

c — Σ di for some / £ {1, , k] .
i e /

Hence CG <dlf ••, dk).
Conversely, if c e (dx, , dk}, then c = ΣieIdi for some / £

{1, •••,&}• Thus the congruence Aieiψd; has one class equal to 1/c
and the rest contained in S — 1/c. Hence

Ψc ̂  .Λ ψdi ^ ψd1 Λ Λ ψ^ .

This completes the proof of Lemma 1.

Suppose a ^ τ is a nontrivial lattice identity, i.e., σ <£ r does not
hold in a free lattice. Then we construct a finite semilattice S(σ)
(depending only on σ) such that σ ^ τ fails in S^{S{σ)). Combined
with Lemma 1, this will prove Theorem 2.

Let X = {x, y, z, •• •} be a countable set, and let FL(X) donote
the free lattice on X. For each element σ e FL(X) we will define
a finite semilattice S(σ). First of all we write each σeFL(X) in
canonical form. Then we define

S(x) = 2 for x e X

Sfo V <78) = S(σj x S(σ2)

5(^ Λ σ2) - Sί^) x S(ί7a) - Γ

where

r = i/(i, o) u

Let us look more carefully at the construction. If S(σx) and S(σ2)
are lattices, then Sfa) x S(σ2) — Γ is meet-closed and has a unit
element; hence it is a lattice. It follows by induction that S(σ) is
a lattice for each σ e FL(X). We need to know how to compute joins
in S(σ). In S{σ1 V σz) joins are of course taken componentwise. In
S(σ1 A σ2) we have
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f r2) + (8lf s2)

fa + 8l9 r2 + s2) if rt + sL Φ 1 and r2 + s2 ^ 1

(1, 1) if n + sx = 1 or r2 + s2 = 1 .

In any S(σ) let us denote (1, 1) by 1.
For each σ e FL(X) we now define a homomorphism φσ of FL{X)

into £f(S{σ)). We do this by associating with each p i a join-sub-
algebra 9>σ(2/) of S(σ), and extending this map to a homomorphism in
the (unique) natural way. Once again we proceed inductively, with
σ G FL(X) written in canonical form. For y e X we set

S(x) if y = x

{0} if y Φ x

Φo^oM = {(n, n ) : n e ^ ( l / ) , 2̂ e ^2(i/)}

^ l Λσ2(l/) = {(n, *V): n e ^ ( y ) - {1}, r 2 e 9>ff2(i/) - {1}}

U Λ(φσi(y), φσ2(y))

where

(0 if l ^ A and 1 ^ 5
A { A > B ) - ( { i } if l e A or l e i ? .

Our computations will be based upon the following lemma.

LEMMA 2. // ρeFL(X), then
( i ) Φo^iP) = 9^(0 x ^σ2(ί>)

(ii) 9>ffιΛα2(|t>) - {1} - {(r, s) e ^(/o) x ^ 2 ( |θ): r Φ 1 α^d s ^ 1}.

Proof. We prove (ii); the proof of (i) is similar but easier. We

proceed by induction on the length of p. For p = y e X the lemma

is immediate from the definitions. Now note that since Oe T for

every TeS^(S(σ))9 we have

T,V T2 = {t, + t2: tλ e Tly t2 e T2) .

Hence if p = pγ V Pv then by (*) we have

Ψa^a^P) ~ {1} - Ψa^a%(Pd V ^A, 2 (ft) ~ {1}

= {(^i, Si) + (n, s2): (r1 ? sx) e <POl^2{Pd >

(r2, s2) e ^ l Λ β l ( f t ) , n + r 2 ^ 1, s, + s2 ^ 1} .

By t h e inductive hypothesis we have

(n, s4) G φσιAσi(Pi) - {1} = 9>βl(ft) - {1} x φ^ipt) - {1}

for i = 1, 2 and hence
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Po^ip) ~ {l} = {(r,s)eφσi(p) x φσ2(p):r^l and s Φ 1} .

On the other hand, if p = px A p2> then

Ψo^ip) - {1} - 9>Wft) ~ W n ?V«2(ft) - {1}

and the conclusion of the lemma follows.

LEMMA 3 If peFL(X), then leφp(ρ).

Proof. As usual we proceed by induction on the length of p.
If p — y e X the lemma follows from the definitions. If p = ργ V ft>
then leφp.(Pi) (i = 1, 2), and thus by Lemma 2 (i) we have

(l,0)e?>,(ft) and (0,1) e <P,(ft)

from which it follows that leφp(pj) V 9>,(ft) = <PP(P)
lί p = Pί A ft, we can again assume 1 e <PP.(Pi) for i = 1, 2. We

need to show that l 6 9P l Λ / ) ί(ft). We prove a slightly stronger state-
ment: if leφPl(σ), then leφPlAP2(σ). If σ = yeX this is immediate.
Suppose (7 = σ1 V 0"2> then 1 e ΨPl{o^ V ΨPl{

σ2) and hence 1 = ίx + ί2,
where ti^φPl(σ^. If £x ̂  1, ί2 ^ 1> then by Lemma 2 (ii) we have

1 - (ί l f 0) + (t2, 0) G <PPl*Pz(σύ V

If t{ = 1 for some i then by induction 1 e ΦPl(θi) implies

1 6 9V,afa) S Φp^pfo)

Suppose σ = σλ A o2. Then 1 e ΨPι{o^ ΓΊ ΨPl{o^ By induction 1 e
^ îΛί>2(̂ i) for i = 1, 2 and we are done.

LEMMA 4. If σ ^τ in FL{X), then 1 g 9>α(τ).

Assume we have proven Lemma 4. Then Lemmas 3 and 4 com-
bine to yield: 1 e <Pσ(τ) if and only if σ <£ τ in FL(X). Hence <Pσ(tf) S
^σ(r) if and only if σ ^ τ in FL(X), and Theorem 2 follows.

Proof of Lemma 4. Suppose the lemma is false. Let σ be a
word of minimum length such that 1 e <Pσ(τ') for some τf such that
o S τ' ίn FL(X). Let τ be of minimal length such that σ j£ τ and
l€?ff(r). We will show that these conditions lead to a contradiction.
The cases σ e X, σ = σλ \/ σ2, σ = σλ A o2, and r e l o r r ^ ^ Λ ^ are
easy to handle. Let us assume, then, that σ = σt Λ o2 and τ = τx V τ2

Then since σ j£ r we have

σ ^ τλ and σ ^ τ2 and σί ^ τ and σ2 ^ r .
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Since 1 e Ψo(τ) = φa(τ^ V <Pσ(τ2), there exist tt e 9\,(τ4) such that t, + ίa = 1.
If ί* = 1 for some i then by the minimal length of τ we have σ ^ r o

a contradiction. Thus U Φ 1 and by Lemma 2 (ii) we can write
U = (ri9 Si) where r< e <pσi(Ti) and s< e <Pτ%(τ?). Now either rx + r2 =1 in
S(σλ), which means leφ^τ,) V ^σi(τ2) = ^ ( r ) and hence σx <£ τ, or
Si + s2 = 1 and <72 <̂  r. Both these statements are contradictions.

Since the semilattices S(σ) constructed above are in fact lattices,
they are join semilattices. Thus, the above proof shows that any
nontrivial lattice identity fails in the subalgebra lattice of some finite
semilattice.

Now the congruence lattices of lattices satisfy every nontrivial
lattice identity, while those of semilattices satisfy no identity. It is
reasonable then to ask if there is some "natural" restricted class 5ίΓ
of semilattices such that the congruence lattices of semilattices in
J ^ satisfy some lattice identity.

One such class is known [5]. A simple argument based on
Theorem 1 shows that Θ(S) is nonmodular if and only if S contains
a pair of noncomparable elements with a common upper bound. Hence
if S is finite Θ(S) is either nonmodular, or else it is isomorphic to
the Boolean algebra of subsets of some set.

Ot the other hand, the semilattices S(σ) constructed in § 2 are in
fact lattices; in particular, the join of every pair of elements is de-
fined. It follows from Theorem 1 that S(σ) can be imbedded as a join
semilattice into a Boolean algebra B(σ). Considering B(σ) as a meet
semilattice, we see that every nontrivial lattice identity fails in the
(semilattice) congruence of some finite Boolean algebra.

3* We can now prove an interesting corollary about varieties of
semigroups. Let R denote the two-element semigroup with multipli-
cation law xy = y; L the two-element semigroup with multiplication
law xy = x; and C the two-element semigroup with constant multipli-
cation. The following theorem is due to T. Evans [6].

THEOREM 3. The atoms of the lattice of varieties of semigroups
are the varieties generated by R, L, C, 2 (the variety of all semilat-
tices), and the cyclic groups of prime order. If a nontrivial variety
of semigroups does not contain R, L, C, or 2, then it is a subvariety
of &n, the variety of groups of exponent dividing n, for some finite n.

Now if T is a semigroup in the variety generated by R, L, or C,
then Θ(T) is just the partition lattice on T. Hence Theorems 2 and
3 combine to give the following corollary.

COROLLARY. If T* is a semigroup variety all of whose congruence
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lattices satisfy some fixed nontrivίal lattice identity, then ψ* is a
subvariety of &n for some finite n.
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A NONASSOCIATIVE EXTENSION OF THE
CLASS OF DISTRIBUTIVE LATTICES

E. FRIED AND G. GRATZER

Let Z = {0,1, 2} and define two binary operations Λ and
V on Z as follows: 0 Λ l = 0 , 0 v l = l , l Λ 2 = l , l v 2 =
2, 2 Λ 0 = 2,2 V 0 = 2, both operations are idempotent and com-
mutative. This paper deals with the equational class Z gen-
erated by the algebra ζZ; Λ, V>. The class Z contains the
class of all distributive lattices and Z is a subclass of the
class of weakly associative lattices (trellis, T-lattice) in the
sense of E. Fried and H. Skala.

The purpose of this paper is to prove that Z shares the
most important properties of the class of distributive lattices.

A tournament (T; <> is a set T with a binary relation < such
that for all α, b e T exactly one of a = b, a < b, and b < a holds.
Equivalently, a tournament is a directed graph without loops such
that exactly one directed edge connects any two distinct points. Just
as chains (linearly ordered sets) can be turned into lattices we can
define meet and join on a tournament <T; <> by the rule:

i f x < y , t h e n x = x Λ y = y Λ x a n d y = x \ Z y = y V x ,

a n d x = x Λ x = x V % f o r a l l x .

Since for all x,y e T, x Φ y, we have x < y or y < x the above rule
defines Λ and V on T.

Of course, the algebra <T; Λ, V> we constructed is not a lattice:
neither Λ nor V is associative unless (T; <> is a chain, that is, <
is transitive. However, as it was observed in E. Fried [5], the two
operations are idempotent, commutative; the absorption identities hold
and also a weak form of the associative identities.

The smallest example of a nontransitive tournament is the three-
element cycle <{0, 1, 2}; <> in which 0 < 1, 1 < 2, and 2 < 0. In the
corresponding algebra Z neither Λ nor V is associative.

Z plays the same role for tournaments as the two-element lattice
does for distributive lattices. A tournament (algebra) <T; Λ, V) is
not a chain if and only if it contains Z as a subalgebra.

In this paper we investigate the equational class Z generated
by the algebra Z. Observe that C2 = <{0, 1}; Λ, V> is a subalgebra
of Z, in fact, it is a two-element chain. Therefore, Z contains as
a subclass the class D of all distributive lattices. (Indeed, D is
generated by C2.)

The results of this paper can be summarized as follows: many of

59
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the most important properties of D generalize to Z, and, in fact, Z
is the only equational class (other than D) generated by tournaments
to which these results generalize.

In Part I, we discuss congruences in, and identities of Z. Section
2 contains some preliminary results and some important concepts, in-
cluding the proper form of distributivity for tournaments. In §3 the
minimal congruence relation Θ(a, b) is described in Z and is applied
to show that the Congruence Extension Property and the Amalgamation
Property hold for Z. In § 4 it is shown that the result of § 3 charac-
terizes the class Z. This is applied in §5 to find a finite set of
identities (in fact, two) characterizing the class Z1. Part II contains
the structure theorems. In §6 we describe the structure of finite
algebras in Z: they are all of the form D x Zk, where D is a uniquely
determined distributive lattice. Section 7 gives the structure of free
algebras over Z: the free algebra on n generators is of the form
FD{n) x Z*«, where FD(n) is the free distributive lattice on n generators
and kn = 3%-1 — 2n + 1. We prove in §8 that every algebra in Z can be
embedded in an injective one. The injectives in D are known to be
the complete Boolean lattices. The injectives in Z are the extensions
of Z by complete Boolean lattices.

EXAMPLES. An "evaluation" of elements of a set A is a map φ
of A into another set S, equipped with a binary relation <, meaning
"better than". We say that b is better than α(α, be A) if aφ < bφ.
If we want to be able to compare any two elements of A, then we
have to assume that <S; <> is a tournament.

Evaluating a sample (μu * ,αΛ) of elements of A we get an
"evaluation vector": (a^φ, , anφ}. The study of the equational class
generated by (S; A, V> is the investigation of the algebra of the
evaluation vectors. Thus Z is the "algebra" of the evaluation vectors
over Z.

Given a set X we can consider the set P(X) of all partitions
<X0, X,} of X into two sets. If <X0, -Xi>, <Γ0, Yi> eP(X) we can set
<X0, JEi> ^ <Γ0, Γi> if and only if Xo s Γo. This makes P(X) into a
distributive lattice. Any distributive lattice is a sublattice (up to
isomorphism) of some P(X).

Now consider the set Z{X) of all partitions of X into three subsets
<X0, Xl9 X2}. For <X0, Xl9 X2>, <Γ0, Yl9 Γ2> e Z(X) we declare <X0, -XΊ,

1 The results of this paper were announced in the Notices of the American Mathematical
Society 18 (1971), 402 and 548. Independently, in 1971 K. Baker announced in a lecture
a general result, namely that every equational class of finite type in which the algebras
have distributive congruence lattices and which is generated by a finite algebra can be
defined by a finite set of identities. Our result in §5 is a very special case of Baker's
result. Of course, the general method of Baker yields more complicated identities for Z.
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X2) ^ <Γ0, Yl9 Γ2> if and only if X0£Y0\J Yu -Xi SYΊ U Γ2, andX2 S
Y"2 U Yi Again, Z(X) e ^ , and any member of Z will be (up to
isomorphism) a subalgebra of some Z(X). Observe that Z(X) contains
P(X) as a subalgebra under the correspondence <X0, Jζ> —* <Z1? Xo, 0 > .

PART I. Congruences and Identities.

2* Preliminary results* An algebra <A; Λ, V> is called a weakly
associative lattice (PFA-lattice) if it satisfies the following set of
identities

( 1 ) x A x = x and x V x — x (idempotency)

( 2 ) x A y = y A x and x V y = y V x (commutativity)

( 3 ) x Λ (x V i/) = x and a? V (x A y) = α?

(absorption identities)

((x Λz)V (y Λz))V z = z and
( 4 )

((a? V z) A (y V «)) Λ z = £ (weak associativity) .
This axiom system was discovered independently by E. Fried [5]

(he called these T4attices) and H. M. Skala [16] (she called them
trellis).

(l)-(4) are not independent. (3) implies (1), and (4) and (1) imply
(3). Observe, that the first identity (and, similarly, the second identity)
of (4) can be written in the form

((x A z) V (y A z)) V z = (x A z) V ((y A z) V z)

which justifies the name weak associativity-
It is easy to see that in a TΓ^L-lattice the polynomial p(x, y, z) —

((x A y) V (y A z)) V (z A x) satisfies the identities

x = p(x, x, y) = p(x, y, x) = p(y, x, x)

implying (B. Jόnsson [13]) that

LEMMA 1. The congruence lattice of a WA-lattice is distributive.

If A and B are TFA-lattices, Θ a congruence relation of A, Φ a
congruence relation of B, then we can define a congruence relation
Θ x Φ on A x B: (a, b) Ξ <αx, b^iθ x Φ) if a == ajiβ) and δ Ξ ^(Φ).
Let C(D) denote the congruence lattice of D. Lemma 1 is known to
imply

COROLLARY. Every congruence relation of A x B is of the form
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θ x Φ with θ e C(A) and Φ e C(B). Therefore, C(A x B) s C(A) x

Combining Lemma 1 with another result of B. Jόnsson [13] we
get the crucial

LEMMA 2. Let A be a finite WA-lattice and let K be the equational
class generated by A. Then every algebra in K is isomorphic to a
subalgebra of an algebra of the form A[ι x x A£», where I, , In

are arbitrary sets and Al9 •• ,AW are homomorphic images of sub-
algebras of A.

In a TFA-lattice A we can define

x ^ y if and only if x — x Λ y if and only if y •=• x V y .

The equivalence of the second and third clauses follows from the
absorption identities. Observe that x ^ x, and x ^ y and y ^ x imply
x — y. Also, x^x\/y,y<Lx\/y, and it follows from (4) that x ^ t
and 2/ ̂  t imply x V y ^ t; these can be summarized by stating that
xV y is the least upper bound of x and /̂. Dually, x/\y is the
greatest lower bound of x and ?/. These properties give an alternative
definition of ΫFA-lattices in terms of ^ (E. Fried [5] and M. H. Skala

[16]).
We conclude from this immediately, that any tournament is a

T^A-lattice. Furthermore, since a homomorphic image of a tournament
A is isomorphic to a subalgebra of A we conclude from Lemma 2:

LEMMA 3. Let A be a finite tournament. Then the equational
class K generated by A consists of subalgebras of direct powers of A.
In particular, every subdirectly irreducible member of K is a sub-
algebra of A.

Applying this to Z and to the equational class Z it generates we
conclude that every member of Z is isomorphic to a subalgebra of
some Z1. The subdirectly irreducible algebras in Z are Z and C2.
Thus Z contains D, in fact, Z covers D.

Given an algebra A and a, be A there is a smallest congruence
relation θ under which a = b(θ). This congruence relation is denoted
by θ(a, b); it is called a principal congruence relation. Principal
congruences of distributive lattices are described in G. Gratzer and
E. T. Schmidt [10] and G. Gratzer [8]:

LEMMA 4. Let L be a distributive lattice, a, b, c, de L, a ^ b, and
c :g d. Then the following conditions are equivalent:

( i ) c =
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(ii) c = (a V c) A d and d = (b V c) A d.
(iii) a A c — a A d and b V c = b V d.

The most important result of this paper, namely Theorem 2, is
patterned after Lemma 4.

Lemma 4 implies that any distributive lattice L has the property
that c = d(θ(a, b)) can be decided in the sublattice generated by a, b,
c, and d. This property has an important consequence by A. Day [4]:

LEMMA 5. Let K be an equational class of algebras with the
property that for any AeK and a, b, c, de A, c = d(θ(a, b)) can be
decided in the subalgebra generated by a, b, c, and d. Then K has
the Congruence Extension Property, that is, if A, B eK, A a subalgebra
of B and if θ is a congruence relation on A, then there is a congruence
relation Φ on B such that Φ restricted to A is θ.

Another property of distributive lattices we need to generalize
is the uniqueness of relative complements.

Let T denote the equation class generated by all tournaments.

LEMMA 6. The distributive law

(5) x A (y V z) = ({x A y) V (x A z)) A (y V z)

holds in T.

Proof. Let A be a tournament, x,y, ze A. If two of x, y, and
z are equal, then (5) holds since it is true in lattices. If {x, y, z) is
a chain, again, (5) is trivial. So we can assume that {x, y, z) is
isomorphic to Z. Since (5) is symmetric in y and z, we can assume
that y < z. Therefore, y < z < x < y. In this case, x A (y V z) =
xAz = z and {{xAy)V(xAz))A(y\/z) = (x\/z)Az = z, so (5) holds.
Thus (5) holds for all algebras generating T, so it holds for T.

LEMMA 7. Let A be a WA-lattice satisfying (5). Then for a, b,
c e A9 a A b = a A c and a V b = a V c imply that b = c.

Proof.

b = bA(aVb) by (3)
= b A (a V c) since a V b = a V c
= ((b A a) V (b A c)) Λ(αVc) by (5)
= ((c Λ a) V (b A c)) A {a V b) since b A a = c A a and α V c = α V b
= c A (a V b) by (5)
= c A (a\/ c) since a V b = a V c
= c by (3) ,
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which was to be proved.
It should be pointed out that, unlike in lattices, (5) is not self-

dual. The independence of (5) and its dual is shown in [6].
In conclusion we mention that a list of identities describing T

was given in [9].

3* Principal congruences* In this section we state and verify
the analogue of Lemma 4 for Z. To facilitate the discussion we
introduce some notation. We define five polynomials in the variables

* î> »^2, *^3, <^4i a n d . x§.

( 6 ) pt = x2 A xδ, Vz = 2̂ V B4, Vz = (&s V Xι) V x±, and pA = xδ

( 7 ) p = (((x, V pd V j>2) Λ p8) A P* .

THEOREM 1. Let AeZ, and let a,b,c, deA, a ^ fe, αwd c ^ d.
Then the following conditions are equivalent:

( i ) c^d(Θ(a,b));
(ii) c = p(a, a, b, c, d) and d — p{b, a, b, c, d);
(iii) a A (c A b) = a A (d A b) and {a V c) V b = (α V d) V &.

REMARK. If A is a lattice, then ^ ^ α;2 ^ ^2ί similarly, p5 ^
α;5 = p4. Therefore, p = (^ V Oi V p2)) Λ (ί>3 Λ p4) = (»i V p2) A xδ =
(a?i V (a?2 Λ %)) Λ #6, reducing the first half of (ii) to the first half of
Lemma 4. (ii). The second half of (ii) can be handled similarly. As
for (ii), Λ and V are associative if A is a lattice, and so a A (c A b) =
b A c, a A (d A b) = a A d, and so on, yielding Lemma 4. (iii). Observe
the different placing of the parentheses in the two equations in (iii).

Proof, (i) implies (ii). We prove this implication in several steps.

(a) A is isomorphic to C2 — {0, 1}. Since C2 is a lattice a re-
ference to Lemma 4 settles the matter. Or, equivalently, check the
implication for a = 0, b — 1 and c = 0, d = 1, or c = d = 0, or c = d = 1,
and for α = δ = 1 and c = d = 0 or c = d = 1 (seven cases).

(/3) A is (isomorphic to) Z = {0, 1, 2}. If {α, δ, c, d} =£ if, then we
proceed as under (α). If a = b, then we must have c = d, thus we
can assume that a Φb. By symmetry, we can assume that α = 0, b =
1. Since Z is simple, <c, d> could be <2, 2>, <1, 2>, or <2, 0> (all other
pairs contradict that c ^ d or that {α, 6, c, ώ} = JZ). Therefore, it is
sufficient to check the implication in Z3 for a = <0, 0, 0), b = <1,1, 1>,
c = <2, 1, 2>, and d = <2, 2, 0>. Compute:
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\ d = (2, 2, 0), p2 = a \/ c = <0, 1, 0>, p3 = (b V d) V c

2,1> V <2, 1, 2> = <2, 2, 2>, p4 = <2, 2, 0>, j>(α, α, 6, c, d)

Ϊ V Pi) V j>2) Λ p3) Λ Pi

), 0, 0> V <2, 2, 0» V <0, 1, 0» Λ <2, 2, 2» Λ <2, 2, 0>

), 0, 0> V<0, 1, 0» Λ <2, 2, 2» Λ <2, 2, 0>

- «0, 1, 0> Λ <2, 2, 2» Λ <2, 2, 0>

= <2, 1, 2>Λ<2, 2, 0> = <2, 1, 2> = c ,

and similarly, p(b, α, 6, c, d) = d.

(7) Assume the implication to hold for the algebras Al9 , An9

and let B be a subalgebra of Ax x x AΛ. Then the implication
holds in B. Indeed, let α, b,c, deB, a ^ 6, c <: d and let c = d(Θ(a, b))
in JB. By a result of A. I. Malcev (see Theorem 10.3 of [7]) there
is a sequence of elements z0 = c, zl9 , zm — d of B, and unary algebraic
functions p0, •••, pn^ of J5 such that {Pi(a), Pi{b)} = {̂ , 2;ί+1} for i =
0, 1, ••, m — 1.

For an element u of B let %(ί) denote the ίth component of w,
that is, u = (u{i\ , u{n)y. A unary algebraic function is of the form
q(uίy , x, , uk), where ul9 , uke B and p is a polynomial. So
we can define p{i) a unary algebraic function on A{ by q(u[i\ * ,x,
•••, mo-

using the sequence of elements of A{: z^, z[ι\ •••, z$ of Biy and
the unary algebraic functions: p(

0

i)

9 " ,p^li, we conclude that

α ( ί ) = b{i)(Θ(c{i\ d{i))) in A, .

Thus, by assumption,

c[i) = p(a{ί), α ( ί ), b{i\ c{i), d{i)) and

d{i) =

for i = 1, , n. Hence, c = p(a, α, 6, c, ώ) and d = p(b, α, 6, c, d),
which was to be proved.

Now we are ready to prove the implication. Let A e Z, a, 6, c, d e
A, a^b,c<^d, and c = d(Θ(a, &)). Invoking Malcev's result used above
we can assume that A is finitely generated. Since Z is generated by Z,
an ^-generated algebra can have no more than 33% elements, hence it
is finite. Thus A is finite. By Lemma 3, A can be embedded in
some Zk. By (a) and (β) the implication holds in Z, hence by (7) it
holds in A, completing the proof.

(ii) implies (iii). This implication takes the form of a universal
Horn sentence (see, for instance, [7], §46), therefore, it holds in Z if
and only if it holds in Z. In Z, if a = 6, then the assumption implies
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c = d, hence the conclusion obviously holds. If a Φ b (a < 6), then the
functions a A (x A b) and (a V x) V b are constants (a A (x A b) = α
and (α V α?) V 6 = b), so the conclusion is obvious.

(iii) implies (i). Let Θ = β(α, δ) and let [$]0 denote the congruence
class of A containing x. Then

[a A (c A b)]θ = [aA(dA b)]θ ,

and so, using [a]θ = [b]θ, and x A (y A x) = y A x, we obtain, in turn:

[a]θ A ([c]θ A [b]θ) = [a]θ A ([d]θ A [b]θ)

(8) [a]θ A [c]θ = [a]θ A [d]θ .

Similarly,

( 9) [a]θ V [c]θ = [a]θ V [d]θ .

Applying Lemma 7 to A/θ, (8) and (9) imply that [e]θ =
that is, c = d(θ(a, b)), completing the proof of Theorem 1.

Observe, that Theorem 1 implies that the assumptions of Lemma
5 are satisfied in Z. Thus,

COROLLARY 1. Z has the Congruence Extension Property.

A class K of algebras is said to have the Amalgamation Property
if for any A, Bl9 B2 e K, and embeddings /<: A-+Bi9i = 1, 2, there is
a C eK and embeddings g{\ Bi-+C,ί = l, 2, such that f1g1 = f2g2. For
a general discussion of the Amalgamation Property see B. Jόnsson
[12].

COROLLARY 2. Z has the Amalgamation Property.

Proof. By Theorem 13.16 of [8] it is sufficient to prove that for
given A, Bl9 B2 e Z, embeddings /<: A-+Bifi = 1, 2, and a, b e Blf a Φ
b, there exist homomorphisms g^ Bi-+ Z,i = 1, 2, such that / ^ = /2^2

and agγΦbgγ. By Lemma 3, there is a homomorphism g1:B1-+Z
satisfying agx = &&. Let Θ be the congruence relation of A induced
by 0i By Corollary 1, there exists a congruence relation θ on B2

satisfying ΘA = θ. Let 2̂ be the natural homomorphism of B2 onto
J52/θ. By Lemma 3 again, there is a homomorphism g2: B2/θ —> Z.
We define #2 = ^ ί ' . Obviously, / ^ = f2g2, concluding the proof.

In closing this section, we mention that the polynomial p, which
plays a central role in Theorem 1, was found using free algebras. A
free algebra was used also to discover the identity (5) in order to
get Lemma 7.

Alternate forms of p such as p = (((x, V ft) Λ q2) V qz) A q* or any
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of the other possibilities can also be found using the free algebra
technique.

4* The characterization theorem* We started out in our research
trying to find a finite set of identities characterizing Z. Since we
believed that the equivalence of Lemma 4. (i) and (ii) is characteristic
of D we wanted to find the analogous result for Z hoping that it
would characterize Z. The next step would then be to find a set of
identities based on which the analogous result for Z can be proved.
As we shall see in §5, this runs into some problems. The situation
was saved by Theorem 1. (iii) and by the fact that Theorem 1. (iii)
can also be used to characterize Z. Since this is the result needed
in §5 we omit the original theorem and prove only the latter one.

THEOREM 2. Let K be an equational class of WA-lattices in which
for any AeK,a,b,c,deA, a ^ b, c^d, and c = d(Θ(a, b)) imply that
a Λ (c Λ δ) = a A (d Λ b) and (a V c) V b = (a V d) V b. Then K S Z.

Let A be a subdirectly irreducible algebra in K. We shall prove
that A = C2 or A ~ Z. This obviously implies that K S Z

If IAI = 2, then A ~ C2 since A is a FFA-lattice. Thus we can
assume that | A | > 2.

Since A is a subdirectly irreducible algebra with more than two
elements, A has a congruence relation Φ Φ ω with the property that
Φ ^ Θ for any congruence relation Θ of A with Θ Φ ω. Since Φ Φ co
there is a congruence class G of Φ of more than one element.

We claim that there are elements a, b, c e A such that a, b eG,
a < b, and c < a or b < c. To prove this take x,y eG, x Φ y. Obvi-
ously, x A y 6 G and x Φ x A y or y Φ X A y. Set af = x A y and
V = x or V — y so that ar Φ 6\ If af and V do not satisfy the
requirements with some c' e A, then for all d e A we have af A d — af

and bf V d = b\ that is, af <d<bf for any d e A, d Φ a\ d Φ 6'. In
this case set c = a', a — d, and b = br.

So we can assume that we have

(10) c<a<b,a,beG,

since the other case, a < b < c can be proceeded with similarly (dually).
By (10) c Φ α, so Θ(cf a) Φ ω. By the definition of Φ, we have

Φ Ŝ Θ(c, a), and by the definition of G and (10) we must have

a = b(Θ(c, a)) .

We apply the hypothesis of Theorem 2 to this congruence. We obtain:

(c V a) V a = (cV δ) V a ,
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that is, a = (c V δ) V α, in other words,

(11) c <b^a .

We claim that

(12) c = c V b .

Assume, to the contrary, that c < c V b. Then Θ(c, c\f b) Φ ω,
and so as above we get

a = b(θ(c, c V δ)) .

Applying the hypothesis of. Theorem 2 to this congruence we obtain:

(13) c A (a A (c V δ)) = c A (b A (c V b)) .

By (11), a A (c V b) = a and, by (10), c A a = c so (13) yields c =
c A b, or, equivalently,

(14) c ^ 6 .

On the other hand, by (11), c V b ^ a; combining this with (14) we
obtain b ^ α, contradicting (10). This verifies (12).

(10) and (12) jointly mean that {a, b, c} is a subalgebra of A and
{a, 6, c} is isomorphic to Z.

We claim that A = {α, δ, c}.
Assume to the contrary that there is an element deA such that

d £ {a, δ, c}. We claim that d can be chosen to be comparable to one
of a, δ, and c. Indeed, if there is no such d then for an arbitrary
e e A, a A e = α, since a A e < a implies that a A e — c and so c < e.
Similarly, a V e = α, implying that α = β, a contradiction. Thus, by
reason of symmetry and duality we can assume that there is an element
deA satisfying

(15) d $ {a, δ, c) and d < a .

Since a, beG and δ < c < a we conclude that c e G . Thus d Φ a
implies the congruence

δ = c(θ(d, a)) .

Therefore,

(16) d A (δ Λ a) = d A (c A a) .

But by (10) δ Λ a = α and c Λ α = c; by (15), d A a = d, hence (16)
yields: d = d A c. Since c ^ d this means that d < c. So we get
the congruence

a = 6(θ(d, c)) ,
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which implies that

(17) (dV a) V c = (dV b) V c .

But d V a = a, a V c = c, hence (17) gives

(18) a = (d V &) V c .

Observe that d ^ c and b ^ c. Therefore, d V b^c, and so (d V δ) V c
= c, contradicting (18) and a Φ c.

This contradiction shows that A = {α, 6, c}, that is, A ~ Z, which
completes the proof of Theorem 2.

5* Identities for Z* We want to find a finite set Σ of identities
characterizing Z. This set Σ should express that Z is a class of
TF-4-lattices in which minimal congruences can be described by Theorem
1. It is easy to find identities which imply that the relation given
by Theorem 1. (ii) is reflexive, symmetric, and has the Substitution
Property for Λ and V. However, transitivity takes the form "if
Theorem 1. (ii) holds for c, d, and for cl9 d19 and d = c19 then it holds
for c, d" which we could not turn into an identity.

The trick is to find identities that prove that <9(α, b) is in some
sense the transitive extension of the relation given by Theorem 1.
(ii). Then to show that this implies that Theorem 1. (iii) can be
used to describe (9(α, 6).

We need some notation. We shall use p, ply , p4 of (6) and (7)
without references. Two 4-ary polynomials derived from p will be
used often:

(19) q1 = p(xl9 xlf xx V x2, a?3, x* V x4)

(20) q2 = p(x, V x2, xl9 %i V fl?2, ^3, ̂ 3 V xd

Finally, for the polynomials tl912, t3, and t4, let R(tlf t2, t3, t4) denote
the identities

(21) t3 = qfa, ί2, t3, U) a n d t3 V t4 = q2(tl9 t2, t3, tB V t4) .

Σ consists of three sets of identities. Σy is a set of identities
for TF.A-lattices (for instance, (l)-(4)) and one more identity

(22) ((x V y) V (x A z)) V (x V z) = (x V (y V z)) V z .

Σ2 is the following eight identities:

(23) R(xl9 x2, q, A xδ, q> A xΛ), {i, j} - {1, 2}

(24) R(xl9 x2, ? < V xΛ, Qj V α;5), {ί, j) = {1, 2} .
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Σ3 consists of two identities

(25) x1 A (ft A (x, V x2)) = Xi Λ (ft Λ fai V x2))

(26) ( ^ V ft) V (α?! V a2) = (a?! V ft) V (x1 V a?2) .

THEOREM 3. Σ = Σ, u Σ2 u ^ 3 defines the class Z.

Proof. First we have to see that 2* is satisfied in Z. 2\ is
obviously satisfied excepting (22).

It is sufficient to verify (22) in Z. Let a,b,ce Z. If | {a, δ, c} | <;
2, then they form a sublattice, in which (22) becomes (a V 6) V
(α V c) = a V (6 V c), a triviality. Thus we can assume that Z =
{a, 6, c}. If α = 0, b = 1, c = 2, then ((0 V 1) V (0 Λ 2)) V (0 V 2) =
(1 V 2) V 0 - 2 V 0 - 0 and ((2 V 1) V 0) V 2 = (2 V 0) V 2 = 0 V 2 = 0;
if a = 1, 6 = 0, c = 2, then ((1 V 0) V (1 Λ 2)) V (1V 2) = ((1 V 1) V 1) V 2 =
1 V 2 = 2 and ((2 V 0) V 1) V 2 = (0 V 1) V 2 - 1 V 2 - 2. All the
other substitutions agree with one of these two (up to automorphism)
showing (22) in Z. If xι = x1 V x2, then by (19), and (20), qι = q2

and so qγ A x5 = q2 A x5* In other words,

ft Λ x5 = q2 A xδ(Θ(xu x, V x2)) ,

or

ft Λ ^ ΞΞ (ft Λ αΰ) V (ft Λ ββ)(θ(ί&i, ffi V α2)) .

Applying Theorem 1. (ii) to this congruence we obtain

ft Λ x5 = ft(x1? x, V a;2, ft Λ xδ, (ft Λ .τ5) V (ft Λ a?β))

(ft Λ x6) V (ft Λ »6) = ft(Λ?i, a?i V a?2, ft Λ ®6, (ft Λ x6) V (ft Λ a?ΰ)) .

By (21), these two are written in the form R(xl9 xι V x2, qγ A xδ, q2 A xδ).
The other six identities under (23) and (24) are similarly proved.
Finally, since ft = q2(θ(xl9 x1 V a?2)), an application of Theorem 1. (iii)
proves (25) and (26).

Now let K be the class of all algebras satisfying Σ. By what
we have proved above, Z s K.

Let Ae K, a, be A, and a ^ 6. We define a binary relation Φ on A:
c = d(Φ) if and only if there exists a sequence c = rOfru , τn = eZ

of elements of A such that, for all i = 0, , n — 1, r f and r ί + 1 are
comparable and jβ(α, 6, r* Λ r ί + 1, r̂  V î+O

We claim that Φ is a congruence relation, in fact, Φ = θ(a, δ).
Φ is obviously symmetric and transitive. Next we show that Φ

is reflexive, in other words, for all ce A, R(a, b, c, c). By (19)-(21),
this means that
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(27) p(a, a, δ, c, c) = p(b, a, b,c,c) = c .

Using (6) we compute: pι = a A c, p2 = α V c, p3 = (6 V c) V c = b V c
(by (3)), p4 = c, and so

p(a, a, δ, c, c) = (((a V (α Λ c)) V (α V c)) A (b V c)) Λ c by (3)

= ((a V c) Λ (δ V c)) A c = c by (4) .

For the second half of (27) compute: pι = α Λ c, p2 = α V c, p3 =
(6 V c) V c = 6 V c, p4 = c and so

p(b, a, b, c, c)

= (((δ V ( α Λ c)) V (α V c)) Λ (6 V c)) Λ c since α ^ &

= ((((α V δ) V (a A c)) V ( α V c)) A (δ V c)) Λ c

apply (22) with x = a, y = b, and z — c

= (((a V (b V c)) V c) Λ (6 V c)) Λ c

use the second half of (4) with x =

a V (δVc), y — b, and 2 = c

= c .

To show the Substitution Property for Λ, let c = d(Φ) with the
sequence r0, , rn and let e e A. Consider the sequence e A c = e A r0,
(e A r0) V (e A rx), e A ru ((e A rλ) V (β Λ r2), e Λ r2, , e Λ r n = e Λ d.
For any given i, 0 ίg i < n, either r< ^ r i + 1 or ri+1 ^ r<. Let us assume
that r{ ^ r ί + 1 (if ri+1 ^ r̂  we proceed similarly). By the definition of
Φ, we have R(a, δ, ri9 ri+ι). By the definition of R, this means that

Ti = qL(a, b, ri9 r ί + 1 )

and

By (23),

J2(α, δ, ^ A e,q2 A e) and JS(α, δ, q2 A e, q, A e) ,

that is,

R(a, δ, r< Λ β, r i + 1 Λ e) and J?(α, δ, r ί + 1 Λ e, r4 Λ e) -

Therefore, by the definition of R:

R(a, b, r< Λ e, (r< Λ e) V (r i + 1 Λ e))

and

R(a, δ, r<+1 Λ e, (r, Λ e) V (r ί + 1 Λ e)) ,
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showing c A e = d A e(Φ).
Using (24) rather than (23) we prove that c V e = d V e(Φ).
Thus Φ is a congruence relation.
Observe that p(t, a, δ, a, δ) = (t V a) A δ. Thus p(a, α, δ, α, 6) =

a and p(δ, α, 6, α, δ) = δ, proving a = δ(Φ).
Finally, if α = 6(0) for any congruence relation Θ, then Φ <; 0,

thus Φ = Θ(α, 6).
Now let c = d(Θ(a, b)), c = r0, , rn = d as given in the definition

of Φ. For a given i, then r< = q^a, b, r { Λ ri+lf r4 V r<+1) and r<+1 =
g2(α, δ, r< Λ r<+1, r< V r ί + 1 ) . Substituting these into (25) and (26) we
obtain the crucial equations:

a A (Ti A b) = a A (r i+1 Λ 6)

( α V r , ) V i = (oV r4+1) V 6

for all i = 0, , n - 1. Thus

α Λ (c A b) = α Λ (d Λ 6)

and

(α V c) V 5 = (α V d) V δ .

In other words, we have shown that c = d(Θ(a, b)) implies the two
previous equations, which is the hypothesis of Theorem 2.

Therefore, by Theorem 2, K g Z. Combining this with Z § K
we conclude that K = Z, completing the proof of Theorem 3.

It should be noted that it is much easier to prove that Z can be
characterized by a finite set of identities. The proof given above
actually exhibits one such set.

No more than five variables were used in the identities in Σ,
hence,

COROLLARY 1. An algebra (A; A, V> belongs to Z if and only
if every subalgebra of (A; Λ, V> generated by five elements belongs
to Z.

It is easily seen, that in the Corollary, "five" cannot be replaced
by "three". We do not know whether "four" would do.

Since two identities of an idempotent class can always be subs-
tituted by one, the finite set Σ of Theorem 3 can be reduced to three
identities. R. Padmanabhan [15] has shown that the three identities
can be replaced by two.

COROLLARY 2. There exist two identities characterizing Z.
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PART II. Structure Theorems.

6* Finite algebras* The main result of this section is the
following.

THEOREM 4. Every finite algebra A of Z has a representation
of the form

A~D x Zk,

where D is a (finite) distributive lattice and k a nonnegative integer.
In this representation k is unique and D is unique up to isomorphism.
In fact, D is a maximal homomorphic image of A in D.

This result is based on three lemmas.

LEMMA 8. Let the algebra Abe a subdirect product of the algebras
Al9 * ,An. Let us assume that there exists a family pλ,XeΛ of
polynomials satisfying the following two conditions:

(i) pλ(x, y,y, * ,y) = x holds in all A+;
(ii) for a,beAi there exist au a2, e At and XeΛ such that

pλ{a9aua2, •••) = b.
Let, further, A be a subdirect product of Al9 , An with the

property that for each i, 1 ^ i ^ n, there is an element (cu , cn} e
A such that (cu , c{_lf a, ci+l9 , cn} e A for all a e A{. Then A is
the direct product of Au , An.

Proof. For n = 1 the statement is obvious. Let us assume that
it has been proved for all k < n. Let A and Al9 , An be given as
in the lemma. Let B be the algebra we get from A by omitting the
first component of each element of A. Obviously, B is a subdirect
product of A2, , An and this subdirect product satisfies all the
hypotheses of Lemma 8 (the element of B chosen for i, 2 ^ i ^ n is
the element of A chosen for i with its first component omitted).
Therefore, by induction hypothesis, B = A2 x x An.

It is also clear that A is a subdirect product of Aγ and B, and
(using the hypothesis for A, Al9 , An and i = 1) there is an element
deB such that <c, d} eA for all c e Ax. Now take an arbitrary <α, 6> e
A1 x B. Since A is a subdirect product of Aι and B, there exist
eeAλ such that <e, b} e A. By (ii), there exist XeΛ and al9 α2, e
A, such that pλ{e, aί9 a2, •) = a. Thus, <β, b), (al9 d), <α2, d), e A
and so (using (ii)):

Pχ«e, b), <αlf d)f <α2, d>, •) = (pλ(e, al9 α2, •), Px(b, d, d, •)>
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is also in A, proving A = A1 x B. Thus,

completing the proof of the lemma.

LEMMA 9. Let us assume that for the algebras Al9 •- ,An the
polynomials pλ,XeΛ exist satisfying (i) and (ii) of Lemma 8. In
addition, let us assume that for each a, b, ce Ai9 b Φ C there is a
polynomial g satisfying g(a, b,c) = a for which g(x, y, y) = y holds in
Al9 •• ,A n . Then any subdirect product of A of Au ,An is iso-
morphic to a direct product of some of the Al9 •••, An.

Proof. Again, we proceed by induction and the case n = 1 is
obvious. For 1 ^ i ^ n, consider the homomorphism φ{: A —* A{i) which
is the map omitting the ith component. If, for some i, φ{ is an
isomorphism, then A is isomorphic to a subdirect product of Al9 ,
Ai-l9 Ai+ι, , An, and by the induction hypothesis, the conclusions
of Lemma 9 holds for A. So we can assume that no φi is an iso-
morphism.

Now we show that A, Al9 , An satisfy the conditions of Lemma
8. We have assumed the existence of the pλ, XeΛ.

Choose an i9 1 ^ i ^ n. We want to prove that there exists a
< î, " , O e A such that (cl9 , c^l9 a, ci+l9 , cn) e A for all a e A{.

To simplify the notation let i = 1. Since φ1 is not an isomorphism
there are elements c, deA such that c Φ d and cψ1 = dφx. In other
words, <c, c2, , cn}, <d, c2, , cn} e A for some c2eA2, ---,cneAn

and c9 deAl9c Φ d.
For an arbitrary ae A19 there are a2eA2, •->, aneAn such that

<α, α2, , αw> e A, since A is a subdirect product. Choose a polynomial
# satisfying g(a, c, d) = a (and, of course, g(x9 y9 y) = y). Then #«α,
«2, * , an>, <fi, ci9 , O , <d, c29 , O ) = <«, c29 , O is in A, ver-
ifying the condition. Thus, by Lemma 8, A = Aγ x x Aw.

LEMMA 10. Any finite subdirect power of Z is isomorphic to
some direct power of Z.

Proof. We shall verify that the hypotheses of Lemmas 8 and 9
are satisfied in Z. Let Λ = {1, 2}, pt = ((x V y) V z) Λ x and p2 =
(0& Λ y) Λ z) V x. It is obvious that (i) of Lemma 8 holds. Let, say,
a = 0. Then ^(0, 0, 0) = 0, p2(0, 2, 1) = 1, and ̂ (0, 1, 2) = 2, verifying
(ii) of Lemma 8.

We also select gι = (x V y) Λ z and #2 = (x Λ 2) V 2/. Obviously,
9i(%, V,y) = V,ί = I, 2 If 6 ̂  c, then 6 < c or c < 6. In the first
case let b = 0 and c = 1; then ^(α, b9c) — a for α = 0, 1 and g2(a9 b9 c) =
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a for a = 2. In the second case, ^(α, δ, c) = α for α = 2 and 02(α, 6, c) =
a for α = 0 and 1. This completes the proof of Lemma 10.

Now we are ready to prove Theorem 4. Let A be a finite algebra
in Z. The only subdirectly irreducible members of Z are C2 and Z
therefore A is a subdirect product of two algebras D and E, where
D is a subdirect power of C2 and E is a subdirect power of Z.
Obviously, D is a distributive lattice. By Lemma 10, E = Zk for
some integer k. Thus we have proved that A is (isomorphic to) a
subalgebra of D x Z* We prove that, in fact, i = ΰ x ? .

Let 1 be the greatest element of D and a e E = Zk. We show
that <1, α) e A. Indeed, since A is a subdirect product of D and E
there are elements be E and cίeD satisfying

<1, b) and <<2, a) e A .

Define e e E by the rule:

e(i) = a(i) if δ(i) ^ α(i)

e(i) > b(ί) if δ(i) > a(ί) .

Note that e(ϊ), the ith component of e, is in ^ so the condition e(ί) >
6(i) uniquely determines e(i). Choose an / e ΰ such that </, e> G A.
Then

This element is obviously of the form <1, g), and

i V e{i)) V α(i) = e{i) V i

Thus g — a, proving <1, α> G A.
Now take an arbitrary d e D and ae E. Then <<Z, b) eA for some

6 G E. For a, be E let us construct e G £7 as follows:

e(i) = a(i) if a{i) = δ(i)

e(i) ^ a(ί) and δ(i) if α(i) Φ b(i) .

Then <1, α> and <1, β> e A and so

where g(i) = (6(i) Λ e(i)) Λ α(i). If α(i) = δ(i), then e(i) = α(i), and
so f/(i) = α(ί). If a(ί) < b(i), then (we are in Z) b(ί) < e(ί) < α(ΐ) and
so #(i) = (6(i) Λ e{i)) A a{%) = δ(i) Λ α(ί) = α(i). Finally, if b(i) < α(ΐ),
then a(i) < e(ΐ) < δ(i), hence g{%) = (δ(i) Λ e(i)) Λ α(i) = e(i) Λ a(ϊ) =
α(ΐ), proving # = α and <d, ά)eA. This completes the proof of the
first part of Theorem 4.

To prove the uniqueness of D we show that D is a maximal
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homomorphic image of A in D. It is obvious that D is a homomorphic
image of A in D. Let Θ be an arbitrary congruence relation on A
such that A/θ e D. By the Corollary to Lemma 1, Θ = Φ x θι x x
Θk and

A/Θ s ZtyΘ x iJi/θi x x ZΛ/θfc , where J3Ί = . = Zk = ̂  .

Since Z/θi e D only if \Z/θi \ = 1, we conclude that A/Θ = Z)/θ, proving
that D is a maximal homomorphic image. This implies the uniqueness
of D up to isomorphism. Knowing that D is unique, it obviously
follows that k is unique. This concludes the proof of Theorem 4.

COROLLARY. The congruence lattice C(A) of any finite algebra A
in Z is a finite Boolean lattice.

Proof. Indeed, if A = D x Z\ then C(A) s C(D) x C(Z)k = C(D) x
C?, and C(Z)) is known to be Boolean.

7 Free algebras. The following results describe the structure
of free algebras over Z in terms of the free algebra over D.

THEOREM 5. Let FD(n) and Fz{n) denote the free algebra on n
generators over D and Z, respectively. Then

Fz{n) ~ FD{n) x Zk- ,

where kn = 3""1 - 2n + 1.

Proof2. Let F = Fz(n) and D = FD(ri), and let X = {xl9 , aΛ}
be a set of free generators of F. Obviously, Fz(n) is a subalgebra
of Z8", hence finite. Thus by Theorem 4,

F= D x Zk ,

for some nonnegative integer k. By the corollaries to Lemma 1 and
Theorem 4, k is the number of congruence relations Θ oΐ F satisfying
F/Θ s ^.

Let 9>i and φ2 be homomorphisms of ί7 onto Z inducing the same
congruence relation Θ. Then Xφι = X^2 = ̂  and φi9 i = 1, 2, partitions
X into Xj, Xj, X\ by setting X] = jφj1. Since these partitions are
the restrictions of the ©-classes to X, they agree. It is easily seen
that for ae X\ and b e X\ the fact that aψt < bψi is expressed by
a V b = 6(0). Therefore, for some automorphisms α of Z, we have
9?! — φ2a. Since the converse is obvious, we conclude that k equals

2 We would like to thank R. Quackenbush for a considerable simplification of the
original proof.
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the number of maps of X onto Z up to automorphisms of Z, or
equivalently, all maps φ of X onto Z satisfying xλφ — 0. There are
altogether Zn~ι maps of {x2, , xn^} into Z. Of these, 2n~1 does not
have 1 in the image and 2n~1 does not have 2 in the image, the
overlap being one map (the constant 0 map). Therefore, k = Zn~ι —
2 2%-1 + 1 = 3*"1 - 2n + 1, as claimed.

We can apply Theorem 5 to describe all finite projective algebras
in Z.

COROLLARY. A finite algebra A is projective in Z if and only if
it is isomorphic to some P x Zk where k is a nonnegative integer and
P is projective in D.

REMARK. By R. Balbes [2] (see also G. Gratzer and B. Wolk
[11]) a finite distributive lattice is projective in D if and only if the
join of any two meet irreducible elements is again meet irreducible.

Proof. It is well-known that A is projective if and only if it is a
retract (idempotent endomorphic image) of a free algebra. Firstly, let
A = P x Zk where P is projective in D. Choose an integer n such that
P is a retract on FD(n) and k < kn. Then, obviously, A is a retract
of Fz(ri). Conversely, let A be a retract of some Fz(n). By Theorem
4, A ~ D x Zk. Since D is a retract of A, we conclude that D is a
retract of Fz(ri). By the Corollary of Lemma 1, the retraction must
collapse all copies of Z, hence P is a retract of FD(ri), showing that
P is projective in D. This concludes the proof.

8* Injective algebras* The algebra I of Z is called injective (see,
for instance, [8], §13) if for any A, BeZ, A a subalgebra B, any homo-
morphism φ: A —• I can be extended to a homomorphism of B into I.

THEOREM 6. Z is injective in Z. Any direct power of Z is
injective in Z and, therefore, every algebra can be embedded in an
injective. An algebra is injective if and only if it is isomorphic to the
extension of Z by a complete Boolean algebra.

Proof. Rather than giving a direct proof of these results we shall
employ a trick from [14] and then use a result of [3] to get the last
statement of Theorem 6, which implies the other two.

Let us denote by Z the algebra Z with three new nullary operations:
0,1, and 2. Let Z denote the equational class generated by Z. Just
as in Lemma 2, every algebra in Z can be embedded in a direct power
of Z.

Z is generated by a finite simple algebra Z with no subalgebras
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and so by a result of A. Day [3], the injectives in D are exactly the
algebras Z[B] where B is a complete Boolean algebra (for this concept
see [7], §22).

Therefore, it suffices to prove the following statement:
An algebra A is injective in Z if and only if 0,1, and 2 can be

interpreted on A so that the resulting algebra A belongs to Z and A
is injective in Z.

Indeed, if A is injective in Z, then for some set J there is a
homomorphism (in fact, a retraction) φ of ZJ onto A. We can inter-
pret 0,1, 2 on ZJ as on (Z)J, and then on A by 0φ, lφ, and 2φ. This
makes A a homomorphic image of (Z)J e Z, and so AeZ. Since A
is a retract of (Z)J, it is injective in Z. The converse is obvious.
This completes the proof of Theorem 6.

It follows from Theorem 6 and B. Banasehewski [1] that every
algebra Am Z has an injective hull uniquely determined up to isomor-
phism (leaving A fixed).
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ON NUMERICAL RANGES OF ELEMENTS OF
LOCALLY m-CONVEX ALGEBRAS

J. R. GILES AND D. 0 . KOEHLER

The concept of numerical range is extended from normed
algebras to locally ra-convex algebras. It is shown that the
approximating relations between the numerical range and the
spectrum of an element are preserved in the generalization. The
set of elements with bounded numerical range is characterized
and the relation between boundedness of the spectrum and of
the numerical range is discussed. The Vidav-Palmer theory is
generalized to give a characterization of δ*-algebras by numerical
range.

In a complex unital Banach algebra the numerical range of an
element is a set of complex numbers which can be used to approxi-
mate the spectrum of an element. In a complex locally m-convex
algebra with identity, for each element we define a set of numerical
ranges and establish similar approximation to the spectrum of the
element. In a normed algebra the spectrum and the numerical range
of each element are bounded sets, but in a locally m-convex algebra
the spectrum and the numerical ranges of an element may be un-
bounded. For a locally m-convex algebra with identity we characterize
those elements with a bounded numerical range as an important
normed subalgebra, and we discuss the relation between boundedness
of the spectrum and the numerical ranges. In the normed algebra
theory the study of hermitian elements, those with real numerical
range, has led to the important Vidav-Palmer theory characterizing
unital f>*-algebras among unital Banach algebras. We generalize the
results of this theory to a characterization of 6*-algebras by numerical
range.

We would like to thank Dr. T. Husain for the valuable discussions
we have had with him on this subject. We would also like to ex-
press our appreciation to the referee for his valuable suggestions.

1Φ The numerical ranges of an element* For a complex normed
algebra (A, || II) with identity 1 where || 11| — 1, i.e., a complex unital
normed algebra, we define the set

= l and

For each s e A w e define the numerical range of a as the set

\;a) = {f(a):feD(A,\\'\\;l)},

79
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and the numerical radius of a as

v(A, | | . | | ; α ) Ξ

The set D(A, || ||; 1) is a convex weak * compact subset of A! and the
numerical range V(A, || ||; a) is also a convex compact subset of the
complex numbers, [2, p. 16]. The properties and applications of
normed algebra numerical ranges have been studied extensively and
the main results are conveniently presented by F. F. Bonsall and
J. Duncan in [2].

Locally m-convex algebras, i.e., l.m.c. algebras, are examined in
some detail by E. A. Michael in [4]. We call a l.m.c. algebra with
identity a unital l.mx. algebra. It is our aim to extend the concept
of numerical range from complex unital normed algebras to complex
unital l.m.c. algebras. It is sufficient for our purpose to note that,
for a given l.m.c. algebra A with identity 1 there exists a separating
family of submultiplicative semi-norms {pa} on A which generates the
topology and is such that pa(ΐ) = 1 for all a, [3, p. 7]. Given such
an algebra, we denote by P(A) the class of all such families of semi-
norms on A, and by {A, {pa}) the algebra A with a particular family
of semi-norms {pa}eP(A).

Given (A, {pa}), for each a let Na denote the nullspace of pa, Aa

denote the quotient space A/Na, and || |U denote the norm on Aa

defined by || x + Na \\a = pa(x). For each a consider the natural linear
mapping x ι-» xa = x + Na of A onto Aa. We note that lα is the iden-
tity in Aa and that | |l«| |α = 1 for each a. Michael has given the
significant result that A is isomorphic to a subalgebra of the product
of the normed algebras (Aa, || | |α), Proposition 2.7, [4, p. 13]. Using
this characterization of l.m.c. algebras we are able to generalize much
of the numerical range theory for normed algebras directly to a theory
of numerical range for l.m.c. algebras.

Given {A, {pa}), we define the set

Da(A, p a ; 1) = { / e A ' : / ( l ) - 1 a n d \f(x) | ^ P a ( x ) f o r a l l xeA},

a n d w e w r i t e

D(A, {pa}; 1) = U {DΛA, pa; 1)} .
a

For each ae A we write

Va(A, pa; a) = {f(a):feDa(A, pa; 1)} ,

and define the numerical range of a as the set

V(A, {pa}; a) = [J {Va(A, Pa, a)) .
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To each linear functional / on (A, pa) which annihilates Na, we
can define the linear functional F on Aa by F(xa) — f(x), and to each
linear functional F on Aa we can define the linear functional / on
(A, pa) by f(x) = F(xa). Consequently, from the definition of the norm
in Aa we see that Da(A, pa; 1) is isomorphic to D(Aa, \\ \\a; lα), and
for ae A

Va(A, pa; a) = V(Aa, || ||α; aa) .

Hence, we have the numerical range of a characterized by the normed
algebra numerical ranges of the aa in that

V(A,{p«};a) = \J{V(Aa, || - |U; αβ)} .
a

Both D(A, {pa}; 1) and V(A9 {pa}; a) depend upon the particular family
of semi-norms {pa} e P(A) chosen to associate with A. It is clear
that when {pa} is a directed family, D{A, {pa}; 1) is a convex subset
of A! and the numerical range V(A, {pa}; a) is a convex subset of the
complex numbers.

For each ae A we write

va(A, pa] a) = sup {| λ |: λ e Va(A, pa; a)} ,

and we define the numerical radius of a as

v(A, {pa}; a) = sup {| λ |: λ e V(A, {pa}; a)} .

We note that va(A, pa; a) <: pa(a) for each a, and we allow
v(A9 {pa}; α) = oo. We have that

HA {P«Y> °) = S U P Va(A, Pa, a)
a

{Aa, II |U; aa) .

It is clear that the numerical range and the numerical radius have
the following properties. For ae A and λ, μ complex

V(A, {pa}; Xa + μ) - XV(A, {pa}; a) + μ

and

v(Af {pa}; λα + μ) ^ | λ \v(A, {pa}; a) + | μ \ ,

and for α, 6 e A

V(A, {pa}; a+b)S V(A, {pa}; a) + V(A, {pa}; b)

and

v(A, {pa}; a + b) ^ v(A, {pα}; α) + v(A, {pα}; b)

2* The numerical ranges and the spectrum* In a unital Banach
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algebra the numerical range of an element approximates its spectrum.
We now establish similar approximating relations between the nu-
merical ranges and the spectrum of an element in a complete unital
l.m.c. algebra.

We recall that, given an algebra A with identity, for each aeA,
the spectrum of a is defined as the set

σ(A; a) = {λ: a — λ is not invertible} .

THEOREM 1. Let A be a complete unital l.m.c. algebra. Given
(A, {pa}), for each aeA

σ(A, a) s V(A, {pa}; a) .

Proof. For each a let Aa denote the completion of Aa. We have
from Corollary 5 3(a), [4, p. 22] that

σ(A; α) = U σ(Aa; aa) .
a

But from Theorem 2.6, [2, p. 19] we have that

σ(Aa; a) S V(Aa, || ||α; aa) ,

and from Theorem 2.4, [2, p. 16] that

V(Aa, || | | β ; α β ) = V(Aa, \\ . ||β; aa)

so it follows that

σ(A;a)SU{V(Aa, || ||β;αβ)}
a

= V(A, {pa}; a) .

THEOREM 2. Let A be a complete unital l.m.c. algebra. For each
aeA

co σ(A; a) S f| {V(A, {pa}; a): {pa} e P(A)} s cδ σ(A; a) .

Proof. From Theorem 1 we have that

co σ(A; a) S Γl {V(A, {pa}, a); {pa} e P(A)} .

If co σ(A; a) is not all the complex plane then, for any λ g co σ(A; a)
there exists an open disc Dλ center λ such that Dλ can be strictly
separated from cδ σ(A; a) by a straight line L. Since

σ(A; a) = \J σ(Aa; aa) ,
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Dλ is strictly separated from σ(Aa; aa) for any α, by the straight line
L. However, for each a, σ(Aa; aa) is a compact set so there exists an
open disc Da Ξ2 σ(Aa; aa) which is strictly separated from Dλ by the
same straight line L. We have from [2, p. 23] that, for each a, there
exists a norm || ||'α equivalent to || ||α on Aa such that

σ(Aa; aa) £ V(Aa, || ||'α; aa) S Da .

Now for each a,

V(Aa, | | | | i ; α « ) = V(A, \\ \\'a; aa) .

Defining the semi-norm pr

a on A by

it is clear that the family {p'a} e P(A), and

V(A,{Pa};a) = U {V(Aa, \\ - \\'a; aa)} .
a

So Dλ is strictly separated from V(A, {p'a}, a) by the straight line L.
It follows that Dλ is strictly separated from Π {V(A, {pa}; a): {pa} e
P(A)}9 and this implies that

Π {V(A, {pa}; a): {pa} e P(A)} S co σ(A; a) .

3. Elements with bounded numerical range* We now establish
an important set of inequalities which are generalizations of an in-
equality from the normed algebra theory, and we use them to char-
acterize elements with bounded numerical range.

LEMMA 1. Let A be a unital l.m.c. algebra. Given (A, {pα}),
for a e A and each a

v(A, {pa}, a) ^ —Pa(a) .
e

Proof. From Theorem 4.1, [2, p. 34] we have, for each a

v(Aa, || |U aa) ^ — | | α α | | β .
e

So

v(A> {pa}, a) = sup v(Aa, | | | | β ; aa)
a

^ —\\aa\\a = —Pa(a) ,
e e

for each a.
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From the fact that every {pa} e P(A) is a separating family we can
make the following deduction.

COROLLARY 1. If for a given aeA, there exists an (A, {pa}) such
that V(A, {pa}; a) = {0} then a = 0.

We can also make a statement about elements with bounded
numerical range.

COROLLARY 2. Given (A, {pa}), if for aeA, V(A, {pa}; a) is bounded
then swpapa(a) < oo.

For the characterization of the set of elements with bounded
numerical range we also use the following lemma.

LEMMA 2. Let A be a unital l.m.c. algebra. Given (A, {pa}) we
have, for each aeA

inf \
sup Re V(A, {pa}; a) = *>0 -Usuppβ(l + λα) - l l .

lim λ I « )

Proof. It is clear that for any feD(A, {pa}; 1) and λ > 0

Re/(α) ^ — jsuppα(l 4- λα) - l l

and therefore,

(1) sup Re V(A, {pa}, a) ^ inf— I sup pa(l + λα) - l l .
Λ>0 λ v α j

It follows that the result holds when V(A, {pa}; a) is unbounded. We
consider the case when V(A, {pa}; a) is bounded, and write for every a

τa = sup Re Va(Aa, || ||β; aa) ,

and

τ = sup Re V(A, {pa}; a) .

Now by [2, p. 18], for every a

-1{|| l β + λαα ||β - 1} ^ (1 - λ ^ ) " 1 ^ + λ|| a\ ||β} ,
λ

when 0 < λ < HααH"1. Since V(A, {pa}; a) is bounded we have from
Corollary 2 to Lemma 1 that there exists an M > 0 such that M ^
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supαpα(α). Then, for every a

—{pa{l + λα)-l} ^ (1 - λT)-1^ + λM2}
λ

when 0 < λ < 1/M. Therefore,

lim —jsuppα(l + λα) — if <± τ
λ~*0+ X I a )

Together with inequality (1), this completes the proof.

Let A be a unital l.m.c. algebra. Given (A, {pa}) we can define
the subalgebra

B ΞΞ I x e A: sup pa(x) < <χ> ί .

Now p(x) = supα pa(x) is a norm for B since {pa} is a separating family
and we note that 1 e B and p(ΐ) = 1.

It can be seen from the proof of Theorem 2.3, [1, p. 32], that if
A is a complete unital l.m.c. algebra then given (A, {pα}), the normed
subalgebra (B, p) is complete. However, an examination of the se-
quence {xn} where xn — {1, 2, 3, , n, , n, •}, in the algebra A of
Example 2 below, shows that there exists an incomplete unital l.m.c.
algebra A with {pa} e P{A) such that (B, p) is complete.

Given (A, {p«}), we can characterize elements with bounded num-
erical range as elements of (B, p).

THEOREM 3. If A is a unital l.m.c. algebra then given (A, {pa}),

B = {xeA: V(A, {pa}; x) is bounded}

and when {pa} is a directed family, for every ae B

V(A, {pa}; a) = V(B9 p; a) .

Proof. If, for a given a e A, V(A, {pa}; a) is bounded then Corollary
2 to Lemma 1 implies that ae B. If ae B then supα pa(l + λα) =
p(l + λα) for all λ, so

inf ]
sup Re V(A, {pa}; a) - ">0 \ — {p(l + λα) - 1}

lim λ
λ-> 0+ )

= sup Re V{B, p; a) .

Hence, since V(B, p; λα) = XV(B, p; a) and V(A, {pa}; λα) = XV(A, {pa}; a)
for all λ complex, | λ | = 1, we deduce t h a t every aeB has bounded

numerical range V(A, {pa}; α). When {pa} is a directed family, both
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numerical ranges are convex sets so we deduce from the Krein-Milman
Theorem that for every aeB

V(A, {pa}; a) = V(B, p; a) .

The following result relates boundedness of the spectrum to bound-
edness of the numerical range.

THEOREM 4. Let A be a complete unital l.m.c. algebra. For any
ae A, a (A; a) is bounded if and only if there exists an (A, {pa}) such
that V(A, {pa}; a) is bounded.

Proof. If for a e A there exists an {A, {pa}) such that V(A, {pa}; a)
is bounded, then it follows from Theorem 1 that σ(A; a) is bounded.

Conversely, consider ae A with σ(A; a) bounded. There exists a
disc D in the complex plane such that σ(A; a) ϋ D. Now σ(A; a) =
\Jaσ(Aa; aa). From [2, p. 23], for each a there exists a norm || \\'a
equivalent to || ||α on Aa such that

a;aa)^ V(Aa; | | \\'a; aa) S D .

For each a, defining the semi-norm p'a on A by

P'a(x) = \\Xa\\'a,

the family {p'a} e P(A) and

σ(A; a) S V(A, {p'a}) a) = | J V(Aa, \\ \\'a, aa) S D .
a

Further to the relation between boundedness of the spectrum and
the numerical range given in Theorem 4, the following example shows
that there exist l.m.c. algebras A where σ(A; a) is bounded for a given
aeA but where there exists (A, {pa}) such that V(A, {pa}; a) is un-
bounded.

EXAMPLE 1. Let A be the algebra of all sequences of complex
numbers, x = {X19 λ2, •••, λw, •••} with pointwise definition of addition
and multiplication by a scalar, but with convolution multiplication
and with unit 1 = {1, 0, , 0, •}. A sequence of submultiplicative
semi-norms {pn} is defined on A by

Pn{χ) = Σ

and the sequence satisfies pn(ϊ) = 1 for all n, and is separating. Con-
sider aeA such that Xn -** 0. Then pn(a) —> oo, so by Lemma 1
V(A, {pn}; a) is unbounded. But σ(A; a) — {λj, which is bounded.

It is worth noting that a complete unital l.m.c. algebra with a
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bounded numerical range property has the following property.

THEOREM 5. If A is a complete unital Lm.c. algebra where there
exists an (A, {pa}) such that V(A, {pa}; a) is bounded for all aeA, then
σ(A; a) is compact for all aeA.

Proof. We note that B = A and so σ(A; a) — σ(B; a), for every
aeA. Since A is complete it follows that (J5, p) is complete and so
σ{B; a) is compact for every aeA.

However, the algebra A of Example 1 has σ(A; a) compact for
all aeA but there exists an (A, {pa}) such that V(A, {pa}; a) is not
bounded for all aeA.

It is known that there exist non-normable Lm.c. algebras where
σ(A; a) is compact for all aeA, [4, p. 80]. The following example
gives the further information that there exist non-normable Lm.c.
algebras A where, for a certain (A, {pa})> V(A, {pa}; a) is bounded for
all aeA.

EXAMPLE 2. Let A be the algebra l°° of all bounded sequences
of complex numbers, x = {\, λ2, , Xn, •}, with pointwise definition
of the algebra operations and with unit 1 = {1,1, , 1, •}. A se-
quence of submultiplicative semi-norms {pn} is defined on A by

Pn(x) = I λ J ,

and the sequence satisfies pn(l) = 1 for all n, and is separating. Now
p, defined by

p(x) = sup {pn(x)}
n

is the usual i°°-norm on A, so B = A and from Theorem 3, V(A, {pn}; a)
is bounded for all aeA. However, it is clear that (A, {pn}) is non-
normable.

4* A characterization of δ*-algebras by numerical range. A
l.m.c. * algebra A is a Lm.c. algebra with a continuous involution *.
We let S(A) denote the set {x e A: x = x*}, the selfadjoint elements
of A. A b*-algebra A is a complete Lm.c. * algebra where there ex-
ists a family {pa} e P(A) such that pa(x*x) = pa(x)2 for all xe A and
every a, [1, p. 31].

In a unital normed algebra (A, || ||), the set of hermitian elements
H(A, || ||) is the set of elements a with real numerical range
V(A, || ||; a). For a unital l.m.c. algebra A, given (A, {pa}) we define
the set of hermitian elements H(A, {pa}) as the set of elements a with
real numerical range V(A, {pa}; a). It is clear from the definition of
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the numerical range in {A, {pa}) that a e H(A, {pa}) if and only if
aaeH(Aa, || ||α) for all a.

One of the outstanding successes of the normed algebra numerical
range theory is the Vidav-Palmer Theorem [2, p. 65] which charac-
terizes unital B* algebras as unital Banach algebras which have an
hermitian decomposition. We now consider a generalization of this
work to the characterization of unital δ*-algebras amongst the com-
plete unital l.m.c. algebras.

We need the following property of the hermitian elements.

LEMMA 3. Let A be a complete unital l.m.c. algebra. Given
(A, {Pa})9 the set H(A, {pa}) is closed.

Proof. Consider h a cluster point of H{A, {pa}) Then, for each
α, ha is a cluster point of H(Aa, || | |α). But by Lemma 7, [5, p. 198],
H(Aa, || ||β) is closed in (Aa, || ||α), so haeH(Aa, || | |α). Since
V(A, {pa}; h) = U« V(Aa, || ||β; ha) we have that heH(A, {pa}).

THEOREM 6. Let A be a complete unital l.m.c. algebra. Given
(A, {Pa})> the following statements are equivalent.

( i ) A = H(A, {pa}) + ίH(A, {Pa})y a direct sum,
(ii) There is an involution * on A such that A is a l.m.c. * al-

gebra where S(A) = H(A, {pa}),
(iii) There is an involution * on A such that A is * isomorphic

to a * subalgebra of a product of B*-algebras (Άa, || ||α),
(iv) There is an involution * on A such that A is a b*-algebra,
(v) There is an involution on B such that (B, p) is a dense 2?*-

algebra.

Proof, (i) => (ii) Since A = H(A, {pa}) + iH(A, {pa}), we define the
involution * on A as follows: for x — h + ik where h, ke H(A, {pa})
put x* — h — ik. We need to show that * is continuous on A. Now
for every a, Aa = H(Aa, || ||«) + ίH(Aa, \\ ||β) and * induces an involu-
tion * on Aa where for xa = ha + ik we have a?* = ha — ika. But from
Lemma 5.8, [2, p. 50], since 4 i J( ϊ α ), we have for every α, that
* is continuous on Aa and since pa(x) = ||α?α||α for all xeA, * is con-
tinuous on A. It is clear that with this involution *, S(A) = H(A, {pa})

(ii) => (iii) Since H(A, {pa}) = S(A) we have A = H(A, {pa}) +
iH(A, {pa}) and so, for every a, Aa = H(Aa, || ||«) + iH(Aa, \\ J\a). But
by Theorem 8.2, [2, p. 74], Aa is a pre-J5*-algebra and so Aa is a I?*-
algebra for every a. Our result follows from Michael's characteriza-
tion of l.m.c. algebras, Proposition 2.7, [4, p. 13].

(iii) => (iv) For every a, since (AUf \\ ||«) is a i?*-algebra and
pa(x) = \\xa\\a for all xe A, we have pa(x*x) = pa(x)2 for all xe A; that
is, A is a 6*-algebra.
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(iv)=>(v) This is proved as Theorem 2,3, [1, p 32].
(v) => (i) Since {B, p) is a unital J3*-algebra, B = H{B, p) +

iH(B, p). For any h, keH(B, p), we have from Theorem 3, that h,
keH(A, {pa}). But then for every a, ha, kae H(Aa, \\ \\a) and since

H»βlU = Pa(%) for all xeA, we have from inequality (1), [2, p. 50]
that

Pa(h) ^ epa(h + ik) .

This inequality implies that for any net {hr + ikγ] in B convergent to
x in A, both {hr} and {kr} converge to say h and k. But by Lemma
3 the set H(A, {pa}) is closed in A so h, k e H(A, {pa}) and x — h + ik.
Since B is dense in A, we have A = if(A, {pα}) + iH(A,{pa}).

It should be noted that this theorem gives in (v) => (iv), a con-
verse to Theorem 2,3, [1, p. 32], and in (iv) => (iii), a simpler proof
for Theorem 2.4, [1, p. 32], by using numerical range techniques.

The following is an application of Theorem 6 and is a generaliza-
tion of Theorem 7.6, [2, p. 71].

THEOREM 7. Let Ω be a locally compact Hausdorff space and let
A = ^(Ω) be the algebra of all complex continuous functions on Ω.
If A is an F-algebra under the compact-open topology, then any l.m.c.
topology generated by a family of semi-norms {pa} such that pa(f) =
PaQf I) for all fe A and pa(l) — 1 for all a, under which A is an F-
algebra, is the compact-open topology.

Proof. We can introduce the exponential function in A, exp a =
1 + Σ?=i Qln\)an, and it is clear that (exp a)a = exp αα, for every α
Now if g is a real continuous function on Ω then for real λ and for
each a

| | e x p (i\ga) \\a = || ( e x p iXg)a \\a

= p«(exp iXg)

= pa{\expi\g\)

Therefore, by Lemma 5.2, [2, p. 46], gaeH(Aa, || ||α) for every a, and
so geH(A, {pa}). We have then A = H(A, {pa}) + i£Γ(A, {p«}) and by
Theorem 6 we conclude that A is a 6*-algebra. Now, by Theorem
4.2, [1, p. 36], A with the compact-open topology is also a 6*-algebra.
So by Theorem 3.7, [1, p. 35], the l.m.c. topology generated by {pa}
is the compact-open topology.

In the above theorem we note that A with the compact-open topolo-
gy and A with the l.m.c. topology generated by the semi-norms, must
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both be jF-algebras; one of these being an F-algebra is not sufficient.
We are indebted to the referee for the following examples which
illustrate this point.

EXAMPLE 3. Let Ω = [0,1] with the usual topology and let {Ka}
be the set of compact countable subsets of Ω. A family of semi-norms
{pa} defined on A by

pa(x) = sup {\f(x) |} ,
KxeKa

satisfies the conditions of the theorem except that A with this topology
is not an jP-algebra, [4, Example 3.8, p. 19]. However, A with the
compact-open topology is a Banach algebra, so it is clear that the to-
pology generated by the family of semi-norms is not the compact-open
topology.

EXAMPLE 4. Let Ω be the set of ordinal numbers smaller than
the first uncountable ordinal, with the order topology. With norm p
defined on A by

p(x) = p
xeΩ

A is a Banach algebra. However, A with the compact-open topology
is not an F-algebra, [4, Example 3.7, p. 19], so it is clear that the
norm topology on A is not the compact-open topology.

Note added in proof. We are indebted to Dr. R. T. Moore for
pointing out, in connection with Example 2, that the following result
can be deduced from Theorem 3 by the Open Mapping Theorem.

THEOREM. A unital F-algebra A is normable if and only if
there exists an (A, {pa}) such that V(A, {pa}; a) is bounded for all
aeA.
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ON DOMINANT AND CODOMINANT DIMENSION OF
QF - 3 RINGS

DAVID A HILL

In this paper the concept of codominant dimension is
defined and studied for modules over a ring. When the ring
R is artinian, a left R module M has codominant dimension
at least n in case there exists a projective resolution

with Pi injective. It is proved that every left iϋ-module has
the above property if and only if R has dominant dimension
at least n. The concept of codominant dimension is also
used to study semi-perfect QF — 3 rings.

Let R be an associative ring with an identity 1. Denote by

mR (resp. Rn) the left (resp. right) iϋ-module R. Using the termino-
logy of [5], we have the following definitions:

(1) R is left QF — 3, if R has a faithful projective injective
left ideal.

(2) R is left QF - 3+ if the injective hull E(*R) is projective.
(3) -R is left QF — 3' if E(mR) is torsionless, i.e., there exists

a set A such that E{R) ^ JJA #•
In general (1)=>(3) . For perfect rings the three conditions

are equivalent for left and right QF — 3 rings. (See [5].)
The dominant dimension of a left (resp. right) jβ-module M9

denoted by dom. dim (ΛM) (resp. dom. dim (MΛ)) is at least n, if there
exists an exact sequence

0 >M >Xλ > >Xn

of left (resp. right) ίί-module where each X{ is torsionless and injec-
tive for i = 1, •••, n. See [3] for details.

Note that this says when dom. dim (RJS) ^ 1 and R is left-
artinian that E{Re?) for i = 1, , n is projective where {β4}, i = 1, , n
is a complete set of orthogonal idempotents, and that each Xt is
projective.

We define codominant dimension as follows:
Let M be a left JS-module. The codom. dim of M is at least n

in case there exists an exact sequence

Pn > P n - 1 > >Pι > M > 0

where P< is torsionless and injective for i — 1, , n.
Following the notation of [3], we say that if such an exact
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sequence exists for 1 <̂  i <̂  n, but no such sequence exists for 1 ^
i ^ n + 1, then codom. dim (mM) = n. If such a sequence exists for
all n then codom. dim (MΛf) = oo. If no such sequence exists codom.
dim (mM) = 0.

An i?-module U is defined to be a cogenerator if for any module
M we can embed it in a product of copies of U. We have:

LEMMA. Let £7, V be left injective cogenerators then the
codom. dim (U) = codom. dim (V).

The proof follows easily from properties of injective cogenerators
and shall omit it.

Let U be a left injective cogenerator. If the codom. dim (U) = n,
we say that R has 1. codom. dim (Miί) — n. In a similar manner one
defines r. codom. dim (R*). Note that if mR is artinian, products of
projectives are projective and direct sums of injectives are injective.
Hence 1. codom. dim (mR) = n is equivalent to the existence of a
resolution

Pn >Pn_ί > >Pt >U >0

where P< is projective and injective and U = EiS,) 0 0 E(Sn)
where S<: i = 1, , n is a copy of each simple left iϋ-module.

In § 1 we characterize semi-perfect QF — 3+ rings in terms of
their finitely generated projective, injectives.

In § 2 we show that 1. dom. dim (M22) and 1. codom. dim (Rjβ) are
the same for artinian rings. Hence, if R is artinian QF — 3 then
the l.-dom. dim (r-dom. dim) 1. codom. dim (r-codom. dim) are the same.

For notation we use J to donote the Jacobson radical, and R{A)(RA)
denotes a direct sum (resp. direct product) of A-copies of R. Also
E(M) will be used to denote the injective hull of an iϋ-module M
and P(M) will denote the projective cover of M when M has a pro-
jective cover. For a left .β-module M, we let s*{M) = {x e R | x M = 0},
and •*(!) = {xeM\I-x = 0} where I g i 2 . We will use T(M) to
denote M/J(M) where J(ikf) is the Jacobson radical of M.

1. QF - 3 Rings. Recall that if mR is noetherian rt-QF - 3 «
rt-QF - 3+. (See [1] and [6].)

To begin with we shall prove that under those hypotheses

rt-QF - 3+ *=> rt-QF - 3' .

PROPOSITION 1.1. Let nR be noetherian. If E(Rm) is torsion-
less then E(R$) is projective.
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a

Proof. Given that 0 —> E —» RA is monic, where A is an indexing
set. We show that there exists a finite number of Ra's9 aeA say
Ra., *,Ram such that πθ\R = θ where π is the projection RΛ —*
Θ Σ£=i -K«< * s πionic. Let S be the set of all finite intersections of
right ideals {Ka}aeA where Ka = ker (πao θ \R). Note that f\%=lKai induces
a natural embedding of

o—>

Thus i2/n?=i Ka. is torsionless. Hence by [2, Thm. I, p. 350]

n κai = .„•„ n K

Now since mR noetherian, the set {^(Π?=i K<*)} has a maximal element

SΆ(Γ)T=ι Ka) where f) ifα. e S . Thus ,/ s(ΠΓ=i ^ ) = Γl£=i ̂  ί s a

minimal right ideal in S. But then a? e f)Γ=i ^ =* a? e Π«e^ #«• Thus
Π £ i ίΓβi = 0. This implies that θ is monic. But then πθ is monic
since ker (πθ) f] R Φ 0 if ker (πθ) Φ 0. This shows E is projective.

We next show that QF — 3+ => QF — 3 for semi-perfect rings.
First we need the following lemma.

LEMMA 1.2. Let K be finitely generated. Suppose there exists
an exact sequence

where E(K) = Eu Ei+1 = E(E4) for 1 <J i ^ n — 1 and each Ei is pro-
jective. Then Eu •••, En are all finitely generated.

Proof. This follows easily from the proof of [4, Lemma 1].

PROPOSITION 1.3. Suppose R is semi-perfect. If R is left QF —
3 + then R is left QF - 3.

Proof. By Lemma 1.2 E(R) is finitely generated. Since R is
semi-perfect E(R) = © Σ?=ι R^ where each e< is an indecomposable
idempotent.

Let Rel9 , Rek be a subset of i?^, , Ren, where the set
{Rel9 , Rek) is a complete set of isomorphism classes of [Reu , Ren}.
Then ί7 = Reγ φ © Rek is a minimal projective injective.

Now we come to the main theorem of this section.

THEOREM 1.4. Let R be semi-perfect. The following are equiva-
lent:
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(a) R is left QF - 3+.
(b) E(mR) is finitely generated and every finitely generated left

injective has an injective projective cover.
( c ) Every finitely generated left projective has a projective

injective hull.

Proof. (b)=>(a): Consider

P(E(R)) • E{R) > 0 .

Embed R - i E(R) then by the projectivity of R there exists a map
Θ':R-+P{E{R)) such that ff is monic.

Consider the following diagram:

0 >R-^

P(E{R)) .

Here θ"(r) = θ'(r) for all reR. Also θ" is monic. The injectivity
of E(R) forces E(R) to be a direct summand of P(E(R))9 hence
projective.

(a) « (c): Consider R{n\ R{n) ^ E{R){n). Thus E(P) ^ #(JB) , where
P φ P ' = i?(%), as a direct summand. Hence JF(P) is projective. The
converse is trivial.

(a) => (b): By Lemma 1.2 E(R) is finitely generated.

Consider P(E) —> E—*0 where P(E) is finitely generated injective.

Let R(n> -̂ » £7—> 0. Combining the above maps we have the following
diagrams:

0 > 22t#> —

E.

So we have /θ' epic a n d . p ' ° i » ) = ι° F u r t h e r we have

E(R)W

P(E)—>E >0

Noting that p" is epic and P(E) is projective, P(E) is a direct
summand of E(RYn). Hence injective.

A ring is perfect in case every module has a projective cover.
We show that QF — 3+ rings can be characterized in terms of the
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protective cover of E(ΛR).

THEOREM 1.5. Let R be perfect. Then every indecomposable
summand of P{E(^R)) is ίnjective if and only if R is left QF — 3+.

Proof. => Consider the following diagram:

Here i is a monomorphism and π is epic Since R is protective there
exists on / such that πf = i. Clearly / is monic Since R is perfect
P(E{χR)) = Σ«e -̂Bβα> where ea are primitive idempotents of R. Now
Im (/) is contained in ΣS=i Rβa9 for n a positive integer, since mR
is cyclic.Thus using the hypothesis, E(ΛR) is protective and R is left
QF - 3+. *= This is trivial.

2 Codominant dimension of rings* We begin with a lemma
which holds the key to the main results of this section.

LEMMA 2.1. Let R be a ring. The following conditions are
equivalent.

(1) For every protective left R-module P, there exists an exact
sequence

0 >P •JSi > >En

where Eif 1 ̂  i ^ n, are injective and protective.
( 2 ) For every injective left R-module Q, there exists an exact

sequence

p > p > . . . > P > o • 0

where Pi9 1 ̂  i ^ n, are injective and protective.

Proof. (1) => (2). For n = 1 a modification for the proof of
Theorem 1.4 will suffice. We assume the lemma is true for the wth
case and prove the n + 1 case. So consider the following exact
sequences.

( i ) o—>pΛ+ίJL &-£->&—,...-^^.+1

(2) Pn+ιJUpn^U tP^Q >0.

Here Q is an arbitrary injective module and
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Pi, •, En

are both projective and injective and Pn+ί is projective.
Also Ek is the injective hull of Cok (Jk).
Denote by K the image of θλ. Using the injectivity of Pn, there

is a map θ2: Eλ —• Pn such ^J^ = in+1θ1 where iΛ + 1 is the embedding
of ϋΓ into Pn. The injectivity of P ^ i and the exact sequence 0 —>
EJPn+1—+ E2 induce a map θz\ E2-^Pn_γ which one can easily check
has the property θdj2 = inθ2.

In like manner we can define θk: Ek^ —> Pn+2_k such that

*-! = W s - A - i , k = 2, -*-,n + 2 .

This information is summed up in the following diagram:

0 P.+1

θl

- E2
EnΛ

Jn+

K •+P.

K

in

θn+2

•0.

0

Having constructed 0n+2, the projectivity of En+ι induces a map
Λt: En+1-+Py such i A = 6 w + 2. Now consider the map Λ1J

r

n+1 — ^TC+1: ΐ
1,,—»•

P t . We have i^hj^ - θn+ι) = θn+2jn+1 - iI(?n+1 = 0. So Im ( V , + 1 -
θ,+ι) ^ ker ( i j .

Now consider the following diagram:

Im (i2
0 .

We can construct h2 using the projectivity of En. By a similar
argument we can show that Im (h2Jn — θn) ^ ker (i2). By a recur-
sive argument we can construct hkJn+2_k — θn+2_k for k = 1, •••, n
in like manner. In particular we have hnJ2 — Θ2\ Eί -^ P n where
Im (/^Jg — ^2) ^ K. We need only show equality to complete the
proof. Let keK. Then there exists an xe Pn+1 such that θ^x) = k.
Thus (hnj2 - Θ^J^-x)) = ^Jiίa;) = ^(a?) = k. Thus /^/2 - θ2 maps
on to iΓ. The proof (2) => (1) is similar. This completes the proof.

Noting that for left artinian rings products of projectives are pro-
jective, and direct sums of injectives are injective one can easily show
that dom. dim (R) ^ n implies dom. dim. (P) ^ n for all projective P
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Likewise letting I = φ X Ea(Sa) be the minimal injective cogenerator
of iϋ, we find that codom. dim(J) ^ n implies codom. dim (Q) >̂ n for
all injectives Q. Thus we have:

THEOREM 2.2. Let R be left artinian then the following are
equivalent:

(1) The inf {me Z\ dom. dim (P) = m for all P projectives} = n.
(2) The inf {meZ\ dom. dim (Q) = m /or αii Q injectives} = w.
( 3) 1. dom. dim (wi2) = n.
( 4) 1. codom. dim (mR) = w.

jfjf wo ŝ cΛ % exists we say 1. dom. dim (i?) = oo

Proof. (3) ==> (1), (4) => (2) by our previous discussion. (1)=>(3):
There exists a projective module P such dom. dim (P) = n.

Now P = φ Σ ^ ί?βα, {eα} primitive idempotents such that for
some eβ dom. dim (Reβ) <n + 1 where eβ e {ea}. Since Reβ < R, n + 1 >
dom. dim (R) >̂ n. This yields the desired result. (2) => (4) is similar.
(1) => (2): By Lemma 2.1 inf {meZ\ codom. dim(Q) = m) ̂  n. If inf of
the above set is strictly greater than n, another application of the
lemma forces inf {meZ\ m = dom. dim (P), P projective} > n which
is impossible. (2) =» (1) is similar.

Let R be left artinian and both left and right QF — 3. Then
by [4, Thm. 10] 1. dom. dim (sjβ) = r. dom. dim (Rm). Thus in view of
2.2 we have:

PROPOSITION 2.3. Let ^R be artinian and QF — 3. Then
1. domdim (mR) = r. domdin (Rm) = 1. codomdin (ΆR) = τ. codomdim (Rm) = n.

Acknowledgement. The author wishes to thank the referee for
his proof to Theorem 1.5 which is simpler than the author's original
version.
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ROUND AND PFISTER FORMS OVER R(t)

J. S. HSIA AND ROBERT P JOHNSON

An anisotropic quadratic form ώ is called round if φ = aφ
whenever φ represents a Φ 0. All round forms over R(t) are
completely determined. Connections with Pfister's strongly
multiplicative forms and with the reduced algebraic iΓ-theory
groups kn of Milnor are studied.

The concept of a round form was introduced by Witt (see [5] and
[8]) to give new simple proofs of results of Pfister on the structure
of the Witt ring over fields. In a previous paper [3] we determined
all round forms over a global field. In this paper we completely
determine all round forms over R(t), the field of rational functions
in one variable over the reals.

We now describe our main results.
Let φ be an anisotropic form of dimension > 1 over R(t). Then

Φ is round if and only if φ ~ (n x (1, /)) φ (1, fg) for some /, g e R{t)
such that / is a product of distinct linear factors and g is a product
of irreducible quadratic factors. Our proof gives a method of com-
puting / and g, which are essentially unique (see 2.5 and 2.6). We
study a generalization of a round form, called a group form, over
R(t) and measure how far group forms are from being round (see [3]
for group forms over global fields).

In the last section we show that a form of dimension 2n(n ^ 2)
is a Pfister form if and only if it is a round form of determinant
one. Such a form can be written uniquely as 2n~1 x (1,/) for some
/ G R[t] which is ± a product of distinct monic linear factors. From
this and a theorem of Elman and Lam we see that every element of
JcnR(t) can be written uniquely as l{—lY"1^— f) with / as above.

1* Preliminaries* We will consider only quadratic forms (often
simply called "forms") over a field F of characteristic Φ 2. We write
Φφψ for the orthogonal sum and φ (x)ψ for the tensor product of
quadratic forms [5, p. 8]. We call φ hyperbolic if φ ~ m x (1, —1),
i.e., φ is a direct sum of hyperbolic planes.

Define ί)φ = {a e F \ φ represents a] and Gφ = {a e F \ aφ ~ φ) where
F = F — {0}. An anisotropic form φ is called round if and only if
t>φ = Gφ (or equivalently ί)φ £ Gφ); an isotropίc form is called round
if and only if it is hyperbolic [5, p. 22]. A form φ is called a Pfister
form if φ ~ (1, αx) (x) (x) (1, αj(α^ e F).

We will frequently refer to [4] for results on quadratic forms
over F = R(t). The valuations of F which are trivial on R are of
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three types: if the prime element is t — a(aeR), the valuation is
called real; if the prime element is an irreducible quadratic polynomial
it is called complex; if the prime element is t~ι it is called infinite.
A spot is an equivalence class of valuations [7]. If p is a real or
infinite spot then the completion Fp of F at p is isomorphic to R{{π))
(a real series field) where π is a prime element. If p is complex,
Fp s C((π)) is called a complex series field. See [4] for results on
quadratic forms over series fields.

If φ is a quadratic form over R(t) and if ae R, we define "φ at α"
to be the quadratic form over R obtained by replacing t by a in the
matrix of φ. Thus φ at a is well-defined for almost all ae R. The
following result is Proposition 2.1 of [4] and is due to Witt.

1.1. A nonsingular quadratic form of dimension ^ 3 over R(t)
is isotropic if and only if for almost all ae R, the form at a is
isotropic over R. Thus if φ is a quadratic form of dimension ^ 2
over R(t) and if 0 Φf(t) e R(t), then φ represents f{t)<^>for almost
all aeRy φ at a represents f(a).

If we write φ ~ (aly , an) over a field F then det φ = aι an

modulo F2. When F = R(t) we assume det φ is written as ± a pro-
duct of distinct monic irreducible polynomials.

The following result generalizes Proposition 2.2 of [4].

1.2. Let φ, ψ be quadratic forms over R(t). If φ ~ ψ at a for
almost all ae R and if det φ, det ψ have the same irreducible quadratic
factors, then φ = ψ.

Proof. Clear for dim^ = 1. We assume this result is true when-
ever dim φ < n and prove it for dim φ = n > 1. Let φ represent a Φ 0.
Then φ@( — a) is isotropic so by 1.1, ψ @ ( — α) is isotropic. Thus ψ
represents α. Write φ ~ (a) 0 φx and ψ ~ (a) © ψ\ and apply the
induction hypothesis.

1.3. Let f(t) e R[t] and aeR with f{a) Φ 0. Then (f(t)) ~ (f(a))
(one-dimensional quadratic forms) over the completion of R(t) at the
spot with prime element t — a.

Proof. Write f(t) = α0 + a,(t - a) + + an(t - a)n and apply
the Local Square Theorem [7, 63: la], noting f(a) = α0.

2* Round forms over R(t). We will need the following result,
which determines all round forms over a series field.

2.1. Let φ be an anisotropic quadratic form over a real or com-
plex series field F.
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( a ) If F is complex, then φ is round <=> φ represents 1.
( b ) Let F be a real series field. Then F is pythagorean and

formally real. So if dimφ is odd, φ is round <=> φ ~ (1, •••, 1). If
dim φ = 2m is even then φ is round <=* φ ~ m x (1, 1) or m x (1, ± π).

Proof, (a) By [4, 1.2], dim^<^2 whenever φ is anisotropic
over a complex series field. Now apply [5, 2.4].

(b) It follows easily from the Local Square Theorem [7, 63:1a]
that F ΪS pythagorean. Now apply [5, 2.4] and [4, 1.6].

Now let F be a field of characteristic Φ 2 and let fl be a set of
discrete or archimedian spots on F (see [7] for terminology). We say
that (F, Ω) satisfies the Weak Hasse-Minkowski Theorem if whenever
σ and τ are quadratic forms over F with σp ~ τp for all p e Ω, then
σ ~ T (σp denotes the form σ viewed over the completion Fp of F
at p).

2.2. Let (F, Ω) satisfy the Weak Hasse-Minkowski Theorem. Let
φ be anisotropic over F. Then φ is round <=> for all p e Ω,

(1) φp is round
or (2) φp is isotropic and φp (the anisotropic part of φp) is round
and universal.

Proof. (==>): Assume φ is round. Let peΩ. We first assume
φp is anisotropic and show φp is round. Let beD(φp). Approximate
b by a e Dφ. By the Local Square Theorem, we can obtain a e bFp.
Thus φ ~ aφ ==> φp ~ bφp so φp is round.

Now assume φp is isotropic and not hyperbolic. Write φp — φ'p 0 H
with H hyperbolic. We will show φp = bφp for all be Fp and so (2)
holds. Now φp represents b so we find that φp ~ bφp by the argument
of the preceding paragraph. Thus φp ~ bφp.

(<=): Let aeDΦ. Applying (1) or (2), we have φp ~ aφp for all
p e Ω. By the Weak Hasse-Minkowski Theorem, φ = aφ, so φ is round.

EXAMPLES 2.3. The Weak Hasse-Minkowski Theorem holds in the
following cases:

(1) Let F = K{t) where K is an arbitrary field of characteristic
Φ 2 and let Ω be the set of all spots on F that are trivial on K.
Using [6, Theorem 5.3] one can show that (F, Ω) satisfies the Weak
Hasse-Minkowski Theorem.

(2) Let F be a global field and let Ω be the set of all non-
trivial spots on F. We have the following precise results in this
case [3, 2.4]: let φ be an anisotropic form over F and let dim φ > 2.
Then φ is round if and only if: (1) dim φ = 0 mod 4, (2) at all real
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spots (if there are any) φ is hyperbolic or positive definite, and (3)
det 0 = 1. We note that the Strong Hasse-Minkowski Theorem holds
for [F, Ω), i.e., if a form φ is isotropic for all pe Ω then φ is isotropic.

(3) Cassels, Ellison, and Pfister (J. Number Theory, 3 (1971),
p. 147) have recently shown that the Strong Hasse-Minkowski Theorem
fails for F = K(t) where K — R{x) (x9 t independent indeterminants
over R) though the weak theorem holds as we have mentioned in (1).

The next two results determine all round forms over R{t).

2.4. There is no odd-dimensional round form over R(t) except
the form φ = (1).

Proof. Note that R(t) is non-pythogorean since f + 1 is not
a square. Now apply [5, 2.4].

THEOREM 2.5. Let φ be an anisotropic form of dimension 2m
over R(t). Then the following are equivalent:

(1) φ is round.
(2) φ ̂  ((ra - 1) x (1, /)) 0 (1, fg) for some f,ge R[t] such that

f is a product of distinct linear factors and f or —/ is monic, and
g is a product of monic irreducible quadratic factors (we allow / — 1
or — 1 and allow g = 1).

(3) For almost all ae R, Φ at a is hyperbolic or positive
definite.

(4) φp is round for all real or infinite spots p on R(t).

Proof. (1) <=> (4) follows from 2.2 since there is no universal
anisotropic form over a real series field. We will show (2) ==> (4) ==>
(3) => (2). (2) => (4) follows from 2.1 and 1.3.

(4) => (3): Assume (4). Write ^ ( / ^ t ) , - , /2m(£)) with the/«(ί) e
R[t]. Let ae R such that /<(«) Φ 0 for all i. Let p be the real spot
with prime element t — a. By 1.3, φp ~ {fλ{a), •• ,/2»(α)) By 2.1,
φp~mx (1, 1) or m x (1, —1). So by [4, 1.6], φ at a is = m x (1, 1)
or m x (1, —1).

(3) => (2): Write φ ~ (f, , /2w) with the /< e R[t]. Let S be the
set of all a e R such that fi(a) = 0 for some i. Write S = {au , ak}
with a1 < α2 < < ak. If / is any of the intervals (—°°, αj,
(#1, 2̂), , (α*, °°) then φ at a is hyperbolic for all ae I or is positive
definite for all ae I. The idea now is to merge together adjacent
intervals if φ at a looks the same in the adjacent intervals. If φ at
a is positive definite (respectively, hyperbolic) for almost all ae R
then we let / = 1 (respectively, —1). Otherwise, there is an ordered
subset {δi < δ2 < * < δy} of S such that if J is any of the intervals
(-co, bj, (bly δ2), •••, (bj, 00) then φ at a is hyperbolic for almost all
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a e J or is positive definite for almost all aeJ, and such that whenever
φ is hyperbolic in one of these intervals then it is positive definite in
the adjacent intervals. Now let / = (t — &x) (t — b3) if φ at a is
positive definite for almost all a > bj9 and let / = — (t — bx) (ί — b3)
otherwise. Let g be the product of all the (monic) irreducible quad-
ratic factors of det φ. Then by 1.2, φ ~ ((m - 1) x (1,/)) 0 (l,fg).

REMARK 2.6. (1). Part (2) of the above theorem gives us a
canonical form for an anisotropic round form of even dimension over
R(t), i.e., / and g are uniquely determined. This fact follows easily
from 1.2. The proof of (3) => (2) gives us a constructive method of
finding / and g (provided we know the decomposition of the ft into irre-
ducible factors).

(2) Part (3) of the theorem provides us with the easiest way
to check whether a given anisotropic form φ of even dimension over
R(t) is round. If Φ = (f, •• ,/2«) with the /<€Λ(ί) and if {a, <
a2 < < ak) is the ordered set of all real roots of the //s, we
need only compute φ at a for one value of a in each of the intervals
( - o o , α x ) , (al9 α 2 ) , •••, (ak, oo) ,

As in [3], we call a quadratic form φ over a field F a group
form if ί)φ is a subgroup of F. Every round form is clearly a group
form. We now briefly investigate group forms over R{t).

2.7. Let F be a field with a set Ω of discrete or archimedean
spots on F. Assume (F, Ω) satisfies the Strong Hasse-Minkowski
Theorem (local isotropy implies isotropy). Then a quadratic form φ
over F is a group form <=> φp is a group form for all p e Ω.

Proof. (=>): See the proof of 3.2 of [3]. (<=): Let a,beΐ)φ.
Then abe ί)φp for all pe Ω so ab e ί)φ.

By [4, 2.3] and [7, 42:11], R(t) satisfies the Strong Hasse-
Minkowski Theorem with respect to the set of all real and complex
spots. Thus by 2.7 and 1.1, we have:

2.8. Let φ be a quadratic form over R(t). Then φ is a group
form <=> φ represents 1. // dim φ ;> 2 then φ is a group form <=> φ
at a represents 1 for almost all ae R.

If φ is an anisotropic group form over any field then φ is round <=*
the factor group DΦ/Gφ — 1. Thus this factor group measures how
far an anisotropic group form is from being round. We now investi-
gate this factor group.

2.9. Let φ be a group form over R(t) and assume φ is not round.
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Then Dφ/Gφ is infinite unless φ ~ (m x (1, —1)) 0 (1, —g) where m ^ 1
and g is a product of monic irreducible quadratic factors. In this
latter case ί)φ/Gφ = 1.

Proof. (1) We first assume dim φ is odd and > 1. Clearly
Gφ = F2. If / is any monic irreducible quadratic polynomial over R,
then feDφ by 1.1. Thus Dφ/Gφ is infinite.

(2) Now assume dim φ is even and φ is anisotropic. Then
there is an interval / = (a, b) such that if a e I, then φ at a is =
(m x (1)) 0 (n x ( — 1)) for fixed positive integers m, n with m Φ n
(to see this, apply (3) of 2.5 and (2) of 2.6). Let a < x < y < b and
define fxy(t) = (t - x)(t - y) e R[t]. Then fxy(a) > 0 if a g I so /βy(ί) e
Zty by 1.1. Let y<yι<b,$o that /βyi(ί) e A£ also. Let h{t) = fxy(t) -f-
fXVl(t). Then A(£) g G^ by 1.2 since Λ(α:) < 0 for y < α < yx. It is now
clear that if we choose an infinite sequence of numbers y <yγ<
y2 < < b then we obtain an infinite number of distinct cosets of
Gφ in Dφ.

( 3 ) Let dim φ be even and let φ be isotropic (but not hyperbolic),
and assume that φ at a is non-hyperbolic for infinitely many a e R.
Then there is an open interval I such that for all a e I, φ at a is
isotropic but not hyperbolic. Thus by the proof of (2) above, Dφ/Gφ
is infinite.

(4) Finally, assume dim φ is even and φ is isotropic (but not
hyperbolic), and assume that φ at a is hyperbolic for almost all ae R.
Then by 1.2, φ = (m x (1, —1)) 0 ( 1 , —g) where g is a product of
monic irreducible quadratic factors. By 1.1, Dφ = F (where F = R(t).
Now Gφ = G(l, -0) = F by 1.2 so Z)̂ /G^ - 1.

3* Pfister forms and kn over R(t). We first consider Pfister
forms over R(t).

3.1. Let φ be a quadratic form over R(t) with dim φ — 2n(n ^ 2).
T%βw /Λe following are equivalent:

(1) φ is a Pfister form.
(2) ^ = 2n"1 x (1,/) /or some feR[t] which is ± a product of

distinct monic linear factors (we allow f = ±1).
(3 ) φ is round and det φ — 1.

Proo/. (1) « (3) is clear. (3) => (2) by 2.5 (if φ is isotropic, let
/ = -1). (2)=>(1) is clear.

In (2), / is uniquely determined by φ (see 2.6).
We now consider, for the field F — R(t), the algebraic Z-groups
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knF = KnF/2KnF of Milnor [6]. kn is generated additively by the ele-
ments IM -licJicteF). We have li-aj > l(-an) = l(-b1)- - -l(-bn)<=>
(1, ad (x) <g> (1, a,*) = (1, &i) ® <g) (1, δ ) [2, Main theorem 3.2].

Let w > l By 3.1 and [2, 3.2], every element of knF can be
written uniquely in the form l{—l)n~ιl{-f) for some feF which is ± a
product of distinct monic linear factors or is ± 1. Thus knF is
isomorphic to the subgroup of F/F2 consisting of the square classes of
products of linear polynomials (note that l( - l)n~H{ -f) +1( - l)n~H( -g) =
l(—l)n~H{fg)). Furthermore, there is a natural isomorphism sn of kn

onto In/In+ί where I is the ideal of the even-dimensional forms of the
Witt ring W(F) [2, 6.1].

REMARK 3.2. By [6, 2.3], for n ^ 1 and for any field E there
is an isomorphism KnE(t) ~ KnΈ 0 ( 0 K^JS^Kπ)) where the second
direct sum extends over all nonzero prime ideals (TΓ) of E[t\. Now
let E = R and let n ^ 2. The above isomorphism induces an isomor-
phism knR(t)^knR@{Qkn^R[t]l{π)) where the second direct sum
extends over all the polynomials π = t — a, aeR (note that kn^ of
the complex numbers is 0). Now knR and kn^R are groups of order
2 by [6, 1.6] or [2, 3.2]. Thus there is an isomorphism knR(t) —
Z2 0 (0κZ2) This isomorphism is given explicitly as follows:
l( — l)n~H{—f)(where / is ± a product of distinct monic linear factors)
maps to α 0 ( φ aa)(ae R) where a is 0 if and only if / is monic, and
aa is 1 if and only if t — a divides /.

REMARK 3.3. Let us briefly see what happens when we let our
field F be a global field and let n ^ 3. Then we have :

(1) Every Pfister form of dimension 2n over F is isometric to
a form 2n~ι x (1, a) for some aeF. Also 2n~ι x (1, a) ~ 2n~ι x (1, b) ~
ab e Fp for all real spots p on F. These facts follow easily from the
Weak Hasse-Minkowski Theorem.

(2) By (1) and by [2, Main Theorem 3.2], we see that every
element of kJF can be written as l{ — l)n~ιl( — a) for some aeF, and
l{-l)n~ιl{-a) - li-iy-'li-b) « ab e F2

P for all p real. Thus knF =
0 knFp where the direct sum extends over all real spots p (note that
knFp = Z2). This fact was first proved by Tate (see appendix of [6]).
Elman and Lam [1] gave a simple proof (using the Strong Hasse-
Minkowski Theorem) which does not depend on [2].

(3) There are round forms φ over F of dimension 2n (with
(Jet φ = 1) which are not Pfister forms [3, 2.6].

Added in proof. In connection with Example 2.3(3), we point
out here that, without using elliptic curves theory, examples of
rational function fields which do not satisfy the Strong Hasse-Min-
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kowski Theorem can be found in the article: "On the Hasse Principle
for Quadratic Forms7', P.A.M.S., 39 (1973).

The results in §2 have been generalized recently by R. Elman
in his article: "Rund forms over real algebraic function fields in one
variable" (to appear). Instead of using the local-global method as we
have done, Elman's approach is entirely different; he uses the alge-
braic theory of Pίister forms.
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EQUALLY PARTITIONED GROUPS

I. M. ISAACS

It is proved that the only finite groups which can be
partitioned by subgroups of equal orders are the ^-groups of
exponent p. The connection between equally partitioned
groups and Sperner spaces is discussed. It is also proved that
finite groups partitioned by pairwise permutable subgroups are
abelian.

I* Let G be a group and let Π be a collection of proper sub-
groups of G. Then Π is said to partition G if every nonidentity
element of G is contained in exactly one He Π. If G is a p-group
of exponent p and | G \ > p, we may let Π be the set of cyclic sub-
groups of G. Then Π is a partition consisting of subgroups of equal
finite orders. Our main result is that the p-groups of exponent p are
the only finite groups which can be equally partitioned.

The methods of proof in this paper depend strongly on the finiteness
of the group and give no information about which infinite groups
can be partitioned by subgroups of equal finite orders.

I began to consider equally partitioned groups after attending a
lecture by Prof. A. Barlotti on Sperner spaces. Examples of these
geometric objects (which generalize aflBne spaces) are provided by such
groups. In fact the Sperner spaces which arise from finite equally
partitioned groups are exactly those which Barlotti and Cofman [2]
call translation spaces. This will be discussed further in § 3.

2* Only finite groups will be considered. A great deal is known
about partitioned groups. (We mention in particular the papers [1]
and [5].) Our theorem, however, is much more elementary and does
not depend on the deeper results.

The following easy lemma (which appears in [1]) is crucial to
the study of partitioned groups.

L E M M A 1. Let G be partitioned by Π and let x, yeG — {1} with

xy = yχm Suppose x and y lie in different elements of Π. Then x and

y have equal prime orders.

Proof. Suppose o{x) < o(y). Then {xy)0{x) = y0{x) Φ\. Let y e H

e Π then (xy)0{x) e H and hence xy e H. Thus x e H, a contradiction.
Therefore o(x) = o(y). Similarly, o(xn) = o(y) = o(x) for positive inte-
gers n < o(x). It follows that o(x) is prime.

LEMMA 2. Let G be equally partitioned by Π and let X S G be

109
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a subset, Xg£ {1}. Then there exists HeΠ such that H contains no
conjugate of X.

Proof. Suppose that the lemma is false and for each HeΠ,
choose XH conjugate to X with XH S H. Let NH = NH{XH) so that
H contains at least \H: NH\ conjugates of X. Let N = NG(X). Then
if I G I = g and \H\ = h for HeΠ, we have

I G : N \ = I G : N G ( X H ) \ ̂  \G : N H \ = \G : H \ \ H : N H \

and hence

\H:Nπ\^h\G:N\/g .

Now |G : N\ is the number of conjugates of X in G and thus

^\Π\\G:N\h/g.

However, | 77 | = (g — 1) / (h — 1) > g/h and this yields a contradiction.

NOTE. It follows from Lemma 2 that if G is equally partitioned
by 77, then no element of 77 can contain a full Sylow p-subgroup of
G for any p\\G\. Otherwise, every HeΠ would contain an Sp sub-
group, violating the lemma.

LEMMA 3. Let G be equally partitioned. Then every element of
G has prime order.

Proof. Suppose that x e G has composite order and let 3ίΓ be the
conjugacy class of x. Let 77 be the given partition. By Lemma 2,
there exists HeΠ with H Π 3ίΓ — φ. By Lemma 1, no element of
H centralizes any element of 3SΓ. Thus H acts semi-regularly on 3ίΓ
and hence \H\\\3ίr\.

Now pick KeΠ with xeK. Then K acts semi-regularly by con-
- K so that I if I
K\ I \SΓ Γ)K

K\.

jugation on
conclude that
o< ixn

- K)\. Since I i ϊ | = \K\, we
This is a contradiction because

The next two results are routine applications of standard facts.
We include them for completeness.

LEMMA 4. Suppose G has a nontrivial normal p-subgroup where
p is the largest prime divisor of \G\. Assume that every element of
G has prime order and let P e Syl^G). Then either P = G or \G : P\
is prime and P <| G.
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Proof. Let 1 Φ U <\ G where U is a p-group. Now G can contain
no subgroup, W, of order qr where q and r are (possibly equal) primes
different from p. This is so since otherwise Cσ(w) = 1 for all 1 Φ w e W
and this forces W to be cyclic (Satz V. 8. 15b of [3]).

There is nothing to prove if P = G so suppose P < G and let q
be the smallest prime divisor of | G |. Let Q e 8>y\p(G). Then \Q\ = q
and thus G has a normal g-complement, M.

If M = P, the proof is complete. Suppose that P < M. Then
Q normalizes some iϋ e Sylr(ikf) for r Φ p. Thus | i£ | = r and
I QR I = gr, a contradiction.

COROLLARY 5. Assume that every element of G has prime order.
Let P eSγ\p(G), where p is the largest prime divisor of\G\. Then P
is a T. I. set {i.e., P Π P* = 1 for all x<£N(P)).

Proof. Assume that the corollary is false and let 1 < D = P Π Px

where P Φ Px and | X> | is maximal. Then NG{D) = N does not have
a unique Sylow p-subgroup. This violates Lemma 4 as applied to N.

THEOREM 6. Let G be equally partitioned. Then G is a p-group
of exponent p.

Proof. Let p be the largest prime divisor of | G | and let P e Sylp(G).
By Lemmas 3 and 4, N(P) — PC where either C = 1 or \C\ = q, a,
prime. By Corollary 5, P is a T. I. set.

We establish some notation. Let |G| = g, \P\ = ph and \C\ = c.
Let Π be the given partition and let \H\ = h for all HeΠ. Let pα

be the p-part of Λ,.
Since P is a T. I. set, it follows that PίΊ UeSγlp(U) for all

subgroups [/gG with Pf] U Φ 1. Thus | P n # I = Pα for all He Π
such that P n i ϊ ^ l . Since P = \JHeπ(P f\ H), it follows that
(pα — 1) I (pδ — 1). We can also conclude from the fact that P is a T. I.
set that G contains exactly g(pb — ϊ)/phc elements of order p.

Now by Lemma 2, we may choose He Π with H Π C9 = 1 for all
g G G. Let Po e Syl^(Jϊ). We may assume that Po £ P. Since P is a
T. I. set, NH(P0) S JVβ(P) = PC. It follows that NH(P0) = P0C0 where
CO £ C* for some g. Thus Co = 1 and Po = NH(P0). By Sylow's
Theorem it follows that h/pα = 1 mod p.

Let KeΠ and let Pi e &ylp(K). Reasoning as above, we conclude
that NxiP,) = P.C, where C . g C ^ for some x. Thus /̂ /(pα [ Cx |) = 1
mod ί? and hence | d | = 1 mod p. However, | C1 \ = 1 or g where g
is a prime < p. It follows that C1 = 1 and thus every KeΠ has self-
normalizing Sylow p-subgroups.

Since the Sylow p-pubgroups of KeΠ are T. I. sets, it follows
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that each such K contains exactly h(pa — T)/pa elements of order p.
Since \Π\ = (g - ΐ)/(h - 1), this yields

( 1 ) g(pb - l)/pbc = (g- l)h(p* -

Since g/h < (g — l)/(fe — 1), we conclude from (1) tha t

1/e > (pb - l)/pbc > (pa - l)/pa = 1- l/pa ^ 1/2

and thus c = 1. Now (1) yields

( 2 ) (</ - l)h(p« - l ) p b = { h - l ) g ( p b - l)p« .

Since ((g — 1), gpa) = 1 and (pδ — l)/(pα — 1) is an integer, we obtain

gpa I hph .

The p-parts of gpa and hpb are equal and Λ | g. It follows that hpb \ gpa

and thus

(3 ) hpb = gpa .

Combining this with (2) yields

( 4 ) (Λ - l)(p* - 1) = fa - l)(pβ - 1)

and subtracting (4) from (3), one obtains

h + pb = g + pa .

Since Λ | g and h < g, we have

0/2 ^ 0 - λ = Pb - Pa < Pb .

Since pδ | g, we conclude that pb — g and the result follows.

NOTE. Once it was established that c = 1, above, the proof could
have been finished using Frobenius' Theorem, ([3], Hauptsatz V. 7. 6).
Since P is a self-normalizing T. I. set, Frobenius' Theorem yields a
normal ^-complement, U, for G. Also Cπ(x) = 1 for all I ^ S G P . If
UΦl, it follows from the fact that P has exponent 2> that \P\ = p.
A contradiction now results by applying the note following Lemma 2.

3. In this section we discuss the connection between Sperner
spaces and equally partitioned groups.

DEFINITION. ([4].) A Sperner space is a set, S, of "points" and
a collection, iPf, of proper finite subsets of S, called "lines" such that

(a) every two points determine a unique line,
(b) all lines have equal numbers of points,



EQUALLY PARTITIONED GROUPS 113

(c) an equivalence relation (called "parallelism") is defined on £f
and

(d) for each xe S, there is exactly one line which contains x in
each parallel class.

If G is a group which is equally partitioned by 77, we may define
a Sperner space by taking S = G, ^f = {Hx \HeΠ,xeG} and setting
(Hx) || (Ky) if and only if H = K. It is routine to check that this does
define a Sperner space. We denote this space by S(G, 77).

Given a Sperner space, (S, <£f), we consider the groups, G(S, £f),
consisting of all those collineations of S which map each line to a line
parallel to itself. Since no two distinct parallel lines of (S, £f) can
intersect (by condition (d)), it follows that if g e G(S, £f) fixes a point,
xe S, then g fixes every line through x. It now follows easily that
only the identity of G(S, Sf) fixes two points of fi»

Let G0(S, £f) = {1} U {g e G(S, £?) \ g fixes no points of S}. In
[2], Barlotti and Cofman call a Sperner space (S, Sf) a translation
space if G0(S, Sf) is a group which is transitive on S. If S is finite,
it follows from Frobenius' Theorem ([3], Satz. V. 8. 2 (a)) that (S, £f) is
a translation space if and only if G(S, £f) is transitive on S. If (G, 77)
is a finite equally partitioned group and (S, Sf) = S(G, 77), then G(Sf £?)
contains right multiplications by elements of G and hence is transitive.
It follows that S(G, 77) is a translation space and G0(S, Jtf) is the group
of right multiplications.

We claim that if (S, Sf) is any finite translation space then
(S, ^f) = S(G, 77) for some equally partitioned group (G, 77). Let
G = G0(iS, ̂ ) and choose a point eeS. For ί e ^ , let fl", be the
(setwise) stabilizer of I in G and let 77 = {7JZ | i e £f and e e I}. If
β, a? e I and ^ G ( J with e# = x, then a? e I Π ί̂  and thus I — Ig and # e 7ϊz.
It follows that Hi is transitive on I and | Hi \ = | ! | . Therefore, all
H e 77 have equal order. If H,KeΠ with H Φ K, then Tin if fixes
e and hence JEΓn -K" = 1. Also

and thus 77 is a partition for G.
To see that S(G, 77) ~ (S, £f), define ^ : G ~+ S by θ{g) = eg. It

is routine to show that θ is an isomorphism of Sperner spaces.
One further remark on the correspondence between finite transla-

tion spaces and finite equally partitioned groups is in order. If (G, 77)
and ((?!, 77J are two equally partitioned groups such that S(G, 77) ^
S(Glf 77J, then G ~ G1 and this group isomorphism can be chosen so
as to carry 77 to Πx. This follows since G = G0(S(G, 77)) and under
this (natural) isomorphism, 77 corresponds exactly to the set of
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stabilizers of the lines through 1.
Let (S, «Sf) be a finite translation space. By Theorem 6, | S | = pb

for some prime, p, and 11 \ = pa for I e J*f. Also, (pa — 1) | (pb — 1)
and as is well known, this forces a\b. We may define the dimension
of (S, £f) to be b/a.

Let q = pa and let K = GF(g). Let V be a vectorspace of di-
mension n over K and let Π be the set of one-dimensional subspaces
of V. Then Π equally partitions V and of course S( V, Π) is an affine
space of dimension n. This suggests the question of which translation
spaces, (S, Jzf), correspond to abelian equally partitioned groups.
These are not necessarily affine although they do satisfy the following
condition:

(*) L e t I, me Sf w i t h I f] m Φ 0 . L e t x e I a n d y em. L e t V\\l
with yeV and m'\\ m with x e m!. Then V Π mf Φ 0 .

It is easy to see that S(G, Π) satisfies (*) if and only if for every
H, KeΠ and every heH and keK we have Hk ΓΊ Kh Φ 0 . This con-
dition is clearly satisfied if G is abelian since then hk e Hk D Kh. In
the next section we prove that only in abelian groups does this con-
dition hold.

4* We begin with the following lemma.

LEMMA 7. Let H, K^G. Then HK = KH if and only if for every
heH and keK we have Hk n Kh Φ 1.

Proof. Suppose HK = KH. Let heH and keK. Then kh~ι e
KH = HK and kh"1 = hr% for some hγeH and k, e K. Thus hje =
kji eHkn Kh.

Conversely, let x e KH. Write x = kh"1 for some keK and heH.
Now choose kji = hxk e Kh Π Hk so that kxeK and hγ e H. Then
x = kh"1 = h1~

1k1 e HK and KH ϋ HK. The reverse inclusion follows
symmetrically and the proof is complete.

The main result of this section is the following.

THEOREM 8. Let G be a finite group partitioned by Π. Assume
that HK = KH for all H, KeΠ. Then G is an elementary abelian
p-group.

Note that we do not assume that all elements of Π have equal
order. Theorem 8 and Lemma 7 prove the claim made at the end of § 3.
To prove Theorem 8, we strengthen it somewhat and use induction.

THEOREM 9. Let G be finite and partitioned by Π. Suppose
AeΠ and AH = HA for all HeΠ. Then A < G.
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Proof. We use induction on | G |. If A < L < G, then L is par-
titioned by 770 = {H n L \ H e 77}. If H e 77, then AH is a group and
AHn If = A(HΠL). Thus A(Hn £) = (H Γ) L)A and by induction
A <] L. Let ΛΓ - JV(A). UHeΠ and AH< G, it follows that A < AH
and HSN.

Assume N< G and let Π, = {HeΠ \ H£ N). Then HA = (2 for
all H e 77i and hence | H | = |G : A | for these H. Also for H e 77,, we
have ΛΓ= A(iVnH) and thus \NΠH\ = \N:A\.

Now

G - N = U {# - (HΠ N) I H e 77J

and since this union is disjoint, we obtain

\G\~ \ N \ = \ Π X \ { \ G : A \ - \ N : A \ ) .

Solving this yields | Π11 = | A j .

Now

It follows that Π = Π^ {A} and every element of G — A lies in some
He77x.

Let geG. To show that A9 = A, it suffices to show that A9 Π H = 1
for all H e 77lβ Choose H e 77X. Since G = AH, we may write g ~ ah
for some αeA and heH. Then

A* n H = Afe n H = (A n #)* - 1

and the proof is complete.

Proof of Theorem 8. By Theorem 9 we have H <\ G for all
H e 77. Therefore, if H, Ke 77, Ή.Φ K we have 7Γ £ C(H) and hence
G - H U C ( H ) . Since H < G, we have G = C(H) and H£ Z(G).
It follows that G is abelian. The result now follows by Lemma 1.

5* In this section we discuss a class of examples of equally
partitioned groups. Since every p-group of exponent p is equally
partitioned by its cyclic subgroups, it is interesting to look for ex-
amples of groups partitioned by subgroups of order q = pa > p. The
elementary abelian groups of order qn have this property. Nonabelian
examples are provided by the next result if p > 2.

THEOREM 10. Let n ^ p and q = pe. Then the Sylow p-subgroups
of GL(%, q) are partitioned by abelian subgroups of order q.
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NOTE. If n > p, then the Sylow p-subgroups of GL(n, q) do not
have exponent p and hence cannot be equally partitioned.

Proof of Theorem 10. Let K — GF(q) and let A be the space of
strictly upper triangular n x n matrices over K. Then P — {1+ a\aeA}
is a Sylow p-subgroup of GL(n, q). For aeA, let Ma{t) = exp(αί)
for t e K. This is well defined since (at)n = 0 and n ^ p. Since
Λfβ(s)ilfβ(ί) = Ma(s + ί), we conclude that Pα = {Λfα(Q (t e K] in an abelian
subgroup of P.

We will show that if α, be A and exp(α) — exp (6), then a = b.
It will follow that \Pa\ = q iί aΦO and that Pα n Pb = 1 unless δ = αί
for some teK; in which case Pα = Pb. Taking Π = {Pα | 0 ^ α e A]
we have | 771 = (| -A | - l)/(? - 1) and

as desired.
Suppose then that exp (a) = exp (6). For meZ, exp (mα) = exp (α)w

and thus exp (at) = exp (δί) for all £ e GF(p). Let x be an indeterminate
and let E(x) = exp (αa;) — exp (δa?). Then (̂a?) is a matrix with poly-
nomial entries of degree < p. Since E(t) — 0 for all teGF(p), it
follows that E(x) is identically 0. Comparing coefficients of x yields
a—b and the proof is complete.

We close with the following question: Does there exist a group
partitioned by subgroups of equal order not all of which are abelian?
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HYPERPOLYNOMIAL APPROXIMATION OF

SOLUTIONS OF NONLINEAR INTEGRO-
DIFFERENTIAL EQUATIONS

A, G. KARTSATOS AND E B. S A F F

Consider the integro-differential equation

(*) U(x) = x' + A(t, x) + ίV(ί, s, x(s))ds = T(t), t e [a, b]

subject to the initial condition

(**) x(a) = h .

Then a problem in approximation theory is whether a
solution x(t) of ((*), (**)) can be approximated, uniformly on
[a, b], by a sequence of polynomials Pn, which satisfy (**)
and minimize the expression ||JΓ( ) — U(Pn)\\9 where || || is a
certain norm. It is shown here that such a sequence of mini-
mizing: polynomials, or, more generally, hyperpolynomials,
exists with respect to the Lp-norm (1 < p ^ oo) and converges
to x(t), uniformly on [a, b], under the mere assumption of
existence and uniqueness of x(t).

The results of this paper are intimately related to those of Stein
[11], who studied the approximation of solutions of scalar linear in-
tegro-differential equations of the form

(1) W(x) == L(x) - \bh(t, s)x(s)ds = f(t) ,
Ja

(L(x) = x{m){t) + fάt)x{m-ι)(t) + + fjt)x{t)) subject to the two-point
boundary conditions:

( 2) Wt(x) = At(x) + B.ix) + \ Vi(t)x(t)dt - 0 , i = 1, 2, . . . , m
Ja

where iliW Ξ Σ ? ^ ^ 1 ' " 1 1 ^ ) , 5<M Ξ Σ?=I W M ) ( * ) . Namely, he
showed that under certain condition on L, h, f, if x(t) is the unique
solution of (1), which satisfies the linearly independent boundary
conditions (2), then for every n ^ 2m — 1 there exists a unique poly-
nomial pn of degree at most n, which satisfies (2) and best approximates
the solution of (1) with respect to the Lp-norm (1 g p < oo). He then
considered the convergence of the sequences {p{n}}, k = 1, 2, , m — 1
to the solution x(t) and its derivatives up to the order m — 1 respec-
tively. Extension of these results were also made for trigonometric
polynomials, or linear combinations of orthonormal functions. The
present paper extends the results of Stein and has points of contact
with the rest of the papers in the references.
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1* Preliminaries* Let # = (—00, + 00). For the system ((*), (**))
we assume the following: A(t, u) is an m-vector of functions defined
and continuous on [α, b]XRm. F(t, s, u) is an m-vector of functions
defined and continuous on the set S = {(ί, s9 u) e [a, b]X[a, b]XRm; s <Ξ t}.
T(t) is an m-vector of functions defined and continuous on [α, 6].

Let Bk, k = 1, m, be the Banach space of all k-vectors of continuous
functions on [α, b] with norm

p |
ίe[α,6]

where, for a vector ue Rk, \u\\ = \Ui By ΰ[ we denote the

Banach space of all functions f eBk which are continuously diίferentiable
on [α, 6], The norm now is

||/IU; = max{||/(<)lk}.

A sequence {gn} of functions in B[ is said to be linearly independent
if every finite number of the gn's is linearly independent on [α, 6].
A linearly independent sequence {gn} is said to be a d-sequence if the
set of all finite linear combinations of the gn's is dense in B[. For
each i = 1, 2, « , m let {gn,i}n=ι be a fixed d-sequence in B[. We
assume without loss of generality that gui(a) Φ 0, ΐ = 1, 2, « , m .
By a hyper polynomial of degree at most j" we mean a function p of
the form

p =

Pi

P2 cj}2gj>2

cumgUm + c2,mg2,m + + cj>mgj>

By /Z% we denote the set of all hyperpolynomials of degree at
most n which satisfy the initial condition (**). For a function f e Bm

we put

W e also m a k e u s e of t h e s y m b o l \\f\\^ i n s t e a d of

2Φ Main results*

THEOREM 1. Let 1 < p ^ 00 and suppose that the system ((*), (**))
has a unique1 solution x(t) defined on [a, 6]. Then for each n suffi-

1 Uniqueness means that any solution of ((*), (**)) which is defined on a subinterval
[a, c] of [a, b] must coincide with x(t).



HYPERPOLYNOMIAL APPROXIMATION OF SOLUTIONS 119

ciently large there exists a hyper polynomial Qn e Πn such that

( 3 ) || T - U(Qn)\\p = in f II T - U(P) \\P .
PeΠn

Furthermore, the sequence Qn{t) converges uniformly to x(t) on [α, 6].
For the case p — oo we have, in addition, that the sequence Q'n{t)
converges uniformly to xf(t) on [α, δ]

The proof requires the following lemmas:

LEMMA 1. The set of all hyperpolynomials is dense in Bf

m.

Proof. Obvious.

LEMMA 2. Let feBf

m satisfy (**). Then there exists a sequence
of hyperpolynomials pn e Πn, n = 1, 2, , such that

( 4 ) - p. =0.

Proof. By Lemma 1 there exists a sequence {qn} of hyperpolynomials
such that

( 5 ) l i m l l / - qn\\Bm = 0 .

We can (and do) assume that each qn is of degree at most n, respec-
tively, where n = 1, 2, •••.

Put dn Ξ= h — qn(a) and let dnΛ be the ith component of dn. Set

sn(t) =

where cnΛ = dnjgui(a). Since

| |d n | | = \\h- qn(a)\\ = \\f(a) - qn(a)\\ >0 as n-

it follows that

lim cnΛ — 0, for each i = 1, 2, , m .

Hence

( 6 ) IISΛIIS^ >0 as n > oo .

Now define pn{t) = qn(t) + sn(t). Then

Pn(a) = qn(a) + sn(a) = qn(a) + dn = h ,
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and so pn e Πn for each n = 1, 2, . From (5) and (6) it follows that

lim | | j f - 0 . 1 1 ^ = 0 .
n—>oo

LEMMA 3. Let

μ.,,svai\\T-U(P)\\,>
PeΠn

Then μn>p —• 0 as n —* °o.

Proof. It suffices to show that μntOO —• 0 as w —> oσ. By Lemma
2 there exists a sequence p f t e 77Λ, % = 1, 2, , such that

lίm||a? - ί?Λ | |B^ = 0

Since x(t) satisfies (*) we deduce that

( 7 ) μM £ || T - E7(p.)IL £ || aί' - ^ | U + II A( , a?) - A( , p.) |L

+ (6 - α) max | |F(ί, s, φ ) ) - F(ί, s, pn(s))\\ .

Obviously \\x'n — p^U ^ ||a?Λ — 2>Λ 11^—^0 as n—> oo. Also from the
uniform convergence of the p n to a? and the continuity of the functions
A and F it follows that the last two terms in the right-hand member
of (7) tend to zero as n—> oo. This proves Lemma 3.

LEMMA 4. If Pn e Πn is a sequence of hyper polynomials such that

( 8 ) l i m | | T - t f ( P n ) I U = 0 , 1 < p ^ oo ,

then the Pn(t) converge uniformly to x(t) on [α, 6]. For the case p =
co we have, in addition, that the derivatives P'n(t) converge uniformly
to xf{t) on [α, 6].

Proof. The proof is similar, but not identical, to that of [2,
Thm. 3, p. 17]. We shall sketch the argument for the real line only.

Let M be a constant such that |a;(ί)| < M for all t e [α, 6]. Note
that \h\ = \x(a)\ < M. Set & = [a, b]X[- M, M]. Since the norms
|| U(Pn)\\p are uniformly bounded, and the functions A(t, u) and F(t, s, u)
are continuous, there exist constants Kγ and K2 such that

| U(Pn)(t) - A(t, u) \>dt ^ K?, ue[-M,M],

I F(t, s, u) I g K2 , a ̂  s ^ t ^ δ, u e [- M, M] .

Let K = K, + K2(b - a)1+1'p, and consider the curves Cλ:u = h + iί(ί -
α)1/<r, C2:u = h — K(t — a)1/q, where <y satisfies the equation 1/p + 1/^ =
1. Let t*, α < ί* ^ 6, i = 1, 2, be the abscissa of the second point of
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intersection of the curve d with the boundary of the rectangle ^?.
Put t* ΞΞ mini*!*, tf). We shall show that for each n there holds

(9) | P . ( t ) | ^ A Γ , t e [ M * ] .

Let tn be the abscissa of the first point to the right of a at which
the graph of Pn(t) intersects the boundary of &. Integrating the
equation

(10) P;(ί) - U(Pn)(t) - A(t, Pn{t)) - (>(ί, β, Pn(s))ds
Jα

from a to tn, we deduce that

Γ T \F(t, 8, Pn(s))\dsdt
j a j a

a)(tn - α)

Hence the point (ίΛ, P»(ίΛ)) lies between the curves d and C2. Thus
*n ^ *̂> which proves (9).

It also follows from integrating the equation (10) that the sequence
Pn(t) is equicontinuous on [α, £*]. Therefore, by Ascoli's Theorem,
each subsequence of the Pn(ί) possesses a subsequence which converges
uniformly on [a, t*]. Suppose that τ/(ί) is the uniform limit on [α, t*]
of the subsequence Pk(t). From (8) and Holder's inequality it follows
that

(11) lim \'U(Pk)(τ)dτ = [*T(τ)dτ , te[a,b] .

Taking the limit as k —> °° in the equation

Pk(t) -h=[ U(Pk)(τ)dτ - [A(τ9 Pk(τ))dτ - [[F(T, S, Pk(s))dsdτ ,

we deduce from (11) and the continuity of the functions A and F
that

y(t) -h= ^T{τ)dτ - Ϋ A{τ, y(τ))dτ - Π V ( τ , s, y(s))dsdτ ,
Jα Jα J a J a

for te[α, ί*] Thus y(t) satisfies the system ((*),(**)) on [α, t*] and
so must equal x(t) on this interval. Since y(t) was an arbitrarily
chosen limit function, the original sequence P«(ί) must converge to
x(t) uniformly on [a, ί*].

Considering the fact that the proof given above carries over under
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the more general hypothesis that the initial values of the Pn{t) converge
to the corresponding initial value of x(t), one can show, as in the
proof of [2, Thm. 3, p. 17], that the sequence Pn(t) converges to x(t)
uniformly on [a, δ]

For the case p = oo it follows immediately from equation (10)
that lmv^Pi ί ί ) = x'(t) uniformly on [a, b].

Proof of Theorem 1. It is clear from Lemmas 3 and 4 that if
the minimizing hyperpolynomials Qn exist, then they have the asserted
convergence properties.

We first show that if Qk does not exist, then there is a hyper-
polynomial Pk e Πk such that

(12) \\T-U(Pk)\\p<μk,p + l/k,

and

(13) | | P * | L > f c .

If this were not the case, there exists a sequence of hyperpolynomials
TΓy 6 Πk such that

(14) || T - Z7(τry) H, > μktP as j

and

H^lU^fc, vj .

It is not difficult to show that the set {π e Πk\ 117Γ[̂  ^ k] is compact
in the Bf

m norm. Hence there is a subsequence of the πά which
converges in the Bf

m norm to a hyperpolynomial 7Γ0 e Πk. From (14)
and the continuity of the functions A and F it follows that

which is a contradiction.
Now suppose that there is an increasing sequence of positive

integers k such that Qk does not exist. Then there is a sequence of
hyperpolynomials Pk e Πk which satisfy (12) and (13). For this sequence
we have

(15) \\T-U{Pk)\\v >0 as k >oo,

and

IIPjfelL—> °° a s & — > °°

But from (15) and Lemma 4 we also have ||P&|U —̂  II^iU as k-^°o,
which is a contradiction.

Hence Qn exists for n sufficiently large. This completes the proof
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of Theorem 1.
To prove the existence and convergence of best hx approximating

hyperpolynomials we impose Lipschitz conditions on the functions A, F.

THEOREM 2. Suppose that

\\A(t, u) - A(t, v)\\ ̂  \\\u - i;||, (ί, u, v) e [a, b]XRmXRm ,

\\F(t, 8, u) - F(t, 8, v)\\ ̂  X2\\u - v\\, (ί, 8, u, v) e SXRm ,

where Xl9 λ2 are fixed positive constants. Let the system ((*), (**))
have the unique solution x(t) on [a, &]. Then for each n sufficiently
large there exists a hyper polynomial Qn e Πn such that

II Γ - C^Q.) |k = inf || Γ -
Peπn

Furthermore, the sequence Qn(t) converges uniformly to x(t) on [α, b].

The proof relies on the following analogue of Lemma 4:

LEMMA 5. If Pne Πn is a sequence of hyperpolynomials such that
l im^^ || T — Z7(P»)||i — 0, then the Pn{t) converge uniformly to x{t) on
[a,b].

Proof. Clearly,

\\x{t) - P%{t)\\ £ \t\\T(τ)-U(Pn)(τ)\\dτ+ [\\A(τ, x{τ)) - A(τ, Pn(τ))\\dτ

+ Γ [\\F(τ, s, x(s)) - F(τ, s, Pn(s))\\dsdτ

^ || Γ - ϋ-(P.)lli + \\'Mτ) - P&
Jα

+ λ,(δ - α)(Ί|α;(r) - Pn{τ)\\dτ .
J

From GronwalΓs inequality we deduce that

\\x{t) - Pn(t)\\ g || T - U(Pn)\lexp [(λ, + λ2(6 - a))(b - a)} .

Thus 11 x — Pn I!«, —> 0 as n —> c>o.

Proof of Theorem 2. It follows from Lemmas 3 and 5 that if
the minimizing hyperpolynomials exist, then they converge uniformly
to x(t) on [α, 6]. To establish existence one argues as in the proof
of Theorem 1.

REMARKS. Let A, F satisfy the conditions of Theorem 2 and, for
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1 ^ P < °°, let QneΠn denote I^-norm-minimizing hyperpolynomials.
Concerning the degree of convergence of the Qn to x it can be shown,
by use of Holder's inequality and GronwalΓs inequality, that

\\x - Q*L ^ μM(b - ay-W'exp [(\ + λ2(& - α))(6 - a)] .

Also if the functions T(t) — U(Qn)(t) satisfy a Lipschitz condition
on [a, b] uniformly w.r.t. n, the sequence Q'n(t) converges uniformly
to x'(t) on [α, &]. The proof of this fact follows from Theorem 5 in
[13].

The results of this paper can be extended to integro-differential
equations with Fredholm integrals of the form

W(x) = a' + A(t, x) + [ V(ί, s, x(s))ds = T(t) .

It would be of interest to obtain similar results for equations of
the type (*) under linearly independent boundary conditions of the
form:

Bx(a) + Cx(b) + \bV(t)x(t)dt = h ,

where B, C are constant m x m matrices and V is a continuous m x
m matrix-valued function on [a, &].
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ON ELEMENTARY IDEALS OF ^-CURVES IN THE

3-SPHERE AND 2-LINKS IN THE 4-SPHERE

SHIN'ICHI KINOSHITA

Let L be a polyhedron in an ^-sphere Sn(n Ξ> 3) that does
not separate Sn. A topological invariant of the position of
L in Sn can be introduced as follows: Let I be an integral
(n — 2)-cycle on L. For each nonnegative integer d, the cZth
elementary ideal Ed(l) is associated to I on L in Sn. If I and
V are homologous on L, then Ed(l) is equal to Ed(l'). Now the
collection of Ed{l) for all possible I is a topological invariant
of L in S\

In this paper the following two cases of Ed(l) are considered:
(1) I is a 1-cycle on a #-curve L in Ss, and (2) I is a 2-cycle
on a 2-link L in S4

9 i.e., the union of two disjoint 2-spheres
in S4, where each of two 2-spheres is trivially imbedded in S4.

The dth elementary ideal Ed{l) of I on L is defined as follows
(more precisely see [3]): Let G be the fundamental group π(Sn — L)
and H the multiplicative infinite cyclic group generated by t. Let ψ
be a homomorphism of G into H defined by

nψ — flink(g.l)

where link (g, I) is the linking number between g and I. Using Fox's
free differential calculus, we associate to ψ the dth elementary ideal
Ed of the group G, evaluated in the group ring JH of H over integers.
This dth elementary ideal Ed depends only on G and φ, and hence it
depends only on the position of I on L in Sn. We shall denote it by
Ed(l).

In this paper we shall prove the following two theorems.

THEOREM 1. Let f(t) be an integral polynomial with /(I) = 1.
Then there exists a θ-curve Lf in S3, and an integral 1-cycle I on Lf

such that

(E0(l) - Eψ) = (0) ,

E&) - (f(t)) and

[ E S ) = (1) > if d > 2 .

THEOREM 2. Let f(t) be an integral polynomial with /(I) = 1.
Then there exists a 2-link Lf in S4, and an integral 2-cycle I on Lf

such that
(1) each component of Lf is a trivially imbedded 2-sphere in S4,

and that
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(2) we have

' E0(l) = EJJ) = (0) ,

. E2(l) == (f(t)) and

, Ed{l) = (1) , if d > 2 .

COROLLARY. Let f(t) be an integral polynomial with /(I) = 1.
Then there exists an oriented 2-link Lf in S4 such that

(1) each component of Lf is a trivial 2-sphere in <S4, and that
(2) the dth elementary ideal of Lf9 in the usual sense and in

the reduced form, is as follows:

E0(Lf) = E,(Lf) = (0) ,

• Et(Lf) = (/(«)) and

Ed(Lf) = (1) , if d>2.

REMARK. This kind of example was first considered in [1].
The construction of these two examples are closely related. They

are also closely related to the construction of 2-spheres in S4 in [2].
1* Let P be the family of all integral polynomials/^) which can

be expressed in the following form:

ί-(«i+ +« >(l _ fi) + f-<«2+ +«»>(i _ tδή

(1)

where e4 = ± 1 and δ4 = e< or δ< = 0 for ΐ = 1, 2, , n. We assume
that 1 G P.

LEMMA. We have f(t) e P, if and only if /(I) = 1.

Proof. If f(t) e P, then clearly we have /(I) = 1. Suppose that
/(I) = 1. Then we have

f{t)~ 1 = ( l - ί ) ( α m t ~ + . . +α 0 )

- (1 - ί)(δmt* + . . . + 60)

= (1- t ) (α m ί «+ ••• +α 0 )

+ (l - r 1 ) (δ m r + ι + ..•• + bot),

where ai9 bi ̂  0 for i = 1, 2, , n. This means that/(ί) with/(I) = 1
can be obtained from 1 by applying a finite number of operation:

where p >̂ 0 and δ — ± 1 .
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We assume leP. Hence we should prove that if f(t) e P, then
f(t) + tp(l - tδ) e P. Suppose that /(«) has form (1). Now let

p = - (si + . . . + eί + e'k+ι + + εUn),

where ε'k+i = s< for i = 1, 2, , n and let

31 = $, δ; = . . = δί = 0 and δ'k+i = δ*

for i = 1, 2, , n. Then clearly we have

+ . . . + ίβi+ (l -

Hence the proof is complete.

- f) + f(t)

2* Let f(t) be an integral polynomial with /(I) = 1. Suppose
that f(t) is expressed as (1). Now we construct a 1-dimensional
polyhedron Kf in E3((zS3) as follows: The left-most side of Kf is
shown in Fig. 1. Then for each i (ί = 1, , n) we add step by step
one of the four figures in Fig. 2. This depends on values of s< and

Fig. 1. Fig. 3.

ε { = §i = 1 eτ = δ,- - 1 e, = 1, £ t = 0 ε, = - 1 , δf = 0

Fig. 2.
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δ{ as in Fig 2. The right-most side of Kf is shown in Fig. 3.
Now we give a presentation of the fundamental group of E* — Kf

(and that of S 3 — Kf, too). We use the Wirtinger presentation. If
α», c0, , cw, d0, , dm, (m + m' = n) are paths in Fig. 4, and, α», c0, , c w ,

Fig. 4.

also, as usual, the paths which represent elements of the fundamental
group in question, then the presentation is given as follows:

Generators: α 0, , α Λ ,

,d0, •••, dm,(m + m' = n)

Relations:
( i ) If ε, = 1, ^ = 1, then

(ii) If e< = - 1 , ^ - - 1 , then

^j—l 9

(iii) If ε, = 1, δ, = 0, then

(iv) If Si = - 1 , (5, = 0, then

for each i = 1, , n, and

3. Let kf be a 1-cycle on Kf such that
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'link (a*, kf) = 0, for i = 0,1, •••, w,

link (ciy kf) = 1, for i = 0, 1, ., m ,

k link (rf,, Λ,) = 1, for i = 0, 1, . , m ' .

We consider the elementary ideals of kf on i ^ in S3. For each pair
α^! and α̂  the corresponding two rows in the Alexander matrix are
elementary equivalent to the following:

( 1 ) If 6i ~ di9 then

1 -

(2 ) If δt = 0, then

1 - f*

0

- 1

0

- 1

- 1

0

1

0

- 1

0

From the last relation we have the following entries to the Alexander
matrix.

[ 1 - i ]

Hence we have matrix (*) as an Alexander matrix of kf on Kf in S\
Matrix (*) is elementary equivalent to (**). Note that we add a
suitable number of rows of zeros. Matrix (**) can be reduced to (***)
by elementary operations. Now it is easy to see that

(*)

ί i - 1

h -1

1

1 - Vi

1 - t'i

0

1 - 1

- 1 1

- 1 1

0

0

0

0

1 - 1

\ \\ \

1 -l)
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(**)

»£ X 1

Z n — JL

1 Hi . . . 1 ibn 1

•s.
\

N

X
\

\

\

N

\

0

0
N

N

N
N

\

\
N

1 o o|"~
N

s

\

0

0

0

/

(***

y

V - i

1 — t J 1 — t n 1

0

0

0

0

=%

( E0(kf) = E^kf) = (0),

Mf2\fCf) — (t x λ ^ n (1 — ί 1) +

+ t~Hl - tδn) + 1) - (f(t)),

I ^(fc^ - (1), if d>2.

4. Proo/ of Theorem 1. Let /(ί) with /(I) = 1 be given. First
construct Kf in SB and Λ/ on ^ as in 2 and 3. The construction of
the corresponding #-curve Lf is shown in Fig. 5. The 1-cycle lf on

Fig. 5.

Lf has coefficient 1 on the oriented arc c and on the oriented arc d,
respectively, and coefficient 0 on the arc 6. It is easy to see that
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π(S3 - Lf) is isomorphic to π{S3 - Kf) and Ed(lf) = Ed(kf) for every
nonnegative integer d.

REMARK. It is proved in [3] that if I is a 1-cycle on a #-curve
L in S3, then we have

ί E0(l) - Eβ) - (0), and

( (Ed(l))° = (1), if d ^ 2 ,

where o is a trivializer (i.e., the operation to let t = 1 in Ed(l)(t)).

5* Proof o/ Theorem 2. Let /(ί) with /(I) = 1 be given. First
construct Kf in S3 and fcy on Kf as in 2 and 3. Then construct the
corresponding two arcs C and D in E% as in Fig. 6, where

Fig. 6.

El = {(xly x2, x,) I Xl ^ 0} .

Then the usual construction of the spinning of these arcs around the
plane

{(xly x 2 , x 3 , x4) \χ1 = 09χ4 = 0}

gives rise to a 2-link Lf in S\
Now the arc C represents a trivial knot in E\. A part of the

step to see this is shown in Fig. 7. From this it follows that the
2-sphere S2

C, which is the result of spinning C, is trivial in S\ Clearly
the same is true for the 2-sphere Si, the result of spinning D.

We have

π(S3 - Kf) ~ - C U D) ~ π(S4 ~ Lf) ,

and to find a 2-cycle lf on Lf that corresponds to kf on Kf is easy.
Then we have

Ed{kf) = Ed(lf)

for every d ^ 0. Hence the proof is complete.
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Fig. 7.

Proof of Corollary. We have Lf = Sc U SI in S4 in the example
above. Then lf — lc + ld, where le and ld are fundamental cycles of
Sc and SI, respectively. This completes the proof.

REMARK. Let L be a 2-link in S4. Then it is known that for
each 2-cycle ί on L we always have

I EQ(l) = E,(l) = 0 ,

( (Ed(l))° = (1) > if d ^ 2 ,

where o is a trivializer. (See [3] and [4].)
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CONVERGENCE OF BAIRE MEASURES

R. B. KIRK

Assume that there are no measurable cardinals. Then
E. Granirer has proved that if a net {mj of finite Baire
measures on a completely regular Hausdorff space converges
weakly to a finite Baire measure m, then {mj converges to
m uniformly on each uniformly bounded, equicontinuous sub-
set of Cδ, the space of bounded continuous functions. In this
paper a relatively simple proof of Granirer's theorem is given
based on a recent result of the author. The same method is
used to prove the following analogue of Granirer's theorem.
Let {mj be a net of Baire measures on X each having com-
pact support in the realcompactification of the underlying

space X, and assume that \ fdπii —> \ fdm for every con-
tinuous function / on X where m is a Baire measure having
compact support in the realcompactification of X. Then {mj
converges to m uniformly on each pointwise bounded, equi-
continuous subset of C, the space of continuous functions on
X. (The situation in the presence of measurable cardinals is
also treated.)

In what follows, X will denote a completely regular Hausdorff
space, C will denote the linear space of all continuous real-valued
functions on X and Cb will denote the subspace of C consisting of all
the uniformly bounded functions in C. The Baire algebra is the
smallest σ-algebra on X with respect to which each of the functions
in C is measurable. (Equivalently, it is the σ-algebra generated by
the zero sets in X.) The linear space of all signed Baire measures
on X with finite variation is denoted by Mσ, and the set of nonnega-
tive elements in Mσ (i.e., the set of finite Baire measures) is denoted
by Mt The space Mσ and Cb may be paired in the sense of Bourbaki

by the bilinear form <m, /> = \ fdm — \ fdm+ — 1 fdm~~ for all
J x Jx JX

me Mσ and all fe Cb. By the weak topology on Mσ, will we mean the
topology σ{Mσ, Ch).

Let vX denote the realcompactification of X, (See [2], p. 116.)
A Baire measure m on X is said to have compact support in the
realcompactification of X if there is a compact set G c vX such that
for every zero set Z in vX with Gcz Z, it follows that m(X Π Z) =
m(X). Let Mc denote the subspace of Mσ consisting of those elements
whose total variations have compact support in the realcompactifica-
tion of X. The set of nonnegative elements of Mc is denoted by Λfc

+.
It is not hard to verify that if meMΐ, then CaLι(m). Hence the

135
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spaces Mc and C may be paired in the sense of Bourbaki by the

bilinear form <ra, /> = I fdm = \ fdm+ — \ fdmr for all meMc
JX JX JX

and all feC. By the weak topology on Mc, we will mean the topology
σ(Mc,C).

Let B be a subset of C. Then B is poίntwise bounded if for
every xeX, sup {\f(x) \ :fe B} < co. It is said to be uniformly
bounded, if sup {||/||x:/e B) < oo where | | / | | x = sup {|/(α?) |: α? e X}.
(Of course, if B is uniformly bounded, then B c Cδ.) The set B is
equicontinuous (or locally equicontinuous) if for every a e l and for
every positive number ε, there is a neighborhood U oί x such that
for all y e U and all fe B, \f(x) - /(#) | ^ ε. Let if denote the family
of all pointwise bounded, equicontinuous subsets of C; and let g?δ

denote the family of all uniformly bounded, equicontinuous subsets
of Cb. It is clear that if. Beϊ?\ then 5 is a σ(C\ unbounded and
that Cb = \J{B: Beξ?b}. Hence it follows that the topology eb of
uniform convergence on the sets in c£b is a locally convex topology
on Mσ which is compatible with the pair (Mσ, C

b). (See [7], p. 255.)
It is also the case that if B e g", then B is a σ(C, ikfc)-bounded subset
of C. (This fact is proved in Proposition 2.2 below.) Since C =
Ul-B ΰ e g ' } , it follows that the topology e of uniform convergence
on the sets in g7 is a locally convex topology on Mc compatible with
the pair (Mo, C).

Recall that a set Y has a measurable cardinal if there is a pro-
bability measure defined on the algebra of all subsets of Y which is
zero on all singleton sets. Otherwise, Y is said to have a non-
measurable cardinal. It is consistent with the standard axiomatic
treatments of set theory to assume that all sets have nonmeasurable
cardinals. It is also known that if the continuum hypothesis holds,
then the continuum has a nonmeasurable cardinal. It is not known
whether or not the statement that there are no measurable cardinals
is independent of the axioms of set theory.

The completely regular Hausdorff space X is a D-space if whenever
d is a continuous pseudometric on X and Y is a d-discrete subset of
X, then Y has a nonmeasurable cardinal. The concept of a D-space
was introduced by Granirer in [3]. From the remarks made above
about measurable cardinals, it is clearly consistent with the usual
axioms of set theory to assume that every completely regular Haus-
dorff space is a .D-space. The following result is proved by Granirer.
(See [3], Theorem 2.)

THEOREM A. Let X be a completely regular Hausdorff space.
Then X is a D-space if and only if whenever {mj is a net in Mi
which converges weakly to me Mσ, then {mi} converges to m for the
topology eb.
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We will present a relatively simple proof of this theorem based
on Theorem 1.1 below which was recently obtained by the author,
(In fact, our main result, Theorem 1.5, is somewhat stronger than
Theorem A.) The advantage of our method is that it allows the
analysis to be carried out for nets of measures with finite support
and reduces the measure theory needed to a minimum. The same
method yields a proof of the following result which we believe to be
new.

THEOREM B. Let X be completely regular Hausdorff. Then the
following hold.

1. If X is a D-space, then whenever {mj is a net in Mi which
converges weakly to m in Mc, it follows that {mj converges to m for
the topology e.

2. Assume the continuum hypothesis. If X is not a D-space,
then there is a net {mj in Mi which converges weakly to some m in
Mc such that {mj is not convergent for the topology e.

1* Weak convergence in Mσ. Let L denote the subspace of Mσ

consisting of those elements whose total variations have finite support.
Hence me L Ίΐ and only if there is a finite set A c X such that
m(B) — 0 for every Baire set B disjoint from A. Every element
me L has a unique extension to a finite signed measure m on the
algebra of subsets of X. For each me L, let ξ be the real-valued
function defined by ξ(x) = m({x}) for all xe X. In this way the space
L may be identified with the space of all real-valued functions on X
which vanish on the complement of a finite subset of X. We will
use this representation of L throughout the paper. For notational
purposes, we will use ξ to denote a generic element of L. The
restriction to L of the bilinear form pairing Mσ and Cb is given by
<£, /> = Σ{ζ(x)f(x): xeX} for all ξ e L and all fe O. The set of non-
negative functions in L will be denoted by L+.

A Baire measure m on X is said to be separable if for every
continuous pseudometric d on X, there is a d-closed set Za X such
that m(X — Z) = 0 and such that Z is d-separable. (Since every
d-closed set is a zero set in X, it follows that m(X — Z) is defined.)
An arbitrary element of M is separable if its total-variation is sepa-
rable. Let Ms denote the subspace of Mσ consisting of the separable
elements of Mσ. The space Ms was first introduced by Dudley in [1].
It can be shown that X is a D-space if and only if Ms = Mσ. (Indeed,
if X is a D-space, then Ms = Mσ is a consequence of Theorem III,
p. 137 in [8]. On the other hand, if X is not a Z>-space, then there
is a continuous pseudometric d on X and a d-discrete set Ycz X such
that Y has a measurable cardinal. If μ is a nontrivial measure on
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the subsets of Y, let m be defined by m(B) = μ(B Π Y) for every
Baire set B in X. It is clear that m e Mσ. However, m is not d-
separable as can easily be seen so that m<£ Ms.) Hence, again it is
consistent with the axioms of set theory to assume that Ms = Mσ for
all completely regular Hausdorff spaces. The following result was
proved by the author in [6].

THEOREM 1.1. Let X be a completely regular Hausdorff space
and let Ms be equipped with the topology eb of uniform convergence
on the uniformly bounded, equicontinuous subsets of Cb. Then the
following hold.

1. Ms is complete.
2. L is dense in Ms.
3. The dual space of Ms is Cb.

We will require several results from the theory of measures on
a topological space which we will now review briefly. (The reader is
referred to [9] for further details.) Recall that a Baire measure m
is τ-additive if whenever {Zi'.iel} is a downward directed system of
zero sets in X with Γi{Zϊ.ίeI} = 0 , then m(Zi)-+0. (The family
{Zim. ie 1} is downward directed if for each pair ίlf i2 e I, there is i3e I
such that Zh c Zh Π Zh.) Equivalently, m is net-additive if for each
upward directed system {JJc. i e 1} of cozero sets (complements of zero
sets) in X with U {£/.: ie 1} = X, then m(Ui) -> m(X). The support
of a Baire measure m is the set supp m = Π {%'- Z is & zero set in X
and m(X) = m(Z)}. If supp m = 0 , then m is said to be entirely
without support. The following result is proved in [5].

THEOREM 1.2. Let m be a Baire measure on X. If m is not
net-additive, then there is a Baire measure m! on X such that 0 <
m! ^ m and such that m! is entirely without support.

If d is a continuous pseudometric on X, define an equivalence
relation on X by x = y if d(x, y) = 0; and let X* denote the set of
equivalence classes. For x j e Γ , define d*(x, y) = d(x,y). Then
(X*, ώ*) is a metric space which we will call the metric space associated
with d. Let Q: X—> X* be the quotient map. Since Q is continuous,
it follows that Q'^B] is a Baire set in X whenever B is a Baire set
in X*. If m is a Baire measure on X, define m(B) = m(Q~ι[B]) for
every Baire set in X*. Then m is a Baire measure on X*. The
following lemma is a consequence of Theorem 28 and Remark 4, p. 175
of Varadarajan in [9]. However, since the proof given below is
essentially different, we will include it for the sake of completeness.

LEMMA 1.3. Let d be a continuous pseudometric on X, and let
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m be a separable Baire measure on X. If {Uϊ.ίel} is a cover of X
by d-open sets and if ε is an arbitrary positive number, then there
is a finite set {iu , in) c / such that m(X — \Jk=iUi]c) ^ ε.

Proof. Let (X*, ώ*) be the metric space associated with d, and
let in be the Baire measure on X* corresponding to m. It will be
sufficient to prove that m is net-additive on X*. Indeed, assume that
m is net-additive. Since E7i is d-open, Ui = Q[Ui] is open in X*; and
hence it is a cozero set in X*. The family of all finite unions of the
sets in {Uiiiel} is then an upward directed family of cozero sets
whose union is X*. But then there is a finite set {ίl9 , in} c I such
that m ( X - \Jΐ=1Uik) = m(X* - \Jΐ=1Uik) ^ ε since m is net-additive.

We will now show that m is net-additive. If this is not the
case, then by Theorem 1.2 there is a Baire measure μ on X* such
that 0 < μ ^ in and such that μ is entirely without support. Then
there is a separable Baire measure m0 on X such that m0 ^ m and
such that m0 = μ. Indeed, let E = {fe Cb:f = /*°Q for some /* e

Cb(X*)}; and define φ(f) = [ f*dμ for each feE where f = f*oQ.
)x*

Then φ* is a linear functional on the linear space E. Furthermore,
φ* is majorized on E by the subadditive functional p defined on Cb

by p(f) = \ f+dm for all / e Ch. Hence by the Hahn-Banach theorem,
)χ

there is a linear functional φ on Cb which extends φ* and which is
majorized by p on Ch. It is not difficult to verify that φ is non-
negative and satisfies the integral property. (A nonnegative func-
tional φ on Cb satisfies the integral property if for every decreasing
sequence {fn} c Cb such that fn j 0 pointwise, it follows that <P(fn) J, 0.)
It follows by the Alexandrov representation theorem (see Theorems
1.2 and 1.5 in [5]) that there is a Baire measure m0 on X such that
φ(f) = \ fdmQ for all / e Cb. It is clear that m0 ^ m and that m0 = μ

JZ

as claimed. (Note that since m is separable and since m0 ^ m, it
follows that m0 is also separable.)

Since m0 is entirely without support in X*, there is for each
xeX* an open set C7χ in X* with mQ(U χ) = 0. Since {C/^:xeX*} is
an open cover of X* and since X* is paracompact (being a metric
space), there is a partition of unity {ffijeJ} subordinate to the cover
{Uxi x e X*}. For each finite set τ c J, define Λ = Σ {ff°Q: 3 e τ}
Then {/r} is easily seen to be uniformly bounded and equicontinuous.
Since the net {fr} converges to 1 pointwise, hence by Proposition 9.2

in [6], I fτdm0—>mo(X). On the other hand, since// has its support
JX

in Uj for some X G Γ , it follows that \ f*oQdm0 = \ f*dm0 = 0.
Jx Jx*
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Thus [ fτdm0 = 0 for all τ. Thus mo(X) = lim ( fτdmQ = 0. This
}x Jx

contradicts the fact that mo(X) = mo(^*) = μ(X*) > 0. The proof is
complete.

We remark here that Lemma 1.3 is the only result from the
theory of measures in a topological space which will be required in
proof of Theorem 1.5 (the main result in this section). This theorem
is somewhat stronger than Theorem A. A proof of Theorem A itself
can be based on a result of Marczewski and Sikorski ([8], Theorem
III) without reference to Lemma 1.3. (This result of Marczewski and
Sikorski is also used by Granirer in his proof of Theorem B.)

For ξ e L and Wa X, define the element (ζ)w e L by (ξ)w(%) = Hχ)
for xeW and (ξ)w(x) = 0 for x e X - W. (That is, (ξ)w = ζ Jgfw

where <%fw is the characteristic function of the set W We can now
prove the following.

PROPOSITION 1.4. Let X be a completely regular Hausdorff space,
and let {̂ : i e 1} be a net in L+. Assume that {ζJ converges to meMs

in the σ(Ms, Ch)-sense. Then {fj converges to m in the eb-sense.

Proof. We will show that {ξ{} is an eδ-Cauchy net. The result
will then be immediate from Theorem 1.1. Assume without loss of
generality that m Φ 0. Fix a set S e g?δ and a positive number ε.
For x,yeX9 define d(x, y) = sup {\f(x) — f(y) | : / c £ } . Then it is easily
verified that since ί?e gfδ, d is a continuous pseudometric on X. Since
the net {(ξi91)} converges to <m, 1>, we may assume without loss of gen-
erality that P = sup {| <&, l > | : i e / } is finite. Let M= sup{ | |/ | | x :/e B}
which is also finite since B is uniformly bounded.

Since d is continuous, there is for each x e X a d-open set Ux

such that d(x, y) ̂  εP"1 for all y e Ux. In particular, we then have,

(1) \f(x)-f(y)\<εP-i for all yeUxJeB.

By Lemma 1.3 there is a finite set {xl9 •••, xn}czX such that m(X —
U) ^ eilί"1 where U = \Jk=iUXk. (Note that each Ux is a cozero set
in X so that U is also a cozero set.) Since m is regular, there is
a zero set Z in X such that Zcz U and such that m(U — Z) ̂  εM~\
Let /o G Cb be such that 0 ̂  / 0 ̂  1, f0 = 1 on X - U and fQ - 0 on Z.
Since {ξ{} converges to m weakly, there is an \ e I such that if i ^ i19

then I <ί< - m, /0> | ^ εilί"1. Since f< ̂  0, we have for i ^ i l f

4 - m,/0> + ί fodm ^

+ m(X - J7) + m(X - Z) ̂
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Thus we have demonstrated the following inequality which we note
for future reference.

( 2 ) <&)*-*, 1> ̂  3εikT1 , for all i ^ i , .

The set of vectors K= {(/(^), ,/(O): / e J3} is a totally-bounded
set in jβ\ Hence there is a finite set Aa B such that the set KA =
{ ( / ( 4 ' ,/W) / ^ l is an εP^-net for K. Since {£<} is weakly
convergent and since A is finite, there is an i2 e I such that if i, i ^ ί2,
then

(3) |<£i-£y,/> |^e, for all / e i .

Let ίoe 7 be greater than both iu i2. Fix i, j >̂ i0 and let feB.
Choose /* e A such that |/(a?fc) - /*(a?fc) | ^ εP"1 for all k = 1, , n.
We then have by (2) and (3) that

- f y ) M f | / - /* |> + <(ft - ξj)U9 \f - /*

f I + I /* |> + <(ί, ) M , I/I

^ ε + 2M(3εM~ί) + 2M(3εM~1) + <(ft - £ , ) „ , / - /*>

^lSe + ^ f t - f ^ , / - / * > .

Hence we have shown that,

(4) <£4 - f,, /> ^ 13ε + <(f, - f^, / - / * > , for all i, j ^ % .

Let Uk = t/"^ for & = 1, . ., n and let Z70 = 0 . By (1) and the fact
that \f(xk) — f*(xk) I ̂  εP" 1 for all k = 1, , n, we have for i ^ i0

that

Σ Ux)\f(x)-f*(x)

Σ Σ Uχ)ί\f(χ) - /(%) I + l/fe) - /*(*.)Σ

Σ ίi(«) ̂  3eP-ι<f<, 1> ̂  3s .Σ
That is, we have
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( 5 ) <(£<)*, / - /*> ^ 3e, for all i ^ i 0 .

Combining (4) and (5), we obtain that for all i9 j :> i0 and all feB,

<£< - ζjyf) £ 13e + <(£<)*, | / - / * | > + <(£ ,)*, | / - /* |> ̂  19e .

Since ε and B were arbitrary, it now follows that {ξJ is an eδ-Cauchy
net. The proof is complete.

THEOREM 1.5. Let X be completely regular Hausdorff. Then
the weak topology and the eb-topology are identical on Mt

Proof. It is sufficient to show that if G is an enclosed set in
MZ, then G is weakly closed in M\. But this is immediate from
Proposition 1.4 and the fact that L+ is weakly dense in Mt The
proof is complete.

Theorem A now follows easily. Indeed, if X is a D-space, then
Ms = Mσ as noted above; and Theorem A reduces to Theorem 1.5. If
X is not a D-space, then there is a Baire measure m with m e Mσ — Ms.
Since L+ is weakly dense in Mσ, there is a net {ξJ in L+ which con-
verges weakly to m. However, {£J will not converge in the e&-sense
since otherwise {£f} would be an βδ-Cauchy net which would imply by
Theorem 1.1 that m e Ms.

In [3] Granirer proves the following as an application of Theorem
A. It is also an immediate consequence of Theorem 1.1.

THEOREM 1.6. Let X be a completely regular Hausdorff space.
Then X is a D-space if and only if every uniformly bounded, equi-
continuous subset of Cb is relatively σ(Mσ, Cb)-compact.

Proof. If X is a D-space, then Mσ = Ms. Since by Theorem 1.1
the dual of Mσ with the topology eb is C\ it follows by the Banach-
Alaoglu theorem t h a t ΰ 0 0 is σ(Cb, M^-compact whenever B e c£b. (Of
course, B°° denotes the bipolar of B for the pair.) On the other
hand, if X is not a D-space, then by Theorem 1.1, Ms is a proper
closed subspace of Mσ for the topology eh. Hence by the Hahn-Banach
theorem, the dual space of Mσ for this topology is strictly larger
than Cb. This implies by the Mackey-Arens theorem that there is
a Be&b such that 5°° is not σ(Cb, lfσ)-compact. But, as is easily
verified, Booe&b. This completes the proof.

2* Weak convergence in Me. The following is proved in [6],
Theorem 4.4. (The essence of the theorem is due to Hewitt in [4].)

THEOREM 2.1. The order dual of C is isomorphic as a Riesz
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space to Mc. The isomorphism is given by φ^m where φ(f) = I fdm

for all feC. In particular, CaLι(m) for all m e Λf+

We now prove the following as promised in the introduction.

PROPOSITION 2.2. If Be gf, then B is a σ(C, Mc)-bounded subset
of C.

Proof. Fix m e Mi. It is sufficient to show that \\ \f\ dm:fe B\

is bounded. If this is not so, then there is a sequence {fn} e B such

that I \fn\dm—>+oo. For each neN, define gn = sup {\fk |: k =
Jx

1, , n) and g — sup {\fk \: ke N}. Then g is a real-valued, continuous
function. Indeed, it is clear that g is real-valued since B is pointwise
bounded. In order to see that g is continuous, fix x e X and ε > 0.
Let U be a neighborhood of α? such that \f(x) — f(y)\ ^ ε/3 for all
y e U and all f e B. We now claim that | #(#) — #(?/) | ^ ε for all y e U.
Indeed, fix y e U, and choose k e N so large that | #(&) — grfc(x) | ^ ε/3
and I g(y) — gk(y) | ^ ε/3. Then there are i, j e {1, , k) such that
9k(x) = l/*(») I a n d *̂(2/) = \fi(v) l Hence we have that,

I g(χ) - g{y) I

+ I gk(χ) - gk{y) I + I gk(y) - g(y) I

) - \fj\(y)\

^ 2ε/3 + max {| \ft \ (x) - \f, \ (y) |, | \fs \ (x) - \fs \

The proof is complete.
Define Msc = Af, Π Me. If X is a D-space, then Msc - Mc. On

the other hand, if X is not a D-space, then for some continuous
pseudometric d on X, there is a cϋ-closed subset Zcz X with a measur-
able cardinal. It is known that if the continuum hypothesis holds and
if Z has a measurable cardinal, then there is a probability measure
on the algebra of all subsets of Z which is zero on all singletons and
which assumes only the values 0 or 1. From this it follows that
there is a point in vX such that the valuation functional on C cor-
responding to this point is represented (according to Theorem 2.1) by
a nonseparable element of Me. That is, Msc is a proper subspace of
Mc. In summary then, it follows that if the continuum hypothesis
holds, then X is a D-space if and only if Msc = Me. The following
result is proved in [6].

THEOREM 2.3. Let X be completely regular Hausdorff, and let Mse

be equipped with the topology e of uniform convergence on the pointwise
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bounded, equίcontinuous subsets of C. Then the following hold.
1. Msc is complete.
2. The dual space of Msc is C.
3. L is dense in Msc.

If X itself is realcompact, then obviously Msc = Mc. Hence we
have the following.

PROPOSITION 2.4. Let X be realcompact, and let {ξ«: i e 1} be a
net in L+. If {fj converges to me Mc for the topology σ(Mc, C), then
{ξi} converges to m for the topology e.

Proof. We will show that {£<} is an e-Cauchy net. The result
will then follow immediately from Theorem 2.3. Assume without
loss of generality that m Φ 0. Fix a s e t S c g ' and a positive number
ε. Forx,yeX, define d(x,y) = sup{|/(α>) -f(y)\:feB}. Sincere g7,
it follows that d is a continuous pseudometric on X. Let G be the
support of m which is a compact subset of X by assumption. Let
M = sup {\\f\\G:feB} which is finite since B e g7. For all xeX, define
h(x) = d(x, G) = inf {d(x, y):y e G}. Then h is an element of C. Since
{ξJ converges weakly to m, there is an ^ G / such that | <f * — m, h} \ ̂  ε
for all i ^ ilβ But h — 0 on G so that <m, Λ, > = 0. Hence we have
that,

(1) I <£,, h} I ̂  ε, for all i ^ ^ .

Since the net {<£<, 1>} converges to <m, 1>, we may assume that P =
sup {| <fi, 1> |: i e 1} is finite.

For each xeG, let Ux be a cozero set neighborhood of x such
that |/(ί*0 -f(y) I ^ εP"1 for all 7/ e Ux and all / e B. Since G is compact,
there is a finite cover {UXl, , Z7βn} of G. Define U = UXl U U £7*Λ.
The set of vectors K = {(fix,), ,/(a?,)):/e 5} is a totolly bounded
subset of iu\ Let A be a finite subset of B such that the set KA =
{(/(^i), •• , / W ) : / e i } is an εP^-net for K.

Since {fj is weakly convergent and since A is finite, there is an
i2e I such that,

(2) I <& - £,.,/> I ̂  ε, for all ί, j ^ i2 and all / e A .

Finally, as in the proof of Proposition 1.4, there is an i3e I such that,
(3) <(ξi)x-u, 1> ^ εikf-1, for all i^%.

Now let ί0 e I be greater than ix, ί2, and i8. Fix i, i ^ i0 and let
/ G 5. Choose/* e A such that |/fe) - f*(xk) \ ̂  εP"1 for k = 1, , n.
We then have from (2) that,
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u ) <£« - £/,/> = <£t - £ * / * > + <£« - £ , , / ~ /*>

^ e + <(£« - £i)χ_σ, 1/ - / * |> + <(£< - Sj)Ut 1/ - / Ί > .

However, for i Ξ>i0, let t ing Uk — UXk for A; = 1, ••-, n and Z70 — 0 ,

<(£<)*, I/-/* I >

= Σ Σ Uχ)\f(χ)-Γ(χ)\
k U

^ Σ Σ

^ 3SP-1 Σ Σ £i(«) ^ β e P - 1 ^ , 1> ^ 3s .

Thus we have shown that,

(5) <&)*, 1/ - /* |> ^ 3e, for all i ^ i 0 .

Note that if fe B, then | / | ^ A + ilί. Hence for i ̂  i, we have from
(1) and (3), that

^ 2<(fi)x_ί,, λ + ΛΓ> ^ 2{<ί,, h}

^ 2{ε + ΛίεM-1} ̂  4ε .

Thus we have shown that,

(6) <(ξi)x-u, \ f - Γ \ > S 4 ε , f o r a l l i ^ i 0 .

Combining (4), (5), and (6), we have for i, j ^ i0 that,

<£4 - ξ3-,f) £ e + <(£,),_„, \f-f*\> + <(£j)™, 1/ -/*l>

r, 1/ - /Ί> ̂  I5e.

It follows that {fj is an e-Cauchy net as claimed. The proof is
complete.

PROPOSITION 2.5. Let X be a D-space. Then every continuous
pseudometric on X has a (unique) extension to a continuous pseudo-
metric on vX.

Proof. Let X denote the completion of X for the finest uniform
structure on X compatible with the topology on X. Denote this
structure by H^f. Then every continuous pseudometric on X has
a unique extension to X since the set of all such pseudometrics is
a gauge for this uniformity. The proof will be complete if we show
that X = vX. But since every continuous real-valued function on X
is 'g^-uniformly continuous, it follows that X is C-embedded in X.
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Hence vX = vX (by [2], Theorem 8.6). If we can show that X is
a i)-space, then by Shirota's theorem ([2], p. 229), it will follow that
X = vX; and the proof will be complete.

Assume that X is not a D-space. Then there is a continuous
pseudometric d on X and a d-closed, discrete subset Z of X which has
a measurable cardinal. Let d denote the restriction of d to X. For
each xeZ, define 0 < a(x) = inf {d(x, y):yeZ and x Φ y). Since X
is dense in X, there is for each point x e Z a point ψ(x) e X such
that d(x, ψ(x)) ^ a(x)β. (Such a function exists by the axiom of
choice.) Then the set Z— {ψ(x):xeZ} is a d-discrete subset of X.
Since ψ is clearly one-to-one, Z also has a measurable cardinal. But
this contradicts the assumption that X is a Zλ-space. The proof is
complete.

We note that the fact X is a D-space in the above proof is a
special case of Remark 2, p. 11 in [3]. For feC, let / denote the
unique continuous extension of / to vX. If B is a subset of C, let
B = {JifeB}. We then have the following.

PROPOSITION 2.6. Let X be a D-space. If B is a pointwise
bounded and equίcontinuous subset of C(X), then B is a pointwise
bounded and equicontinuous subset of C(vX).

Proof. For each pair x, y e X, define d(x, y) = sup {\f(x) —f{y) \:fe
B). Since B is pointwise bounded and equicontinuous on X, it follows
that d is a continuous pseudometric on X. By Proposition 2.5 there is
an unique continuous extension d of d to vX. It then follows that for
all x, y e vX and for all feB, \f(x) — f(y) | ^ d{x, y). But this implies
that B is equicontinuous and pointwise bounded on vX. The proof is
complete.

THEOREM 2.7. Let X be a D-space, and let {mj be a net in Mt
If {πii} converges weakly to me Mc, then {mj converges to m for the
topology e.

Proof. Since L+ is weakly dense in Mc, it is sufficient to show
that if {ξi} is a net in L+ which converges weakly to me Mc, then
{ί<} converges for the topology e. Hence fix B e if. For feC, let /
be its extension to vX; and let B = {f:feB} as above. For each

m e MC(X) and for each/e C, define <?(/) = ί /dm. Then by Theorem

2.1, there is an m e MC(J;X) such that φ(f) = ( /dm for all feC(X).

Since {£J converges to m for the (7(ikfe(X), C(X)) topology, it follows
that {fj converges to m for the σ(Me(vX), C(vX)) topology. Since B is
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pointwise bounded and equicontinuous on X, it follows by Proposition
2.6 that B is pointwise bounded and equicontinuous on vX. Since
vX is realcompact, it follows from Proposition 2.4 that {fj converges
to m uniformly over B. But it is then immediate that {ξJ converges
to m uniformly over B. The proof is complete.

Theorem B now follows easily. Indeed, if X is a D-space, then
it reduces to Theorem 2.7. On the other hand, assume that X is not
a D-space. As we have noted above, if the continuum hypothesis
holds, it follows that Msc is a proper subspace of Mc. Let m e Mi —
Mtc Since L+ is weakly dense in Mi, there is a net {ξJ in L+ which
converges weakly to m. However, by Theorem 2.3, Mse is complete
for the topology e so that {£J does not converge for the topology e.
The proof is complete.

We can also prove the following analogue of Theorem 1.6
(Granirer's Theorem 1).

THEOREM 2.8. Let X be completely regular Hausdorff. Then
the following hold.

1. If X is a D-space, then every pointwise bounded, equicontinu-
ous subset of C is relatively σ(C, Mc)-compact.

2. Assume the continuum hypothesis. If X is not a D-space,
then there is a pointwise bounded, equicontinuous subset of C which
is not relatively σ(C, Mc)-compact.

Proof. 1. If X is a D-space, Msc = Mc. Hence B°° is σ(C, Mc)-
compact for every B e g7 by Theorem 2.3 and the Banach-Alaoglu
theorem.

2. If X is not a D-space, then the continuum hypothesis implies
that Msc is a proper subspace of Mc. By Theorem 2.3, Msc is a closed
subspace for the topology e. It follows by the Hahn-Banach theorem
that the dual space of Mc for the topology e is then strictly larger
than C. Hence by the Mackey-Arens theorem, there is a B e & for
which B° ° is not σ(C, ikfc)-compact. But, as is easily verified, if
Be ξf, then B°° e ξf. The proof is complete.
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THE SEIFERT AND VAN KAMPEN THEOREM
VIA REGULAR COVERING SPACES

R. J. KNILL

The Seifert and Van Kampen theorem has lately been
phrased as the solution to a universal mapping problem. There
is given here an analogous theorem for regular covering spaces,
regarded as principal bundles with discrete structure groups.
The universal covering space of a union of two spaces is built
up from the universal covering spaces of the two subspaces by
an application of the associated bundle and clutching construc-
tions. When all spaces are semi-locally simply connected, the
Seifert and Van Kampen theorem is a consequence.

The technique of building a covering space piece by piece was
effectively exploited by Neuwirth [10] to construct nonsimply connect-
ed covering spaces. We give an alternative approach to constructing
a regular covering space of a base B which is either the union of
open sets Bt and B2 with connected intersection J50, or which is an
adjunction space B1 U / B2, where / glues a closed subspace Bo of Bι to
B2. We assume that all spaces are connected, and that there is given
a regular covering space ξζ of Bi for i — 0,1, and 2, together with
morphisms of covering spaces ξ0 —• ξi9 i — 1, 2. By regarding a regular
covering space as a principal bundle with discrete structure group and
applying the associated bundle and clutching constructions, we obtain
a regular covering space ξ of B as the pushout of ζ1 <•— ξ0 —> ζ2. The
structure group of ζ is the pushout of the structure groups of ξQ9 ξ19

and ζ2. One may obtain in this fashion the universal covering space
of B from universal covering spaces of Bo, B19 and B2, or one may
obtain the universal abelian covering space (i.e., that one having the
maximal possible abelian structure group) from the universal abelian
covering spaces of Bo, B19 and B2. The proof is by universal mapping
arguments. In contrast to Neuwirth [10], the Seifert and Van Kampen
theorem, under the hypotheses that all base spaces are locally connected
and semi-locally simply connected, is a corollary. It is interesting that
local homotopy conditions in a neighborhood of BQ, such as those as-
sumed by Van Kampen and others ([15], [11], and [2]), turn out to
be unnecessary, provided the space B1 is paracompact. On the other
hand, the Van Kampen formulae may apply in cases where BQ is not
connected or one of the J5€ does not have a universal covering space,
neither case being included in our results.

The only difficult arguments involve the validity of the clutching
construction [14], [1], and [7] for B1 \j f B2. That is to say, one must

149



150 R. J. KNILL

establish the existence of a local product structure for any bundle
formed by clutching. In the alternative case of open B1 and J?2, with
B = Bγ U B2, the clutching construction easily yields a locally trivial
object. Thus the person interested in the simplest route to a form
of Seifert and Van Kampen will consider only the case of open BL

and B2, with B = B, (j B2.
The author wishes to acknowledge that the formulation in terms

of universal properties was suggested by the referee.

1* Universality of the associated bundle* If ξ is a principal
bundle with structure group G, and u: G —* K is a continuous group
homomorphism, then G acts on K on the left via u, and the associated
bundle construction yields a new bundle with structure group K. This
associated bundle is the solution to a certain universal mapping prob-
lem in the category of all principal bundles.

All spaces are assumed to be regular. Recall [14] that a principal
bundle ξ consists of bundle space Eξ, a base space Bζ, a projection
pξ: Eξ —• Bζ. There is also given a topological structure group Gζ

which acts on Eξ freely from the right and such that pζ is equivalent
map of Eξ onto the space of orbits of Gξ. It is assumed that pξ is
locally trivial. This means that there is an open covering {Vi}ieI of
Bζ by sets called coordinate neighborhoods, and for each i e I there
exists a map (= continuous function) s{: F* —•> Eζ. This map is assumed
to be a section of ζ over Vi9 that is, for any point b of Vi9 pς(Si(b)) =
b. Local triviality is the condition that the function S{ defined below
is a homeomorphism.

St: F ; x G { — > pjWi) , £(δ, g) = s*(b) g

Here Si(b) g denotes the right translate of Si(b) by an element g of G
The functions S* are called coordinate functions. The coordinate func-
tion determined by any section of £ is a homeomorphism.

LEMMA 1.1. If ζ is a principal bundle and f and h are maps of
a space X into Eζ such that p]f = p°ξh, then there is a unique map
t: X-+ Gξ such that for any point x of X, equation (1) holds

(1) f(x) = h(x)-t(x) .

Proof. For any point x of X, equation (1) determines t(x) unique-
ly? by the freeness of the action of Gζ on Eξ. The map t is con-
tinuous by local triviality of pζ.

DEFINITION 1.2. Let ξ and ζ' be principal bundles. A morphism



VAN KAMPEN'S THEOREM VIA COVERING SPACES 151

h:ζ—+ξ' is a map of Eξ into Eξ, such that there exists a function
hG: Gξ —•> Gζ,, which for any point x in Eξ, and element g of Gξ, satisfies
equation (2)

( 2 ) h(x-g) = h(x) hG(g) .

By the lemma, hG is unique and continuous. It is an easy consequence
of (2) that hG is a homomorphism. Note that (2) also implies that h
maps a fibre pj^b) into a fibre pjx(hB{b)). Let hB: B —> 5 ' be the unique
and continuous function such that for any point x of Eζ, equation (3)
holds.

( 3 ) iV(Ms)) = MP*(s))

Let ξ be a principal bundle, let K be a topological group, and let
u: Gξ-+ K be a continuous homomorphism. Then Gf acts on K on the
left via u, and the "weakly" associated bundle with fibre K will be
denoted by au. See [14, §§8.7, 9.1]. The bundle space of au is usu-
ally denoted by E x G K, where E = Eζ. It is formed as the quotient
space of E x K by the relation which identifies a point (x, k) with
(x <7, u{g~ι)k), for every element # of Gξ. The equivalence class of
(x, k) is denoted <#, k). The action of ϋΓ on E xG K is defined by the
rule (x, kxy k2 = (x, ktk2y. The base space of au is that of ξ, Bttu —
Bξ. The projection is defined by the rule Pau(x, k} = pξ{x). There is
a natural map u*: E—> E xG K defined by the rule u*{x) = {x, e), where
e is the identity element of K. If u is understood, then it will be
convenient to write ξ xG K for au.

THEOREM 1.3. Let ξ he a principal bundle and let u: Gξ—*K be
a continuous homomorphism of topological groups. Then u* is a mor-
phism of principal bundles such that uG = u. If h: £ —* £' is a mor-
phism of principal bundles and v:K—>Gζ, is a continuous homomor-
phism such that hG = v o u, then there exists a unique morphism

(h,v)*:ξ x σK->ξ'

such that (4) and (5) hold.

(4 ) h = {h, vf o u*

( 5 ) v= (h,v)%.

Proof. For x in Eξ and g in Gξ, u\x-g) = <a>#, e) = (x g, e) =
(x, u(g)} = <α?, e} u(g) = %*(a?) tt(flf). This proves that u% is a morphism
and uG = w. The conditions (4) and (5) on (h, vf are equivalent by
(2) to defining

(h, v)\x, k) = h(x)-v(k) , (x, k} e E x GK .
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The uniqueness of (h, v)* follows also from this rule, so the proof is
complete.

Roughly that theorem says that h: ξ —* ξ' factors through au if
and only if hG factors through K, and the former factorization is de-
termined by the latter. In this sense the associated bundle is the
solution to a universal mapping problem.

2* The clutching construction* The clutching construction
([14], p. 97) is extended. There are given spaces Bo, Blf and B2 such
that Bo is a subspace of Bι with suitable properties relative to bundles.
There is given a map /: Bo —> B2 by means of which Bγ is attached to
B2 to form B = Bι\j f B2 ([3], p. 127 f). There is given a common
structure group K for principal bundles ξ09 ξίy and f2 with respective
base spaces B09 Biy and B2 and there are given morphisms jιξo—+ξ1

and h: ζ0 —> ξ2 such that j B : Bo —• Bt is the inclusion map and hB = f,
and such that j G and hG are the identity homomorphism of K. If Et

is the bundle space of ξt for i = 0, 1, and 2, and let E = E1 U n E2.
The projection p of E onto B is defined by functoriality of the attach-
ing construction, and likewise by functoriality K acts on E freely from
the right. In order to conclude that ζ = (E, p, B, K) is a principal
bundle it suffices to prove that the projection is locally trivial. We
write ξ! U * f2 for ζ.

DEFINITION 2.1. For any & and f2 as above, and for a closed
subset A of B19 the set, 2? (A, fj, of germs of sections of ^ over A
is defined as follows. An element of &(A, ζλ) is an equivalence class
of sections of ξ± over neighborhoods of A, where two such sections, s
and t, are defined to be equivalent if for some open neighborhood V
of A both 8 and t are defined throughout V and their restrictions to
V are equal. For a closed subset A of Bo, likewise there is defined

, ξ0), and restriction of sections induces a function

Let ζ2 be a principal bundle, and let /: Bo —> Bξ2 be a map. Let
/*(£) be the induced principal bundle (/"̂ (f) in [14]) with base BQJ and
let/:/*(ί2) —̂ 2̂ be the canonical morphism. Recall that fB =f,fσ is
the identity homomorphism, fG: Gf*{ξ2) = Gξ2, and it is easy to see that

ζz

DIAGRAM I

<

Icy sGh^K

DIAGRAM

Jit
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these two conditions characterize /*(&)• Recall further that for any
section s: V2 —• Eζ. where V2 is a subset of Bζ. there exists a unique
section denoted f*(s):f-\V2) -> Efnh) such that

THEOREM 2.2, Lei f0, f 1 5 i 2 , /, j , h, and ξ be as above. Let

h': Ex • Eι U* E2

E, Uk E2

be the canonical maps. Under any of the conditions (2A), (2B), or
(2C) stated below, ζ is a principal bundle and hr and j r are morphisms
of principal bundles which fill in the pushout diagram for j and h in
the category of principal bundles (diagram I).

(2A) J5i and B2 are open subspaces of a common space B = ^ U
B2, and Bo = BXΓ\ B2. The inclusion of Bo into B2 is hB — f.

(2B) Bt and B2 are closed subspaces of a common space B = J5X U
B2, and Bo = ^ Π B2. The inclusion of Bo into B2 is hB = f. Further
for each point b of Bo the restriction function of 5f(b, fi) to &{b, ζ0)
is onto.

(2C) Bo is a closed subspace of B19 and hB—fis arbitrary. Fur-
ther for every closed subset A of BQ, the restriction function of
to &(A, fo) is onto. (Cf. 4.2 and 4.3).

Proof. For properties of the attaching construction see [3, pp.
127-129]. The canonical maps h' and f are the restrictions to E1 and
E2, resp., of the quotient projection of the free union, JEΊ + E2, onto
Ex U h E2. Assuming that ζ is a principal bundle, then h' and f fill
in the pushout diagram ([9], p. 10) for j and h, since they do so as
maps in the category of topological spaces. It remains to show that
p is locally trivial. In case (2A), the coordinate neighborhoods for
pζl and Pξ2 are trivially coordinate neighborhoods for p. In case (2B),
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the coordinate neighborhoods for pξl and pζ2 in the complements of Bo

in Bι and B2, resp., are trivially coordinate neighborhoods for p. For
an arbitrary point 6 of B19 let F2 be an open neighborhood of b relative
to B2, and let s2 be a section of ξ2 over F2. Then /*(s2) is the restric-
tion of s2 to a section, s0, of f0 over V2 Π J50 By hypothesis, the germ
of sQ over b extends to a germ of a section s: of ξt over a neighbor-
hood Fx of δ relative to B^ By cutting down Fi and F2, if necessary,
we may assume that sί9 s0, and s2 all are defined on Vt Π F2 and all
agree there. Then sι U s2 is a section of £ over Fx U F2, and the
coordinate function defined by s1 U s2 is a homeomorphism, by the
functoriality of the attaching construction. In case (2C), the coordi-
nate neighborhoods for pξl in the complement of Bo in B1 are trivially
coordinate neighborhoods for p. It remains to find coordinate neigh-
borhoods of the points b of B2. So, let s2 be a section of ζ2 over an
open neighborhood, F2, of b. Let A2 be a closed neighborhood of b
contained in F2, and let A = f~x (A2). Again /*(s2) is a section, sQ, of
ξ0 in a neighborhood of A, and by hypothesis, the germ of s0 over A
extends to a germ of a section, s19 of fx over a neighborhood, Fx, of
A relative to Bx. By cutting down Vλ and F2, if necessary, we may
assume that s± and s0 are both defined on Vx Π JB0 and. both agree there.
Then st \J fs2is a section of ξ (defined by functoriality of the attach-
ing construction), the coordinate function defined by it being a
homeomorphism by functoriality of the attaching construction. This
completes the proof of theorem.

3* Universal covering spaces* The Seifert and Van Kampen
theorem for regular covering spaces is the statement that pushouts
exist in the category of regular covering spaces provided suitable con-
ditions are satisfied by the base spaces. The construction does not
generalize to locally compact principal fibre bundles since it would rely
on the existence of pushouts in the category of locally compact struc-
ture groups.

A regular covering space of a connected base space B is a principal
bundle with base B and a discrete structure group. The bundle space
of a regular covering space is not assumed to be connected. The
universal covering space of B (if it exists) is the regular covering
space such that for a fixed element x0 of Eς, ξ has the universality
property: for any regular covering space £', for any map/: 5—>Bξ,,
and for any point xf of Eζ, such that pξ>(x') =f(p^(xo))9 there exists
a unique morphism /-":£-•>£' such that (f")B = /, and f~(x0) — xf. It
is not hard to conclude that the universal covering space of a given
base space B is unique up to isomorphism, that its bundle space is
connected, that the universality property does not depend upon the
choice of fixed element x0, and that it suffices to verify the univer-
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sality property relative to covering spaces ξ' with the same base B
and for / equal to the identity of B. It is also known that if a regu-
lar covering space of a base B has a path connected simply connected
bundle space, then it is the universal covering space of B, and its
structure group is naturally isomorphic to the fundamental group of
B. There exists an example ([13], p. 84 and [6]) of a connected,
locally path connected metric space B such that B has a universal
covering space which is not simply connected.

We now consider circumstances similar to those of paragraph 2.
There are given spaces Bo, Bίf and B2 such that BQ is a subspace of
JBie There is given a map, /, of Bo into B2, by means of which B1 is
attached to B2 to form B — Bx u / B2. There are given regular cover-
ing spaces £0, ζ19 and ξ2 with respective base spaces Bo, B19 and B2.
No assumption is made that the structure groups are isomorphic.
There are given morphisms, j and h, of ξ0 to ζ19 and of ζ0 to ξ29 re-
spectively, such that j B is the inclusion map of Bo into B19 and such
that hB — f. Let Ei be the bundle space of ζi9 for i — 0, 1, and 2.
There exists a discrete group, K, and there exist morphisms, wx and
u2, of Gξl and G?2, respectively, into K filling in the pushout diagram
for j G and hG (diagram II). Let u0 — uxojG = u2ohG. Using these homo-
morphisms define the associated bundles ζ€ xGK — au. for i = 0, 1,
and 2. Then j and h induce morphisms

J:E0 xGK >E1 xGK ,

H:E0 xGK >E2 xGK, H((x, k)) = (h(x), k} .

Evidently JG — HG = the identity homomorphism of K. Then define

E= {E, XGK)\JH(E2 XGK)

ί = {^xGK)\JH^2xGK) .

There are natural maps Hr and Jf induced by the clutching construc-
tion filling in a pushout diagram of spaces (the inside cell of diagram
III). Let h' = H'ou\ and j=JΌu\. Then diagram I is a pushout dia-
gram, provided that ξ is a principal bundle. The theorem will be
that this will be so in cases (3A), (3B), and (3C).

(3A) 2?! and B2 are open subspaces of a common space B = BL u B2,
and BQ = B1 D -B2 The inclusion of J?o into B2 is fes = /.

(3B) Bx and i?2 are closed subspaces of a common space B =
1?! U -B2, and l?o = B1 Π £ 2 The inclusion of Bo into JB2 is hB = f.

(3C) 5 0 is a closed subspace of B19 Bλ is paracompact, and hB =
f is arbitrary.

LEMMA 3.1. Case (3B) implies case (2B), <md case (3C) implies
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case ( 2 C ) , for the principal bundles ζt xGK over Bh i = 0, 1, 2 .

Proof. In case (3B) note that since K is discrete, then for a point
b of Bo any two sections of ξ0 xGK which are defined over neighbor-
hoods of b must have the same germ over b. It follows that the
restriction function of 2^(6, ξ1xGK) to 5^(6, ζ0 xGK) is an isomor-
phism, and case (2B) holds. In case (3C), we regard all regular cov-
ering spaces to be sheaves of sets. Let A be any closed subset of
Bo. By a standard theorem of sheaf theory ([4], p. 150), any section
over A extends to a section over a neighborhood of A, and since two
sections must agree over an open set, then it follows that the restric-
tion function of <^(Ayξ1 xGK) to &{A, ξQ xGK) is an isomorphism
and case (2C) holds.

THEOREM 3.2. Let ξ0, ξ19 ξ2, /, j , h, and ξ be as above. Under
any of the conditions (3A), (3B), or (3C), diagram I is a pushout dia-
gram in the category of regular covering spaces, and the induced dia-
gram II of homomorphisms of structure groups is a pushout diagram
in the category of groups.

Proof. Cells (i) and (ii) of diagram III are commutative as an
application of (1.3). Let h' = HΌu\, and j = JΌu\. Since HG and JG

both are the identity homomorphism of K, then

and

j G — u2

We show that hf and f fill in the pushout diagram for j and h in the
category of regular covering spaces. Suppose that for i = 0, 1, and
2, there are given morphisms £<:£<—•£' such that l0 = j°k = h<>l2.
Since then

(k)σ = (k)β°3β = (k)β°hβ

then there exists a unique homomorphism v:K—>Gξ, such that

voh'G = lx ,

a n d

v°fG = k

For each i = 0, 1 or 2, lt induces a unique morphism

{lhv)hξixGK >ξ'
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such that

(U, v)% = v , and (li9 v)ou\ = lt .

It follows that

ft, vγoj = (i0> vy = (l2f vfoH .

Since H' and J9 fill in the pushout diagram for / and H then (lu vf
and (ϊ2, v)* induce a unique morphism I: ξ —> f' such that

(lί9 v)* = UH' , and (l2, v)* = l°Jf .

By its construction, I satisfies

lohf — lγ , and loj' = i2

and Z is the unique morphism which does so. Since lx and l2 were
arbitrary such that l^j = l2oh, this completes the proof that h' and
f fill in the pushout diagram for j and h.

The Corollary 3.3 is the analogue for universal covering spaces
of the Seifert and Van Kampen theorem.

COROLLARY 3.3. Under the conditions of 3.2, if £f is the universal
covering space of Bi for i = 0, 1, and 2, then ξ is the universal cover-
ing space of B, and the diagram II of induced homomorphisms of
structure groups is a pushout diagram in the category of groups.

Proof. There exist morphisms j : f0 —> ίiy and h:ζo—*ζz such that
j B = the inclusion of Bo into B19 and hB = /. Then there exist push-
out diagrams in the category of covering spaces and in the category
of groups. (See illustration I.) Let ξ' be any regular covering space
of J5, and suppose there are given points x of Eζ9 such that pζ(x) =
pξ'(x'). We must find a morphism ?:£—•£' such that l(x) = xf, and
show that such a morphism is unique, in order to complete the proof.
We may assume that x is so chosen that there is a point x0 in EξQ

such that h'(j(x0)) = x. For i = 0, 1, and 2, let £*: £* —> ξ' be the unique
morphism such that (k)B is the natural map of Bt into B defined by
the attaching construction, and such that lo(xo) = x'> li(j(%o)) = ®\ and
l2(h(xQ)) = x'. Since they agree at one point, xQ, the maps l0, l^j, and
I2°h are all equal. Let I be the unique morphism such that l°hf — lί9

and loj' = l2. This completes the proof.

COMMENT 3.4. Theorem 3.2 here stated and proven for all prin-
cipal bundles with structure groups in the category of (discrete)
groups, could be stated and be valid with no change in proof for any
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full subcategory of the category of principal bundles provided the
corresponding category of structure groups had pushouts. The notion
of universal principal bundle in that category would make sense pro-
vided the structure groups were discrete. For example, by taking the
corresponding category of structure groups to be the category of
abelian groups, one arrives at the notion of universal abelίan regular
covering space, and Theorems 3.2 and 3.3 in terms of abelian regular
covering spaces would remain valid.

4* Extension properties of germs* The extension properties of
germs are developed for principal bundles in general, there being in-
terest in the validity of the clutching construction. There is a trade-
off in hypotheses to be made, it being necessary to strengthen hy-
potheses on the base spaces in order to admit less stringent conditions
on the structure group.

Throughout this section ξ1 is a principal bundle with base B1 and
structure group K, and Bo is a closed subspace of Bλ. Let ζ0 = ξ1\BQ =
i*(fi) be the restriction of ξ1 to Bo, where j is the inclusion of Bo

into Bx. Recall that for a closed subset A of B19 one says of A that
it has the neighborhood extension property in B1 relative to K provided
that for any map / of A into K, there exists an extension of / to a
map of a neighborhood of A into K.

THEOREM 4.1. If every closed subset of Bλ has the neighborhood
extension property in Bγ relative to K, and if Bx is paracompact, then
case (2C) holds.

Proof. The proof is a straightforward modification of standard
arguments which conclude a global property from the corresponding
local property; see [14], p. 55, or [5], Theorem 2.7. To begin, let
Vo be a closed relative neighborhood of A in Bo, and let s0 be any
section of ξ0 over Vo. It will be shown that there exists an extension
of s0 to a section s1 of £x over a closed neighborhood, V19 of Vo in Bx.
That would suffice to prove the theorem. Let {Ui}i6l be a locally finite
open covering of Bx by coordinate neighborhoods, and for each index
i, let Si be a section of ξ1 over Ui Let {Vi}iBI be a closed covering
of B1 such that for each index i, Vi is contained in Ui For any
subset J of /, let

Vj= VoVdJW .ίeJ, and V^V^ 0}) .

Let S^ be the set of all pairs (J, s), where J is a subset of /, and s
is an extension of s0 to a section of fx over a closed set, Ns, which
is a relative neighborhood of Vo in Vj. Sf is partially ordered by
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the relation defined as (J, s) ̂  (J', s') if J a J' and s' extends s. By
the Hausdorff maximal principal, there exists a maximal chain, <g^
contained in 6^. If we let

and

s' = U {s: (/, s)

then (J', s') is the maximum of ^ If J ' = J, then Ns, would be a
neighborhood of Vo in 1?!, and the theorem would be proven. Suppose
that there were an index i not contained in J\ Then ViΠ V0Φ 0,
for otherwise (J' U {i}, s') would be an element of £f greater than
(J', 8'). Let

t: Ns, Π Vi > K

be the map defined by the equation

s'(x) = 8i(x)'t(x) , xeNs, Π Vi .

By the neighborhood extension property hypothesis, there is an ex-
tension, t'y of ί to a map of a closed neighborhood, M, of JVS, Π Vt

into iΓ. Then extend s' to a section s" over iVs, U (Λf ΓΊ Fί) by letting,
for any point x oΐ M Π Vi9

s"(x) = 8i(x).t'(x) .

Then (J' U {i}, s") is an element of ^ greater than (J', s'), contrary
to the maximality of ^ and of (J', s") It follows that Jf = I. As
previously observed, this proves the theorem.

COROLLARY 4.2. If Bx is a paracompact space, and K is a Lie
group, then case (2C) holds.

Proof. Since K is topologically complete and an ANR, then [8]
every closed subset of Bx has the neighborhood extension property in
Bx relative to K, and so 4.1 implies 4.2.

If the structure group, K, is not a Lie group, all is not lost.

THEOREM 4.3. If ξλ has the homotopy lifting property and BQ is
a neighborhood deformation retract of B19 and in particular if the
inclusion of Bo into B1 is a cofibration, then case (2C) holds.

Proof. This straightforward application of the homotopy lifting
property is left to the reader.
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HOMOMORPHISMS OF MATRIX RINGS
INTO MATRIX RINGS

AMOS KOVACS

Let Vn(Rn) be the universal ring with respect to em-
beddings of the matrix ring Rn into n X n matrix rings over
commutative rings. A construction and a representation
is given for this ring. As a main tool in the construction,
it is proved that every R homomorphism of Rn9 R a com-
mutative ring, is the restriction of an inner automorphism
of Un, for some U 2 R. Using this, a necessary and sufficient
condition for n2 matrices in Rn to be matrix units is given.

1* Introduction and notations• All rings to be considered in

this paper, except those denoted specifically as matrix rings, will be
commutative rings with unit. All homomorphisms are unitary. The
unit of a subring coincides with the unit of its over-ring.

Denote by Rn the ring of n x n matrices over a ring R. Let
ψ R —• S be a ring homomorphism then η induces a homomorphism
ηn:Rn-*Sn given by: ηn{ri3) = (^(r^ )). If AeRn,(A)iS will denote
the (i, j)th entry of A. The identity element and the standard
matrix units of all matrix rings will be denoted by I and {-Ê }
respectively.

Let A be an R algebra. It was proved by Amitsur ([1], Theorem
2) that there exists a commutative R algebra V%(A), and a map
p: A—> (V%(A))m which is universal for homomorphisms of A into
m x m matrix rings over commutative rings, i.e.;

(1) For every τ: A —> Hm9 with H a commutative R algebra,
there exists a homomorphism η: VZ(A) —• H such that the following
diagram is commutative;

\ϊ

(2) Vn(A) is generated over R by the entries {[p(a)]ij\ae A}.
Properties (1) and (2) determine VS,(A) up to isomorphism and p

up to a multiple by an isomorphism of V2(A).
In this paper we will give an explicit construction for the ring

V5(Rn) The case n = m will be treated separately. We start with
investigating the nature of i2-homomorphisms of Rn into itself.

161
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2Φ On the automorphisms of matrix rings*

LEMMA 1. Let C be a subdirectly irreducible commutative ring.
C can be embedded in a local ring Q which is the complete ring of
quotients of C. For noetherian C we may take C — Q.

Proof. Let 3W be the set zero divisors in C, then, by [6] 3ft is
a maximal ideal in C. Let Q be the local ring Cm and let / be the
canonical homomorphism f:C—> Cm.

The elements of C — 3ft are not zero divisors in C, hence / is
an injection. Furthermore, the elements of C — 3ft are exactly the
regular elements of C, and so Q is the complete ring of quotients
of C.

Now, if C is noetherian we have, by [3], 3ft = %l(C)-the nil
radical of C, and therefore, J(C) S 3ft - 5ft(C) S J(C) where J(C)
denotes the Jacobson radical of C. Hence 3ft = J(C) and being
maximal it is the unique maximal ideal of C. Consequently C is local
and C = Cm = Q.

THEOREM 2. Let C and Q be as in the lemma; {Ei3 | 1 ^ i, j ^ n}
be the set of the standard matrix units in Cn, and {Fi3 \i<^i, j <.n}
another set of matrix units in Cn, then there exists a matrix A e Cn9

invertible in Qn such that:

l ^ i , j ^ n Ei3A = AFi3 .

If C is noetherian A is invertible in Cn.

Proof. By definition Σ?=i ^ = 7 hence Σ?=i ( i Γ J n = (Σ?=i Fuv)n = l.
Now C is subdirectly irreducible, so that the zero divisors in C form
an ideal. Consequently not all of the (F^)n are zero divisors and
we have some 1 ^ v ^ n such that {Fvv)n is regular. Without loss
of generality we may assume that a = (Fn)n is regular. Put now

n n
A ^~l 77T 77T T) t >Γ~^ 77T 777

than for all i and j we have Ei3A = EixFl3 = AFi3 and also

n \ n
"SΓ~* 7TT 777 i X ' 777 777 777 _ , Ύ

2-A £ μ\^iμ I 2-J -EΊΊ Γ U ^lv ^ l .
μ = l / 1^=1

Now a is regular in C and hence invertible in Q, thus B — oΓιB' is
the inverse of A in Qn. If C is noetherian then by Lemma 1 C = Q
and B = A"1 e Cn.

Note that in a local ring the noninvertible elements form an
ideal so that the proof of Theorem 2 can be easily modified to give
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an elementary proof of the following well-known (e.g. [2]) theorem:
"Let C be a local ring then every C-homomorphism of Cn is an inner
automorphism".

THEOREM 3. Let C be a commutative ring with unit, Ei3, Fi3 e
Cn as above, then there exists a commutative ring U containing C
and an invertible matrix Ae Un such that Ei3A = AFi3 for all 1 ^
i, j ^ n.

Proof. C may be represented as a subdirect product of sub-
directly irreducible rings ([4], Theorem 1, p. 219). There exists
therefore a set of subdirectly irreducible rings with unit, {Cr \ 7 e Γ)
such that C <Ξ Πrer Cr S Πrer Qr = U where Qr is the complete ring
of quotients of Cr. Hence Cn S (ΠCr)n S (ΠQr)n = Un. Let πr: ΠQr~»
Qr be the canonical projection. Put EJ3 = πr

n{Ei3), F'(ά = πr

n(Fi3) then,
by definition E\3 are the standard matrix units in C\ F\3 are another
set of matrix units. By Theorem 2 it follows that there are in-
vertible matrices Ar e Qr

n such that Er

iάA
r = ArF?3. Let A e (ΠQr)n =

Z7% be defined by {(A)vμ){r) — (Ar)uμ, namely for every y e Γ πr

n(A) =
Ar. Clearly A is invertible in Um, its inverse being given by
((A~1)uμ)m = {(Ar)~ι)vμ. Clearly A satisfies E{jA = AFi3 for all i and^.

COROLLARY 4. ( 1 ) -For α given ring C there exists a ring
U 3 C ŝ c/z, £&α£ ever̂ / C-homomorphism r]\ Cn—> Cn can be extended
to an inner automorphism of Un.

( 2 ) Given η, the ring U of (1) may be chosen so that the inner
automorphism will be given by a matrix of determinant 1.

Proof. ( 1 ) follows immediately from Theorem 3 by taking
Fi3 = η(Ei3) then, by the theorem we have a ring U and a matrix
Ae Un such that A~ιBA = η(B), BeCn.

( 2 ) For a fixed rj we adjoin to U the wth root of a~ι = det (A"1)
and replace A by α~]/M..

REMARK. The ring U of Theorem 3 is not uniquely determined.
For example one may take U = ΠCm where the product is taken
over all maximal ideals in C. This ring will have the same
property.

COROLLARY 5. Let C be a commutative ring with unit, {Fi3 \ 1 ^
i,j <^ n} a set of matrix units in Cn then CentCn(Fi3)-the centralizer
of all the Fi3 in Cn — is C, and every element in Cn may be
written in a unique way as Σ*y ^y ̂ yj cij e C
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Proof. By Theorem 3 Fi3 = AEi3A~~ι where A is in some larger
matrix ring Un 2 Cn. Hence; Cent^ (Fi3) = Cent^ (Fi3) f)Cn =
A Cent^ (Ei3)A'1 f] Cn-= UΠ Cn = C. The proof of the second part of
the corollary is classical (e.g. [4], Proposition 6, p. 52).

3. The ring V?(Rn). Let R be a fixed ring with unit. All
rings henceforth will be ί2-algebras and all homomorphisms R-
homomorphisms. We shall write Vn(A) for V^(A). We now proceed
to give an explicit construction for the ring Vn(Rn).

Let {xi3 11 <^ i, j ^ n) be n2 commutative indeterminates over R,
let R[Xij] denote the ring of polynomials in the xi3 over R. Denote
by D^R[xi3] the ideal generated in R[Xij] by the polynomial det {xi3) — 1,
and put K = R[xi3]/D. Clearly we may take R £ K. Put ξi3 =
xi3 + DeK, and 8 = (ξi3) e Kn. The matrix 8 is invertible in Kn,
and its inverse is given by Ξ~ι = adji? = (ff̂ ) where S1 -̂ is the
algebraic complement of ζi3- in 8.

Let S be the subalgebra of K generated over R by the n*
elements {ζi3Ξkl \1 ^ i, j , k, I ^ n}. (S contains the unit element of
Kίor Σ?=ifiA* = det(f4i) = l.)

Define a map p: Rn -> Kn by ρ(B) = ΞBΞ~\ p is clearly a
unitary J? homomorphism, furthermore we have:

[p(Ei3)]kι =

so that p(Rn) S SΛ and we may regard p as a map from Rn to SΛ

and note that the entries {[^(A)]^ | A e Rn) generate S. For this
ring S and the homomorphism p we prove;

THEOREM 6. S is the universal ring Vn(Rn) and p is the
canonical embedding of Rn in Sn = (Vn(Rn))n.

Proof. We have seen that S is generated by the appropriate
elements so that all that remains to be shown is that every homo-
morphism τ: Rn —• Cn factors through p.

As C is an R algebra, we have the natural homomorphism
i: R->C. Denote i(r) = r' in(B) = B' for all reR, Be Rn.

Let Ei3 be the standard matrix units of Rn than E\3 are the
standard matrix units of Cn and τ(Ei3) = Fi3 are a set of matrix
units in Cn. By Theorem 3 there exists an R algebra Ϊ7 Ξ2 C and
an invertible matrix (ai3) = Ae Un such that Fi3 = AE[3 A~γ\ further-
more, by Corollary 4 (2) we may suppose that det (A) = 1. We
clearly have for all B e Rn τ(B) = ABΆ~\
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Define η°: R[xi3] — U by η°{xis) = aij9 then rj° (det (xiS) - 1) =
det 0?° fe )) - 1 = det (A) - 1 = 0, and therefore rj° induces a homo-
morphism fj\ K = R[xiά\ID -> C/ such that η(ζi3) = α ί i 5 and we have
the map ^w: Kn-+ Un for which ^(S 1) = A, ηn{Ξ~ι) = A~ι and fjn(B) =
J3' for J5 e 22n. For all B e Rn we have:

VnP(B) = VΛΞBΞ^) - V^VΛBivΛΞ-1) = ABrA~' = τ{B) so that
rjnp = τ. Let ?? be the restriction of η to S, then we have: p(Rn) S
Sn and rjn(Sn) S Cn. The last inclusion follows from the fact that for
BeRn V([P(B)]ij^[VnP(B)]ij=[τ(B)]ijeC and since S is generated
by the elements [p{B)]ih η{S) S C. Consequently the following
diagram is well defined and commutative.

\ i

which completes the proof.

COROLLARY 7. (1) If R is an integral domain {in particular
R = ΐ 7 a field) then so is Vn{Rn).

(2) If R is noetherian so is Vn(Rn).

Proof. (1) If R is a domain then so is R[Xij] and the polynomial
det (x^) — 1 is prime in i2[a?ίi]. Hence, D is a prime ideal and K =
R[xi3\ID is a domain. Vn(Rn) = S £ ίΓ is hence also a domain.

(2) >S = Fn(jBJ is finitely generated over R (see also [1]).

4* An alternative representation of Vn(Rn). Vn(Rn) was shown
to be generated by n4 elements ξkiBij. We aim now to describe the
ring in terms of these generators and their relations. To this end
we begin with a ring R[zU] with zU n4 commutative indeterminates
over R. The elements zl\ are to represent the generators ξkiΞu and
so they must satisfy the relations arising from the commutativity of
the ξi3 and from the fact that ΞΞ~ι — Ξ~ιΞ = /, namely;

(1) zϋzff = zilzli for all i, j , k, I, s} q, t, r
(2) Σ?=iSK = a« for all k,l
( 3) Σ?=i «ίί - da for all i, j .
In fact we will show that the generators of Vn(Rn) satisfy no

other relations except these. This will be done by showing that
R[zϋ] modulo those relations is again the universal ring Vn(Rn).

We begin with conditions for matrices in a matrix ring to be
matrix units.



166 AMOS KOVACS

THEOREM 8. Let {Fij \1 <Zi,j <; n} be a set of n2 matrices in a
matrix ring Cn. The {Fij} are a set of matrix units in Cn if and
only if they satisfy the following conditions:

(1) (F^kl(F9%r = {F«)hr{F'*)tl for all i, j, k, I, s, q, t, r

(2) Σ?=i (*"% = «« for all M
(3) Σ,U(F%k = δi3- for all i,j.

Proof. Suppose the Fij are matrix units in Cn, then, by Theorem
3 we have Fij = AE^A"1 where A e Un, for some U^C. Put A = {ai3)
and A~ι = (α^ ) and evaluate the left side of (1);

atπ(Esq)πσa'σ

While the right side of (1) gives:

(F^UF^u = (AEigA-%r(AEsSA-%

— ( Σ %v( E i g ) , χ r Σ atπ(Esj)πσaσl

\»μ /\πσ

= {a^a^a^a^)

Which, by the commutativity in U proves (1). To prove (2) we
have only to notice that ΣS=i {Fli)ki = (Σ?=i-^")fci = O0*ι = δkl. Con-
dition (3) states that tr(Fίj) = δiS9 now for i Φ j we have

ίr(iΓ^) = tr(FuFij) = tr{FίjFli) - ίr(0) = 0 = δiά

while for i = j we have, using (1) and (2)

tr(F«) = l ( ) (
k = ι \l =

= Σ {Fι%k{F»)ki = Σ (Fι% = l = δu.
l,k I

Conversely, suppose the Fij satisfy conditions 1, 2, 3 than

[(F^)(Fκβ)]kl - Σ (F^)kt(Fπσhι = Σ (F*σ)kl(F«%
ί = l ί = l

= (*"")« Σ (^^)« = (i5"")*^^ - (δsμF")kl .
ί = l

This being true for all A, I we have FUffF*σ = δ^F 1 " . We also have
( Σ î-P7**)*! = Σ?=i ( ^ " ) * Ϊ = δ« = (/)« hence Σ?=i -P7" = J which concludes
the proof that the Fij are indeed matrix units. (A similar result
on orthogonal idempotents was obtained in [7].)

We are finally in the position to present Vn(Rn) in terms of
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generators and relations. We start as before with the ring R[zk{]
and let J be the ideal generated by all the polynomials of the forms:
zifiZti ~ zl'Xί, Σ t i 4* - δkl, Σϊ=i 4 i - 8i3 where the indices range
over all possible combinations. We denote by ζi{ the class z\\ + J
in the quotient ring Sf = R[x¥ι]/J = i2[CU]. We define now a homo-
morphism p':Rn-+S'n by [p'(A)]kl = Σ?= ι Σ?=i a A

The relations imposed on the ζj$ and Theorem 8 imply that the
matrices ρ'{Ei3) = (ζjj) are clearly a set of matrix units in S' so
that evidently ρf is indeed an JS-homomorphism.

THEOREM 9. With these notations S' = Vn(-Sn) cmd p' is the
canonical embedding of Rn in S'n — (Vn(Rn))n.

Proof. We note that [p'(Ei3)]kl = ζi{ so that S' is generated
by the appropriate elements. All that remains to be shown is the
universal property of {Sf(?) Let τ: Rn —> Cn be a homomophism,
iT7 '̂ = τ(£ f

i i) are then a set of matrix units in Cn. Define rj\ R[zi{] —»- Cn

by yj{zVι) = [̂ (Ĵ ti)]ifci = (Fij)ki> by Theorem 8 / g Ker η and so ^ induces
a map η: S' -+C for which ^(ζ^) = [7(̂ ϋ)]jfci It remains to show that
VnP' = τ> and clearly it is enough to demonstrate the equality on the
generators Eti of Rnf indeed [i)%(t(Ei3)\hl = y[[p'{Ei3)\kl\ = η(ζi{) =
[τ(Ei3)]kι. This being true for all k, I and for all i, j we have rjnp

f = τ
as required.

REMARK. By the uniqueness of Vn{Rn) S and S' should be iso-
morphic. The isomorphism is given by the correspondence θ: ζfy —>
ξkiΞu and p = θρr.

5. Embedding in matrix rings of different order. In this
section we investigate the homomorphisms of a matrix ring into
matrix rings of higher orders. In particular we give a description
of the ring Vm{Rn) for all n and m.

If n and m are integers such that n/m we have an injection
d: C% —• Cm which places an n x n matrix m/π-times along the diagonal

of an m x m matrix. The combined map Rn-^ Cn—+ Cm will be
denoted by 3'.

Our first result is elementary:

LEMMA 10. There exists a unitary R homomorphism τ\ Rn-^ Cm

if and only if n/m.

Proof. If n/m we have exhibited such an homomorphism, namely
3'. Conversely, suppose there exists a τ: Rn—> Cm. Let 3ft be a
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maximal ideal in C. We have the induced R homomorphism τ: Rn -̂>

Cm ^ (C/W)m = Km, therefore, without loss of generality we may-
assume C = K a field. Let Ei3 be the standard matrix units of Rn,
then τ(Ei3) = / 4 i are w2 matrix units in Km. We have Kn = Σ ϋ / ϋ ^ S
ifm and ifm = ϋΓ% ®^ Cent^w (Kn) by taking dimension over k we
clearly have n/m.

Consequently we can assert that Vm(Rn) Φ {0} if and only if m/n,
which we shall assume henceforth. We would like now to generalize
Theorem 3 to the case of n2 matrix units in a matrix ring of order m
Turning to subdirectly irreducible components does not seem to be
very helpful and so we localize. Our next result is again not new.
It was proved for example by Knus [5] in a more general setting.
Our proof is rather elementary except for the use of the classical
Skolem-Noether theorem.

THEOREM 11. Let (C, 97Ϊ) be a local ring. {ei3} and {fi3} two sets
of n2 matrix units in Cm (n/m), there exists an invertible matrix
Ae Cm such that fi3 = Ae^-A"1 for 1 <̂  i, j ^ n.

Proof. [κm(ei3)} and {πm(fi3)} are two sets of n2 matrix units in
a matrix ring (C/3JΪ)W over a field. By the Skolem-Noether theorem
there exists an invertible matrix y e (C/W)m such that πm(fi3) =
yπΛeaϊy'1- Let y be a matrix in Cm with πjy) = y. 0 Φ det (πjy)) =
ττ(det (y)) e C/Wl, therefore, det (y) $ SJΐ is invertible in C and y is an
invertible matrix in Cm. Put A = ΣΓ=iΛi2/en, then we have

(1) 1 ^ i, j ^ n fi3'A = fiγyel2 = Aei3-

furthermore:

πm(A)y~ι = Σ πm{fvl)yπm{elv)y~ι = Σ πΛfώπJJi*)

= Σ π.(/vl() = ττm(/) = I ,

so πm(A) is invertible in (C/fUl)m and hence, as above, A is invertible
in Cm which, by (1), completes the proof of the theorem.

The next theorem can be proved with the help of Theorem 11
in the same way that we proved Theorem 3.

THEOREM 12. Let C be a commutative ring with unit. {ei3} and
{fij} two sets of n2 matrix units in Cm (n/m). There exists a com-
mutative ring U2 C and an invertible matrix Ae Um such that
ei3 = Afi3A~ι for all 1 ^ i, j ^ n. The ring U is independent of
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the {e{j} and {f^}. For fixed {e^} we may choose the ring U and the
matrix A in such a way that det {A) = 1.

We can now show that Vm(Rn) is a subalgebra of Vm(Rm), more
precisely:

THEOREM 13. Let p: Rm -> {Vg{Rm))m and δ: Rn -> Rm he the
canonical maps. Then V%{Rn) is the subalgebra S, generated in
V%(Rm) by the entries {[ρδ(B)i3\ Be Rn) and pδ is the corresponding
canonical embedding.

Proof. The condition on the generators of S is fulfilled by de-
finition so we have only to show the factoring property for maps.
Let τ: Rn —> Cm be a homomorphism, by the usual reasoning we have
a ring U a C and a matrix A e Um such that for Be Rn τ(B) =
Aδ'(B)A~ι where δf is as in Lemma 10. Define τ': Rm —> Um by
τ'(D) = ADΆ~ιj we have the following commutative diagram:

The square on the left is commutative by the definitions, while rj
and the commutativity of the triangle are given by the universality
of Vm(RJ.

Define η to be the restriction of η to S. Then, for the genera-
tors of S we have y([ρδ{B)]i3) = [ηmpδ{B)]i3 = [τ(B)]i3 e C. Therefore,

i C and the diagram

R pδ ) S

is well defined and commutative, which concludes the proof of the
theorem.

REMARK. Obviously Corollary 7 may now be formulated for the
ring VZ(Rn).
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^-MINIMAL BUT NO #£>-MINIMAL

YOUNG K KWON

Let UHD (resp. U~^ be the class of Riemannian n-
manifolds (n ^ 2) on which there exist k non-proportional HD-
minimal (resp. ίfD-minimal) functions. The purpose of the
present paper is to construct a Riemannian %-manifold n ^ 3
which carries a unique (up to constant factors) iϊD-minimal
function but no i2Ό-minimal functions. Thus the inclusion
relation

is strict for n ^ 3. By welding k copies of this Riemannian
^-manifold, it is then established that the inclusion relation

is strict for all k ^ 1 and n ^ 3. The problem still remains
open for n = 2.

1* An i?Z)-function (harmonic and Dirichlet-finite) ω on a
Riemannian w-manifold M is called ilD-minimal on M if ω is posi-
tive on M and every HD-ίunction ωf with 0 < ωf ^ ω reduces to a
constant multiple of ω on Λf. Let {ωn} be a sequence of positive
HD-functions on M. If the sequence {ωn} decreases on M9 the limit
function is harmonic on If by Harnack's inequality. Such a harmonic
function is called an iϊZMunction on M, and iϊjD-minimality can be
defined as in the case of iίD-minimal functions.

These functions were introduced by Constantinescu and Cornea
[1] and systematically studied by Nakai [6]. In particular the
following characterization by Nakai is important (loc. cit., cf. also
Kwon-Sario [5]):

( i ) A Riemannian ^-manifold M carries an iϊD-minimal func-
tion ω if and only if the Royden harmonic boundary ΔM of M contains
a point p, isolated in ΔM. In this case ω(p) > 0 and ω = 0 on
ΔM ~ {V\. ^

(ii) A Riemannian w-manifold M carries an iίD-minimal func-
tion ω if and only if the Royden harmonic boundary AM of M has a
point p of positive harmonic measure. These are corresponded such
that limsup.ejf,*-*,,^^) > 0 and limsupXSMtX^gω(x) = 0 for almost all
q e AM — {p} with respect to a harmonic measure on ΔM.

Since an isolated point of AM has a positive harmonic measure,
the above characterization yields the inclusion

171
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for all k ^ 1.
For the notation and terminology we refer the reader to the

monograph by Sario-Nakai [7].

2 Let n ^ 3. Denote by Mo the punctured Euclidean w-space
Rn — 0 with the Riemannian metric tensor

Qu(x) = 1 x Γ ( l + I x | - a ) 4 / ( - 2 ) ^ , l£i, j £ n

where \x\ = [ΣLi (xW* f ° r * = (»S ̂ 2> ' , »") e Λfo
For each pair (m, Z) of positive integers m, Z, set

Hml = {8kx 6 MQ [ I a? | = 1 and cc1 ̂  0} ,

where Zc = 2m~1(2l — 1) — 1, and α# = (αa?1, αx2, , axn) for α; = (α;1, x2, ,
#%) e ikΓ0 and real a. Let ikfo be the slit manifold obtained from Mo

by deleting all the closed hemispheres Hml. Take a sequence {Mό(l)}T
of copies of ikfo For each fixed m ^ 1 and subsequently for fixed
j ^ 0 and 1 ^ i ^ 2m~S connect M0'(i + 2mj), crosswise along all the
hemispheres Hml{l ^ 1), with jfcΓ0'(ΐ + 2w-χ + 2mi).

The resulting Riemannian w-manifold N is an infinitely sheeted
covering manifold of Mo. Let π: N~*M0 be the natural projection.

The following result is essential to our problem (Kwon [4]):

THEOREM 1. A function u(x) is harmonic on N if and only if
[1 + I π(x) \2~n]u(x) is Ae-haτmonic (harmonic with respect to the
Euclidean structure) on N. In particular every bounded harmonic
function u(x) on the submanifold

G= \xeN\ \π(x)\ > —

is constant on π ι(x) for each x e Mo whenever it continuously
vanishes on

dG = \xeN\ \π(x)\ = — .

3* For each integer I ̂  1, consider the subset of N:

N, = [Mm U

where

t= {xeMΪ(ί)\\π(x)\>± } .

It is obvious that
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G = \JGi

and the Riemannian π-manifold G is an infinitely sheeted covering
manifold of the annulus {xe Mo\ 1/3 < \x\ <<*>}.

We are now ready to state our main result:

THEOREM 2. The Riemannian n-manifold G (n ^ 3) carries a
unique (up to constant factors) HD-minimal function but no HD-
minimal functions. Thus the inclusion

is strict for Riemannian manifolds of dim ^ 3.

The proof will be given in 4 — 5.

4* For m ^ l construct ume HBD(Nm), the class of bounded
ίZD-funetions on Nn9 such that 0 ^ um ^ 1 on N9 um = 0 on
UEi1 [Ml(i) - GJ, and um = lon \JZ=m+ί [Mi(i) - GJ. C l e a r l y ^ um+1

on N and therefore the sequence {um} converges to an ilD-function
u on G, uniformly on compact subsets of G. It is easy to see that
0 ^ u < 1 on G and u \ N - G == 0. Since

on G by maximum principle and Theorem 1, it follows that 0 < u < 1
on G. Note that lim (̂a.)l_+00^m(α;) = 1.

We claim that the function u is iJD-minimal on G. In fact,
let v e HD(G) be such that 0 < v ^ u on G. In view of

0 ^ lim sup v(x) ^ lim sup w(#) = 0
zeG,x—*y x eG,x-+y

for all y e dG, v can be continuously extended to N by setting v = 0
on N — G. By Theorem 1 v attains the same value at all the
points in N which lie over the same point in Mo. Thus we may
assume that u, v are bounded harmonic functions on π(G) —
{π(x) I xe G} such that u, v = 0 on π(8G).

Again by Theorem 1, (1 + \x\2~n)v(x) is Je-harmonic on ττ(G) In
view of the fact that z/e-harmonicity is invariant by the Kelvin
transformation, the function

is z/e-harmonic on ϋf0 for 0 < | x | < 1/3 and continuously vanishes for
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I x I = 1/3. Therefore, there exists a constant a ^ 0 such that

32(«-2)| χ |*-2

on Mo for 0 < \x\ < 1/3 (cf., e.g. Helms [3, p. 81]). Thus

= 3n~2a

exists and v = 3n~2au on G, as desired.

5* Suppose that there exists another iίZJ-minimal function ω
on G. Choose a point q e ΔMtQ, the Royden harmonic boundary of G,
such that q has a positive harmonic measure and

lim sup ω(x) = 0
x t G,x-*q'

for almost all g' e z/i¥,G — {g} relative to a harmonic measure for G.
Let i : G * - > G c JV* be the subjective continuous mapping such that
j\G is the identity mapping and f(x) — f(j(x)) for all xeG*, the
Royden compactification of G, and feM(N), the Royden algebra of
N. Here G is the closure of G in N*. Note that a Borel set EadG
has a positive harmonic measure if and only if j~ι{E) has a positive
harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore, j(q)gdG
and dGczj(ΛMfβ).

For each m >̂ 1, um(#) = um{j{q)) = 1 since i(g) edG — dG. Thus
it is not difficult to see that 0 < ω <£ /3^m on G, where

/S = lim sup ω(x) > 0 .
x e G,x-+q

Therefore, 0 < ω ^ /9^ on G and ω is a constant multiple of u on G
as in 4.

It remains to show that u is not ifD-minimal on G. If it were,
u would have a finite Dirichlet integral. But u has a continuous
extension to G\jdG with u | 3G == 0. Then by Theorem 1 u must
attain the same value at all the points in G which lie over the same
point in τr(G), a contradiction.

This completes the proof of Theorem 2.

6. Let G' be the Riemannian ^-manifold obtained from G by
deleting two disjoint closed subsets B, C, where

B = \x 6 jlίo'(l) I I a I = — and xι ^ θ
i 24

C - \x e AΓO'(1) I I α? | - — and x1 ^ ol .
^ 24 i
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For each k ^ 2 take k copies Gί9 G2, , Gk of G', and identify,
crosswise, B{ with C ί + 1 for 1 ^ i ^ m. Here we set Cn+1 = Ct. Then
it is easy to see that the resulting Riemannian ^-manifold G{k) has
exactly k non-proportional HD-mirάmsλ functions but no iϊD-minimal
functions.

COROLLARY. For all k ^ 1 the strict inclusion

holds for Riemannian manifolds of dim ^ 3.

7* For the sake of completeness we shall sketch a proof of
Theorem 1. In view of the simple relation

Au = \x\n+2(l + \x\n-2)-{n+2)l{n-2) /le[(l + \πx\2~n)u] ,

it suffices to show the latter half.

For each integer k ^ 0 let Uk be a component of the open set

{x 6 NI 28*-1 < I π(x) I < 2U+1} ,

and Sk a compact subset of Uk which lie over the set

{xeM,\\x\ = 23Λ} .

Since Uk is a magnification of Uo and the z/e-harmonicity is invariant
under a magnification, it is not difficult to see that there exists a
constant q, 0 < q < 1, such that

|tt(α;) I ̂  0 . sup{ | ίφ) | | α; e Uk)

on Sfc for any harmonic function u on Uk which changes sign on Sk.
Note that q is independent of k.

Let u be a harmonic function on G such that | u \ ̂  1 and it
continuously vanishes on dG. For each m ^ 1, denote by πm the
cover transformation of G which interchanges the sheets of G: the
points in G Π Mό(i + 2mj) are interchanged with points, with the
same projection, in M{(i + 2™"1 + 2mj) for j ^ 0 and 1 ^ i ^ 2m~~1.
Define ^m on G by

v«(«) = — [^(») - Φ

Clearly vm is harmonic on G, | vm | ^ 1, and vw changes sign on
& = 2m~1(2i - 1) - 1. Therefore,

xeSk} ^ q
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for all I ^ 1. By induction on Z, we derive that | vm | ^ qι on Sfc,,
where k' = 2m~ι — 1. Letting I—> oo, we conclude that vffl Ξ 0 on G,
as desired.
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ON THE RENEWAL FUNCTION WHEN SOME OF
THE MEAN RENEWAL LIFETIMES ARE INFINITE

MAKOTO MAEJIMA

Let {Xi, i = 1, 2, } be a sequence of independent and
nonnegative random variables with the distribution function

S CO

xdFi(x) may be infinite. Let H(t) be the
0

renewal function. The main object of this note is to show
that in order to have the asymptotic relation H(t)jt ~ 1/L(t)
as t -> oo, it is necessary and sufficient that μ(t) ~ L(t) as
£->oo, where L(t) is a function of slow growth and μ(t) =
lim^co (1/n) Σ ί U fr(t), μ&) being Γ [1 - Fi(x)]dx, is supposed

Jo
to exist uniformly in t.

Let H(t) be the renewal function for a renewal process, that is, a
sequence {Xi9 i = 1, 2, •} of nonnegative, independent and identically
distributed random variables. Namely H{t) = EN(t) = E[sup {n; Sn ̂  ί}],
where Sn = Σ?=i -Xi Smith [3] has studied the limiting behaviors
of H(t)/t for the case in which EXi = oo.

We now consider an extended renewal process in which Xi9

i = 1, 2, may not be identically distributed. We also in this case
use the similar notations Sn and N(t), and we may also define H(t)
in the similar manner under the condition that Sn has no finite limit
point. The main object of this note is to give a generalization of
a result of Smith to our extended case.

2* Some lemmas* We begin with some lemmas for an extended
renewal process with the finite mean lifetimes.

Let {X^ i — 1, 2, •••} be a sequence of independent and non-
negative random variables with 0 < EX{ = μt < oo and let F^x) be
the distribution function of X{.

LEMMA 1. Suppose that

(2.1) μ = lim — Σ ^ > 0
W-+OO ηfi %=ι

exists and that

lim Γ xdFi(x) = 0
A-+00 JA

holds uniformly with respect to i. Then we have ENa(t) < co for
each t > 0, for a = 1, 2, .

177
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This lemma was first proved by Kawata [2] for a = 1, and Hatori
[1] showed it for any positive integer a.

LEMMA 2. Suppose that EN(t) and EN2(t) are finite and that
(2.1) is true. Then we have for every t

ESNit)+1 = μ(H(t) + 1) + ±nεn Pr {N(t) + 1 = n) ,

where εn is defined by

n <=i

which converges to zero as n —» oo.

Proof. Letting

Zn = 1, if n ^ N(t) + 1 ,

= 0, otherwise,

we have

N(t) + ί oo
/cy c\\ Ϊ7Ό Jji ^C "V Z77 V̂""* V Φ

\Li.A) il/θ^(ί)+i — -C/ 2-k Λ-n — • " ^1J -^n^n

Since

{ZM = 0} = {iV(ί) + K n) = L) {ΛΓ(ί) + 1 = k}

= {X, > ί } u * U P i + + -Xib-i ^ *) n (X, + + xk > t)},
k = 2

Zn is independent of Xn. Thus, noticing the nonnegativeness of Xnf

we see that (2.2) is

Σ

which turns out to be

ESNit)+ί = Σ G" + nen - (n - l)εn^) Pr {N(t)

= μ(H(t) + 1) + Σ (nϊn - (n - l)εn^) Pr <
7 1 = 1

Since

Σ I nen P r {N(t) + 1 ^ ^} | ^ s u p | ε n\ (EN2(t) + 2 ) <
7 1 = 1 71

by the finiteness of EN2(t), we may rewrite
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Σ (nεn -(n- l)εn_d Pr {N(t) + 1 ^ »} = Σ ne% Pr (iV(ί) + 1 = «} ,

so that

ESmt)+1 = μ{H(t) + 1) + Σ nεn Pr {N(t) + 1 = n} ,

which is the conclusion.

3* A theorem. We return to the case where X{ may have the
infinite mean renewal lifetimes. Let L{t) be a function of slow
growth, that is, for every fixed c > 0, L{ct)/L(t)—+1 as t —> °o. We
shall show the following theorem which is an extension of a result
due to Smith ([3], Theorem 1, (i), v = 1) to the case of nonidentically
distributed random variables.

THEOREM. Let {Xiy i = 1, 2, •••} δe α sequence of independent
and nonnegative random variables with the distribution function Fi(x).
Suppose that

(3.1) μ(t) = lim—ΣjHi(ί) > 0

exists uniformly m θ < ί < ° ° j where

μS) = Γ [1 - ^(»)]ώJ
J

Ae necessary and sufficient condition for the validity of the
asymptotic relation

(3.2)

where L(t) is a function of slow growth, is that

(3.3) μ(t) - L(t) , as ί -* oo .

Before proving the theorem we shall show some lemmas.
We now define a new renewal process {X*} for a fixed positive

number t* by putting

X? = Xi9 if X, ^ t* ,

= ί* , otherwise .

We note that EX? = ^<(ί*) is finite. For the new variables X?, we
define Sf, N*(t) and H*(t) in obvious ways. Then we may easily
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verify the conditions of Lemma 1 for a fixed t* and the following
lemma is immediate.

LEMMA 3. Suppose that (3.1) exists for t*. Then E{N*(t)}a < co
for a = 1, 2, .

The next two lemmas play essential roles in the proof of
Theorem,

LEMMA 4. Suppose that (3.1) exists uniformly in t. Then we
have

f
t ~~

Proof. We consider X* defined above. Since EN*(t) and
E{N*(t)}2 are finite by Lemma 3, we have that for all t,

(3.4) t < μ(t*)(H*(t) + 1) + Σ nεn(t*) Pr {N*(t) + 1 = n}

by Lemma 2 and noting t < SN{t)+1, where en(ί*) is defined by

Now (3.4) holds for t ~ t*, in particular. Thus we have

(3.5) ί* < μ(t*)(H*(t*) + 1) + Σ neu(t*) Pr {iV*(ί*) + 1 = n} .
Λ = l

Next, we estimate of the order of en(ί) as t—>oo. Since the
function 1 — F{{x) decreases to zero as x —> c>o, so does μi(t)/t as
t—>°o. In view of the assumption that (3.1) exists uniformly in t,
it follows that, for any e > 0, there exists a constant N independent
of t such that

(3.6)

Then we have

— Σ
n i=ί

< ε , for n^ N.

< JL + ε < 2ε

for sufficiently large £, taking into account the fact that μi(t)/t-+O
as t —> oo. Thus, we have for sufficiently large ί
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(3.7)
b 0

— Σ ε
A T '

for the fixed N and for all n ^ N. Therefore we have, for large ί*,
from (3.6) and (3.7)

Σ nen(t*)Pτ{N*(t*) + 1 = n)

(3.8) < — ί* Σ » P r {N*(t*) + 1 = n} + ε

JV"2 w=1

< 6(ί* + £Γ*(ί*) + 1) .
Now we shall show t h a t

(iV*(ί*) + 1 =

(3.9) lim sup
*

<

In order to show this, we define new truncated random variables

XifA for some constant A by putting

i,A — -Λ-f ? II -Λ-i = Λ >

= A , otherwise .

Clearly EXiyA = μi(A) is finite and by the elementary renewal theorem
for an extended renewal process, we have that, if HJt) is the renewal
function associated with {Xi}A}, then

lim EM
μ(A)

(For details, see Kawata [2].) (3.9) follows from t h e remark t h a t
H*(t*) ^ HA(t*) for t* ^ A . Since ε is a rb i t ra ry in (3.8), we have
from (3.8)

(3.10) lim —
«•_«> t*

nen(t*)Pτ{N*(t*) + 1 = n] = 0 .

Therefore, from (3.5)

limiΏί—μ(t*)(H*(t*) + 1) ^ 1 .

On the other hand, we have

for ^ = 2, 3, , and

Thus

: ^ tη =

Pr {S* ^ «*} = 1 .

tη,
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jff*(ί*) = H(t*) + P r { X L

and so

lim inf — μ{t)(H(t) + Pr {X, > t] + 1) ^ 1 .

Noticing that μ(t)/t —• 0 as ί —> oo, we have the conclusion of the
lemma.

LEMMA 5. Under the same conditions as in Lemma 4, we have
for arbitrary δ > 0

Proof. Take <? > 0 arbitrarily and let Xn represent new variables
truncated according to the rule

Xn = Xn , if Xn 5* δί

= δί* , otherwise .

It is clear that EXn = μn(δt*) < oo. Then, noting that £ ^
X^+i> w e have, by Lemma 2,

t ^ μ(δt*)(H(t) + 1) + Σ ^.(«ί*) Pr { W + 1 = n) -
(3.1D %;L

^ μ(δt*)(H(t) + 1) + Σ we (δί*) Pr {N(t) + 1 = n} - δt* ,
n=l

where N(t) and H(t) are defined in the renewal process associated
with the new truncated variables {Xn}. Since (3.11) holds for t = t*9

in particular, we have

(1 + δ)t* ^ μ(δt*)(H(t*) + 1) + Σ nεκ{δt*) Pr {N(t*) + 1 = n) .

The same arguments as in the proof of Lemma 4 yield that

(3.12)

for the fixed δ > 0. Noting that

H(tη s

we have the required result.

We now turn to the proof of the theorem.

Proof of Theorem. We first assume that

= 0
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S & ~ _ ± _ , a s ί - o o .
t Lit)

By Lemma 4 we have

(3.13) l i m i n f - ^ - ^ 1 ,
*-~ Lit)

and by Lemma 5, for any δ > 0,

lim sup -^—- ̂  1 + o .

Writing δt for ί, and using the fact that L(t/δ) ~ L(t) as t —• oo, we
have

lim sup iίίQ- ^ 1 + δ .
*-~ L(ί)

Since δ can be arbitrarily small, we, taking into account (3.13),
conclude the necessity part.

Furthermore, in view of the assumption μ(t) is a function of
slow growth, it follows by Lemma 5 that

lim SUp -"WA*w < l + δ .

Since 3 is arbitrary, Lemma 4 gives the sufficiency part.
When lim^oo μ(t) = oo, we can relax slightly the condition of the

uniform existence of μ(t) in the following way.

COROLLARY. Suppose that

μ(t) = lim — Σ μ{(t) > 0

exists for all t, (not necessarily uniformly), and that there exists a
constant K, independent of t, such that

n <=ί

for n ^ N, N being some finite positive integer. If \imt^^(t) = oo,
then the necessary and sufficient condition for the validity of the
asymptotic relation (3.2) is (3.3).

Proof. In the proof of theorem, the condition relaxed has been
used only in order to show (3.10) and (3.12). Thus, it suffices to
show that (3.10) holds under the conditions of this corollary.
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Now, we have

K
t

μ(t)

4-
1

AT

N
N

A

N

z

«t)

and so | μ(t) \/t can be arbitrarily small for the sufficiently large t.
Thus, en(t) = o(t) for all n ^ N. Therefore, we have

= n}< o(ί*) Σ n Pr {iV*(ί*) + 1 = }̂ + Γ̂ Σ
n=l n=N+ί

< o(t*)N2 + K{H*{t*) + 1) .

Now we shall show under the condition that μ(t) 3, that

As in the proof of the previous theorem, we have

μ(A)

Since A is arbitrary, this shows that

ί*

and (3.10) holds.

The author wishes to express his sincere appreciation to Professor
Tatsuo Kawata of Keio University for continuing guidances and
encouragements.
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COHOMOLOGICAL DIMENSION OF DISCRETE
MODULES OVER PROFINITE GROUPS

JUAN JOSE MARTINEZ

The main purpose of this note is to show that the finiteness
of the cohomological dimension of a discrete module is closely
related to the finiteness of its injective dimension. Moreover,
a sufficient condition for the finiteness of the cohomological
dimension is given. Both results are proved making a heavy
use of the theory of cohomological triviality for finite groups.

The reader is referred to [3] for a treatment of proίinite cohomo-
logy.

Throughout this note, G is a profinite group. As usual, the
cohomology of G is denoted by H(G, ).

Recall that, if A is a discrete G-module, the infimum of the (set
of) nonnegative integers r such that Hn(S, A) = 0, for any integer
n > r and any closed subgroup S of G, is called the cohomological
dimension of A, and is denoted by cd(G, A). If S is a closed sub-
group of G, Hn(S, A) = \imHn(V, A), where V runs through all open

subgroups of G containing S [3, Chap. I, Proposition 8, p. 1-9]. Hence,
if H*(V, A) = 0 for every open subgroup V of G, then Hn(S, A) = 0
for every closed subgroup S of G.

In this paper, a discrete module is called injective only when it
is injective in the corresponding category of discrete modules. If A
is injective, it is well-known that cd(G, A) — 0, because, for instance,
A is F-injective for all open subgroups V of G. Finally, recall that
the injective dimension of A, denoted by id(G, A), is the least length
of an injective resolution of A.

The connection between cohomologically trivial modules over finite
groups [2, Chap. IX, § 3, p. 148] and discrete modules of cohomological
dimension zero over profinite groups was observed, and used, by Tate
in his duality theory for profinite cohomology [3, Annexe au Chapitre
I, p. 1-79]. Tate's observation is quoted, for future reference, in the
following.

LEMMA 1. Let A be a discrete G-module. Then, cd{G, A) = 0 if,
and only if, for every open, normal subgroup U of G, the G/ U-module
Au is cohomologically trivial.

Proof. See [3, Annexe au Chapitre I, Lemme 1, p. 1-82]. Notice
that G/U is a finite group, because G is compact and U is open.

The Nakayama-Tate criterion for cohomological triviality takes

185
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the following form, in the cohomology theory of profinite groups.

PROPOSITION 2. Let A be a discrete G-module. If there exists a
positive integer q such that Hq(V, A) = Hq+1(V, A) = 0 for all open
subgroups V of G, then cd(G, A) < q.

Proof. Since A embeds in an injective, whose cohomological di-
mension is zero, by repeated applications of dimension-shifting it
suffices to consider the case q = 1. Let U be an open, normal sub-
group of G. If V is any subgroup of G containing U, the Hochschild-
Serre spectral sequence of the F/ί7-module Au yields the exact
sequence for low degrees

0 > H\V/U, Au) > Hι(V, A) > Hι{U, A)vlu

> H2(V/U, Au) > H\V, A) .

Since U is open, so is V, and thus, H\U, A) = H\V, A) = H\V, A) =
0. Therefore, H'iV/U, Aϋ) - H2(V/U, Au) = 0, and applying the
Nakayama-Tate criterion [2, Chap. IX, Theoreme 8, p. 152], the G/U-
module Au is cohomologically trivial. By (1), the proof is complete.

The main result of this paper can be stated as follows.

THEOREM 3. Let A be a discrete G-module, and let q be a positive
integer. Then, id(G, A) ̂  q if, and only if, cd{G, A) <̂  q and Hq(U, A)
is a divisible abelian group for every open, normal subgroup U of G.

Proof. Assume the assertion true for q — 1, with q > 1. If
id(G, A) <Ξ q, A has an injective resolution of length <Ξ q, say

0 >A — X o - ^ U X , > >Xq_^Xq , o .

If B = Coker e and f: Xo—> B is the canonical morphism, the sequence
of discrete G-modules

0 > A — Xo -L+ B > 0

is exact. Since cd{G, XQ) = 0 (injectivity of Xo), from the correspond-
ing cohomology sequence it follows that

Hn(S, B) ~ Hn+ι(S, A)

for any positive integer n and any closed subgroup S of G. Therefore,
it is enough to prove that cd(G, B) <̂  q — 1, and that if-^C/, B) is
divisible for all open, normal subgroups U of G. By the induction
hypothesis, this follows from showing that id(G, B) ̂  q — 1. In fact,
if e': B —• Xλ is the morphism induced by dQ: Xo —> X19 then Ker ef — 0
and Im e' = Im d0. Thus, the sequence
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Λ k p e' v xr dj γ. dq-ί

U > JJ > A t > -Λ2 > > Λ.q_ι > A 9 > U

is exact.
Reciprocally, if cd{G, A) ^ q, let

be an exact sequence of discrete G-modules, with Q injective. Then,
cd(G, C) ^ q — 1, because

H*(S, C) s ff +1(S, A)

for all positive integers π and all closed subgroups S of G. By the
same reason, if Hq(U, A) is divisible for every open, normal subgroup
U of G, then so is Hq~ι{U, C). Hence, by induction, C admits an
injective resolution of length <̂  q — 1, say

Since Ker ih — Ker h and Im ih = Im ΐ, the sequence

is exact, and so id(G, A) <̂  q.
It remains to prove the assertion for q = 1.
Let

0 > A • X o > Xγ > 0

be a n exact sequence of discrete G-modules, w h e r e Xo a n d Xί a r e in-
ject ives . Since cd(G, Xo) = cd(G, X J ~ 0, pass ing t o cohomology i t
follows t h a t cd(G, A) ^ 1, and t h a t t h e connect ing operator ds: Xf —>
Hι(S, A) is an epimorphism for all closed subgroups S of G. But , if
J9 is a n y injective, d iscrete G-module and U is a n y open, normal
s u b g r o u p of G, i t is easy to check t h a t Du is an injective G/t7-module,
w h e n c e [2, Chap. IX, L e m m e 7, p . 153] implies Du is divisible. There-
fore, as the image of a divisible group, H\U, A) is divisible for all
open, normal subgroups U of G.

Reciprocally, suppose cd(G, A) ^ 1, and let

0 > A > Yo > Y, > 0

be an exact sequence of discrete G-modules, with Yo injective. Since
cd(G, Yo) = 0, taking cohomology it follows that cd{G, YO = 0, and
that the sequence of abelian groups

Yo

s —-* Yf -^U H'iS, A) > 0
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is exact for all closed subgroups S of G. If U is an open, normal
subgroup of G, Ker3^ is divisible, because so is Yξ. Therefore, if
lmdu = Hι(U, A) is divisible, then Domd^ = Y7 is also divisible, and
the proof is complete applying to Yι the following.

PROPOSITION 4. Let A be a discrete G-module. If cd(G, A) = 0,
and Au is a divisible abelian group for every open, normal subgroup
U of G, then A is injective.

Proof. Recall that the category of discrete G-modules has in-
jective envelopes for each of its objects. Since (Z[G/U])u, where U
runs through all open, normal subgroups of G, is a family of genera-
tors, this result can be obtained by using a general theorem from
category theory, due to Mitchell [1, Chap. Ill, Theorem 3.2, p. 89].

Let / : A —•> Q be an injective envelope of A (in the category of
discrete G-modules). If C = Coker/ and g:Q—>C is the canonical
morphism, the sequence of discrete G-modules

0 >A-^Q-^C >0

is exact. Thus, if U is an open, normal subgroup of G, the sequence
of G/ [/-modules

0 > Au -^—> Qu -£-» Cu > 0

is exact, because cd(G, A) = 0. Since Qu is an injective G/[/-module
and R Π Imfu = R n I m / for any sub-G/[/-module R of Qu (because,
regarding R as a G-module, U operates trivially on R), fu:Au—+Qu

is an injective envelope of Au (in the category of G/[/-modules). On
the other hand, since cd(Gy A) = 0, AF is a cohomologically trivial
G/[/-module, by (1). Thus, Au is G/ JT injective [2, Chap. IX, Theoreme
10, p. 154], and hence, Cu = 0 [1, Chap. Ill, Proposition 2.5, p. 88].
Since C = U Cu, C = 0, whence the result.

COROLLARY 5. Lei A δβ α discrete G-module, and let r be a
nonnegative integer. If cd(G, A) ^ r, then id(G, A) ^ r + 1.

Proo/. Take g = r + 1 in (3).
This result can be applied to profinite groups of finite dimension,

as follows.

COROLLARY 6. Let r be a nonnegative integer. The following
statements are true:

( i) If p is a prime number and cdp(G) ^ r, then id(G9 A) <;
r + 1 for all discrete G-modules A which are p-primary abelian groups.
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(ii) If cd(G) ^ r, then id(G, A) ^ r + 1 for all discrete G-mod-
ules A which are torsion abelian groups.

(iii) If scd(G) g r, then id(G, A) <; r + 1 for all discrete G-mod-
ules A.

(iv) // cd(G) ^ r, ίfcew ίd(G, A) ^ r + 2 /or αiί discrete G-mod-
ules A.

Proof. Applying [3, Chap. I, Proposition 14, p. 1-20] and [3,
Chap. I, Proposition 11, p. 1-17], the following three equivalences are
clear:

( i ) cdp(G) ̂  r if, and only if, cd(G, A) <. r for all ^-primary,
discrete G-modules A.

(ii) cd(G) fg r if, and only if, cd(G, A) S r for all torsion, discrete
G-modules A.

(iii) scd(G) ̂  r if, and only if, cd(Gf A) <; r for all discrete G-
modules A.

Finally, (6, iv) is clear by [3, Chap. I, Proposition 13, p. 1-19].

REFERENCES

1. B. Mitchell, Theory of Categories, Pure and applied mathematics 17, Academic Press,
New York, 1965.
2. J-P. Serre, Corps Locaux, Actualites scientifiques et industrielles 1296, Hermann,
Paris, 1962.
3. , Cohomologie Galoisiene, Lecture notes in mathematics 5, Springer-Verlag,

Berlin, 1965.

Received August 14, 1972 and in revised form December 18, 1972.

UNIVERSIDAD DE BUENOS AIRES





PACIFIC JOURNAL OF MATHEMATICS
Vol. 49, No. 1, 1973

SEMIPERFECT RINGS WITH ABELIAN GROUP OF UNITS

W. K. NICHOLSON

In 1963, Gilmer characterized all finite commutative rings
with a cyclic group of units and, in 1967, Eldridge and Fischer
generalized these results to rings with minimum condition.
In the present paper these results are extended to semiperf ect
rings and generalizations of the three theorems are obtained.
It is shown that a semiperfect ring with cyclic group of units
is finite and is either commutative or is the direct sum of a
commutative ring and the 2 x 2 upper triangular matrix ring
over the field of two elements. Let R be semiperfect with
an abelian group of units. It is shown that R is finite if
either the group of units is finite or the group of units is
finitely generated and the Jacobson radical is nil.

The proofs of all these results depend on our main
theorem: The structure of a semiperfect ring R with an
abelian group of units is described completely up to the
structure of commutative local rings. (That is commutative
rings with a unique maximal ideal.) The groups of units
of these local rings are shown to be direct factors of the
group of units of R.

1* Preliminaries* Throughout this paper we assume that all

rings are associative and have an identity and that all modules are
unital If R is a ring we denote its group of units by i£* and its
Jacobson radical by J(R). The ring of residues of the integers modulo
n will be denoted by %"n. The following notions will be referred to
several times below.

DEFINITION 1. Let Ru R2, •••, Rn be rings and, if i Φ j , let XiS

be an i^ — Rό bimodule. We define the semidίrect sum [Rif Xiά\ to
be the ring of all n x n "matrices" (OĴ  ) where xζi e R{ for each ί and
XijeXij for all iφj. These are added componentwise and we define
the product (Xij)(Vij) = {zi3) as follows:

s« = XaVii for all i = 1, 2, , n ,

Zis = XaVij + χijVό3 f o r a-U iΦ ά

It is easy to verify that [Ri9 Xij] is an associative ring. If the
bimodules Xi3 are all zero the semidirect sum [Ri9 Xiό\ reduces to the
usual direct sum Rλ 0 R2 0 0 Rn. More generally, we have that
[0, Xij] is an ideal of [Ri9 X{j] which squares to zero, and the quotient
ring is isomorphic to Rλ 0 R2 0 0 Rn. Clearly the direct sum of
two of these semidirect sums is again a semidirect sum.

191
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DEFINITION 2. Let R be a ring. A left i2-module X is said to
be G-unital if ux — x for all ue R* and all xe X. A bimodule is
called G-unital if it is G-unital as a left and as a right module.

Clearly 0 is a G-unital module and submodules and quotient
modules of such modules are again of the same type. If X is a G-
unital ϋϊ-module we have x + x = 0 for every xeX since — l e ϋί*.
In other words X is an elementary abelian 2-group.

PROPOSITION 1. Let Ru R2y * ,Rn be rings and let Xi3 be an
R{ — Rj bimodule for all i Φ j . The semidirect sum [Ri, Xi3] has the
following properties:

( 1 ) [Ri9 Xi5Y = {(XiJ) I Xii e Rt* for each i).
( 2 ) [R{, Xi3\* is abelian if and only if each Rf is abelian and

each Xij is G-unital.
( 3 ) If [Riy Xi3]* is abelian it is isomorphic to the direct product

of all the multiplicative groups Rf and all the additive groups Xij.

Proof. (1) If (x^) is given and xi{ e Ri* for each i it is easy to
verify that (Xij)~1 = (yij) where ya = xΰι for each i and yi3- = — xΰ%jXj3

}

for all i Φ j . The converse is clear.
( 2 ) Suppose [Ri} Xi3]* is abelian. Then (1) and the definition

of multiplication in [Rit Xi3] imply that each Rf is abelian. Now
choose arbitrary elements xu, yti e R* for each i and xiJ9 yi3 e X{j for
all i Φ j . The units {xi3) and (yi3) commute so, for all i Φ j :

nova + XijVa = VuXij + Vifia

If x^ — 0 and x5j = 1 this shows Xuyi3 = yi3 . Similarly x^y^ = xi3-
and it follows that each Xi5 is G-unital.

Conversely: If (xi3 ), (yi3) £ [Rif Xi3Y then, using (1), x^ya = y^p^.
Furthermore, since the Xi3 are G-unital, we have

nay*, + XijVjΊ = Va + »ϋ = »<i + Vu = 2/«̂ ίi + Vifiis

for all i ^ j and it follows that [R{, Xi3Y is abelian.
( 3 ) This follows easily from the definition of multiplication in

[Ri, Xij] and the fact that each Xi3 is G-unital.

PROPOSITION 2. Let R be a local ring. (R/J(R) a divisor ring.)
( 1 ) If the group of units of R is abelian then R is commutative.
( 2 ) If R possesses a nonzero G-unital module then R/J(R) = ̂ .
( 3 ) If R/J(R) = ̂ Γ2 the G-unital R-modules are precisely the

(additive) elementary abelian 2-groups.

Proof. ( 1 ) If a, b e J(R) then 1 + α, 1 + b e R* so (1 + α)(l + b) =
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(1 + δ)(l + a). This implies αδ = δα. If aeJ(R) and ueR* then
(1 + ά)u = u(l + a) so au = %α.

(2) Let X ^ 0 be a G-unital left i2-module. If x e X and α e J(R)
then (1 + a)x = a? so αα? = 0. Hence X is a G-unital R/J(R) module
so we can assume R is a division ring. But then if 0 Φ r e iϋ we
have that (1 — r)α? = 0 for every xe X. Since X Φ 0 this means 1 — r
is not a unit so r = 1. Hence R = ^ .

(3) If X is an elementary abelian 2-group then it is a vector
space over %%. Since R/J(R) = <SΓ2, JR acts on X as follows: If x e X
and r e ί ? we have rx — x if re i?* and r# = 0 if reJ(R). Clearly,
X is G-unital. Conversely: Every G-unital module is an elementary
2-group since —lei?* and the action is as described.

In the next section we shall use these results to characterize the
semiperfect rings R where 2ϋ* is abelian.

2* The main theorem* Throughout this section R will denote
a semiperfect ring with R* abelian. It is well known [2, Th. 20,
p. 159] that R is semiperfect if and only if we can write 1 = e1 +
e2 + + en where the et are orthogonal local idempotents. Hence
each of the rings eJEtβi is local and, if i Φ j9 the ring βiReά is an
βiRβi — βjRej bimodule. For the moment let [βiRβj] denote the set of
all n x n "matrices" (xiS) with the (i, j) entry xiS drawn from β̂ Tfe,-.
This is a ring if ordinary matrix operations are used.

Define a map φ: R-+ [βiRβj] by φ(r) = (ê re,-) for each reR. Then
φ is clearly a homomorphism of additive groups and it is a ring
homomorphism since the (i,j) entry of Φ(r)φ(s) is

Σ {eirek){ekse3) = e^e, + e2 + + en)se, = r̂βe,- .
k

Moreover φ is one-to-one. Indeed, if φ(r) = 0 then e^βj = 0 for all
i, j and so r = Σ .y e i r e i — 0. Finally 0 is onto. For if fer^ef) e \e{Re3\
is given let r = Σ*,i ^r^ β̂  . It is easy to check that 0(r) = {ep^e^.
Hence ^ is a ring isomorphism and so we have represented R as a
generalized matrix ring. Our aim is to show that it is a semidirect
sum.

LEMMA 1. If et Φ e, and eά Φ ek then eiReάRek — 0.

Proof. Let x e e{i2βy and 2/ e ^ i ϋ ^ . Then a;2 = 0 (since e ^ = 0)
so 1 + x is a unit. Similarly 1 + y is a unit and so, since i?* is
abelian, xy = yx. But x = β;# and 2/ = ^2/ s o that a?2/ = e&y = e{yx =

It now follows easily that the multiplication in [eiReά] is that of
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the semidirect sum. Indeed if (xi3), (yi3) e [eiRe3] and we write
(%ij)(Vij) = (%)> then using the lemma:

s« = Σ %ikVki = α«2/« for all i = 1, 2, ,
A;

Hence, in the notation of § 1, R ~ [eiRei9 βiRe,]. But then Proposi-
tion 1 shows that each (βiRβi)* is abelian and each βiRes is a G-unital
bimodule. Since each .̂Re* is local, it is commutative by Proposition 2.
Furthermore, ei is central if and only if βiRe,- = 0 = β;ife{ for all j" Φ i.
It follows that either e{ is central or eJRei possesses a nonzero G-unital
module. In the latter case ^ϋ^/JO^ϋ^) = ^ 2 by Proposition 2. This
proves the "only if" part of the following theorem; the rest follows
from Propositions 1 and 2.

THEOREM 1. Let R be a semiperfect ring. The group of units
of R is abelian if and only if R ~ T φ S where T is zero or a direct
sum of commutative local rings R{ and S is zero or S~ [Lh Xiό\. Here
each Li is a commutative local ring with LJJ(Li) = ^ 2 and each Xi3-
is a G-unital L{ — L3 bimodule. Moreover:

(1) The bimodules Xi3 can be chosen to be arbitrary elementary
abelian 2-group where the action of L{ is defined as follows: If
re Li and x e Xi3 set rx = x if re L* and rx = 0 if re J(Li).

(2) The group of units of R is isomorphic to the direct product
of all the groups Rf, all the groups L* and all the (additive) groups

This characterizes R completely up to the structure of the com-
mutative local rings involved. The groups of units of these local
rings inherit many properties from iϋ* by (2) and often this leads to
a complete characterization. This will be exemplified in § 3 below in
the case where lϋ* is assumed to be cyclic. Also, each of these local
rings is a homomorphic image of R so they inherit many ring-theoretic
conditions which could be imposed on R, for example the descending
chain condition.

An immediate consequence of Theorem 1 is that if R is semiperfect
and R* is abelian then R/J(R) is a finite direct sum of fields. Of
course this result follows from structure theory.

The next result is a generalization (in the case where R has an
identity) of a theorem of Eldridge and Fischer ([3], Th. 1, p. 244).

COROLLARY 1. Let R be a semiperfect ring with abelian group
of units. Then R is commutative if either of the following conditions
is satisfied:
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(1) 2x = 0 in R implies x = 0
(2) i?* has no direct factor each element of which has order 2.

Proof. Let [Lif X^] be the semidirect sum appearing in the
decomposition of R. If x e X{j then 2x — 0 since Xζj is G-unital so
each Xij = 0 if condition (1) holds. If condition (2) holds each Xid = 0
by (2) of the theorem. The result follows.

COROLLARY 2. Let R be a semiperfect ring. If the group of
units of R is abelian and finite then R is finite.

Proof. By (2) of Theorem 1 each of the local rings appearing in
the decomposition of R has a finite group of units and each of the
bimodules appearing in the semidirect sum is finite. But if L is a
local ring and L* is finite then J{L) is finite since 1 + J(L) S L* and
L/J(L) is finite since [LfJ(L)]* = L*/(l + J{L)). This implies L is
finite and the result follows.

A natural question is whether a semiperfect ring R must be finite
when iϋ* is assumed to be abelian and finitely generated. The answer
is yes if iϋ* is cyclic (see Theorem 2 below) or if J(R) is nil. The
next result will be useful in both cases.

LEMMA 2. Let R be a commutative local ring. If R* is finitely
generated then R is noetherian, R/J(R) is a finite field and J(R)n/J(R)n+ί

is a finite ring for each n.

Proof. If A i S A j S is a chain of (proper) ideals of R we
have the chain 1 + Ax § 1 + A2 g of subgroups of iϋ*. It follows
that R is noetherian. We have [R/J(R)]* ~ B*/l + J(R) so the field
R/J(R) has a finitely generated group of units. Hence it is finite.
Finally, J(R)n/J(R)n+1 is a vector space over R/J(R) and is finite
dimensional since R is noetherian.

We can now prove the following result which generalizes another
result of Eldridge and Fischer ([3], Th. 2, p. 245).

PROPOSITION 3. Let R be a semiperfect ring with jβ* abelian.
If R* is finitely generated and J(R) is nil then R is finite.

Proof. Decompose R as in Theorem 1 and let L be one of the
commutative local rings which appear. Then L* is finitely generated
by (2) of Theorem 1 and J(L) is nil (L = eRe for some e2 = ee R).
Since L is noetherian by Lemma 2, write J(L) = Lax + La2 + + Lan

where the α< e J(L). Hence, if m ̂  1 we have J(L)m - Σ Lx\ιaf . afr
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where the sum is taken over all k€^0 satisfying kί + k2+ ••• +kn = m
Since J(L) is nil this implies that J(L) is nilpotent. But then Lemma
2 implies that J(L), and hence L, is finite.

It remains to show that if [Li9 Xi3] is the semidirect sum appear-
ing in the decomposition of R then each Xi3 is finite. But each Xi3

is finitely generated as an additive group and so, since it is a vector
space over ^ , it is finite. This completes the proof.

We remark that the hypothesis that J(R) is nil was used only to
show that J(L) is nilpotent.

3* Cyclic groups of units* Gilmer [4] has characterized all
finite commutative rings with a cyclic group of units and Eldridge
and Fischer [3] have extended these results to artinian rings. In
order to cover the semiperfect case we need the following negative
result.

PROPOSITION 4. If R is a commutative local ring the group of
units of R is not infinite cyclic.

Proof. Assume, on the contrary, that ϋϊ* is infinite cyclic. Then
the characteristic of R is two since (—I)2 = 1. By Lemma 2 R is
noetherian and R/J(R) is finite. Hence, J(R)2 Φ J(R). But the additive
group J(R)/J(R)2 is cyclic since it is naturally isomorphic to the
multiplicative group 1 + J(R)/1 + J(R)2. Since the characteristic is
two, it follows that J(R)/J(R)2 has two elements. But J(R)/J(R)2 is
a vector space over the field R/J(R) so R/J(R) s ^ V

We now claim that R is an integral domain. If not let P be any
prime ideal of R. Then P Φ 0 so {R\Pγ = _β*/l + P is finite cyclic.
Since R/P is local it follows that R/P is a finite integral domain and
hence that P is maximal. Hence every prime ideal is maximal and
so ([6], p. 203) R is artinian. But then R is finite by Proposition 3,
a contradiction. Hence R is an integral domain.

Now let u be a generator of 12* = 1 + J(R). Write u = 1 + a
and W1 = 1 + 6 where a, beJ(R). Then 1 + a + α2 is a unit so 1 +
a + a2 = (1 + a)k for some k e 3f. It is easy to check that k = 0, 1, 2
are impossible. Suppose k ^ 3. Then we have

1 + a + α2 = 1 + 7a + δa2 + a*u

where 3 ^ t ^ k, u is a unit and 7 and δ are each either 0 or 1.
Since R is a domain it is easy to check that each of these possibilities
for 7 and δ lead to a contradiction. Hence we must have 1 + α+α2 = vΓι

for some I ^ 1. But 1 + α + α2 = 1 + u + u2 and l + δ + 62 = l +
u~ι + u~2 as is easily verified. Hence



SEMIPERFECT RINGS WITH ABELIAN GROUP OF UNITS 197

1 + b + ¥ = u~\l + a + a2) - u~2u~ι = (1 + δ)'+ 2.

This leads to a contradiction just as before and so completes the
proof.

We can now obtain a generalization of another result of Eldridge
and Fischer ([3], Th. 3, p. 248) and, in so doing, obtain a much
easier proof of that result.

THEOREM 2. Let R be a semiperfect ring with cyclic group of
units. Then R is finite and is either commutative or is isomorphic
to the direct sum of a commutative ring and the ring of 2 x 2 upper
triangular matrices over %*2.

Proof. Decompose R as in Theorem 1. By (2) of Theorem 1,
each of the local rings appearing has a cyclic group of units and, by
Proposition 4, it is finite. It follows that each of these local rings
is finite. Now let [Li9 X{j] be the semidirect sum appearing. Each
Xij is cyclic as an additive group and so, since it is an elementary
abelian 2-group, it has two elements. Hence R is finite. Furthermore,
the fact that all Xi5 are direct factors of i2* means that at most one
is nonzero. If all are zero then [Li9 Xi5] is commutative so R is
commutative. If, without loss of generality, Xl2 Φ 0, we have

Q 1 j ^ \ is a semidirect sum.

Moreover, each L* has odd order so Li has characteristic two.
But then, if αeJ(L ί), there exists an odd integer n such that
1 = (1 + a)n = 1 + a -f α2r where r e L^ Hence α(l + ar) — 0 so a = 0.

This means J(Li) = 0 so Li = %\. In particular, (Q jf) is isomorphic

to the ring of 2 x 2 upper triangular matrices over ^ . This com-
pletes the proof.

This theorem completely characterizes the semiperfect rings with
a cyclic group of units since the finite commutative local rings of
this type have been characterized by Gilmer [4] and later by Ayoub
[1] and Pearson and Schneider [5]. Gilmer cited the ring of 2 x 2
upper triangular matrices over %<, as an example of a finite non-
commutative ring with cyclic group of units. Theorem 2 shows that
this is essentially the only such semiperfect ring.
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THREE THEOREMS ON IMBEDDED PRIME
DIVISORS OF PRINCIPAL IDEALS

L. J. RATLIFF, JR.

Let B be a finitely generated integral domain over a
Noetherian domain A. The first theorem shows that there are
only finitely many imbedded prime divisors of principal ideals
in B if and only if this holds in A. The second theorem gives
a necessary and sufficient condition in order that only finitely
many height one prime ideals in A ramify in B, when A is locally
factorial. The third theorem characterizes local domains which
contain infinitely many imbedded prime divisors of principal
ideals.

1* Introduction* For convenience of description, let <J* (C) de-
note the set of imbedded prime divisors of principal ideals generated
by regular elements in a ring C. Then a desirable property of a
Noetherian domain A is for <J?(A) to be a finite set, for this implies
that there exist nonzero elements ae A such that no principal ideal in
Aa has an imbedded prime divisor, hence Aa = A^, and so Aa has
certain other nice properties. Theorem 2.4 shows that this desirable
property is inherited by finitely generated extension domains of A,
and its Corollary (2.8) extends this result to the case A contains
nonzero zero divisors. Corollary 2.9 shows that for a large class of
Noetherian rings A, ^ (B) is a finite set (where B is a certain type
of finitely generated extension ring of A).

In § 3, (3.1) gives two characterizations of a local domain R such
that <J^(R) is an infinite set. That <J^{R) can be an infinite set is
closely related to some open problems on unmixed and quasi-unmixed
local domains, and characterizations of such R are therefore important.
Corollary 3.4 extends these characterizations to certain local rings, and
then an example is given of a local domain L such that: L{1) is not a
finite L-algebra; <J^(L) is a finite set; and, ^ ( L * ) is an infinite set,
where L* is the completion of L. This example also gives some in-
formation concerning the open problem of whether an integrally closed
local domain must be unmixed.

Section 4 is concerned with unramification of height one prime
ideals. Such unramification is of importance in a numbe of problems
in local ring theory, for example in the purity of the branch locus
[5, (41.1)]. Theorem 4.4 gives two necessary and sufficient conditions
in order that only finitely many height one prime ideals in a locally
factorial Noetherian domain A ramify in a finite separably generated
extension domain B of A. The paper is closed with some corollaries
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to (4.4), among these are that the conditions are satisfied if either A
is a Dedekind domain (4.6) or J? is a flat A-algebra (4.8).

2* Finite extension rings* All rings in this paper are assumed
to be commutative rings with a unit, and the undefined terminology
in the paper is, in general, the same as that in [5].

We begin with the following definition.

DEFINITION 2.1. For a ring A, let *J*(A) = {p e Spec A; p is an
imbedded prime divisor of a principal ideal generated by a regular
element in A}.

That *J^{A) must be infinite in many cases when A contains
nonzero zero divisors follows from the following remark. It is because
of this remark that we shall usually only consider rings with no
imbedded prime divisors of zero in this paper.

REMARK 2.2. (Cf. [6, Lemma 6].) Let q be a prime divisor of
zero in a Noetherian ring A, and let b be a regular element in A such
that (q, b)A Φ A. Then each minimal prime divisor of (q, b)A is a
prime divisor of bA.

Proof. This follows immediately from [6, Lemma 6] and its proof.

The following lemma sets the stage for an easy proof of the first
theorem in this paper, and provides information needed throughout
the paper. Although the lemma could be adapted to the case A con-
tains nonzero zero divisors, it is stated only for the integral domain
case, since this case is sufficient for our purposes in this paper. The
following known fact is needed for the proof of (2.3): If B is a
Noetherian ring which is a flat extension of a Noetherian ring A and
/is an ideal in A, then a prime ideal P in B is a prime divisor (resp.,
minimal prime divisor) of IB if and only if P is a prime divisor (resp.,
minimal prime divisor) of pB, for some prime divisor (resp., minimal
prime divisor) p of /, in which case P f] A = p [5, (18.11)]. Also,
implicitly used in the proof (and frequently throughout this paper) is
the fact that if pe^{A) and a is a regular element in p, then p is
an imbedded prime divisor of aA [5, (12.6)] (so the intersection of
infinitely many such p consists of zero divisors).

LEMMA 2.3. Let A be a Noetherian domain.

(1) For each nonzero b in A, ^(Ab) = {pAb; bg pe<^(A)}, and
= [P Π A; Pe^(Ab)} (J {pi P is an imbedded prime divisor of

bA}.
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(2) For each n^>l, <J*(An) = {pAn; pe*J*(A)}, where An =
A[Xiy •••, Xn] with the Xi indeterminates.

(3) If Ar is a finite free integral extension ring of A, then
^(Ar) = {pr e Spec A'; pf n A e ^(A)}.

(4) If A* is a fiat A-algebra, then ^? (A*) 3 {p* e Spec A*; p* is
α prime divisor of pA*, for some pe^{A)}.

(5) %*?{A) is a finite set if and only if Aω = Γ\{AP; P 6 Spec A
and height p = 1} S Ab9 for some nonzero b in A.

(6) If B is a finitely generated algebraic extension domain of A,
then κJ^(B) is a finite set if and only if *J^(A) is a finite set.

Proof. (1) and (2) are straightforward, (3) and (4) follow from
[5, (18.11)], and (5) is given in [7, Lemma 5.15(8)] (see (3.3) below).
It clearly suffices to prove (6) in the case B = A[b], for some beB.
Then there exists a nonzero aeA such that Aa[b] = Ba is a free in-
tegral extension domain of Aa. Therefore, it follows from (1) and (3)
that »/(jBβ) is a finite set if and only if <J*(A) is, hence, by (1),

is a finite set if and only if J?(A) is a finite set.

THEOREM 2.4. Let B be a finitely generated integral domain
over a Noetherian domain A. Then ^ (B) is a finite set if and only
if κJ^(A) is a finite set.

Proof. There are elements X19 , Xn in B which are algebrai-
cally independent over A such that B is a (finite) algebraic extension
domain of An = A[X19 , Xn\. Therefore, the conclusion follows from
(2.3)(2) and (6).

To generalize (2.4) to the case where A contains nonzero divisors
of zero, the following two lemmas are needed.

LEMMA 2.5. Let q be a minimal prime ideal in a Noetherian
ring A. Then there exists aeA, £q such that, for all P e Spec A
such that q g P and agP, Pe^(A) if and only if P/q

Proof. lίbeA, &q, then it clearly suffices to prove the lemma
for Ab instead of A. Hence it may be assumed that q is nilpotent.
The lemma now readily follows from [3, IV. (6.10.6)]. Specifically,
the referenced result is essentially local, and passing from the lan-
guage of preschemes to the language of commutative rings we find
that it asserts that there exists aeA, ίq such that, for all P e Spec A
such that g g P and a £ P, altitude AP — altitude (A/q)Plq and Prof AP =
Prof (A/q)pιq (since q is nilpotent), where Prof R is the length of a
maximal i?-sequence with R a local ring. The lemma follows from
this, since Pe^(A) if and only if Prof AP = 1 and height P > 1.
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LEMMA 2.6. Let A be a Noetherian ring such that each prime
divisor of zero in A is minimal. Then ^ (A) is a finite set if and
only if, for each minimal prime ideal q in A, *J*(A/q) is a finite set.

Proof. Let q19 •••, qg be the minimal prime ideals in A, and, for
i = 1, , g9 let a{ be as in (2.5) for q{. Therefore, for all Pe Spec A
such that g ^ g P and a^P, Pe^(A) if and only if Plq^J?'(A/&).
Now, if <J^{A) is an infinite set, then there is an i such that qt —
n { P ; ^ c P G j ^ ( 4 ) } . Fix such an i, and let g = g< and a = a{.
Then qAa = fl {PAa; qAa c PAa e J? (A*)}. Hence (2.5) implies <J* (A/q)
is an infinite set, since ^((A/q)a+q) is. Conversely, if ^(A/qt) is an
infinite set, for some i — 1, •••, g, then fix such an i and let q — qι
and a = a,. Then (0) - ΠtfV?, P/Q e ̂ (A/q)}, so (0)(A/g)β+ί =
n{(P/g)α+,;(P/g)α+9e^-((A/g)α+,)}, hence (2.5) implies <J*(A) is an
infinite set.

COROLLARY 2.7. With A as in (2.6), J?(A) is a finite set if
and only if ^ (A/(Rad A)) is a finite set.

Proof. Clear by (2.6).

COROLLARY 2.8. Let B be a finitely generated ring over a
Noetherian ring A, and assume that all prime divisors of zero in A
and in B are minimal and that, for each prime divisor q of zero in
B, q Π A is a prime divisor of zero. Then <J? (A) is a finite set if
and only if ^' (B) is a finite set.

Proof. Let ql9 " ,qg be the prime divisors of zero in B. Then,
by (2.6) and (2.4), J? (B) is a finite set if and only if ^{Blq,) is, for
all i, if and only if ^(A/(q{ Π A)) is, for all i, if and only if <J*'(A)
is a finite set.

The corollary shows that such finite extension rings of a large
class of Noetherian rings have only finitely many imbedded prime
divisors of principal ideals. Specifically, the following corollary holds.

COROLLARY 2.9. Let A and B be as in (2.8). Then <J?(B) is
finite in each of the following cases:

( 1 ) A is locally factorial (4.1).
( 2 ) A is integrally closed.
( 3 ) A is pseudogeometric [5, p. 131].
( 4 ) A is Japanese [2, 0. (23.1.1)].
( 5 ) The integral closure of A is a finite A-algebra.
( 6 ) A is locally Macaulay.
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(7) A is excellent [3, IV, (7.8.2)].
(8) Altitude A £ 1.
(9) A is semi-local and altitude A ^ 2.
(10) A is an analytically unramίfied semi-local ring.
(11) A is an unmixed semi-local domain.
(12) A is a local ring whose completion has no imbedded prime

divisor of zero.

Proof. By (2.8) it may be assumed, where appropriate, that
Rad A = (0). Then it is well known that in each case ^(A) is a
finite set (for (11), see (3.5)(2) below and (2.3)(5), and for (12), see
(3.4) below), hence the conclusion follows from (2.8).

One further result which is related to (2.4) and which gives a
sharper conclusion when *J*(A) is finite is given in the following
proposition.

PROPOSITION 2.10. Let A and B be as in (2.4), and assume
<J^{A) is a finite set. Then there exists a nonzero a in A such that
Ba

ι) is a finite Ba-algebra.

Proof. It is known [5, (14.4)] that there exist Xly •••, Xn in B
which are algebraically independent over A and a nonzero c in A such
that Bc is a (finite) integral extension domain of A[l/c, Xu « , X J .
Also, since <J^{A) is a finite set, there is a nonzero d in A such that
A(1) § Ad (2.3)(5). Then A{

d

ι) = Ad [7, Corollary 5.9(2)], so, with a =
cd, A{

a

ι) = Aa [7, Corollary 5.9(2)], hence D{1) = D [7, Lemma 5.11(2)],
where D = A[l/a, Xu , Xn\. Therefore, since Ba is a finite integral
extension demain of D, Ba

1] is a finite i?α-algebra [3, IV. (5.10.17)].

3* The local domain case. With A and B as in (2.8), if A is
semi-local of altitude at most two, then ^(B) is a finite set (2.9)(9).
This leads to the question: Can κJ^{R) be an infinite set when R is
a local ring? The answer is well known to be "yes", if there is an
imbedded prime divisor q of zero in R such that depth q > 1 (2.2).
Quite recently the answer was shown to be "yes" even when R is a
local domain. Specifically, in [1, Proposition 3.5] an example was
constructed of a local domain R such that altitude R = 3 and R con-
tains infinitely many height two prime ideals P such that RP is not
Macaulay (hence PRP, and so P also, is an imbedded prime divisor of
each nonzero principal ideal that is contained in it).

The following theorem gives two characterizations of a local do-
main R such that <J^{R) is an infinite set.

THEOREM 3.1. The following statements are equivalent for a
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local domain (R, M):
(1) <J*~(R) is an infinite set.
( 2 ) For no nonzero be R is R{1) S Ri
(3) There exists an imbedded prime divisor q of zero in the M-

adic completion i2* of R such that q = Γ\{p* GiJ^iR*); qap* and
p* Π

Proof. The equivalence of (1) and (2) has already been noted in
(2.3)(5). For the equivalence of (1) and (3), assume first that (1) holds.
For each pe^(R)9 let p* be a minimal prime divisor of pR*, and
let ^ * = {p*; pe^(R)} (so ^ * S ^(R*) (2.3)(4)). Then, for each
p* e^*, R** is not Macaulay, so JΓϋ p*, where / is the radical ideal
in iϋ* which defines the non-Macaulay locus of i?* (the Macaulay locus
of Iϋ* (that is, the set {p* e Spec R*; i?** is Macaulay}) is open (in the
Zariski topology on Specϋί*) [3, IV. (5.11.8)]). Now infinitely many
p* must contain some (minimal) prime divisor of J, say q, and then
q £ f i b * ; q^P*e ^ * } . Since i2* is Noetherian, it follows that q =
Π(P*>* Q^ 2>* e*-^*} and q is a prime divisor of zero. Since i?*
is not Macaulay, height q > 0, so (3) holds.

Conversely, if (3) holds, then let ^ = {p* Π R; qap*e *J*~(R*)
and p* Π i2 e w^CR)}, so J ^ S ^{R) and (1) holds if ^ is an infinite
set. Since q is a prime divisor of zero, there are infinitely many p*, so
(1) holds if, for each p* Π Re^p* is a prime divisor of (p* Π
But this is true by [5, (18.11)], since p* e^(R*) and p* Π

REMARKS 3.2. (1) Possibly the theorem remains true if the
set in (3) is replaced by {p* e Spec i?*; qczp* and p* Π R e ̂ {R)}. At
least the author knows of no case where this last set does not work.
Of course, this last set always works in the case that infinitely many
of the p* satisfy: height p* = height q + 1 (2.2).

(2) The proof that (1) => (3) shows that, if ^(R*) is an infinite
set, then ϋJ* has an imbedded prime divisor of zero. The converse
is not true, as is seen if altitude R = 2.

(3) If altitude R — 2 and R* has an imbedded prime divisor of
zero, then R{1) is not a finite .β-algebra (3.5)(1) but R(ί) S Rb> for each
nonzero beM. For an example of this, see [1, Proposition 3.3].

(4) It is easy to see that if altitude R = 3, then *J^(R) is an
infinite set if and only if the Macaulay locus of R is not open. For,
the Macaulay locus of R is open if and only if ^(R) is a finite set,
when altitude R = 3.

To generalize (3.1) to the case where R contains nonzero zero
divisors, the following lemma is needed.

LEMMA 3.3. Let A be a Noetherian ring which has no imbedded
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prime divisors of zero, and let altitude A > 0. Then ^(A) is a finite
set if and only if A(1) = Γ\{A(P); P

 € Spec A, height p = 1, and p con-
tains a regular element} £ Ab, for some regular element be A, where
A(ί>) = {a/c; aeA and c is a regular element in A and not in p).

Proof. If κJ^(A) is a finite set, then, since altitude A > 0, let 6
be a regular element in f\{P; Pe^(A)}, so ±f(Ah) is empty. Hence
Ah = [8, Corollary 2.18(2)] A[ι) = (A(1))δ 2 A(1). Conversely, if A(1) s A6,
then (A(1))6 = A6 S A^ = (A(1))δ, so Aδ - AiΛ hence b e Π{P; P e ^(A)},
by [8, Corollary 2.18(2)]. Thus %*f(A) is a finite set, since b is regular
and bA has only finitely many prime divisors.

COROLLARY 3.4. Let R be a local ring which has no imbedded
prime divisors of zero, let altitude R > 0, and let iϋ* be the comple-
tion of R. Then the following statements are equivalent:

(1) ^(R) is an infinite set.
(2) For no regular element be R is R{1) S Rb.
(3) There exists an imbedded prime divisor q* of zero in R*

such that q* =Γ[{Pe ^{R*); g* c P and PC) Re

Proof. (1) «=> (2) is given by (3.3).

is an infinite set if and only if ^{R\q) is, for some (mini-
mal) prime divisor q of zero (2.6), and ^(R/q) is an infinite set if
and only if there is an imbedded prime divisor q*' — q*/qR* of zero
in R*/qR* (equivalently, there exists an imbedded prime divisor q* of
zero in #* [5, (18.11)]) such that q*' = f\{P' 6J^(5*/?Λ*); f c P '
and P' Π (R/q) e ̂ (R/q)} (3.1). By (2.5), there exists aeR, £ q such
that, for all Q e Spec R such that q S Q and a <$ Q, Qe ^(R) if and
only if Q/qe^(R/q). Since a + q is a regular element in R/q, q*' —
Π{P' e ̂ (R*/qR*); q*'<zP', P' Π (22/g) e ̂ (R/q), and α + g έ P' Π (Λ/?)};
so, by (2.5), ^(JR) is an infinite set if and only if there is an imbed-
ded prime divisor g* of zero in i2* such that g* = Γl{P; P' = P/g#* e
J*{R*lqR*), g * c P , and P Π i2G^"(i?)}. Since P' is a prime divisor
of (P' n (R/q))(R*/qR*) = ((P Π R)!q)(R*!qR*) = ((P Π R)R*)/qR* (since
P'e^(R*/qR*) and P' Π (JB/g) e^(R/q)), P is a prime divisor of

hence P e ^ C K * ) (2.3)(4).

Example 3.6 below shows somewhat more than (3.2)(3). For the
example the following information is needed.

REMARKS 3.5. Let (R, M) be a local domain.
(1) [3, IV. (7.2.3)]. R{1) is a finite 22-algebra if and only if the

following condition holds: If qcp are prime ideals in the ikf-adic
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completion iϋ* of R such that q is a prime divisor of zero and height
p n R ^ 2, then height p/q ^ 2.

(2) [7, Lemma 5.11(1)]. If R is unmixed, then i2(1) is a finite
i?-algebra.

If R{1) is a finite ί?-algebra, then clearly Rω g i26, for some non-
zero b in R. On the other hand, if R{1) is not a finite iϋ-algebra, then
there is at least one prime ideal p in iϋ* such that p contains a
prime divisor q of zero such that height p/q = 1 < height p ΓΊ i2 (3.5)
(1), and necessarily pf) Re^(R) (since p e ^ ( i ϋ * ) (2.2), so p is a
prime divisor of bR*, for each nonzero bep Π R, hence p Π R is a
prime divisor of each such bR [5, (18.11)]). Since there is one such
p, it might be asked if there are necessarily infinitely many such if
depth q > 1 (so p ^ M*). The answer is "no". In fact, the example
below shows the stronger result that J^(R) can be finite in this case.

EXAMPLE 3.6. A local domain L such that L{1) is not a finite L-
algebra and each imbedded prime divisor of zero in the completion of
L has depth greater than one, but L{1) S Lb, for some nonzero b in L
(hence <J^(L) is a finite set (2.3)(5)). Further, ^(L*) is an infinite
set. Let (R, M) be a local domain whose completion (i2*, M*) has an
imbedded prime divisor of zero, and assume <J^(R) is a finite set.
(For example, let R = A in [1, Proposition 3.3].) Let Q be an M-
primary ideal, let & = &(R, Q) = R[tQ, u] be the Rees ring of R
with respect to Q (t is an indeterminate, u = 1/ί, and tQ = {tm; m e Q}),
and let ^ * = &(R*, Q*), where Q* = Qi2*. Let Λ = (tQ, M, u)^
and ^ " * = (tQ*, M*, u)&* be the maximal homogeneous ideals in &
and ^ * , respectively. Then L = <%^ is a dense subspace of V —
^? J* [7, Lemma 3.2], so, by (3.5)(1), to show that L(1) is not a finite
L-algebra, it suffices to prove that there exist prime ideals q' c pr in
L' such that qf is an imbedded prime divisor of zero and height p'/qf =
1 < height p ' ί l L (since this will then be reproduced in the comple-
tion L* of L and L'). Also, since the prime divisors of zero in U
are the ideals (qR*[t, u] Π &*)U with q a prime divisor of zero in R*
[9, Theorem 1.5], there are no depth one prime divisors of zero in U
(since qR*[t, u] Π ̂ * c M*B*[t,u] Π ̂ * c ^ ^ * ) , so there will be
none in L* (since, for each prime ideal P in I/, each prime divisor
of PL* has depth equal to depth P, by [5, (36.5) and Exercise p. 135]
applied to L'jP (that U\P satisfies the second chain condition for
prime ideals follows from [7, Corollary 2.9], since R*/(Pf) J?*) does [5,
(34.4)])). Let q be an imbedded prime divisor of zero in iϋ* and let
g* = qR*[t, u] Π ̂ * , so g* is an imbedded prime divisor of zero in
^ * . Let / - (q*, u)&*. Then height q + 1 £ height I = (say) h <
height ^ T * (since ^?*/g* ^ ^g(R*/q, (Q* + g)/g) [9, Theorem 2.1] and
depth q ^ 1, so depth #* >̂ 2), and / is homogeneous, so there is a
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height h prime divisor p* of ί which is contained ^ ^ * . Since
u&* Π i?* = Q* is if*-primary, ^ , * n ^ is a dense subspace of &£
[7, Lemma 3.2] (so height p* Π ̂  = height p* = h > height p*/tf* =
1), and p* Π &CL^. However, ^(L) is a finite set, since ^'(&)
is, by (2.4). Finally, ^(L*) is an infinite set, since ^{Lr) is by
(2.2) applied to g*Z/.

REMARK 3.7. One reason for using the ring L — <%^ instead
of P = R[X]{MyX) is that for the ring L it is not necessary to assume
that R{1) is not a finite iϋ-algebra to prove that L(1) is not a finite L-
algebra, whereas for P it is necessary to assume this to prove that
P ( 1 ) is not a finite P-algebra (but this does hold for R = A in [1,
Proposition 3.3]). A more important reason is it is an open problem
if R must be unmixed when R is integrally closed. Related to this
problem, the rings L (as Q varies) show that, if R is integrally closed
and not unmixed, then there does not exist an ikf-primary ideal Q such
that L(1) is a finite L-algebra.

4* Unramification of height one prime ideals* To obtain the
main result of this section, the following two definitions and lemma
are needed.

DEFINITION 4.1. A ring A is locally factorial in case AP is a
unique factorization domain, for all prime ideals P in A.

LEMMA 4.2. Let B be a Noetherian integral domain which con-
tains a locally factorial Noetherian domain A, and let P be a prime
ideal in B such that P is a prime divisor of pB, for some height one
prime ideal p in A. Then the following statements hold:

(1) P is a prime divisor of qB, for all height one prime ideals
qQPΠA.

(2) P is an imbedded prime divisor of pB if and only if Pe

(3) P is a minimal prime divisor of pB if and only if height
P = 1.

Proof. Since, for each height one prime ideal g g P Π A , qAPnA

is principal and APΓ]A £ BP, (1) and (2) hold, and (3) also follows from
this and the Principal Ideal Theorem.

DEFINITION 4.3. (Cf. [5, pp. 144-145].) Let AaB be rings, let
P be a prime ideal in B, and let p = P Π A. Then P is unramified
over A in case PBP = pBP and B/P is separably generated over A/p
(that is, the quotient field of B/P is a separable extension field of the
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quotient field of A/p). If q is a prime ideal in A, then qB is un-
ramified over A in case, for every prime divisor Q of qB, Q is un-
ramified over A.

The following theorem is a considerable generalization of [4,
Theorem 5] (see (4.6) below).

THEOREM 4.4. Let B be a finite separably generated extension
domain of a locally factorial Noetherian domain A. Then the follow-
ing statements are equivalent, where S^ — {pe Spec A; height p = 1}:

( 1 ) pB is unramified over A, for all except finitely many p e £f.
( 2 ) If P is a height one prime ideal in B, then height P Π A ^

1, and only finitely many of the ideals pB, where pe^, have imbed-
ded prime divisors.

( 3 ) If P is a prime divisor of pB, where peS^, then P Π A = p.

Proof. (1) => (2). By (1), with p e y , only finitely many pB have
imbedded prime divisors. Also, if P is a height one prime ideal in B
such that height P Γ\ A > 1, then clearly P is a prime divisor of pB,
for all pe<9* such that p c P Π A. Since there are infinitely many
such p, (1) implies that P is unramified over at least one such p,
hence P f] A = p; contradiction. Therefore, height P Π A^l, as
desired.

(2) => (3). Let p e y and let P be a prime divisor of pB. If P is
an imbedded prime divisor of pB, then PC) A = p, by (2) and (4.2)(1).
If P is a minimal prime divisor of pB, the height P = 1 (4.2)(3), so
(2) implies that P f] A = p.

(3) => (1). Since B is a finite separably generated extension do-
main of A, there exists a separating transcendence basis Xu •• ,XΛ

in B of B over A and a nonzero element α e i such that Ba is inte-
grally dependent o n ΰ = A[l/a, Xu ••-, X%] [5, (39.11)]. Then D is
locally factorial, since A is. Let D' and Bf be the integral closures
of D and JS in the quotient field of B, respectively, so Bf

a — Όf. Since
Ba is a finite separable algebraic extension of D, let δ e Ba such that
D[6] and Ba have the same quotient field, and let d be the discrimi-
nant of the minimum polynomial of b over the quotient field of D (so
d e D, since D is integrally closed). Then Dd = Drf)' = Dd[b] [5, (10.17)
and (10.18)], so every prime ideal in D'd is unramified over Dd [5,
(38.9)]. Let ^F k e the set of p e y such that: (i) aep; or (ii)
d e pD; or (iii) pB has an imbedded prime divisor. That ^f is a
finite set follows from: (i) A is Noetherian; (ii) D is Noetherian and
pD is a height one prime ideal; and (iii) if P is an imbedded prime
divisor of pB, then Pe^(B), by (4.2)(2), and P f] A = p, by (3),
hence there are only finitely many such P by (2.9)(1). It will now be
shown that if p e S^ Q^ then pB is unramified over A.
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For this, note first that pD is a prime ideal, pD Π A — p, and
D/pD is a pure transcendental extension of (A/p)E9 where a — a (mod-
ulo p). Therefore, since every prime ideal in Dd is unramified over
Dd, pD'd is unramified over A (peS^, g ^).

Since p £ ^ pB has no imbedded prime divisors, so if P is a prime
divisor of pB, then height P = 1 (4.2)(3). Also, agP, since Pf] A =
p, by (3). Further, dgPBa; for Ba is integrally dependent on D,
hence height PBa f) D = 1, since D is integrally closed, and so pD =
PBa Π D and d $ pD. Therefore, BP = (Bad)PBad and Dd[b] £ Bad ^Df

d =

Dd[b\. Hence, since pDd is unramified over A, PBP is unramified over
A, and so pB is unramified over A.

REMARKS 4.5. (1) In (2) of (4.4), the condition: "Height P f]
A ^ 1, for all height one prime ideals P in B"; is equivalent to:
"Height QB > 1, for all prime ideals Q in A such that height Q > 1.
Also, the condition: /Only finitely many of the ideals pB have imbedded
prime divisors", is equivalent to: "If P is an imbedded prime divisor
of pB, then P f) A = p", by (4.2)(1) and (2) and (2.9)(1).

(2) A regular domain satisfies the conditions on A in (4.4).
( 3 ) The proof of (4.4) shows that (1) => (2) => (3) for an arbitrary

Noetherian domain which contains A, and (3) => (1) with ^ replacing
B in the statements, where either ^ = Bf or ̂  is a Noetherian ring
such that B S <§r £ J3\ (That ^(<if) is finite follows from: αίf and

have only finitely many imbedded prime divisors and ^ad — Dd.)

COROLLARY 4.6. (Cf. [4, Theorem 5].) If B is a finite separably
generated extension domain of a Dedekind domain A, then (l)-(3) of
(4.4) hold.

Proof. A is a locally factorial Noetherian domain, and (3) in
(4.4) is satisfied.

COROLLARY 4.7. Let A and B be as in (4.4), and assume that
A is a regular local domain of altitude two. If MB = B, where M
is the maximal ideal in A, then (l)-(3) of (4.4) hold.

Proof. The proof is the same as the proof of (4.6).

COROLLARY 4.8. Let A and B be as in (4.4), and assume that
B is a flat A-algebra. Then (l)-(3) of (4.4) hold.

Proof. (3) in (4.4) is satisfied.

COROLLARY 4.9. Let A and B be as in (4.4), and assume (l)-(3)
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hold. Then BP is a regular local ring, for all except finitely many
height one prime ideals P in B.

Proof. Let P be a height one prime ideal in J?. If P f) A Φ (0),
then height P ί l 4 = l (4.4) (3), and only finitely many such P fail to
satisfy BP is a regular local ring (4.4)(1). If P f] A = (0), then let
S = A ~ (0), let F = As, and let C = Bs. Then Ds is a finite separably
generated extension domain of the field F, hence it is well known [5,
(36.6)] that the integral closure C of C is a finite C-algebra. There-
fore, only finitely many height one prime ideals Q in C fail to satisfy
CQ is a regular local ring (namely those Q which contain C:O). Since
PC is a height one prime ideal, for all such P (height P = 1 and
P ί l i = (0)), the conclusion follows.

COROLLARY 4.10. Let A and B be as in (4.4), let ^ be a ring
such that either <& — Bι', the integral closure of B, or <& is Noetherian
and J3 S 9f S 5', and Zeί J T = {Pe Spec <gT; height P = 1 ̂  height
P n i } . TΛew ^ is a regular local ring, for all except finitely
many P e

Proof. Only finitely many P e ^ T such that P Π A = (0) fail to
satisfy <^P is a regular local ring, as in the proof of (4.9). Also, by
the proof that (3) => (1) in (4.4), for all P e £έ? such that P Π A Φ (0)
and a$P and d£ P ^ , ^ is a regular local ring. The conclusion
follows from this.
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SOME COMMUTANTS IN B{c) WHICH ARE
ALMOST MATRICES

B. E. RHOADES AND A. WILANSKY

We determine necessary and sufficient conditions for two
linear operators in B(c) to commute. Specializing one of the
operators to be a conservative triangular matrix we determine
that most such operators have commutants consisting of almost
matrices of a special form.

Almost matrices were developed in [10] for reasons not related to
this paper, but they find application here in that the commutants in
B(c) of certain matrices must be almost matrices.

Let c denote the space of convergent sequences, B(c) the algebra
of all bounded linear operators over c, e the sequence of all ones, and
ek the coordinate sequences with a one in the kth position and zeros
elsewhere. If TeB(c), then one can define continuous linear func-
tionals 1 and 1, by X(T) = lim Te - Σ* Km (Tek) and Xζ(T) = {Te)i -
Σ * (Tek)i, i = 1, 2, . . . . (See, e.g. [9, p. 241].) It is known [1, p. 8]
that any T e B(c) has the representation T = v (x) lim + B, where B
is the matrix representation of the restriction of T to c0, the subspace
of null sequences, v is the bounded sequence v = {^(T)}, and v (x)
lim x = (lim x)v for each x e c.

The second adjoint of T (see, e.g. [1, p. 8] or [10, p. 357]) has
the matrix representation

β(T) bx b2

UT) bn b12

b21 b22

• a /

where the δ/s occur in the representation of lim°jΓe c' as (lim°T)(α;) =
lim (Tx) = (T) lima; + Σ* bkxk; namely, bt = lim Te\ With the use of
(*) it is easy to describe the commutant of any QeB(c).

THEOREM 1. Let Q = u (x) lim + A e B(c). Then Com (Q) in B(c) =
{T = v (x) lim + BeB(c): T satisfies (l)-(3)}, where

(1) unX(T) + Σ ankvk = vnX(Q) + Σ -
A = l fc=l

n = 1, 2,

unbk anjbjk = vnak
3 = 1

211
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OO CO

( 3 ) Σ Wit = Σ hv>k >

and where ak = lim Q(ek), bk = lim T(ek).

To prove Theorem 1, use the representation (*) for T" and Q"
and then equate the corresponding terms in the products T"Q" and
Q"T". For example, (1) is obtained by equating (Q"T")nl and (Γ"Q")»i.
When Q is a matrix A, each un = 0 and each αA = lim% αwA;. The
following result is an immediate consequence of Theorem 1.

COROLLARY 1. Let A be a conservative matrix, TeB(c). Then
A <-̂  T if and only if

(4 ) Av = l(A)v

OO OO

( 5) Σ anjbjk = vnak + Σ KjCLjk n, k = 1, 2, . . .
i=i i=i

( 6 ) α ± v, where a = {an} .

A conservative matrix A is called multiplicative if lim^ x =
X(A)\imx for each xec; i.e , if each αfc = 0.

COROLLARY 2. Lei A 6e a conservative multiplicative matrix.
Then A<-+ T if and only if A satisfies (4) and

(7) B< >A.

If A is multiplicative, then each ak = 0 and condition (5) of Co-
rollary 1 reduces to (7) of Corollary 2. Since a = 0, (6) holds auto-
matically.

THEOREM 2. Lei A be a conservative matrix. Then A <-^ v 0
lim if and only if

(8) ( l i m x ) A v — ( l i m ^ x)v f o r e a c h x e c .

To establish (8) note that A(v (x) lim)(a?) = A(limα;)i; = (limα)Ai ,
and (v (x) lim)(Ax) = (limAx)v = (lim^ a?)v

COROLLARY 3. Lβέ A 6e a conservative multiplicative matrix.
Then A^-+t6(x)lim if and only if A satisfies (4).

COROLLARY 4. Let A be a conservative multiplicative matrix.
Then A <-> T if and only if A *-+ v (x) lim α^d A <-> β.

For TeB(c), T is called an almost matrix if vec. A matrix A
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is called triangular if ank = 0 for each k > n. We shall now examine
some triangular matrices whose commutants consist of almost matrices.

THEOREM 3 Let A be a conservative triangular matrix with
ann Φ X(A) for n > 1. Consider the conditions

( 9 ) Σ ^ = ΆA) for n>l
k=ι

(10) T «-> A implies T is an almost matrix with v = Xe .

Then (9) => (10). //, in addition, X Φ 0, then (10) =* (9).

To prove that (9) => (10), suppose T+-* A. From (4) of Corollary 1,

n / n \

Σ α*fĉ Λ = Z(A)Vn = ( Σ ank )Vn , W > 1 .
fc=l \ fc=l /

We may rewrite the equation in the form Σϊ=i iVk — ̂ n)ct»fc = 0, which,
along with the hypothesis ann Φ X(A) for n > 1, yields vΛ = v^ for
^ > 1.

For n>l, (T"A")n+uι = λZ(A) and (A"Γ")»+ifi = λ Σ2=i ank. Thus,
if λ ^ 0, 1{A) = Σ!=i α»*.

The result stated at the end of paragraph 2 in the next section
shows that the condition λ Φ 0 is necessary for (10) to imply (9).

The identity matrix shows that the restriction ann Φ 1(A) for
n > 1 cannot be removed.

COROLLARY 5. Let A be a conservative triangular matrix with
Σϊ=i ank = Z(A) /or ^ > 1 α?jd αw% =£ Z(A) /or eαcfe w. Then T ̂  A
implies T is a matrix.

From Theorem 3, vn = vγ. From (4) with n = 1 we get aιιvι =
X(A)vι. Since αu ̂  %(A), ^ = 0 and A is a matrix.

Applications* 1. Let C denote the Casaro matrix of order 1.
Then Theorem 3 of [7] follows immediately from Theorem 3 of this
paper.

2. Endl [2], Hausdorff [4], Jakimovski [5] (see [11, p. 190]) and
Leininger [6] have defined summability methods which are generaliza-
tions of the Hausdorff methods. The (H, Xn; μn) transform of [5] is
defined by a triangular matrix H = (hnk) with entries hnn = μn, hnk =
(~l)n~kXk+ί . . . Xn[μk, - , μn], k <n, where

, μn] = Σ
Xk) * * * \Xi X{—i)\Xi Xi + l) φ * * (λ^ λ/%/
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{μn} is a real or complex sequence, and {Xn} satisfies 0 ^ λ0 < Xt <
• < λn < , limw Xn = oo and Σ« V 1 = °° If λ» = n, n >̂ 0, then
(H, Xn; μn) reduces to the ordinary Hausdorff transformations.

[4] is a special case of [5] with λ0 — 0. [2] is the special case
of [5] with Xn = n + a.

Each conservative method (H, Xn; μn) with distinct diagonal entries
and λ0 = 0 satisfies the conditions of Theorem 3. Thus, if T*-+
(H, λΛ; μn); T is an almost matrix with v = λe. If, in addition,
(H,Xn;μn) satisfies condition (1) of [7], then T^(H,Xn;μn) implies
that B is a generalized Hausdorff matrix of the same type as
(H, Xn; μn).

If λ0 > 0, then (9) of Theorem 3 is not satisfied. However,
limΛ Σfc hnk = £Ό> and one can establish the following: Let (H, Xn; μn)
be a multiplicative generalized Hausdorff matrix with λ0 > 0 and μn Φ
μQ for all n > 0. Then Com (H, Xn; μn) in Γ = Com (H, Xn; μn) in B(c).

The commutant question for the matrices of [6] remains open.
3. Let A be the shift, i.e., an+Un = 1, anh = 0 otherwise. Then

Theorem 1.1 of [8] follows from Corollary 5.
4. Let A be any regular Norlund method with pn > 0 for all n.

(A matrix A is said to be regular if limA x = lim x for each x e c.)
Then, by Theorem 3, if T <-• A then T is an almost matrix with
v = Xe.

5. A triangle is a triangular matrix with each ann Φ 0. A fac-
torable triangular matrix has entries of the form ank = ckdn, k ^ n.
Let A be a regular factorable triangle with all row sums one. By
Theorem 3, if T<-> A, then T is an almost matrix with v = Xe, This
result holds, in particular, for the weighted mean methods (see [3,
P 57]).

THEOREM 4. Let A be a conservative triangular matrix with
ΣJ?=I

 ank — %(A) for each n, and ann Φ X(A) for n > 1. Then the fol-
lowing are equivalent:

(i) A is multiplicative.
(ii) T *-+ A if and only if there exists a scalar X Φ 0 such that

T = Xe (x) lim + B, where B — A.

(i) => (ii). Suppose T^A. By Corollary 2 we have (4) andB*->
A. The hypotheses then allow us to use Theorem 3. Suppose now
that T has the indicated form. Since v = Xe and Σί=i &nk = Z(A) for
each n, A satisfies (4). By Corollary 2, A+-+T.

(ϋ) => (i)# Using Corollary 4 and Theorem 2 we have (8). Set
x — ek to get ak = 0 for each &, since X Φ 0. Thus A is multiplicative.

Note that the condition λ Φ 0 is not used in the proof of (i) =•
(ii). However, it is necessary for the converse. For, let H denote
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the Hausdorff matrix generated by μn = n(n + I)" 1 , K the compact
Hausdorff matrix generated by {1, 0, 0, •}. Then, since H = I — C;
where C is the Cesaro matrix of order 1, A <-> H if and only if A *->
C. But K <-* C. Therefore, K^-> H and K is not multiplicative.

The condition Σί=i ank — %(A) for each n cannot be removed. For
example, let A be the matrix defined by an = 1, (kn+i,2n-i — 1> #2»,2̂  =
(n + 1)M? n = 1, 2, , αwA; = 0 otherwise. Let Γ be the operator
with ^2^! = 1, v2n = 0, and J5 a diagonal matrix with b2n,2n = 1,
62*-i,2n-i = 0. Then TeB(c), A is regular, αww ^ 1 = X(A) for any w,
and A <-> T, but T is not an almost matrix.

COROLLARY 6. Lei A satisfy the hypotheses of Theorem 4 with
X(A) = 1. TΛe^ ίfee following are equivalent:

(i) A is regular.
(ii) T *-+ A if and only if there exists a scalar λ ^ 0 suc/i ίfcαί

T = λe 0 lim + .B, wλere B — A.

In Theorem 4 merely observe that the conditions A multiplicative
and X(A) = 1 imply A is regular.

A natural question to ask is whether there exist matrices whose
commutant in B(c) not only contains almost matrices different from
those with v = λe, but also such that Com (A) in B(c) is included in
the set of almost matrices. The answer is yes, as the following
example illustrates.

Let v be a positive nonconstant convergent sequence with vn Φ 0
for any n, limΛ vn Φ 0, vjvn^ ^ 1 for all n, and limn vn+1/vn = 1. Let
A be the matrix defined by an — 1, αΛ,Λ_! = vjvn-19 n > 1, α%fc = 0
otherwise. We wish to show that A •-> Γ = v ® lim + B, where B <-+
A. From Corollary 2 we need to verify (4) and (7).

To verify (4) for n = 1, a n ^ = vt = Z(A)^. For w > 1, Aw(v) =
a^.-i^-i = vn = X(A)vn.

It remains to determine those matrices B which commute with
A. I t is not difficult, using the techniques of [7], to show that
Com (A) in Δ = Com (A) in Γ.

We shall now show that Com (A) = {/(A):/ is analytic in D =

{*: M ^ 1}}.
For convenience set αw = vn+1/vn. Suppose B <-> A. Equating
) ^ ^ and (AB),,^ we get, for ft > 2,

T h u s w e m a y w r i t e

( 1 1 ) δ % , ^ _ ^ - α T O _ 1 α π _ 2 α % _ , λ f c , l ^ k ^ n - 2 ,
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— ft = 1, ft =

where Xk = bk+2t2/ak+1 a2, ft ^ 1.

F o r r = 1, 2, •••,

)n,n-k — "

Note that for n — ft > 1, the only nonzero entries of Ar occur on the
r t h diagonal. Thus for any n, there exists only one nonzero element
in row n. With λ0 any arbitrary scalar, and for any fixed n, ft with
n — ft > 1, ΣΓ=o ̂ i(-4.0»,Λ-jfe has at most two nonzero terms. One is
Xk(Ak)n>n_k and the other is λoδ;_A Therefore,

a,a2

α—i
• .
0

OCn-r ,

1

r = k

otherwise .

For n — k = 1, n > 1,

Σ = Σ

For n — k = 1, w = 1,

Σ
i=o

;(A0u = Σ λj = (/(A))n ,
io

assuming Σjλy converges, so that B = f(A).
Using (11), we may write λ̂  = bM_klan_γan_2

an = un+1/u19 we have
an_k; since

= Σ
1 ^

Since 11 B \ \ < oo and {un} is bounded away from zero, f(z) = Σ J ̂ JZJ is
analytic in D.

Conversely, if B has the form f(A) for some / analytic in D, then
clearly B commutes with A.

We conclude with a few remarks concerning conull matrices. A
conservative matrix is conull if 1{A) = 0. From (4) of Corollary 1,
Av = 0. Therefore, Com (A) in B(c) = {Te B(c): ve null space of A}.
If A is a triangle, then v = 0 and Com (A) in JS(c) = Com (A) in /\
If A is triangular, with only a finite number of zeros on the main
diagonal, then ve linear span (el9 e2, * ',en), where n is the largest
integer for which ann — 0. Of course, if A is the zero matrix, then
Com (A) in B(c) = B(c).
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CROSS-SECTIONS OF DECOMPOSITIONS

J. P. RlLEY

The following question was raised by R. H. Bing: "Is
it true that if G is a monotone decomposition of Ez into straight
line intervals and one-point sets, then Es/G is homeomorphic
to EZV9 In his paper "Point-like decompositions of EB" he
described a possible counter example. This example has the
interesting property that it has many tame cross-sections, but
if its decomposition space is homeomorphic to Ez, its set of
nondegenerate elements would have to form a wild Cantor
set. This suggests that it would be interesting to study the
connection between the embedding of a cross-section and the
embedding of the set of nondegenerate elements in the decom-
position space.

1* Introduction* Most of the terminology and notation used in
this paper is standard. The reader is referred to [1], [3], [4], and [6].

If S is a 2-sphere in E3, then by Int S we will mean the bounded
component of E3-S and by Ext S, the unbounded component.

Let G be an upper semi-continuous decomposition of E3 and let
H be the set of all nondegenerate elements of G. We will say that
a set R c E3 is a cross-section of G if (i) R ΓΊ h is a singleton for each
heH, and (ii) the natural map P restricted to R is homeomorphism
onto P{H). We note that cross-sections exist only for certain decom-
positions. A simple example may be constructed as follows: Let an =
1/n, for n = 1, 2, and let bn = — 1/n for n — 1, 2, . Let the
set of nondegenerate elements of our decomposition consist of the
closed interval from (0, 1, 0) to (0, —1, 0), the closed interval from (an,
1/2, 0) to (an, 1, 0) for each positive integer n, and the closed interval
from (bn, —1/2, 0) to (bn, —1, 0) for each positive integer n.

II* Cross-sections of decompositions* The following question
naturally arises: How are the embeddings of a cross-section R and
P(H) related when E3/G is homeomorphic to E3Ί We will give some
partial results to this question.

THEOREM 1. Let G be an upper semi-continuous decomposition of E3

into points and straight line intervals pointing in only a countable
number of directions whose lengths are bounded away from zero such
that P{H) is a compact ^-dimensional set. If there exists a cross-
section C of G then C is tame.

Proof. In the special case where the elements of H point in only
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one direction, we can easily show the tameness by a modification of
the proof of Theorem 2 of [7].

Suppose that H = (J~=i Hn where the elements of Hn are all
parallel and if hx e Ht and h2 e Hό where j Φ i then hλ is not parallel
to h2. Let Cn be the set of all points ceC such that ceh for some
heHn. Let Gn be the upper semi-continuous decomposition of E*
whose only nondegenerate elements are the elements of Hn and let
Pn be the natural map. Then E3/Gn is homeomorphic to Ez and
Pn(Hn) is tame in E3/Gn. So by the special case Cn is tame and by
Corollary 2 to Theorem 3 of [7], C is tame.

The following two lemmas will be stated without proof. Their
proofs are similar to that of Lemma A of [7] and use standard techni-
ques. Lemma B is similar to Theorem 2.3 of [3].

LEMMA A. Let G be an upper semi-continuous decomposition of
E3 such that P(H) is a compact ^-dimensional set. Let he H and
suppose that there exist 2-spheres St and S2 such that h c Int Sλ Π Int S2

and (Sλ U S2) Π (U H) = 0 . Then there exists a 2-spheres S such that
hc Int S, S U Int S c S, U Int S19 and if keH then & c Int S iff ka
Int S, Π Int S2.

LEMMA B. Let Sl9 S2, * ,Sn be a finite collection of 2-sphere
whose interiors cover \j H and which miss (j H. Then there exists a
finite collection of 2-spheres Ru R2, , Rn such that Rt = Sl9 (R{ U
Int Ri) Π (Rj U Int Rό) = 0 ifίφj, and h c Int Riiffhd Int St and h Π
Int Sj = 0 for j < i.

THEOREM 2. Let C be a wild Cantor set in E3 with the property
that if x and y are distinct points of C, then there exist disjoint 2-
spheres S1 and S2 such that (S1 U S2) Π C = 0 , x e Int Sλ Π Ext S2 and
y e Int S2 Π Ext S^ Then there exists a monotone decomposition G of
E3 such that C is a cross-section for G, E3/G is homeomorphic to E3

and P(S) is tame.

Proof. Let C be a wild Cantor set in E3 with the required
property. For each xeC we choose a 2-sphere S^x) as follows:

Let Nι(x) be a 2-sphere of radius 1/2, centered at x. Let C^x) =
{teC\tg Int N^x)}. Then for each y e C^x) choose disjoint 2-spheres
S(y) and R(y) such that (S(y) U R{y)) Π C = 0 , x e Int S(y) f) Ext R(y),
and y e Int R(y) Π Ext S(y). Now choose a set yu y2, , yn of elements
of d(α?) such that {Int R(yx), Int R(y2)9 , Int R(yn)} covers C^x). We
now apply Lemma A to get a 2-sphere Sx{x) such that xe Int S^x),
S^x) n C - 0 , Cx{x) c Ext Sx{x) and Sλ(x) c Sfa) U Int Sfa) for i = 1,
2, , n. Therefore, there exists a finite collection of points xl9 x2, ,
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xmω of C such that C c Int S^x,) (J Int S^) U U Int S^x^). We
replace £ζ = {S^xJ, S^fe), , Sx (α?m(1))} by another collection of 2-
spheres ^ 7 = {^n, Γ12, •••, TW)} satisfying the conclusions of Lemma
B with respect to S^.

We will now proceed to construct a sequence ^ 7 , ^ 7 , ^ 7 , of
finite covers of C. Suppose that ^ I _ i has been chosen. For each
point xeC we choose a 2-sphere iVfc(α;) centered at x with radius l/2fc.
We then proceed to choose J7~k by the same process as in the cons-
truction of ^ 7 . We note that if ylf y2 e Tkj Π C then d(yl9 y2) < 1/2*"1

since T i& Π C c JV̂ α?) for some α e C. Now for xeC we define /^ to
be Π?=i (TH U Int TH) where Tki is the 2-sphere in Tk whose interior
contains x. Let G be the decomposition of E3 whose only nonde-
generate elements are the nondegenerate elements of {hx \ x e C). It
follows easily that G is upper semi-continuous and it is clear that C is
a cross-section for G. A theorem of Harrold [5] shows that E3/G is

homeomorphic to E* and from the criteria of [3], we see that P(H)
is tame.

The Cantor set constructed in [2] is an example of a wild Cantor
set satisfying the hypothesis of Theorem 2.

We can note that if C is a wild Cantor set in E3 which does not
satisfy the condition of Theorem 2, also, if C is a cross-section of a
decomposition G whose decomposition space is homeomorphic to E3

then P(HG) is a wild Cantor set which does not satisfy the condition
of Theorem 2.
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A CHARACTERIZATION OF THE MACKEY UNIFORMITY
m(ZΛ D) FOR FINITE MEASURES

K. D. STROYAN

Let μ be a finite positive measure on a σ-algebra ^^ over
a set X. As usual L°°{μ) denotes the space of /^-essentially
bounded measurable functions and L1^) denotes the space of
μ-integrable functions. In this article we use nonstandard
analysis to give a simple description of the Mackey uniformity
m(L°°, L1). The Mackey uniformity is the finest locally convex
linear uniformity on L°° for which each continuous linear
functional has an L1 representation. The famous theorem of
Mackey-Arens says it is given by uniform convergence on the
weakly compact subsets of L1.

Our description is simply this: Let p be a seminorm on
L°°. Then p is Mackey continuous if and only if whenever g
is a finitely bounded element of the nonstandard extension
*L°° which is infinitesimal, except possibly on a set of infi-
nitesimal internal measure, then p(g) is infinitesimal.

For the reader who is unfamiliar with nonstandard analysis we
remark that ψ is ZΓ-norm continuous at / if and only if whenever g
is a finitely bounded element of the nonstandard extension which is
infinitesimally close to /, except possibly on a set of zero internal
measure, then ψ(g) is infinitesimally close to ψ(f). (This follows

easily from Robinson's treatment of metric spaces.) We write / = g

if (11/— g\\~ is finite and) f(x) is infinitesimally close to g{x),f(%)^
g(x), except possibly on a set of measure zero and say / is a norm-
infinitesimal from g.

This characterization uses the idea of a linear infinitesimal relation
which generalizes the nonstandard treatment of metric and uniform
spaces given by Robinson [6], Luxemburg [3], and Machover and
Hirschfeld [5]. The generalization first appeared in the authors dis-
sertation in the context of bounded holomorphic functions, see Stroyan
[7] and Luxemburg and Stroyan [4]. The reader is referred to the
references [3, 4, 5, 6] for an introduction to standard analysis which
we shall not give.

We say a measure λ is ^-continuous if for every ε e R+ there is
a δe R+ so that whenever μ(E) < 3 for Ee^f, then \X(E) \ < e.

In the nonstandard model an internal measure (or *-measure) λ
is called μ-S-continuous if μ(E) f*& 0, for E e *̂ f, implies X(E) p& 0.

A function fe *!/ is μ-S-continuous if the ^-measure X(E) = \ f(x)dμ(x)
JE

is μ-S-continuous. This is equivalent to saying that for every standard
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ε e σR+ = {*r: r e R+} there exists a standard δ e σR+ so that if μ{E) < δ,
then I X(E) | < ε.

LEMMA 1. If K £ Lι{μ) is weakly compact, then K is U-norm

bounded and uniformly μ-continuous, that is, for every e e R+, there

exists a δe R+ so that μ(E) < δ implies \ k(x)dμ(x) < ε for any ke K.

Proof. This standard result can be found, for example, in Dunford
and Schwartz [1].

We wish to point out here that K is uniformly //-continuous if
and only if each member of *iΓ is /*-£-continuous. To see the equiva-
lence of these conditions observe that uniform continuity is expressed
by the formal sentence

[kdμ < ε] .

By Leibniz principle (that 'whatever' is true or false for the standard
model is true or false for the nonstandard or ideal one) we have the
equivalent sentence in the nonstandard model

(Vε G *R+)(lδ e *i2+)(Vfc e *iΓ)(v£re *^Aμ{E) < δ => I ί kdμ < εl .

If K is standard and uniformly /^-continuous and Eo e *^£ has infini-
tesimal //-measure, take ε0 e

 σR+, a standard positive tolerance, and
apply the ε — δ formula in the standard model to that particular ε0.
That is, there is a standard δ0, etc. Now shift the particular sentence

(Vfc 6 K)(VEe^f)[μ(E) < δ0 =* I j ^ kdμ <ε0]
to the nonstandard model (put *'s on ί and ^£). Since μ(E0) < δ,
the integral is less than an arbitrary standard positive ε0, hence infini-
tesimal.

Conversely, if each member of *iΓ is μ-&-continuous and eoe°R+

is given, then taking δ ^ 0 we see that the formula

(Iδe *R+)(vke *K)(vEe *<^f)lμ(E) < δ => I f kdμ <ε0Ί

holds in the nonstandard model. But this formula has a standard
interpretation (without the *?s) which amounts to uniform //-continuity
for that particular ε0. Since ε0 was an arbitrary standard tolerance
we are done.

Another simple nonstandard reformulation is as follows.
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LEMMA 2. Let &~ be a family of functions from a set Y into
C. Let Σ be a collection of subsets of Y. The uniformity of uniform
convergence on the sets of Σ is characterized by the infinitesimal
relation on *^~ given by "f — g if and only if f(s) w g(s) for all
se\J[*S:SeΣ]". More precisely, the entourages of that uniformity

are exactly those subsets U of ^~ x ^~ for which *U^2 {(f, g):f = g}

and{(f, g): f = g} = p | [*[/: U is an entourage in the standard model].

Proof. The seminorms sup [\f(s) — g(s) |: se S] characterize this
uniformity and Luxemburg [3] has shown that the monad of the
uniformity given by {(/, g): λ(/, g) ̂  0 for all standard semimetrics
λ in a gauge of a uniformity} characterizes the uniformity (in an
enlargement).

If f(s) P* g(s) f or s e \J (*S: SeΣ) then the set {|/(β) - g(s) |: s e *S}
is a bounded internal set. In fact, since it contains only infinitesimals
it is bounded by every positively finite number and since that is an
external set it actually has infinitesimal bounds. This means that
the standard semimetrics are infinitesimal and the converse is clear.

We apply Lemma 2 to the Mackey uniformity to see that in *L°°
the Mackey infinitesimals are characterized by

"/ = g if and only if ( f(x)k(x)dμ(x) ~ ( g(x)k(x)dμ(x)
Jx Jx

for every weakly compact ke cptw (*!/)" .

The weakly compact points of *L1 are given by

tu, (*!/) = U [*K: K is a weakly compact subset of L1] .
Now we apply Lemma 1 to see that the weakly compact points

of *!/ are norm finitely bounded and μ-S-continuous. This observa-
tion makes it clear that the infinitesimal relation:

M
"f = g if and only if \\f — g\\^ is finite and f(x) ̂  g(x)

except on a set of infinitesimal internal measure" ,

is finer than the Mackey infinitesimals. This is because if k is merely
a Z/-norm finite μ-£-continuous *Z/ function and f(x) ̂  g(x) except
on E with μ(E) ̂  0, then

\χ(f(x) - g(x))k(x)dμ{x) \\f -

and both terms on the right side are infinitesimal so that

I fkdμ P* I gkdμ .
Jx Jx
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The relation = is not the monad of a uniformity [3] but it is

close enough to = to recapture it.
Suppose now that <P: L°° —* C is a standard linear functional satisfy-

ing the continuity requirement that whenever / = g in *L°°, then
φ(f) fe* φ{g). We wish to draw two immediate conclusions from this.

First, φ is norm-continuous since f = g implies / = g. Second, ψ in-
duces a μ-£-continuous standard measure on X via

Φ(E) = φ(χE) , w h e r e χE(x) = ] ' * w
( 1 , X G sit .

The next result says Φ is countably additive.

LEMMA 3. If X is a μ-S-continuous finite internal measure, then
Λ(E) = st(λ(*2?)), for Ee^t, is countably additive.

Proof. A is finitely additive by the additivity of st. Given
ε e σR+ there is a δe σR+ so that if μ(E) < δ, then | X(E) | < ε. Now
take a partition Ek of X. The sum Σμ(Ek) converges so given δ
there is an I so that Σ?=i K^k) < δ> hence | λ(U& ẑ Ek) | < ε and

Ek) - Σ Λ(Eh) ^ ε .
fc = l

Now we can apply the Radon-Nikodym theorem to get an L1

representation for ψ. Therefore, = -continuous standard linear func-
M

tionals are in L1, or in other words, = -continuity is compatible with
the dual pair <L°°, L1}.

Let ψ be an arbitrary (linear or not) standard functional on *LCO

which satisfies = -continuity: f = g implies ψ(f) f& ψ(g). Define a
uniformity on L°° by the semimetrics

\Ψ(f)-ψ(g)\

M

for ψ standard and = -continuous.

LEMMA 4. // | | / — gW*, is finite, then

M
f = 9 if and only if \\f — g \\, ^ 0 .

M

Proof. If / = g, then f(x) & g(x) except on E with μ(E) ̂  0, so

J 1/ - g I dμ ^



A CHARACTERIZATION OF THE MACKEY UNIFORMITY 227

Conversely, suppose 1 \f — g \ dμ ^ 0. For each n e *iV define the

internal sequence

e = μ{χm 1/0*0 - g(χ) I > Vn}.

We know that for standard ne σN, en ρ& 0 and Robinson's infinitesimal
sequence lemma ([6], Theorem 3.3.20 or [4]> Theorem 8.1. 4) says εn is

infinitesimal out to some infinite subscript, so / = g.
Fix a standard functional φ, we will show that there exists a

sequence en so that

U [F(n, en): neN]^ {(/, g): \ ψ(f) - ir{g) \ < 1}

where

F(n,e) = {(f,g):\\f-g\U<n and | | / - f l r Ik < e} .

M

Take ne N, since = agrees with L^infinitesimals on the set
{(f,g):\\f-g\\-<n} we know (3ε e *R+)[F(n, ε) S {(/, g): \ ψ(/) -
ψ(g) I < 1}] holds in the nonstandard model by taking ε ^ 0. Therefore,
the same sentence holds in the standard model, so select such an ε
and call it en.

Sets of the form U [F(n, eΛ): ne N] generate a standard linear
uniformity finer than that generated by the ψ's. This is the finest
uniformity agreeing with the Z/-norm on L°°-norm bounded sets.

M
Finally, consider the collection of standard = -continuous semi-

M

norms p on L°°, that is, if / = g then p(f — g) ^ 0. These generate
M

the finest locally convex linear uniformity whose monad contains = .
This is the Mackey topology since any Mackey-continuous seminorm
is = -continuous and every = -continuous linear functional has an L1

representation.
We have shown:

THEOREM. The Mackey uniformity m(L°°, L1) for a finite measure
is characterized by the infinitesimal relation on *L°° given by:

M
"f — g if and only if \\f — gW^ is finite and f(x) is infinitesimally

close to g(x), except possibility on a set of infinitesimal measure".

Precisely, a standard seminorm p: L°° —> R+ is Mackey continuous
M

if and only if whenever f = g, then p(f — g) <*& 0.
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THE SCHOLZ-BRAUER PROBLEM ON ADDITION CHAINS

EDWARD G. THURBER

An addition chain for a positive integer n is a set 1 =
«Ό < CLi < < ar = n of integers such that every element
α* is the sum aj + ak of two preceding members (not neces-
sarily distinct) of the set. The smallest length r for which
an addition chain for n exists is denoted by l(n). Let λ(n) =
[Iog2^], and let v(n) denote the number of ones in the binary
representation of n. The purpose of this paper is to show
how to establish the result that if v(n) ̂  9 then l(ri) Ξ> λ(n) +
4. This is the m = S case of the conjecture that if v{n) ̂  2m -f-
1 then l(n) Ξ> λ(n) 4- m + 1 for which cases m = 0,1, 2 have
previously been estabished. The fact that the conjecture is
true for m = 3 leads to the theorem that n = 2m(23) + 7 for
m ^ 5 is an infinite class of integers for which l(2ri) = l(n).
The paper concludes with this result.

An addition chain for a positive integer n is a set 1 = a0 < aγ <
α2 < < ar = w of integers such that every element α̂  is the sum
dj + % of two preceding members (not necessarily distinct) of the
set. The smallest length r for which an addition chain for n exists
is denoted by l(n). Let X(n) = [log2n]9 and let v{n) denote the number
of ones in the binary representation of n. Step i of an addition chain
is α< = <Lj + ak for some k <* j < ί. Since α̂  ̂  2αy ̂  2α<_1, either λ(α<) =
λ(αί_1) or λ(α<) = λία^O + 1. Step i is called a small step in the former
case and a big step in the latter case. Since α̂  <£ 2α<_1, a member
of the chain must occur in each of the half-open intervals [2fc, 2k+1)
for 0 ^ k ^ X(ri). Every time a step takes the chain from one interval
to the next it is a big step; otherwise, it is a small step. There are
X(n) big steps in the chain, and the remaining steps are small steps.
If N(di) represents the number of small steps in the chain to ai9

then the length r of the chain may be expressed as r = X(n) + N(n).
A conjecture which is equivalent to one made by K. B. Stolarsky

[10] states that if v{n) ;> 2m + 1, then l(n) ̂  X(n) + m + l. That is to
say if v(n) ̂  2m + 1, then there are at least m + 1 small steps in
any chain for n. The conjecture is true for m — 0, 1, 2. These
results may be found in [8] with the case m — 2 being part of D. E.
Knuth's Theorem C. The primary purpose of this paper is to show
how to establish the conjecture for m = 3 and to show this case leads
to the result that there is an infinite class of integers for which
l(2n) = l(n).

If a, and ak are two integers written in binary notation and placed
one on top of the other in order to add or subtract, the resultant
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figure is called a configuration and is designated by a,j/ak. The con-
figuration is divided up into slots numbered from left to right. If
aό = 101100111 and ak = 10101110, then a5\ak is as follows:

1 2 3 4 5 6 7 8 9

α
y
 = 1 0 1 1 0 0 1 1 1

a
k
 = 1 0 1 0 1 1 1 0 .

The slot numbers are written above. Slot 4 is called a 1/1 slot, slot
9 is a 1/0 slot etc. Two lemmas which involve integers written in
their binary notation are the following:

LEMMA 1. If a{ — aά + ak and if c represents the number of
carries in aό + ak, then p(α<) = v{aQ) + v(ak) — c.

LEMMA 2. If at — a3- — ak and there are s 1/1 slots in aj/ak and
a one appears in at p times under either a 1/1 slot or a 0/0 slot9 then
v{at) = v(aj) - s + p.

Two further lemmas will now be given which involve numbers
in an addition chain.

LEMMA 3. If a3- and ak are two members of an addition chain
and if X(a3-) = X(ak) + m(m ̂  0) and 2mak < aί9 then N(a3) ̂  N(ak) + 1.

Proof. Since λ(αi) = λ(αΛ) + m, there are precisely m big steps
from ak to αy in the chain, but 2mak < a5 implies that there are at
least m + 1 steps in the chain from ak to α̂  ; hence, at least one of
them is a small step.

LEMMA 4. If a5 and ak are two members of an addition chain
and if \{a^) = λ(αfc) + m(m ^ 2) and ai > 2m~'ιak + 2m~2ak, then N(a^) ^
N(ak) + 1 unless aό = 2m~1ak+1.

Proof. Suppose that there are no small steps from ak to aά.
Assume that there is at least one t such that 2 ^ t ^ m and ak+t Φ
2ak+t^. Then ak+t <̂  ak+t-i + αΛ+ί_2 ^ 2t~ιak + 2t~2ak which implies that
ak+m = α,+ ί + ( m_ ί } ^ 2—*αfc+ί ^ 2™~\2^ak + Wak) = 2 — ^ + 2- 2α f c < α y .
Thus, αfc+m < αy which implies that there is at least one small step
from ak to a5 which is a contradiction. Therefore, if there are no
small steps from ak to αy, then ak+t = 2ak+t_1 for 2 <^ t -^ m which
implies that aά — 2m~1ak+1. It follows that if a5 Φ 2w~1αfc+1, then N(dj) ^
N(ak) + 1.

Knuth's Theorem C [8] along with the four previous lemmas
will be much used in the work that follows. The statement of Theorem
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C follows with the integers being expressed in binary form.

THEOREM C. If v{n) ̂  4, then l(n) ^ X(n) + 3 except when v(n) =
4 and n has one of the four following forms: (A) n — l d 1
l cZ l where d indicates the number of zeros between the
first and second one and between the third and fourth one. (B)
n = l d 1 1 e 1 where d and e again indicate zeros and
e = d - l . (C) n = 1001- Π . (D) n = 10000111- . In these four
cases l(n) = λ(w) + 2.

The m — Z case of the conjecture will now be stated as a theorem,
and the method of proof will be described.

THEOREM 1. If v(n) ̂  9, then l(n) ̂  X(n) + 4.

Proof. Let 1 = α0 < ax < < ar = w be an addition chain for
an integer π for which v(w) ̂  9. Let a{ denote the first member of
the chain for which v(at) i> 9. Then a{ = a3 + ak where k <j since
if Jc = j 9 then α̂  = 2aό which would mean that v(a^) = v{a3). Thus,
a3- and ak are distinct members of the chain, and since v{a3) <̂  8 and
v(ak) ^ 8, it follows from Lemma 1 that 9 ^ v{a^ ̂  16. Each of the
eight cases for v{a^) must be considered, and for each of these cases
the possibilities for v{a3) and v(ak) must be considered. For convenience
the various cases will be listed as ordered triples (y(α;), v{a3), v{ak)).
There are 120 cases altogether. The case (9, 5, 4) will be considered
first.

By Lemma 1 c — 0 for (9, 5, 4), and the only possibility for a3/ak is:

+ ak = 1
α̂  = 1

As can be seen λ ^ ) = λ(αi) and, thus, there is at least one small
step from a3 to a{. Case m — 2 of the conjecture implies that N(a3) Ξ>
3 since v(a3) = 5. Thus, N(n) :> N(at) ̂  N(a3) + 1 ^ 4 .

Case (9, 4, 5) is virtually the same as (9, 5, 4) except that it is
N(ak) which is greater than or equal to 3. Since N(a3) ̂  N(ak), it
follows as before that N(n) ̂  4.

The 34 additional cases for which c — 0 are handled in the same
manner as these cases.

For c = 1 there are 28 cases for (i>(α;), v(a3), v(ak)). Since α{ ̂  2α i?

either λ(α^) = λ(αj) or λ(αi) = λ(αj ) + 1. If Mad — ̂ (αi)> then as in
the cases where c = 0 it may be concluded that N(n) ̂  4. If λ(α<) —
λ(αy) + 1, then with c = 1 the only possibility for a3/ak is:
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CLj = 1

+ ak = l

at = lO .

As previously noted a3 and αfc are distinct members of the chain, and
since λ(α, ) = λ(αfc) it follows that .W(α, ) ^ iV(α&) + 1. For those cases
where v{ak) ^ 5, N(n) ^ ^(αy) ^ N(ak) + 1 ^ 4 . When v{ak) ^ 4, some
further work is necessary.

The cases where 3 ^ v(ak) <L 4 shall first be considered. By Lemma
1 v(a3) ^ 6 since c = 1. α, =£ 2αA since χ (αy) ^ y(α*), and it follows
that either a3 — am + as where s fg m and αm =£ αfc or a3 = ak + at

where t < k. Suppose a3 — am + as where am Φ ak. Since a3- ^ 2αm,
the possibilities on the number line are:

FIGURE 1

In case (1) N(a3) ^ N(ak) + 2 ^ 4 since v(ak) ^ 3. In case (2) N(am) ^
2 for if N(am) ^ 1, then l = ao<d1< <am<aί is an addition
chain for a3 with less than three small steps contradicting the fact
that v{a3) ^ 5 implies N(a3) ^ 3. Thus, N(as) ^ N(am) + 2 ^ 4 . In
case (3) similar reasoning shows that N(am) >̂ 3, and, consequently,
N(a3) ^ N(am) + 1 ^ 4 . In all three cases N(n) ^ N(a3) ^ 4.

Suppose a3 = ak + at where t <k <j. Then at = a3- — ak. Since
c = 1 there is only one 1/1 slot in a3/ak. When a3/ak is considered from
a subtraction point of view, it follows from Lemma 2 that v{at) ^ 5
which means that N(at) ^ 3. Thus, N(n) ^ N(a3) ^ N(ak) + 1 ^ iSΓία*) +

All cases for c = 1 have been dispensed with except (9, 8, 2). In
this case v{ak) = 2 implies JV(αfc) ^ 1. If iNΓία̂ ) = 1, then it may be
concluded that all members of the chain preceding ak have two or
less ones in their binary representation. Thus, v(ak+ί) ^ 4 and v(ak+2)) ^
6. Since X(a3) = λ(αfc), this means that N(n) ^ N(a3) ^ N(ak) + 3 ^ 4 .
If N(ak) ^ 2, then iV(^) ^ 4 in the same manner as when 3 ^ v{ak) ^ 4.

For c = 2 the cases where v{a3) ^ 5, y(αfc) ^ 5, and v(a3) Φ v(ak)
are handled rather easily. As with the c = 1 cases it may be supposed
that λ(α<) = X(a3) + 1. If λ(α, ) = λ(αΛ), then iSΓ(w) ^ N(a3) ^ JV(αΛ) +
1 ^ 4 . Thus, it may be supposed that X(a3) > λ(αΛ), and the only
possibility for a3/ak with c = 2 is:
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dj = 11

+ ak = 1
cti = lOO .

If α, = am + α8 where s ^ m < j and αm =£ αfc, then there are three
possibilities on the number line:

FIGURE 2

In cases (1) and (2) N(n) :> iV(ay) ^ N(ak) + 1 ^ 4 since v(ak) :> 5. In
case (3) N(am) ^ 3 or else 1 = α0 < αx < < am < aό is a chain for
α̂  with less than three small steps which contradicts v{a3) ^ 5. Thus,
N(n) ^ N(a,j) ^ N(am) + 1 :> 4. If a3- = ak + at, then at = % — αfc.
Since c = 2, there can be no more 1/1 slots in aά\ak, and since v{a3) Φ
v(μk), aά Φ 2ak which means that ak and at are distinct members of
the chain. a3 \ak then looks as follows:

dj = 11

— ak = 1 •
at — 1 .

By Lemma 2 v(at) ^ 5 since j;(αy) ^ 5. Since λ(αft) = λ(α*),

There are 12 cases for which c = 2, y(α, ) ^ 5, v(afc) ^ 5, and
v(ak). Thus, 76 of the 120 cases for (v(a?)9 v(αy), v{ak)) have been dis-
pensed with so far. In (10, 6, 6), (12, 7, 7), and (14, 8, 8) v(a3) = v(ak),
and it is possible that d5 = 2dk. This means that dk = αt; hence, αΛ

and α« are not distinct members of the chain. Thus, the statement
that N(ak) ^ N(at) + 1 cannot be made as with the other cases where
c = 2 and v(a3) ^ 5 and v(ak) ^ 5. Some additional concepts need to
be discussed at this point which make it possible to dispense with
cases such as these.

Let I8(n) denote the minimal length of an addition chain for an
integer n all of whose members have eight or less ones in their binary
representation. A list of propositions concerning I8(n) will now be
given. The proof of one of these propositions will then be given.
The proofs of the others are similar.
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PROPOSITION 1. If v{n) = 7 and n = 111- , ίften Z8(w) ̂  λ(w) + 4.

PROPOSITION 2. i/ v(n) = 8 αrcd n = l l l , then I8(n) ^
4 unless n = 1111 -l l l l .

PROPOSITION 3. i f i (n) = 7 and n = 110 , ί/iew Z8O) ^ λ(w) + 4
= 11001 1111.. . .

PROPOSITION 4. Tf v{n) = 8 αwd n = HO , then I8(n) ̂  \(n) +
4 unless

n = 11 d «11 11 e -11- where e — dore — d— 1 .

(Note: The d and β again stand for d and e zeros respectively between
the ones.)

PROPOSITION 5. If v(n) = 6 and n = l l l

4 uniess n = l l l -111. , 111001011 • ,1111 -1001- , l l l l . -101-
or 1111...11... .

PROPOSITION 6. If v{n) = 7 and n = 10111 -01- 01 01 , then
I8(n) ^ λ(w) + 4.

PROPOSITION 7. // v(n) = 8 αwd ^ = lOll l l l . Ol Ol , then
I8(n) ^ X(n) + 4.

PROPOSITION 8. If v(n) = 8

w = 10111.. .01.. .01.. .0011.. . ,

Ol OOll Ol ,

ooii ..oi...oi ,

then I8(n) ̂  X(n) + 4.

PROPOSITION 9. / / v(n) = 8 α^d

% = 1011.. .01.. .01.. .00111.. . ,

oi...ooiii...oi... ,
ooiii...oi...oi... ,

then I8(n) ̂  X(ri) + 4.

PROPOSITION 10. If v{n) = 8 α^d n = 1010111 01 01 01 ,
then I8(n) ̂  λ(w) + 4.

PROPOSITION 11. // v(n) = 8 and n = 1011011...01...01...01,
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then I
8
(n) ̂  λ(n) + 4.

PROPOSITION 12. If v{n) = 6 and n = 11 01 01 01 01 ,

then I
8
(n) ̂  λ(n) + 4.

PROPOSITION 13. I/J;(W) = 7 a n d n = lOll Ol Ol Ol Ol ,
then I8(n) :> λ(n) + 4.

PROPOSITION 14. If v{n) = 8 and n = 101111 01 01 01 ,
then I8(n) ^ X(n) + 4.

PROPOSITION 15. Ifv(n) = Sand n=101011 01 01 01 01
then I8(n) ^ λ(n) + 4.

PROPOSITION 16. If v(n) = 8 and

n = 1011 01 01 01 -0011- ,

01...Ol .-0011...01 . ,

oi...ooii...oi...oi... ,
ooii...oi . oi...oi... ,

then I8(n) ^ X(n) + 4.

PROPOSITION 17. If v(n) = 8 and n = lOll l . Ol .Ol -.Ol
01 , then I8(ri) ^ X(n) + 4.

PROPOSITION 18. If v(n) = 8 and n = lOll Ol .Ol Ol
Ol 01 , then I8(n) ^ λ(n) + 4.

PROPOSITION 19. Tjf v(n) = 7 and n = 1011100 -111, then I8(n) ^
λ(n) + 4.

Proof. (Prop. 1) Let 1 = a0 < ax < -« < a r = n be an addition
chain for n where v(n) = 7 and n = 111- . It shall be assumed that
all members of the chain have eight or less ones in their binary
representation. Let a{ denote the first member of the chain for wτhich
v(a{) = 7 and α{ = 111 . α̂  = a3- + ak for some k <̂  j < i. In fact
k < j for if αy = ak then a{ = 2α, which would mean that v{a3) = 7
and αy = 111 contradicting the fact that α̂  was chosen as the first
member of the chain having these properties. Thus, αy and ak are
distinct members of the chain and 1 ^ v{aQ), v(ak) ^ 8. The 49 cases
for (v(a3), v(ak)) must be considered.

a{ ^ 2α^ implies that X(â ) = X(a3 ) or X(â ) = λ(ay) + 1. If v(ak) ^
5, it may be assumed that λ(α;) = X{a3) + 1; otherwise, N(n) ^ N(a,i) ^
N(a, ) + 1 ^ iSΓ(αΛ) + 1 ^ 4 . However, if λ(α<) = λ(αy) + 1, the only
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way to obtain a{ = l l l is if aj/ak is as follows:

α,= ϊϊϊα,

α . = 111.. . . .

The arrows indicate that at least three carries are needed with this
configuration. As can be seen λ(α )̂ = λ(αΛ), and it follows that N(n) ^
N(a,j) 2> iV(αA) + 1 ^ 4 f or all cases where v(ak) :> 5. If v{ak) <̂  4 and
v(α5 ) ^ 5, then the configuration still holds, and all cases where v{a3) =
7 may be dispensed with since a5 — l l l again contradicts the
"firstness" of a{. The cases (8, 1), (6, 3), (6, 2), (6, 1), (5, 4), (5, 3), and
(5, 2) all have less than three carries in dj + ak by Lemma 1 while
at least three carries are needed in the configuration. In case (8, 2)
only two carries are possible while three are needed. In (8, 3) it may
be assumed as with case (10, 8, 3) of Theorem 1 that d3- = ak + at (see
Figure 1). at = d3 — ak, and by Lemma 2 v(at) JΞ> 5 which implies that
N(n) ^ N(d3) ̂  N(ak) + 1 ^ N(at) + 1^4. In (8, 4) it may be assumed
that ak is one of the four special types in Theorem C; otherwise,
N(ak) ^ 3 which implies N(n) ̂  N{a3) ^ N(ak) + 1^4. Since ak = 11 ,
this means that ak = 11 11 . As in (8,3) it may be assumed
that aά = ak + at, and as with (8, 3) v(at) ^ 5 unless there are four 1/1
slots in dj/ak. By Lemma 1 c = 5 in a3- + ak, and the only way to
meet all of these requirements is if aά\ak is as follows:

aj= l l l l l . l . . l . . . l . . . implies as = 11111 1 1 1

+ ak= 11011...O O . O - ak = llOll . O O O . .

.l.. l. l... at = lOO . l. l l . .

χ(ak) = λ(αt) + 2 while 22at < ak9 and so by Lemma 3 N(ak) ^ N(at) +
1 ^ 3 . Thus, N(n) ^ JV(αy) ^ N(ak) + 1^4. In (6, 4) c = 3 by Lemma
1. Therefore, aά\ak must be:

dj = 111- 1 0

+ αfc = l l l . O l

di = lllO l l .

By Theorem C N(ak) ^ 3; hence, N(n) ^ N(dj) ^ N(ak) + 1 ^ 4 .
The only remaining cases to be considered are (4, 4), (4, 3), and

(3,4). \(di) = X(dj) + 1 is not possible since at least three carries are
needed while these cases by Lemma 1 have less than two. When
either v{d3) = 4 or v{ak) = 4, it may be assumed that dά and dk are
what shall be called "special fours" meaning that they are one of
the types in Theorem C. Otherwise, N(n) ^ N(di) ̂  N(dj) + 1 ^ 4
since it may be assumed that λ(α<) = Maj) I n (4, 4) the possible
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configurations a3/ak for obtaining a{ = l l l with c = 1 are:

(1) αy = 1001... (2) αy = 101. 01 .

= IO OI
α, = lll lO

(3) α
y
= 100...01... (4) α

y
 = ll .

= oo...
Oi = lll .

In (1), (2), and (3) either a3 = am + as where am Φ ak or a3 = ak + at.
If a3 = am + a8, then ^(α,-) ^ 3 by reasoning similar to that used in
(9, 6, 5) of Theorem 1 (see Figure 2). Thus, N(n) ^ iSr(a<) ^ N(a3) +
1 ^ 4 . It shall be assumed then that a3 = ak + at. In (1) there are
two possibilities for at = a3 — ak:

+ a
k
 =

di =

«y =

101-

1110

lOO

ll

lll

•
•
• 01

•01

•10

(a) ^ = 1001... (b) αy = 1001.. .

— ak= lOl —ak = lOl

αt = 100 •• α4 = 11 .

Since c = 1, there can be no further 1/1 slots in a3-/ak. Thus, in (a)
v(at) ^ 3 by Lemma 2, and since λ(αfc) = λ(αt) and atφ ak, this
means iV(n) ^ iVί^) ^ JSΓία^ + 1 ^ N(ak) + 1 ^ iV(αf) + 2 ^ 4 . In (b)
v(at) ^ 5 by Lemma 2, and, so, N(n) ^ JSΓ(α<) ̂  iSΓίαy) + 1 ^ iSΓ(αt) +
1 ^ 4 . (2) may be dispensed with in the same manner as (1) part
(a) while in (3) since ak is a "special four" aά\ak becomes:

αy = 100.. .010.. .

— ak= 11 011

at = l l l .

By Lemma 2 y(αt) ^ 5; hence, N(n) ^ 4 as in (1) part (b).
In (4) it may be assumed that the first two digits in ak are ones;

otherwise, \{a3) = λ(αfc) + m for some positive integer m while 2mαfc <
a3: By Lemma 3 this would mean N(aj) ^ N(ak) + 1 Ξ> 3, and, hence,
N(n) ^ 4. Since α̂  and αA both start with two ones and are "special
fours", they must both have the form l l l l , but in this event
it is not possible to have c = 1 in a3- + ak.

In (4, 3) and (3, 4) c = 0 which means that there are no 1/1 slots
in a3Ίak. The possibilities for a3/ak are the following:

(1) a3 = 101 (2) a3 = 100- (3) a3 = 110- (4) a3 = l l l

+ ak = lO . +ak= l l . +ak = l + ^ = 000---

αi = l l l α̂  — 111-.. α< = l l l αi = l l l .

In (1) N(n) ^ 4 for both (4, 3) and (3, 4) by the same reasoning used
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in (4, 4) with configuration (1) part (a). The remaining configurations
will now be discussed for (4,3).

In (2) at = a3 — ak and by Lemma 2 v(at) ^ 4. Thus, N(at) ^ 3
which implies N(n) ^ 4 unless at is a "special four". Since ak = 11 ,
it may be assumed that at also starts with two ones by the same
reasoning that was used for ak in (4, 4) configuration (4). Thus, at =
l l l l . Since there can be no ones under a 0/0 slot in a3/ak

(otherwise v(at) ^ 5), there are only two possibilities for a3 /ak:

(a) aj = 1001 101 (b) as = 1000111 .

-ak= 110- 010 -ak = 111000-

at = l l . -011 . . . at = l l l l . .

In (a) N(ak) ^ 3 by arguments used before unless a& = at + au for
some u <. t <. Jc. If ak/at is examined, it may be seen that v(au) ^ 4,
χ(at) = λ(α«) and αM ^ at. Thus, iV̂ α*) ^ -^(αw) + 1 ^ 3 which implies
N(n) ^ 4. In (b) α5- is not a "special four" and, so, N(n) ^ -̂ (α<) ^
N(as) + 1 ^ 4 .

In (3) αy = l l l l since α̂  is a "special four". As in con-
figuration (4) of (4, 4) it may be assumed that ak starts with two
ones. aj/ak is then:

a,- = HOO l l

+ ak = l l OO

di = 1111. . .11. . . .

As can be seen aό > 2ak + ak, and, so, by Lemma 4 N(aj) ^ N(ak) +
1 ^ 3 unless a3- = 2αA+1. Since v(αJfc+1) = 4 and λ(αΛ+1) = λ(αΛ) + 1, it
follows as before that N(ak+1) ^ 3 unless ak+1 = ak + at for some t <̂
k. From ay/afc and the fact that ad = 2αΛ+1 it may be determined
that ak+1/ak is as follows:

ak+1 = 1100. . .11. . .

-ak= 11...00

at = 1 1 .

By Lemma 2 v(at) ^ 3. Thus, N(n) S iV(α,) ^ ^(α,) + 1 ^ N(ak) + 1 ^
iSΓ(α,) + 2 ^ 4 .

In (4) % = l l l l . since a3- is a "special four", and since v(ak) =
3, it follows that λ(α, ) = λ(αΛ) + m for some positive integer m while
2mαfc < a,-. By Lemma 3 N(a3 ) ^ JSΓ(αfc) + 1 ^ 3 which implies N(n) ^
4. Configurations (2), (3), and (4) will now be discussed for (3, 4).

In (2) it may again be assumed that a3- = ak + at, and ak =
l l l l since αfc is a "special four". By Lemma 2 v(α4) >̂ 3, and
a one can occur in at at most once under a 0/0 slot in a3/ak or else
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v{at) ;> 5. The possibilities for as/ak are:

(a) aά = 10000- (b) as = 100- 100

-ak= l l l l . . - α t = l l Oll

at = l at = l OOl

(c) α, = 100000... (d) αy = 100 1000

-ak = 11011... -ak= ll-.-OOll-.-

at = lOl at = 1...0101...

In (a) and (b) v{at) = 3, and no matter where the remaining ones in
at are placed the conditions of Lemma 3 will apply. In (d) v(at) = 4,
and, so it may be assumed that at is a "special four" in which case
at must start as at = lO Thus, the conditions of Lemma 3 also
aPply to (c) and (d), and in all four cases N(ak) ^ N(at) + 1 ^ 3 which
implies that N(n) ^ 4.

In (3) it may again be assumed as in configuration (4) of (4, 4)
that the first two digits of ak are ones, and since ak is a "special four",
this means that ak = 11- -ll . As in (4, 3) configuration (3) it may
also be assumed that a5 = 2ak+1 and that ak+1 = ak + at for some t ^
k. These facts together with aάjak determine ak+1/ak:

dj = 1100 -00 implies ak+1 = 1100 -00

+ ak = 11 11 — ak — 11 110

a{ = 1111 11 at = 1 10 .

No matter where the other one in ak+1 is placed, it can be seen that
v{at) ;> 3, X(ak) = X(at) and at Φ ak. Thus, N(ak) ^ N{at) + 1 ^ 3 which

implies N(n) ^ 4.
In (4) ak is a "special four", and the conditions of Lemma 3 will

apply unless ak = l l l . λ(αi) = X(ak) + m for some m >̂ 2 while
dj > 2m~1ak + 2m~2ak, and, so, by Lemma 4 N(a,j) ̂  N(ak) + 1 ^ 3 unless
aό — 2m~ιdkjrl. As before it may be assumed that dk+1 ~ dk Λ- at for
some t ^ k, and these facts together with dj/dk determine ak+1/ak:

dά = 111 0000 implies dk+1 = 11100

+ ak= 1111... - α 4 = l l l l . .

α, = 111...1111... αf - 1101...

N(ak) ^ iV(αί) + 1 ^ 3 ; hence, N(n) ^ 4.

In all 49 cases it has been shown that N(n) ^ 4, and, so, it may
be concluded that if v(a^ = 7 and α* = 111 , then lB(n) ^ X(ri) + 4.

In Proposition 2 ĉ  denotes the first member of the chain for which
φ.) = 8, αi = 111.. . but α< ̂  l l l l •• l l l l . The proof is then
carried out in the same manner as the proof of Proposition 1. The
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proofs of the remaining propositions are similar, and as each one is
proved it may be used in the proof of the next one. Propositions 1
to 5 are extremely helpful in the proofs of the remaining propositions
and in that part of the proof of Theorem 1 that remains. We shall
now return to the proof of Theorem 1 to demonstrate how the pro-
positions are used. As an example of the remaining cases (9, 7, 7)
will be examined.

To recall a{ is the first member of an addition chain for n for
which v(di) ̂ 9 . a,i = a3 + ak where v(a3) <Ξ 8 and v(ak) ^ 8. The
propositions concerning I8(n) are applicable to a3 and ak and all other
members of the chain preceding α*. As in (9, 6, 5) it may be assumed
in (9, 7, 7) that λ(α*) = X(a3) + 1 and X(a3) > \(ak). Also if λ(α, ) =
X(ak) + m, it may be assumed that a3 ^ 2mak or else by Lemma 3
N(a3) ^ N(ak) + 1 ^ 4 which implies N(n) ^ 4. In (9, 7, 7) c = 5, and
the possibilities for a3/ak are now listed. These possibilities are the
ways to proceed from left to right to the first 1/1 slot in a3/ak without
exceeding five carries and with the previously mentioned restrictions
kept in mind.

(1) α, = l l . (2) αy = lOl (3) a3 = 111

-\-ak = l l + ak = l l +o>k= l l l -

α, = 10 ^ = 100 a{ = 100

(4) a5 = 1011 (5) aj - 1001 (6) a3- = 1101.. .

+ ak = 1011... +ak = 1 1 1 . . . +ak= l l

di = 1000 α< = 1000 a,i = 1000

(7) aά = 1111 (8) ao = 10101 (9) as = 10011

+ ak = 1111... +α f c = 1011--- +ak = HOl

at = 1000 a, = 100000- α* = 100000-

(10) aj= lOOOl (11) ad= HOOl (12) a3- = 111010 •••

+ ak = l l l l +ak = 111- +ak = 111-

Oί = 100000 ••• α* = 100000... a, = 1000001 . .

(13) α y = 111110000...

+ α, = 11111...

a* = 1000001111... .

In configurations (3), (5), (6), (7), (9), (10), (11), (12), and (13) Pro-
positions 1 and 3 imply that either N(a,j) ^ 4 or N(ak) ^ 4. In either
event this means that N(n) ^ N{a3) ^ 4. In (1) N(n) Ξ> 4 in the same
manner unless a3 and ak both have the binary form 11001 «-l l l l - ,
but in this event it is impossible to arrange a3/ak so that c = 5. In
(2) it may be assumed that ak = 11001« l l l l and that a3 = ak +
at for some t <; k (see Figure 2). Since c = 5 there can be at most
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two more 1/1 slots in aO'/ak. There are two possibilities for aj/ak:

(a) a,- = 101 OO (b) dj = 101 OO

- α * = 11001... 1111 •-. -ak = 11001 . .1111.. .

at = 10 Ol at — 1 Ol .

In (a) it is impossible to have two further 1/1 slots in aά\ak with
zeros under them. Thus, v(at) ^ 5 by Lemma 2, and since X(ak) =
X(at) and at Φ ak, N(n) ^ N(ak) ^ N(at) + 1 ^ 4 . Configuration (b)
can be filled out a little further by realizing that the 1 can occur
under the 1/1 slot only if a^\ak is as follows:

aj = 10100 OO

- α t = 11001... 1111...

at = 111 01 •• .

It is impossible to have zeros in at under any further 1/1 slots in
a3'/ak, and, so, by Lemma 2 v(at) ^ 9 which contradicts the fact that
αf is the first member of the chain for which v{a^} ̂  9. In (4) it
may again be assumed that a5 = ak + at for some t <̂  k. c = 5 implies
that there is one more 1/1 slot in aά\ak\ hence, v(at) ^ 5 by Lemma
2. It is evident that X(ak) = X(at), and if at Φ ak, N(n) ^ N(ak) ^
N(at) + 1 ^ 4 . It is possible in this case, however, that at = ak which
means a5 = 2ak. With c = 5 the configuration would be:

α y = 101110...lO .lO lO .

+ ak = 101110...I-..01...01...

a, = 1000101. .11-..11-.-11... .

By Proposition 6 N(n) ^ iV (α̂  ) ^ 4 In (8) it is not possible that ad =
2αA, and, so, i\Γ(̂ ) ^ 4 as in (4) when at Φ ak. This concludes the
proof of (9, 7, 7).

The proof of the remaining cases is similar. Once Theorem 1 is
established it follows that the propositions concerning I8(n) are true in
general. That is l(n) may be used in the statements of all of the
propositions instead of I8(ri). The reason for this is that if an integer
with more than eight ones in its binary representation does occur in
one of the chains then by Theorem 1 there are at least four small
steps in the chain up to that integer which means that N(n) ^ 4. In
particular Proposition 19 may be restated to say that if v(n) = 7 and
n = 1011100...Ill, then l(n) ^ X(n) + 4. This leads to the result
that there exists an infinite class of integers for which l(2ri) = l(n).
This is the essence of the following theorem.

THEOREM 2. 7/%^=2m(23) + 7 where ra^5, then l(2n) = l(n) =
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Proof, n has the binary form n = 1011100 -111, and by the
restatement of Proposition 19 l(n) ^ X(n) + 4. On the other hand,

1, 2, 3, 4, 7, 14, 21, 23, 2(23), , 2W(23), 2W(23) + 7 = n

is a chain for n with only four small steps. Thus, l(n) = λ(w) + 4.
2^ = 2m+1(23) + 14 = 1011100... 1110. v(2n) = 7 implies that l(2n) ^

X(2n) + 3 while

1, 2, 4, 5, 9, 14, 23, 2(23), , 2™+1(23), 2™+1(23) + 14 = 2n

is a chain for 2w with only three small steps. Thus, l(2n) = λ(2w) + 3.
Since X(2n) = X(n) + 1 = m + 5, it follows that l(2n) = λ(2w) + 3 =

X(n) + 4 = Z(w) = m + 8.
More details of the proofs of the Propositions and Theorem 1 are

available in [12] and in private manuscripts.
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SUBMANIFOLDS OF ACYCLIC 3-MANIFOLDS

JOZE VRABEC

It is proved that, from the viewpoint of "geometric"
homology theory, an arbitrary embedding of a closed surface
S in any 3-manifoId with trivial first homology group looks
exactly like the standard embedding of S in the euclidean
3-space. A consequence: every compact subset of a 3-manifold
with trivial first homology group can be embedded in a
homology 3-sphere. Necessary and sufficient (homological)
conditions are given for a compact 3-manifold to be embed-
dable in some acyclic 3-manifold (or in some homology
3-sphere).

1* Definitions and preliminaries•

Manifolds. We work in the PL category. Each manifold is
supposed to have a fixed PL structure. If M is a manifold, then by
a submanifold of M or by a surface, simple closed curve, arc, etc.,
in M we always mean a respective object contained in M as a sub-
polyhedron (in the chosen PL structure of M). All maps are assumed
to be PL. Our manifolds are never automatically assumed to be
without boundary, compact, connected, or orientable. However, by a
surface we mean a compact, connected, orientable 2-manifold. A
cube with n handles is a 3-manifold homeomorphic to a regular
neighborhood of a connected finite linear graph of Euler characteristic
1 - n in E\

We denote the interior of a manifold M by int M and the bound-
ary by Bd M. However, if M is oriented, then by dM we denote the
manifold Bd M oriented coherently with M. The symbol d also
denotes the boundary in the homological sense. Let M be an oriented
manifold and P a codimension 0 submanifold of M. Whenever we
talk of P as an oriented manifold, we assume that P has the orien-
tation inherited from M, unless explicitly stated otherwise. If M is
an oriented manifold, then M with the opposite orientation is some-
times denoted by —M.

Homology. All homology and cohomology groups, cycles, chains,
etc., have integer coefficients. If zu z2 are ^-cycles in a space X,
then z1 ~ z2 means itz1 is homologous to z2". A compact oriented
n-submanifold N of an m-manifold M generates a uniquely determined
PL w-chain in M. This chain is a cycle if and only if N is a
closed manifold. We shall make no distinction in notation between
N and the ti-chain it represents. If M is a manifold of dimension
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at least 2, then every element of H^M) can be represented by an
oriented closed 1-manifold in intilf. If M is a 3-manifold, if Jcz M
is a closed oriented 1-manifold, and if / ~ 0 in M, then there exists
a compact oriented 2-manifold F in M such that J = dF.

If X, Y are spaces and / I ^ Γ a map, then by /* we denote
the homomorphism H^X) -+H^Y) induced by/.

Let S be an oriented 2-manifold and a?, y either two 1-cycles in
S or two elements of H^S). By sc(#, y) we denote the (integral)
intersection number of x and y. The following is well-known.

LEMMA 1.1. Let M be an oriented S-manifold and let J, K be
closed oriented 1-manifolds in dM. If J ~ K ~ 0 in M, then
sc(J, K) = 0.

A polyhedron X is acyclic if it is connected and has Hn{X) = 0
for n > 0. We will call X 1-acyclic if it is connected and has
HJ^X) = 0. Note that any 1-acyclic manifold W is orientable. The
reason is that π^W) contains no subgroups of index 2; a subgroup
of index 2 would contain the commutator subgroup of π1(W)9 but
the commutator subgroup is the whole πλ{W) since Hλ{W) = 0. A
homology n-sphere is an ^-manifold whose homology is isomorphic to
the homology of the ^-sphere. An ^-manifold will be called sub-
acyclic if it can be embedded in an acyclic ^-manifold.

2-Manifolds. We give the definition of oriented piping (in dimen-
sion 2). Let S be a 2-manifold and J,KaS two disjoint oriented
simple closed curves. Let A c S be an arc from a point x e J to a
point y e K; let int A c int S — (J\J K). Take a regular neighborhood
N of A in S. The intersection N (Ί J is a small arc JoczJ containing
x in its interior. Similarly, N Π K is an arc KoaK with # e int iΓ0.
Let Z) be the closure of the component of N — (J U K) which contains
int A. Then D is a disk and Bd D consists of Jo, iΓ0, and two "long"
arcs in Bd N. Suppose that D can be oriented coherently with both Jo

and Ko. Then the simple closed curve L = (Jl) K (j Bd D) - int (Jo U Ko)
can be oriented so that it induces in / — int Jo the same orientation
as J and in K — int Ko the same orientation as K. If this is the
case, we say that the oriented simple closed curve L is obtained
from J U K by piping along A (or that L is obtained by piping J to
K or by piping together J and K). If we think of J, K, L as
1-cycles and of D as a 2-chain, then J + K — L = dD. Hence L ~
J + K. The following lemma is obvious.

LEMMA 1.2. If S is an oriented surface, then any two com-
ponents J and K of dS can be piped together along any properly
embedded arc Ad S which joins J and K.
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For a compact 2-manifold S we define the genus of S to be the
sum of genera of the components of S.

Groups. If G and H are groups, then G ^ H means " 6 is
isomorphic to H". Since we deal only with abelian groups we use
the term "free group" in the meaning "free abelian group". Let G
be a free (abelian) group. We will call x e G a basic element of G
if x is a member of some basis of G. Using standard facts we can
prove that x is basic if and only if the subgroup of G generated by
x is a nonzero direct summand of G, or, if and only if x is not equal
to ny for any integer n > 1 and any yeG.

Matrices. If A is any matrix, let A! denote the transposed of
A. For any positive integer n we denote by In and On the identity
and zero n x n matrices, respectively. If n = 2m, let Jn be the
matrix

Γ Om Im

n" L-/. o.
For any two integers i, j" let δiy denote the Kronecker symbol:

δi3 = 1 if i = i and <̂  = 0 otherwise.

2* Surfaces in 1-acyclic 3-manifolds* The main result of this
section is the following theorem, which is (together with 2.13 and
2.14) an extension of Theorem 32.3 in [2]. Note that if S is a closed
2-manifold in the interior of a 1-acyclic 3-manifold W9 then S
separates W. The reason is that every simple closed curve in W
bounds modulo 2 in W and has therefore zero intersection number
modulo 2 with S. Also, since W is orientable and S separates W, S
is necessarily orientable.

THEOREM 2.1. Let W be a 1-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the two components of W — S. Then there exist oriented simple
closed curves Jl9 , Jg, Kl9 , Kg in S such that

( 1 ) Ji and Ki intersect transversely at a single point, for each
i, and Ji Π Jά = Ji Γ) Ks = K{ Π Kd = 0 if i Φ j ;

( 2 ) Ji — 0 in U and K{ — 0 in V (i = 1, , g);
( 3) the homology classes of Jl9 , Jg form a free basis of

and the homology classes of Ku •••, Kg form a free basis of

The situation described by this theorem reminds us of the
standard embedding of S in E3; in fact, the only difference is that
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in the latter case we can choose Ju , Jg, Ku , Kg so that each
Ji bounds a disk (not only an orientable surface) in U and each Kf

bounds a disk in V.
We postpone the proof of 2.1, which will occupy most of this

section, and first prove two consequences of 2.1.

THEOREM 2.2. Let W be a 1-acyclic 3-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the two components of W — S. Let V be a cube with g handles.
Then there exists a homeomorphism h: Bd V —> S such that

( 1 ) the ^-manifold W = V U h U is 1-acyclic;
( 2 ) if J is a closed oriented 1-manifold in S, then J ~ 0 in

V if and only if h~ι{J) ~ 0 in V.

Proof. Assume 2.1. Think of V as embedded in E3; let S' =
Bd V and U' = Ez - int V. Let J,, Kt (i = 1, , g) be oriented
simple closed curves in S satisfying the conclusions of 2.1. Let
Jl,Ki(zSr have analogous meaning (with respect to U' and V).
Then there exists a homeomorphism h: S' —> S which maps each J[
onto Ji and each K{ onto Ki (not necessarily in an orientation pre-
serving way). Let W = V LU U.

As is well-known, (1) of 2.1 implies that the homology classes of
Ju m',J9,Ki, m'*,Kg form a basis of H^S). The homology classes
of Ku •••, Kg belong to the kernel of H^S) — H^V); it follows from
2.1 (3) that no nontrivial linear combination of the Ji is homologous
to 0 in V. Therefore, a 1-cycle in S bounds in V if and only if it
is homologous in S to a linear combination of Klf •••, Kg. Similarly,
a 1-cycle in S' bounds in V if and only if it is homologous in S'
to a linear combination of K'f , K'g. Therefore, (2) of 2.2 follows
directly from the choice of h.

To prove (1) of 2.2 choose an arbitrary xeH^W). We have to
show that x = 0. Since S is connected and separates W, x can be
represented by a sum zι + z2 where zγ is a 1-cycle in U and z2 is a
1-cycle in F ' . By 2.1 (3), zι is homologous in U to a linear combi-
nation of Kί9 , Kg and z2 is homologous in V to a linear combi-
nation of J[, •••, J'g. Since the sewing map h was chosen so that
each JI — 0 in U and each K{ ~ 0 in V, sx + s2 ~ 0 in W.

THEOREM 2.3. If C is a compact subset of a 1-acyclic 3-manifold
W, then C can be embedded in a homology 3-sphere (and thus also
in an acyclic S-manifold unless C is itself a homology S-sphere).

Proof. We may assume that C c int W. Cover C by a compact
connected 3-submanifold M of int W. Take a boundary component S



SUBMANIFOLDS OF ACYCLIC 3-MANIFOLDS 247

of M. Denote by U and V the closures of the components of W — S;
let U be the one which contains M. By 2.2 we can replace V by a
cube with handles, V, in such a way that W = U\J V is still
1-acyclic. If we perform a similar surgery along each boundary
component of M, we end up with M embedded in a closed 1-acyclic
3-manifold, Σ say. It follows from Poincare duality that Σ is a
homology 3-sphere. If C is not a closed 3-manifold, then there is a
point pel — C and hence C lies in the acyclic 3-manifold Σ — p.

Before we start proving Theorem 2.1 we establish some homo-
logical properties of surfaces. Let S be a closed oriented surface
and let au , an e H^S). The intersection number matrix or the
sc-matrix of the ordered n-tuple (al9 , an) is the nxn matrix A =
(αίy), where aid = sc (ai9 a3). Obviously A is skew-symmetric. The
following lemma is proved by a straightforward computation.

L E M M A 2.4. Let S be a closed oriented surface and aί9 , αm,

bl9 ••, bn eH^S). Let A be the sc-matrix of (aί9 * , α w ) and B the

sc-matrix of (bl9 •••, bn). Suppose that there exists an mx n matrix

T with integer entries such that the column vector (alf •••, an)' is the

product of T with the column vector (bu •••, bn)'. Then A — TBT'.

L E M M A 2.5. Let S be a closed oriented surface of genus g. Let

#i, ' *> azg £ Hi(S) and let A be the sc-matrix of (al9 •••,a2g). Then

{aL, , a2g} is a basis of H^S) if and only if det 4̂ = 1.

Proof. It is well-known that H^S) is free of rank 2g and that
it has a basis {bl9 , b2g} whose sc-matrix is J2g. There exists a
2g x 2g matrix T with integer entries such that (al9 •••, a2g)' is the
product of T with (6X, , b2g)

f. From 2.4 we obtain det A = (det Γ)2.
Obviously {αx, , a2g) is a basis of H^S) if and only if T has an
inverse with integer entries, and this is true if and only if det T =
± 1 . The lemma follows.

COROLLARY 2.6. Let S be a closed surface of genus g. Let A
be a subgroup of H^S) such that sc (x, y) — 0 for any x,y eA. Then
the rank of A is at most g.

Proof. Let r be the rank of A. There exists a basis {al9 , ar}

of A, a basis {bu •• ,δ2ί7} of H^S), and positive integers kl9 " 9kr

such t h a t ai = k^ (i = 1, , r ) . Obviously sc (bi9 bj) = 0 if i, i ^ r .

Therefore JS, the sc-matrix of (bl9 , δ2ff), contains a zero r x r

block. If r > g, then det Z? = 0; but this is impossible by 2.5.

The next proposition is an algebraic version of Theorem 2.1.
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PROPOSITION 2.7. Let W be a 1-acyclic Z-manifold and S a closed
surface of genus g in int W. Denote by U and V the closures of
the components of W— S and by i:S—» U, j:S—+V the inclusions.
Let A = Kerΐ*, B = Kerj*. Then

(1) HX{S) — A φ B and either of A, B has rank g;
(2) i# I B: B—>H^U) and j* \A:A—+ H^V) are isomorphisms;
(3) if x,y e H^S) are either both in A or both in B, then

sc (x, y) = 0.

Proof. Consider the Mayer-Vietoris sequence of (W; U, V):

Since HX{W) = 0, a is an epimorphism. We will show that it is also
one-to-one. Recall that a is defined by a(x) = (i*(x), — j*(x)). Take
an x e Ker a = A Π B. Represent x by a closed oriented 1-manif old
Jd S. Then J bounds compact, oriented, properly embedded 2-manifolds
G' c U and G" c V. G = G' U G" is a closed orientable 2-manifold in
int TF. Let Gl9 -- ,Gn be the components of G and let G'r = G'ΠGr,
G'/ - G" Π Gr, J r - J Π Gr - dG'r = dG't (r - 1, . . , n). To prove that
x = 0 it suffices to show that each Jr bounds a compact oriented
2-submanifold of S.

Gr separates W. Let M be the union of Gr and a component of
int W - Gr. Orient If so that dM = G'r U (-<?'/)• L ^ t Af' = MΠ ?7,
f ^ M ί l S . Then Bd M' = F U G;. If we orient F so that dM' =
( - .F) U G;, then Si7 = dG'r = Jr. We have thus shown that Ker a = 0
and therefore α is an isomorphism. This proves (2) and the first
part of (1) of our proposition. Obviously 1.1 implies (3), and (3)
together with 2.6 imply the second part of (1).

Now we start proving Theorem 2.1. In the first step we will
choose the homology classes for the simple closed curves which we
want to construct: α* will be the homology class of Ji9 bi of Kt. We
work with a surface in limbo.

LEMMA 2.8. Let S be a closed oriented surface of genus g.
Suppose that the group H^S) is represented as a direct sum A 0 B
so that sc (x, y) = 0 for any two elements x, y e H^S) which lie either
both in A or both in B. Then there exist bases {al9 * *9ag} of A and
{bί9 , bg) of B such that sc (ai9 b3) = δiS for each i and j .

ADDENDUM 2.9. Let 0 ^ r ^ g and 0 ^ s ^ g. Suppose that
{au •••, ar) is a basis of a direct summand of A and {δL, •••, bs} is a
basis of a direct summand of B such that sc (aif bj) = d{j (i = 1, , r;
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j = 1, , s). Then we can find α r + 1, , ag, b8+1, , bg such that
aiy •> ag> &u , δfir satisfy the conclusion of 2.8.

Proofs of 2.8 and 2.9. First note that 2.6 implies that A and B
have rank g. Assume that r ^ s. lί r < g, choose any elements
α'r+1, , ag such that {al9 , ar, a'r+l9 , α'J is a basis of A. Then set

8

(if s = 0, let a€ = αj). Obviously αx, •••, αfl again form a basis of A
and sc (α*, δ̂  ) = δtj for 1 ^ i ^ #, 1 ^ j ^ s.

L e t us first consider t h e case s = 0. Choose an arbi t rary basis
{δί, * ,δ'ff} of JB. Let C be the sc-matrix of (al9 •• , α , , δ j , •• ,δ'£r).
Then

~ L-zy o{

where /> is the g x g matrix whose (i, i)-entry is sc (α ,̂ δ̂  ). By 2.5,
det C = (det/>)2 = 1, therefore, />' has an inverse U= (ui3) with integer
entries. Put

2.10 bi = Σ ^ίi^i (ί = 1, , ^)

Let

Then, by 2.4, the sc-matrix of (al9 * ',ag9bl9 •••, bg) is ΓCΓ' = J2g.
This is what we wished to have.

If s > 0 we work in the same way except that we do not start
with an arbitrary basis {b[9 , δj} of B. Choose δ'/+i, , b'g eB such
that bί9 , bS9 δ7+i, , δ'/ form a basis of 2?. Then set b\ — b{ for
i = 1, , s and

δί = δί' - Σ sc (αfc, V{)bh for i = β + 1, •••, flr.

Then {δj, •••, δ̂ } is a basis of B and s c ^ , δj) = δiS unless i,j > 5.
This means that the matrices D and U9 defined as above, have the
form

where E is a (g — s) x (g — s) matrix and V = (E')~\ Therefore,
the defining formula 2.10 yields the a priori given 6; for i = 1, , s.
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Lemma 2.8 and its Addendum are proved.
We have chosen the homology classes of our future simple closed

curves J^ and K{. Now we will show that the chosen homology
classes can really be represented by simple closed curves.

PROPOSITION 2.11. Let S be a closed surface and xeH^S).
Then there exist an oriented simple closed curve J c S and a positive
integer n such that x is the homology class of the 1-cycle nJ.

This proposition obviously follows from.

LEMMA 2.12. Let S be a closed surface and KaS a closed
oriented l-manifold. Then there exists a sequence K{1\ K{2\ •••, K{m)

of closed oriented 1-submanifolds of S such that
( 1 ) iΓ(1) = K;
( 2 ) K{i+1) is obtained from K{i) either by omitting a component

of K{i) which separates S or by piping together two components of
K{i) (i = 1, . . . , m - 1);

( 3 ) any two components of K{m) are homologous in S.

Proof. We use induction on the number of components of K.
If K is connected, then there is nothing to prove. Suppose that
2.12 is true if K has less than n components (n^ 2). Choose a
closed oriented l-manifold KaS which has n components, say
JKΊ, , Kn. Denote by T the 2-manifold obtained by cutting S along K,
and let p: T—• S be the corresponding identification map. Let Lrί, Lr2

be the two components of p~\K,) (r = 1, •••, n); orient them so that
p maps each of them onto Kr in an orientation preserving way.

Case 1. Suppose that T has a component To with connected
boundary; let for instance Bd To = Lri. Then Kr separates S. By
induction hypothesis, 2.12 holds for Kr — K — Kr. It obviously
follows that 2.12 holds for K.

Case 2. Suppose that T has a component To which has more
than two boundary components. Then To can be oriented so that
two of its boundary components, say Lri and Lsj, are oriented
coherently with Γo. By 1.2, Lri and Lsj can be piped together along
any properly embedded arc A a To. We claim that r Φ S. Indeed,
S is obtained from T by sewing each Lkl to Lk2 by an orientation
preserving homeomorphism and hence, if Lkι and Lk2 lie in the same
component of T and if T is given any orientation, one of Lkl, Lk2 is
oriented coherently and the other incoherently with T. It follows
that we can pipe Kr to Ks along the arc p(A). Denote by K'r the
oriented simple closed curve obtained by this piping. By induction
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hypothesis, 2.12 holds for K' = (K - Kr - Ks) U KU hence it holds
for K.

Case 3. Finally we consider the case when each component of
T is bounded by exactly two simple closed curves. If some com-
ponent of T can be oriented coherently with both its boundary com-
ponents, then we prove as in Case 2 that 2.12 holds for K. Suppose
that no component of T can be oriented coherently with its boundary.
Obviously T has n components, say Tu •••, Tn. Let St = j)(T«)
(i = lf ...,?&). Since n > 1, no St is a closed surface and therefore
each Si is bounded by two components of K. We may assume that
the numbering has been chosen so that Bd St = K{ U Ki+1 (i — 1, ,
n — 1) and Bd Sn — Kn{j Kx. Since no T{ can be oriented coherently
with its boundary, the same holds for St. This means that each Si
can be oriented so that dSt = { — Ki) U Ki+1 (i = 1, , n - 1). It
follows that Kί ~ K2 ~ ~ iΓ% in S. This concludes the proof of
2.12.

Theorem 2.1 follows from 2.7 and the following proposition.

PROPOSITION 2.13. Let S be a closed oriented surface of genus g.
Suppose that H^S) is represented as a direct sum A@B so that
sc (x, y) = 0 for any x, y e H^S) that lie either both in A or both in
B. Then there exist oriented simple closed curves Jiy Ki in S
(i = 1, , g) such that

( 1 ) for each i, Ji f) Ki is a single point and sc (/,-, i Q = 1; if
i Φ j , then J{ Π J3 = Ji Π K3- = Ki f] K3 = 0

( 2 ) the homology classes of Jl9 " ,Jg form a basis of A and
the homology classes of Klf , Kg form a basis of B.

ADDENDUM 2.14. Suppose that we are given elements au , ar, e
A, &!, , 6β/ e B (0 ^ r' ^ g, 0 ^ s' ^ g) and oriented simple closed
curves Jly , Jr, Kly , Ks c S (0 ^ r ^ r', 0 ^ s ^ s') such that
the following conditions are satisfied:

( i ) if i ^ mm (r, s), J^ Π iΓί is α single point; if i Φ j , then
JiΓiJj=0, Jif] Kj = 0, KiΓ) Kj = 0 (eαc/̂  of these equalities is
satisfied for all pairs i, j for which it makes sense);

(ii) ai is the homology class of Ji and bό is the homology class
of Kj (i = 1, , r; j = 1, , s);

(iii) {au « ,αr,} is a basis of a direct summand of A and
{bly •••, δs,} is a basis of a direct summand of B;

(iv) sc (αt , b3) = δfJ (i = 1, , rf; j — 1, , s'). Then there exist
oriented simple closed curves Jr+1, •• ,JΓ

ff, Ks+1, " ,Kg such that Ji
represents α* (ΐ = r + 1, , r'), Kj represents bj (j = s + 1, , s'),

JΊ, m ,Jg, Ku ••-, Kg satisfy the conclusions of 2.13.
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REMARK. It is not difficult to show that if Jl9 , Jr are disjoint
oriented simple closed curves in S such that S — (Jλ\J ••• \JJr) is
connected, then the homology classes of these curves freely generate
a direct summand of H^S). Therefore, if r ' = r and sf — s, we can
replace the condition (iii) above by: a{ e A, b{e B, and S — {J1U U/r)>
S — {Kx U U K8) are connected.

In the proof of 2.13 and 2.14 we shall need the following three
lemmas. The proofs of 2.15 and 2.17 are easy and we omit them.

LEMMA 2.15. Let S be a surface, JczS an oriented simple
closed curve, and Lc: S an oriented closed 1-manifold. Orient S so
that n = sc (/, L) ^ 0. Then L is homologous to an oriented closed
1-manifold KaS such that J Π K contains exactly n points.

The K of 2.15 may have to have more components than L. On
the other hand, the following lemma is valid.

LEMMA 2.16. Let S be an oriented surface, JaintS an oriented
simple closed curve, and LaintS an oriented closed 1-manifold such
that sc (J", L) = 1. Then L is homologous to an oriented simple closed
curve K c S such that J Π K contains exactly 1 point.

Proof. By 2.15 we may assume that J f) L has only one point.
We will prove the lemma by induction on the number of components
of L. If this number is 1, we can take K—L. Suppose that 2.16
is true if L has at most n components (n ^ 1). Take an L with
n + 1 components, say Lo, Ll9 , Ln; let Lo be the component which
intersects J.

Denote by T the 2-manifold obtained by cutting S along all
components of L and let p: T—>S be the corresponding identification
map. Let L\, L'l be the two boundary components of T composing
p~ι{Lι) (i = 0,1, •••, n). Orient L\ and L" so that p maps each of
them onto Li in an orientation preserving way. Obviously p~ι(J) is
an arc connecting L'o and L". Hence LJ' and L'o lie in the same com-
ponent, To say, of T. Clearly, Bd To intersects p~~\L — Lo). Changing
the notation, if necessary, we can assume that L[ c Bd To. Orient
To coherently with L[. Then one of Lo, Lo' is oriented coherently
with To and the other incoherently. Assume that L[ is oriented
coherently with To. Let A c To be a properly embedded arc which
misses p~\J) and joins Lo to L[. By 1.2 we can pipe L'o to L[ along
A. It follows that in S we can pipe Lo to L1 along the arc p(A),
whose interior misses J U L. This piping changes L to a closed
oriented 1-manifold, homologous to L, which still intersects J at a
single point and has only n components. Therefore, the induction
hypothesis implies that 2.16 holds for L.
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LEMMA 2.17. Let S be a closed surface of genus g > 0 and let
J, Kcz S be two simple closed curves crossing each other at a single
point. Denote by T the surface obtained by cutting S along J and
K and let p: T-+S be the corresponding identification map. Let Sr

be the closed surface obtained by attaching a disk to T along the
boundary curve p~ι(J U K) of T; let k: T-+S' be the inclusion. Then
k* is an isomorphism and p^k*1: H^S') —• Ht(S) maps iϊi(S') iso-
morphically onto the direct summand of H^S) which consists of
homology classes of 1-cycles that have zero intersection numbers with
both J and K. Moreover, if we orient S and S' so that p preserves
orientation, then p^ki1 preserves intersection numbers.

Proofs of 2.13 and 2.14. By 2.8 and 2.9 we can assume that
rf — sr = g. We also assume that r ;> s.

The proof is by induction on the genus of S. If this genus is
0, there is nothing to prove. Suppose that 2.13 and 2.14 are true if
the genus of S is less than g(g > 0) and consider a situation with
the genus of S equal to g.

If r > 0, then we already have Jγ. If r = 0, choose any oriented
simple closed curve representing a1 (it follows from 2.11 that one
such exists) and call it Jγ. If s > 0 (and hence r > 0 by our assump-
tion), then we already have Kγ. Suppose that s — 0. Represent bL

by a closed oriented 1-manifold L. By 2.15 we can assume that
L Π (J2 U U Jr) = 0 . Applying 2.16 to S - (J2 U U J r), Jlf and
L we can find an oriented simple closed curve Kx~ L such that
Ji Π Kx is a single point and Kx Π (J2 U U Jr) — 0 •

We can therefore assume that we already have a "good" pair
Jl9 Klf either preassigned or constructed as described above. Define
T, p, S', and k as in the statement of 2.17, with Jx and Kx taking
the roles of J and K, respectively. It follows from 2.17 that S',
g' = g - 1, A! = Kp*\A), B' = K<pϊ\B), a\ = Kpti^) and b\ =
KptiK) (i = 2,---,g),Jl = kp-\Jt) and K] = kp~\K3) (i = 2, . ., r;
j = 2, « ,s) satisfy the hypotheses of 2.13 and 2.14. By induction
hypothesis we can represent each a\ by an oriented simple closed
curve Jl c k{T) c S' and each b) by an oriented simple closed curve
ϋΓ; c k(T) c S ' (i = r + 1, , g; j = s + 1, , g) such that J2', ,
/;, Ki, •••, K'g satisfy (1) of 2.13. Let J, = pk"\Jl)9 Ks = pk"\K'i)
(i = r + 1, « ,flr; i = s + 1, , g). Then Ju ,Jg, Ku---,Kg

satisfy the conclusions of 2.13 and 2.14.
We conclude this section with a proof of the following theorem.

THEOREM 2.18. Let U be a cube with g handles. Denote Bd U
by S and let i: S—> U be the inclusion. Let {alf •••, ag} be any basis
of Keri* . Then we can represent each ar by an oriented simple
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closed curve JraS ( r = 1, * ,g) such that JΊ, •••, Jg bound disjoint
disks in U.

This result is implicitly contained in pp. 296-299 of [2]. But
perhaps it is worth while stating and proving it explicitly. Let us
first consider the following weaker lemma.

LEMMA 2.19. Let U, S, and i be as in 2.18. Then every x e
Kerί* can be represented by a 1-cycle nJ where n is a positive
integer and Ja S is an oriented simple closed curve which bounds a
disk in U.

Proof. We can assume that x Φ 0. Let {Ku , Kg) be a collec-
tion of oriented simple closed curves in S which bound disjoint disks
in U and whose union does not separate S. Then the homology
classes of Ku " ,Kg form a basis of Kerί*. Therefore, there exist
integers nu , ng such that the 1-cycle njίγ + + ngKg re-
presents x. This obviously implies that x can be represented by an
oriented closed 1-manifold K such that the components of K bound
disjoint disks in U. Therefore, 2.19 easily follows from 2.12 and the
following obvious lemma.

LEMMA 2.20. Let U be a 3-manifold and let Lly L2 be oriented
simple closed curves in Bd U bounding disjoint properly embedded
disks Ex and E2, respectively, in U. Suppose that Lx can be piped
to L2 along an arc A c Bd U and let L be the simple closed curve
obtained by this piping. Let N be a neighborhood of A in U
containing the "pipe" L — (Lλ (J Lz). Then L bounds a properly em-
bedded disk Ecz U which is contained in Eι U E2 (J N.

Proof of 2.18. Suppose that 2.18 is false and take the smallest
g for which 2.18 fails. By 2.19, g > 1.

Embed U into E\ Let V = Ez - int U and let j : S-> V be the
inclusion. Choose an orientation for S. It follows from 2.7, 2.8, and
2.9 that there exists a basis {bu , bg) of Ker j * such that sc (αr, bs) —
3rs (r, s = 1, , g). By 2.19 we can represent a1 by an oriented
simple closed curve Jx c S which bounds a properly embedded disk
A c U. Obviously U — D1 is connected.

Represent ar by an oriented closed 1-manif old Kra S and br by
an oriented closed 1-manifold LraS (r = 2, •••,#); by 2.15 we may
assume that Jx Π Kr = Jγ Π Lr = 0 . Choose compact, oriented, pro-
perly embedded 2-manifolds FraU, G r c 7 such that dFr = Kr, dGr =
Lr. If Fr intersects D19 we can put Fr in general position with Dv

remove the part of Fr which lies in a regular neighborhood of D19
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and then patch the resultant holes in Fr by disjoint disks "parallel"
to Dx. In this manner we can replace Fr by another compact,
oriented, properly embedded 2-manifold in U such that it is bounded
by Kr and misses Dt. Therefore, we will assume that the originally
chosen F2, , Fg were already disjoint from Dλ.

Choose a regular neighborhood JV of A in £?3 and let U' =
U-intN, V = V U N, S' = Bd U' = Bd V. Let i' and j' be the
inclusions of S' in U' and F', respectively. U' is again a cube with
handles ([2], 6.2), Let T = S f] S'. Then S' - int T consists of two
disjoint disks, which we denote by Ό[ and Ώ[\ Let J[ — Bd D[,
Jϊ = Bd D['. Orient J[ and J[f so that J[ ~ J, ~ J[* in S. Let
o!r, b'r e H^S') be the homology classes of Kr, Lr, respectively (r =
2, •••,#)• Since ifr bounds Fr in £7' and L r bounds Gr in F ' we
have αj. eKerί'*, δ^eKer j * . If we give S' the orientation which on
Γ agrees with the chosen orientation of S, then sc (α'r, δ'β) = sc (ifr, Ls) =
δ r s. Thus it follows from 2.5 that the a'r and 6'r form a basis of
f?Ί(S') and therefore, {c4 •••, α'J is a basis of Kerί'*.

By supposition, 2.18 is true for cubes with g — 1 handles. Thus
there exist oriented simple closed curves J/, , J'g c Sf and disjoint
properly embedded disks D[, , Πg in U' such that for each r the
following are true:

(a ) J'r is in the homology class a\ and hence Jr

r ~ iΓr in S';
(b) j ; = Bd£>;.

Without loss of generality we can assume
(c) j c i n t Γ ,

Note that T - (J[ U U J'g) is connected.
It is easy to see that (a) above implies that Kr ~ Jf

r + n'rJ[ +
nrrJ[r in Γ for some integers n'r, n". Hence Kr ~ J'r + nrj1 in S,
where ?ιr = n'r + ^r; We will therefore try to replace each J'r + nrJ1

by a homologous oriented simple closed curve bounding a disk in U.
Suppose that n2 Φ 0. Let for instance %2 > 0. We can show,

by the same argument as twice before, that it is possible to pipe J[
to J[ along an arc whose interior misses J[ U J[f U Jί U U J'g (If
n2 < 0, we pipe J/ to — J[.) By this piping we obtain an oriented
simple closed curve J2"; 2.20 implies that J2 bounds a properly
embedded disk Df^cU which is disjoint from Dl9 D[, , Ό\. We
replace J2

f by J2 and D2 by D'2. Now we have K2 — J2 + m2/!,
where | m2 \ = | w21 — 1. It should now be clear how to finish the
proof of 2.18 by induction on the number | n21 + + | ng |.

3* Compact 3-submanifolds of acyclic 3-manifolds* In this
section we will prove the following two theorems.

THEOREM 3.1. A compact connected 2>-manifold M whose boundary
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has m components (m > 0) is subacyclic if and only if it satisfies
the following conditions (1), (2), and either (3') or (3"):

(1) M is orίentable;
(2) HX{M) is free;
(3') H2{M) is free of rank m — 1;
(3") JΪ^Bd M) -+ H.iM) is onto.

THEOREM 3.2. Let M be a compact, connected, subacyclic 3-mani-
fold and J a closed oriented 1-manifold lying in a boundary component
S of M. Let F be an oriented surface and h: dF —+J an orientation
preserving homeomorphism. Then the polyhedron P = F U \M can be
embedded in an acyclic 3-manifold if and only if J satisfies one of
the following two conditions.

(1) The homology class of J in M is a basic element of H^M).
(2) There exist compact 2-submanifolds G,HcS such that

G U H — S, G Π H = /, and there exists an orientation of S such
that dG= -dH = J.

The proof of 3.1 in one direction is quite easy. Suppose that M
lies in an open acyclic 3-manifold W. Then M is orientable. Let V
be the closure of W — M. The Mayer-Vietoris sequence of (W; M, V)
contains the following subsequence

0 > ^(Bd M) > fli(Λf) 0 -H ( F ) > 0 .

It follows that Hλ(M) is free and that iϊ^Bd M) -> H,{M) is onto.
The other direction of 3.1 will be proved by induction on m.

First we show that the conditions (3') and (3") of 3.1 are equivalent.

LEMMA 3.3. Let M be a compact connected S-manifold with m
boundary components and suppose that (1) and (2) of 3.1 are satisfied.
Then (3') and (3") of 3.1 are equivalent and they imply that
H2(M, Bd M) F& H^M) and that the following sequence is split exact:

0 > H2(M, Bd M) -^> fli(Bd M) — Ht(M) > 0

(here 9* and i* are the homomorphisms from the homology sequence
of the pair (M, Bd M)).

Proof. Since H^M) and H2(M) are free, duality and the Universal
Coefficient Theorem yield the following two relations

HX{M, Bd M) ~ H\M) ~ H2(M), H2(M, Bd Af) ~ H\M) ~ fli(AΓ) .

Consider the exact sequence for the reduced homology of the pair
(M,BdM):
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H2(Bd M) > H2(M) > H2(M, Bd M) >

H^Bd M) > H.iM) > H^M, Bd M) > HQ(Bd M) > 0 .

Suppose that iJx(Bd M) -> H^M) is onto. Then i?0(Bd M) **
Bdikf) & H2(M) and hence H2(M) is free of rank m — 1. Now suppose
that H2{M) is free of rank m - 1. Then ^ ( M , Bd M) -> ifo(Bd AT) is
an epimorphism of free groups of the same rank and thus it is
actually an isomorphism. It follows that ZẐ Bd M) —• H^M) is onto.

We conclude the proof of 3.3 by showing that (3') of 3.1 implies
that d*:H2(M, BdM)—>iί1(Bdikf) is one-to-one. It suffices to show
that H2(Bd M) —> H2{M) is onto, and this follows from the fact that
the image of iί2(Bd M) —• H2(M) is free of rank m — 1 (this is true
for any 3-manifold M which has exactly m compact orientable
boundary components) and that H2(M, Bd M) is torsion free.

Now we start proving the remaining direction of 3.1.

LEMMA 3.4. Let M be a compact connected S-manifold having
precisely m boundary components and satisfying (1), (2), and (3') of
3.1. Suppose that there exists an oriented simple closed curve
KczBdM such that the homology class of K in M is a basic element
of HX{M). Then M can be embedded in a compact connected 3-
manifold M' which has again m boundary components, again
satisfies (1), (2), and (3') of 3.1, and whose boundary has smaller
genus than Bd M.

Proof. Denote by S the component of Bd M which contains K
and let A be a regular neighborhood of K in S. Let Mf be the
3-manifold obtained by attaching a 2-handle H to M along A. Since
K does not separate S, M' has exactly m boundary components and
Bd M' has smaller genus than Bd M. Obviously M' is compact, con-
nected, and orientable. By considering the Mayer-Vietoris sequence
of (ikf; M, H) for reduced homology we can prove that H^M') is free
and H2{Mf) ^ H2(M).

LEMMA 3.5. Theorem 3.1 is valid for m — 1.

Proof. Suppose that this is false. Among all 3-manifolds M
which are counterexamples to 3.1 for m = 1 choose one whose bound-
ary has the smallest genus. Because of 2.3, HX{M) is nontrivial.
Choose a basic element xeH^M). It follows from 3.1 (3") and 2.11
that x can be represented by a simple closed curve KczBdM. But
then 3.4 yields a 3-manifold M' which is a counterexample to 3.1 for
m — 1 and whose boundary has smaller genus than Bd M. This
contradicts our choice of M.
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LEMMA 3.6. Theorem 3.1 is valid for m = 2.

Proof. Suppose that the lemma is false. Choose a 3-manifold
M which is a counterexample to 3.1 for m = 2 and whose boundary
has the smallest possible genus. Our plan is to find a simple closed
curve KczBdM representing a basic element of H^M); as in 3.5
this will lead to a contradiction.

Let S' and S" be the two components of Bdikf, let g' be the
genus of S' and #" the genus of S", and let i':S'-+M, i":S"-+M,
i:BdM-+M be inclusions. By 3.3, Hλ{M) has rank g'+ g" and
therefore #' + g" > 0.

SUBLEMMA 1. Keri* = Kerΐ* = 0.

Proof. Suppose that e.g. Ker i* ^ 0. Since H^M) is free,
Kerΐ'* is a direct summand of Hλ{Sf). Therefore, it follows from 2.11
that there exists a nonseparating oriented simple closed curve Jc S'
such that J ~ 0 in Af. Let Ka S' be a simple closed curve inter-
secting J transversely at exactly one point. Choose an orientation
for M, orient Bd M coherently with M, and then orient K so that
sc (J, K) - 1.

We claim that K represents a basic element of H^M). Suppose
that for some oriented closed 1-manifold L c M and for some positive
integer n, K is homologous to nL in M. Since M satisfies (3") of
3.1 we can assume that L c Bd M. Then K — nL is a 1-cycle in
Bd M, homologous to 0 in M. By 1.1, 1 — n sc (J, L) = sc (/, K — nL) —
0. Hence n = 1 and consequently K represents a basic element of
H^M). As we know, this leads to a contradiction and hence our sup-
position above must be wrong. Sublemma 1 is proved.

Identify fi^BdikΓ) with H^S') 0 HX(S") and let p': J2i(Bd M) ->
-HΊ(S')> p": ^(Bd AT) -> ̂ (S") be natural projections.

SUBLEMMA 2. The compositions

p'3*: H2(M, Bd ΛΓ) > H^S') , p"3^: JΪ2(ikf, Bd M) > HX(S")

are monomorphisms and hence gf = g".

Proof. Let a? e H2(M9 Bd Λf) be such that p'd*(x) = 0. Then
i'iv"d*{x) = i*Prd*(x) + i'*p"3*(») = i*3*(») = 0. This equality and Sub-
lemma 1 imply that p"d*(x) = 0. Therefore, d*(x) = 0 and hence, by
3.3, x = 0. Similarly we show that p"d* is one-to-one.

By 3.3, H2(M, Bd M) has rank #' + g". Since p'3* is one-to-one,
g' + flr" ̂  2fff; similarly, g' + g" ^ 2g". Hence ^ = ̂ ' .

Denote g' — g" by g.
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SUBLEMMA 3. There exist oriented simple closed curves J,Ka
Bd M, one lying in S' and the other in S" and neither homologous
to 0 in BdΛf, and there exists a positive integer r such that
J + rK ~ 0 in M.

Proof. Choose a basis {a[, •••, a[g) of HJJS'), a basis {&[, •••, δ^}
of E' = p'd*H2(M,Bά M), and positive integers n[9 •••, w^ such that
bj = n'άa

f

5 (j = 1, •••, 2#). Let w' be the greatest common divisor of

Suppose that w' = 1. Then £" contains a basic element of H^S').
Indeed; suppose that no element of Er is basic for HX{S'). Then
there exists a prime q such that E'aqH^S') (see e.g. [1], 5.1.1).
Since n' = 1 there is an s (1 ̂  s ^ 2c/) such that w£ is not divisible
by q. Then, as a!s is a basic element of H^S'), Vs — n'sa!s is not equal
to qx for any x e H^S') and this contradicts our previous conclusion.
Thus there really exists a V e E' which is a basic element of H^S').
Let δ" = p"d*{tfd*)-\V) e H^S"). By Sublemma 2, δ" ̂  0. It follows
from 2.11 that there exist oriented simple closed curves JaS',
KaS" and a positive integer r such that J represents 6' and rjK"
represents b". Since (6', 6") = d*(p'd*)-\V) e Ker i*, J + riΓ - 0 in
M. Thus Sublemma 3 is true in this case.

Now suppose that n' > 1. For each j let b" = ί>"9*(ί>'9*)"1(δj ) e
HAS"); let e# be the basic element of H^S") and ^7 the positive
integer such that b' = n"a". Let n" be the greatest common divisor
of n[\ •• ,n"g. If n" = 1 we show as above that Sublemma 3 is
valid. Suppose that n" > 1. We will show that this leads to a
contradiction. Choose a prime divisor g of n". By 2.5 the deter-
minant of the intersection number matrix of (a[, , a'2g) is equal to
1. Therefore, there exists an entry of this matrix, say sc (α's, a[),
which is not divisible by q. Note that each pair (δ' , V ) lies in
Kerί*. Therefore, 1.1 implies that sc ((&'„ 6'/), (K &'/)) = 0 and
hence sc (b'β, b[) = ~sc (δj', δί'). Since the number n\n\ sc (α«, αj) =
— n'sΠ't sc (α'/, α'/) is divisible by g and sc (α', a[) is not, one of n'8, n't,
say n't, is divisible by g. Let for instance n'8 = qk\ n" = qk". Put
α' = fc'ai, α" = fc"α'Λ Then the basic element (j/S*)-1^) of JHΓa(ΛΓ, Bd AT)
is mapped by d* to (&', 67) = ^(α', α") This contradicts the fact
that 3* embeds H2(M, Bd M) as a direct summand into fli(BdΛf).
Sublemma 3 is proved.

We conclude the proof of 3.6 with

SUBLEMMA 4. K represents a basic element of

Proof. Assume that JaS', KczS". Let ueH^S'), veH^S")
be the homology classes of /, K, respectively; let x = 3~x(^, rv) e
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H2(M, Bd M). Since u is a basic element of H^S'), x is basic for
H2{M, Bd M). Let H2(M, Bd ikf) = A φ J5 where A is the subgroup
generated by a;. Let A' be the subgroup of H^S') generated by
u, A!f the subgroup of H^S") generated by v, Br the smallest direct
summand of JE?i(S') containing p'd*(B), and B" the smallest direct
summand of H,{Sn) containing p"d*(B). Then H^S') = A! φ £ ' and
if^S") = A" 0 5" .

We have to show that ί"(v) = i*(0, v) is a basic element of H^M).
It follows from Sublemma 1 that i'l(v) Φ 0. Suppose that there
exists an integer n > 1 and an element z e HX{M) such that i'l(v) —
nz. It follows from 3.3 that there exist elements aeH^S'), be
H^S"), y e H2(M, Bd M) such that z = i*(α, 6) and (wα, nb — v) = d*(y).
Let α = α% + α0, b = βv + b0, y = Xx + 2/0> where α, /S, λ are integers
and aoeB',boeB", yoeB. Then we have d*(y) = 7<d*(x) + d*(y0) or
(%α, nb — v) = X(u, rv) + 9*(2/0). Applying on both sides of this
equation the natural projection iϊ^Bd ikf) —• A! we obtain nαw = λ%;
projecting to A!f yields (nβ — l)v = Xrv. The former equation im-
plies that λ is divisible by n, which contradicts the latter equation.
Sublemma 4 and Lemma 3.6 are proved.

The following lemma is a special case of Theorem 3.2.

LEMMA 3.7. Let M' be a compact, connected, subacyclic ^-mani-
fold, S a boundary component of M', and Aa S a separating
annulus. Let M be the %-manifold obtained by attaching a 2-handle
to M' along A. Then M is subacyclic.

Proof. Embed Mr in a homology 3-sphere Σ. Let U be the
closure of the component of Σ — S which intersects M'. Denote by
V the 3-manifold obtained by attaching a 2-handle H to U along A.
Then there exists a natural embedding of M into V and therefore
in order to prove our lemma it suffices to show that V is sub-
acyclic. Obviously V is orientable. Since H2(U) = 0 (by the already
proved part of 3.1), the following is a section of the Mayer-Vietoris
sequence of (V; U,H) for reduced homology:

0 > H2(V) > fli(A) > H,(U) >Hί(V) > 0 .

As A separates S the homomorphism H^A) —* fli(Z7) is trivial.
Hence H2(V) « HX{A) and H^V) ** H^U). Since Bd V has two com-
ponents it follows from 3.6 that V is subacyclic.

We conclude the proof of 3.1 by proving

LEMMA 3.8. Suppose that 3.1 holds for m < k (k > 2). Then
3.1 is true for m = k.



SUBMANIFOLDS OF ACYCLIC 3-MANIFOLDS 261

Proof. Let M be a compact, connected 3-manifold whose boundary-
has k components and which satisfies conditions (1), (2), and (3') of
3.1 (with m — k). Let J be a properly embedded arc in M whose
endpoints lie in different components of Bd M. Let N be a regular
neighborhood of J in M and let M* be the closure of M — N. Then
M' is a compact, connected, orientable 3-manifold with k — 1 boundary-
components. Let S be the component of BdJIf' which intersects
N. We can think of N as a 2-handle attached to Mr along the
annulus A — M' Π N, which separates S. By considering the Mayer-
Vietoris sequence of (M; M', N) for reduced homology we can prove
that Mf satisfies (2) and (3') of 3.1 (with m = k — 1). By the hypothesis
of the lemma this implies that Mf is subacyclic. Hence, by 3.7, M
is subacyclic.

Proof of 3.2. We consider all possible situations with respect to
the homological properties of J in M. We divide these situations
in two larger groups. First we consider

Case 1. Suppose that / - 0 in S. In this case there exists a
unique pair of compact 2-submanifolds of S, say G, H, such that
G U H = S, G Π H = J. Indeed; choose a point xoeS — J and let G
be the closure of the set of all points in S — J that can be reached
from xQ by some arc in S which misses J or crosses J an even num-
ber of times; let H = S — int G. If at least one of G, H is such
that it cannot be oriented coherently with /, then the polyhedron P
cannot be embedded in any acyclic 3-manifold. Suppose that e.g. G
cannot be oriented coherently with J. Then F U Gcz P is a non-
orientable closed 2-manifold and therefore, as observed in the beginning
of § 2, F U G cannot be embedded in any acyclic 3-manifold.

Now suppose that both G and H can be oriented coherently with
J. Then there exists an orientation for S such that, for the induced
orientations in G and H, J = dG = —dH. Give S this orientation.
Let Gl9 ,Gn be the components of G. For i — 1, , n do the
following. Let K{ = /zr̂ Bd Gi) c Bd F. Choose a disk with holes
G\ c Gi such that Bd G[ — J{ U Bd Gi where J* is a simple closed curve
in int G{. Similarly choose a disk with holes F\cF such that Bd F\ —
Ki U K'i where K\ is a simple closed curve in int F; let F[, , F'n
be pairwise disjoint. Orient J, coherently with G\ and K\ coherently
with F\.

Let C = Sxl, where / = [0,1], be an outer collar of M on S
and let M' = M{jC, S' = S x l c B d M ' (SxO is identified with S
in the natural way). Since F is homeomorphic to Gί there exists a
proper embedding h\ of F't into G x IaC such that h | K{ = h \ K*:

and hi(Kί) = J- = Ji x 1 c S'. In particular, choose a function f{: F[ —•
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I such that /.(iQ = 0, /«(ZJ) = 1, /<(int F{) = int I; extend A, | K, to
a homeomorphism /^: F[ —> G and then set h\(x) = (hi(x),fi(x)) eff x l

Let i f - (Jϊu U Gd x l c S ' , f f - S ' - int # ' , J> = \JJ\. Orient
iS' and J7 so that the natural homeomorphisms S' —• S, JJ —• J* preserve
orientations. Then / ' = — dG' = dH'. Denote by F' the closure of
F-yjF"* and let h':dF'->Jf be defined by h'\Ki = h't\Ki (i = 1, •••,

n). Then A' is an orientation reversing homeomorphism. There is
an obvious embedding of P into Pr = F' U h*M'. Thus, if we can
prove that P ' can be embedded in some acyclic 3-manifold W, then
P can be embedded in W. Note that each component of G' has con-
nected boundary and that this implies that H' is connected. This
means that we have reduced our problem to the case when one of
G, H, say G, is connected. If we apply the procedure described
above to this situation, we reduce the problem to the case when /
is a separating simple closed curve in S.

Let us therefore assume that J c S is a separating simple closed
curve. Let A be a regular neighborhood of J in S. Denote by Mf

the 3-manifold obtained by attaching a 2-handle to M along A.
Obviously P can be embedded in ikΓ. By 3.7, M' is subacyclic and
therefore P can be embedded in some acyclic 3-manifold.

Case 2. Suppose that J is not homologous to 0 in S.

If J ~ 0 in M, then P certainly cannot be embedded in any
acyclic 3-manifold. Suppose that there exists an embedding i:P-^W
where W is an open acyclic 3-manifold. Let U be the closure of the
component of W — i(S) which contains i(int M) and let V be the
closure of the other component of W — i(S). Then i(J) bounds in
both U and V. But this contradicts 2.7 (1).

Now suppose that the homology class of J in M is equal to kx
for some integer k > 1 and some nonzero xeH^M). In this case
the image of x under HJJd) —• HJJP) is a nonzero element of order k
in J3Ί(P). Since 3.1 implies that a compact subpolyhedron of an
acyclic 3-manifold has free first homology group, P cannot be embedded
in any acyclic 3-manifold.

Finally suppose that J represents a basic element of HJJM).
Consider the Mayer-Vietoris sequence of (P; M, F) for reduced
homology:

0 > H2(M) > H2(P)

_L» Hί(P) > H0(J) > 0 .

It is not difficult to prove that a embeds H^J) as a direct summand
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into HAWQHJJF). Therefore, the homomorphism H2(P) -> H,(J) is
trivial and, as H^M) and HX{F) are free, the image of β is free.
It follows that H2(P) P* H2(M) and that H^P) ~ Im β φ H0(J) is free.

Identify F with f x O c f x / . Give Bd (F x J) the orientation
induced by the orientation of F and choose an orientation for S.
Extend h to an orientation reversing embedding g:(BdF) x I—>S
and construct V = (F x I) (J ,Λf. Then F is a compact, connected,
orientable 3-manifold containing P, and P is a deformation retract
of V. It follows that H2(V) ^ H2(M) and that i ϊ^F) is free. Sup-
pose that Bd M has m components. Then, by 3.1, H2(V) ^ H2{M) is
free of rank m — 1. This implies that Bd V has at most m com-
ponents. On the other hand, Bd V has at least as many components
as Bd M. Thus V has exactly m boundary components. Now it
follows from 3.1 that V is subacyclic. This concludes the proof of
3.2.
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ADJOINT BOUNDARY VALUE PROBLEMS FOR
COMPACTIFIED SINGULAR DIFFERENTIAL

OPERATORS

PHILIP W. WALKER

This paper is concerned with differential operators and
their ad joints induced in the Hubert space £?2{w) by an
operator (l/w)l where I is an nth order singular differential
operator and w is a weight. It is shown that weights may
be chosen and boundary conditions may be imposed so that
the structure of these operators is similar to that of regular
differential operators.

1. Preliminaries* Throughout I will denote an operator of the
form,

(1.1) l(y) = y™ + ±±
where each pk is an (n — k) times continuously differentiable complex
valued function on an interval (α, b). We allow a = — oo and/or b =
oo. The formal adjoint of I will be denoted by l+. Hence

Σ ( - i)n-k(pky)(n-k)

kΣ
k=i

for all n times differentiable y on (a, 6).
If y is an (n — 1) times differentiable function then k(y) will

denote the vector valued function, column (y, y\ , yin~1]), and if each
of yu y2, "*yVn is an (n — 1) times differentiable function then K(yί9
Λ", yn) will denote the matrix valued function whose (ί, j) entry
is y(/"1} for 1 <L i, j <ί n.

^ will denote the complex numbers, the space of all complex
n x 1 column vectors will be denoted by ^ , and the space of all
complex n x n matrices will be denoted by ^£n. If M is a matrix
then M* will denote its conjugate transpose.

DEFINITION 1.1. Let (φl9 .. 9φn) be a sequence of linearly inde-
pendent solutions to

(1.2) l(y) = 0 on (α, 6) .

The statement that (θl9 •••,#«) is the adjoint of (φu *",φn) means
that θk is the complex conjugate of the (k, n) entry of the matrix
[K(φu •• , ^ ) Γ 1 for i = l , 2 , . . . , % .

We shall make use of the following facts concerning adjoints of
fundamental systems of solutions to Eq. (1.2).

265
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L E M M A 1.2. Let (θl9 •••,#») be the adjoint of (φl9 •• , 9 ? J , a

sequence of linearly independent solutions of Eq. (1.2). Let toe (a, b)

and let f: (a, b) —> ̂  be Lebesgue integrable on every compact subin-

terval of (α, b). It follows that

(1.3) l(y) = f a.e. on (a, b)

if and only if

k(y)(t) = K(φl9 , <Pn)(t){[K(<Pl9 ,

/or αii t in (α, 6).

This follows from consideration of the standard vector matrix
formulation of Eq. (1.3) and from Eq. (3.2), p. 75 of [1].

LEMMA 1.3. Let φk and θk9 k = 1, •••, n, be as in Lemma 1.2.

It follows that (θl9 •••, θn) is a linearly independent sequence of solu-

tions to

(1.5) l+(y) = 0 on (a, b) .

See problem 19, p. 101 of [1] and Theorem 5, p. 38 of [5]. Note
that in the latter reference the formal adjoint differential operator is
defined without taking complex conjugates. The same is true in Ref.
[2] wherein on p. 69 in Corollary 3.8.2c we find justification for

LEMMA 1.4. Let φk and gk be as in Lemma 1.2.
Then

[K(θl9 , θn)]*P[K(φl9 , φn)] = 1 on (α, b) .

Where I is the n x n identity matrix and P is the concomitant matrix
of I.

See §3.7 of [2] or p. 285 of [1] (therein denoted B) for the
definition of P.

By a weight we mean a positive real valued continuous function.
If w is a weight on (α, b) then <2f2(w) will denote the Hubert space
of all (equivalence classes of) Lebesgue measurable / : (α, b) —* ^

satisfying [h\f\2w< oo. If /, ge^2(w) then </, g) = Vfgw, and
Ja Ja

11/11 = V^Λ7>.

DEFINITION 1.5. The statement that w is a compactifying weight
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for I means that all solutions to Eq. (1.2) and the all solutions to
Eq. (1.5) lie in £f\w).

Since the solution spaces of Eqs. (1.2) and (1.3) are finite dimen-
sional spaces of continuous functions it follows that every operator I
has many compactifying weights. The reason for the terminology
is that operators induced in ^f2(w) by (l/w)l and certain boundary
conditions will have compact inverses.

The study of operators with a compactifying weight is in some
sense complementary to the study of those with an Z-admissible weight
considered in [7].

2 Solutions of the eigenvalue equation* Our first theorem
shows that solutions to differential equations with a compactifying
weight behave in a manner similar to solutions of second order self-
adjoint equations of the limit-circle type. (See §2 p. 225 of [1].)

THEOREM 2.1. Let w be a compactifying weight for I. If f e
J5f2(w) and λ € ^ (T may be real, even zero) then every solution to

(2.1)

lies in

l(y) = w(Xy + / ) a.e. on (a, b)

Proof. Suppose that y satisfies Eq. (2.1). Let toe(a,b) and let
(£>!, •• ,9?») and (θu •••,#«) be as in Lemma 1.2. Inspection of the
first components of vector Eq. (1.4) shows that

V(t) = Ψ(t) <Pu{t) Xy(s))w(s)ds

for all t e (a, b) where φ is a solution to Eq. (1.2). Thus for t0 ^ t < b
it follows from the Cauchy-Schwartz inequality that

t\θk(s)\2w(s)ds
l /2

T h u s

\y{t)\ ̂  \u(t)\

f o r USt < b w h e r e u = \<P\ + Σ ϊ = i 1^*1 11**11 I l /H a n d

= Σ
Note that each of u and g is in ^f2(w). Applying Theorem 1 of [4]
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with G(t) = t\ and a(t) = β(t) = 1/2, we have that

Γ \v(s) \2w(s)ds ^ c Γ \u(s) \2w(s)ds

for t0 ^ t < b where c = 2 exp (2| |#| |). A similar argument shows
that for a < τ <̂  ί0,

S to 2 Γ<ι

r ^ jr

Thus ye^f2(w).
The next theorem provides a method for specifying initial conditions

for the solutions of Eq. (2.1) at the endpoints of the interval (a, b).

THEOREM 2.2. Let wbe a compactifying weight for I, let f e Jzf2(w)
and let λe 'g 7 . Let (φl9 , φn) be a linearly independent sequence of
solutions of Eq. (1.2) and let Y — K{φl9 •••, <pn). If y is a solution
to Eq. (2.1) then

limY-ι(t)k(y)(t) and lim Y-\t)k{y){t)
ί->α ί->6

exist and are finite. Moreover, if ce ^ n then there is exactly one
solution y of Eq. (2.1) satisfying

(2.2) \imY-\t)k(y)(t) = c ,

and there is exactly one solution y of Eq. (2.1) satisfying

lim Y-ι(t)k{y){t) = c .

Proof. Let (θlf •••,#») be the adjoint of (φί9 , φn) and let t0 e
(α, 6). From Eq. (1.4) it follows that if y satisfies Eq. (2.1) then

Y~\t)k(y)(t) = Y-\

[w(s)(f(s) + \y(s))[(θl9 . . . , θn)(8).]*d8

for all t in (α, b). Since each of 0lf , θn, / , and y (by Theorem 2.1)
is in Sf\vί) it follows that the limits indicated exist, and that
Eq. (2.2) will be satisfied if and only if

(2.3) k(y)(Q = Y(to){c - ^w(s)(f(s) + Xy(s))[(θl9 . . .(ίn)(«)]*

This is just a standard initial condition for solutions of Eq. (2.1);
hence there is exactly one solution satisfying Eq. (2.3). The proof
of the last assertion of the theorem is analogous.
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3* Maximal and minimal operators* For each operator I and
each compactifying weight w, D denotes the set of all functions y in
jSf*(w) which have (on each compact subinterval of (α, b)) an absolutely-
continuous (n — l)st derivative and which have the property that
(l/w)l(y) is in £f\w). L (the maximal operator) denotes the restriction
of (l/w)l to D. D+ and L+ are defined in the same may with I replaced
by l+.

Let (φl9 •••,£>») be a linearly independent sequence of solutions
to Eq. (1.2), and let Y= K(<Pl9 •• ,9>«). Do denotes the set of all y
in D satisfying

(3.1) lim Y~\t)k(y)(t) = 0 = lim Y~\t)k{y){t) .
t->b

Note that Do is independent of the fundamental system (φl9 , φn)
which is used. (See Theorem 2.3 p. 70 of [1].) Lo (the minimal operator)
denotes the restriction of L to DQ. Di and Li are defined in the
same way with Eq. (1.2), D, and L replaced respectively by Eq. (1.5),
D+, and L+.

The main result of this section is presented in the following
theorem. It is of interest to note that we are able, in the case of
a compactifying weight, to deleniate the minimal operator through
the boundary conditions (3.1); whereas in earlier treatments of similar
problems, even with symmetric operators with maximal deficiency
indices, (see §17 of [6] and §XΠL 2 of [3]). The minimal operator has
been viewed less succinctly as the closure of what would correspond
to the restriction of our operator L to function with compact support
interior to (a, b). (See Corollary 3.5.)

THEOREM 3.1. Let w be a compactifying weight for I. Then Lo

is a densely defined operator on Jίf2(w),

Lf = L+ and (L+)* = Lo ,

where * denotes the adjoint operator in Jίf2(w).

The proof of this theorem will require the following lemmas, some
of which were motivated by the material in §17.3 of [6].

LEMMA 3.2. Let w be a compactifying weight for I and let f e
Sf2{w). There is exactly one solution y to

(3.2) l(y) = wf a.e. on (α, 6)

lying in Do if and only if f is orthogonal to all solutions of l+(y) = 0
on (a, b). Also S^ι(w) is the orthogonal direct sum of range of Lo

and the null space of L+.
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Proof. Using the notation of Theorem 2.2, let y be the solution
of Eq. (3.2) satisfying

\ιm Y-\t)k{y)(t) - 0 .
t-*a

By Theorem 2.1, y is in £?\w). Let λ = 0, and c = 0 in Eq. (2.3);
multiplying both sides of this equation by Y^iQ, and taking the
limit as t0 —• b we see that y will also satisfy

lim Y~\t)k{y){t) = 0 ,

hence be in Do, if and only if

0 = column «/, θ,), •••, </,#„».

In view of Lemma 1.3 the first assertion is proved. Since the null
space of L+ is of finite dimension, the Hubert space £f\w) is the
orthogonal direct sum of it and its orthogonal complement. We have
shown that this orthogonal complement is the range of LQ.

Lemma 1.4 and Theorem 2.2 allow us to give a particularly
simple expression for Lagrange's identity. Note that if w is a com-
pactifying weight for I then it is also a compactifying weight for l+.
Hence by Theorem 2.2 the vectors za and zb defined below do exist.

L E M M A 3 .3. Let w be a compactifying weight for I. Let (φl9 •••,
φ n ) be a linearly independent sequence of solutions to Eq. (1.2) and
let (#!, •••,#*) be the adjoint of this sequence. For each yeD and
zeD+ let

ya - lim [K(ΨU , φn){t)]-ιk{y){t)

and

za - lim [K(θl9 ,
t

and let yh and zb be defined in the same way taking the limits at b
rather than at a.

It follows that if y e D and z e D+ then

(Ly, z) - {y, L+z) = ztyh - z*ya .

Proof. Iΐa<a<β<b then

\β(λ)l(y)zw - \β(λ)

= \[[l(y)z - yFW

= {[k(z)]*Pk(y))\ί
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where P is the concomitant matrix for I. (See pp. 86 and 285 of [1].)
In view of Lemma 1.4 this last expression is the same as

{[[K(θl9 , θn)Γk{z)Y[K{φu , Ψn)Γk{y)}Ya .

The conclusion to the lemma then follows by taking limits as β —> b
and a—+ a.

LEMMA 3.4. If the hypotheses of Lemma 3.3 are satisfied and
each of cλ and c2 is in ^ w then there is a y e D satisfying

ya ~ c1 and yb = c2

and there is a ze D satisfying

za = Ci and zh = c2 .

Proof. We shall show that there is a u e D such that ua = cλ and
ub = 0. A similar argument would show that there is a v e D such
that va = 0 and vb = c2; then y = u + v will satisfy the conclusion to
the lemma.

Let Zj be the solution to l+(y) = 0 on (α, b) that

for j = 1,2, •••, n where ei3 is the n x 1 matrix with (i9 j) entry 1
if i = j and 0 otherwise. Since

lAl^i, , vn)\ &\zi, , %n)

has the limit / (the n x n identity matrix) at α, it follows that
K(zl9 •••, zn) is nonsingular at some (hence all points) point in (a, δ).
Thus zί9 •••, zn are linearly independent and their Gram determinate
(computed with respect to the inner product of £f\w)) is nonzero. In
view of this fact we may let / be the linear combination of zl9 , zn

such that

column «/, sx>, •••,</, zn}) = - c, .

By Theorem 2.2 we may let u be the element in D such that
Lu = f and yh — 0. By Lemma 3.3 it follows that

\J , Zj/ = = \lj1ly Zj/ — \K/f ±J Zj/ Zjalla ,

and since L+zd = 0 for j = 1, 2, , n and zja = ei5 we have that
ua = cx. The argument for the existence of the z e D+ is similar.

Proo/ of Theorem 3.1. That Do is dense in =Sf2(w) follows from
the fact that Do contains all n times continuously differentiate func-
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tions with compact support interior to (a, b).
For the remainder of the proof we will adopt the notation of

Lemma 3.3.
If y e Do and ze D+ then ya = 0 = yb hence by Lemma 3.3,

{Loy, z) = {Ly, z} = {y, L+z) .

Thus L+ s Lo*.
Suppose that geL£. Let ft = L*g and let 2 be any element of

D+ satisfying l+(z) = wh a.e. on (α, 6). (See Theorem 2.1.) If yeD0

it follows from Lemma 3.3 that {yf K) = <τ/, L+2> = {Loy, z) and it
follows from the definition of the adjoint operator that {y, h} = {y,
Log} = {Loy, g}. Hence {Loy, z — g} = 0 for all y e Do. From Lemma
3.2 we have that J*f\w) is the orthogonal direct sum of the range of
I/o and the null space of L+. Thus z — g (after modification on a set
of measure zero) is in the null space of L+. In particular z — g e D+

and since zeD+ it follows that ge D+. Since L+g = L+z and L+2 =
/*, = Log it follows that Lf g L+. Hence the fact that Lt — L+ has
been established.

From Lo* = L+ we have that Lo** = (i>+)* and since A S A** for
any densely defined operator A it follows that I/o S (-^+)*

Applying the part of Theorem 3.1 that has been proved with
I replaced by l+ we find that (Lί)* = L. Since Lt S L+ implying
(Lψ s (Lo

+)* it follows that (L+)* S L. Thus if 7/6 (L+)* then τ/e
D and (L+)*y = Ly; and if zeD+, by definition of adjoint, we have

or

<2/, L+2> - {Ly, z) .

On the other hand, by Lemma 3.3 it follows that

{Ly, z} = {y, L+z) + zΐyb - z*ya .

Thus zfyb — ztya = 0 for all zeD+. Since by Lemma 3.4 there is a
zeD+ such that zα and zb have any preassigned values it follows that
Va — Vb — 0. Since we already have y e D and (L+)*y = Ly it follows
that yeD0 and (L+)*y = Loτ/. Thus (L+)* S Lo. This completes the
proof of the fact that (L+)* = Lo.

COROLLARY 3.5. The operator LQ is closed in Jzf2(w).

Proof. The adjoint of any densely defined operator is closed and
by Theorem 3.1,
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LΓ = (L+y = L0 .

4* Intermediate operators and their adjoints* In this section
we shall consider operators which lie between the maximal and minimal
operators and their adjoints. We shall continue to use the notation
developed in §3 and assume that all our operators are based on an
nth order operator I with a compactifying weight. Furthermore, all
vectors ya,yh,za, and zb are to be formed using an arbitrary but fixed
sequence (φl9 , φn) (of linearly independent solutions to l(y) = 0)
and its adjoint. (See Lemma 3.3.)

If each of M and N is in ^£n and B is the n x 2n matrix (M: N)
then DB will denote the set of all yeD such that

(4.1) Mya

and DB will denote the set of all ze D+ such that

(4.2) zΐ = c*M and zf = - c*N for some c e ^ \

LB and Li will denote the restrictions of L and L+ to DB and DB

respectively.
The following theorem shows that the boundary conditions 4.1

and 4.2 deleneate mutually adjoint operators in <2f2(w).

THEOREM 4.1. If each of M and N is in ^€n then (LB)* = Li
and (Lβ)* = LB.

Proof. By Lemma 3.3, if y e DB and z e Di then

(4.3) (LBy, z) - (y, Liz} = z%yh - z*ya ,

! and from 4.1 and 4.2 it follows that the right hand side of this
equation is zero. Thus Li S LB.

By its definition we have that Lo <Ξ LB, hence LB S Lf so from
Theorem 3.1 we have that L* S L+. Thus L%z = L+z for all z in
the domain of LB. Suppose now that z is in the domain of L%. Then,
by definition of adjoint (Ly, z) = (LBy, z) = <y, L%, z) = (y, L+z), for
all y in DB. On the other hand, by Lemma 3.3 we have that

(Ly, z) - (y, L+z) = ztyh - z*ya .

Hence zϊyb — zlya = 0 for all yeDB.

Or the vector Za is orthogonal in ^2n (with respect to the standard
L ~ Zbj Γu ~]

inner product) to the subspace of all vectors ya such that y e DB.
L.yb_\

We denote this subspace by V. In view of Lemma 3.4 V is the set

of all vectors u such that
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Mu + Nv = 0 .

Therefore, another way to view V is that it is the orthogonal comple-

jy* . Hence I must be in

this column space or

zal ΓifcΓ*Ί
= c for some c e ^ n .

zb] IN*]

Thus condition 4.2 is satisfied and z e D%. We have shown then that
L%z = L+z for all 2; in the domain of L% and that this domain is a
subset of Di. Thus L% £ I/ί This completes the proof of the first
assertion of the theorem.

Again conditions 4.1 and 4.2 imply that the right hand side
of equation 4.3 is zero when yeDB and zeD£. Thus LB £ {Li)*.
Also from its definition Lt £ LJ, hence (Li)* £ (Lo

+)*; s o by Theorem
3.1 applied to l+ we have that (L^)* £ L. If y is in the domain of
(Li)* then

(Ly, z} - <(L£)*i/, z> - <y, Liz) =

for all ze Di and from Lemma 3.3

Thus z6̂ 6̂ — z*ya = 0 for all ze Di or the vector MM is orthogonal

[ ~ η L^6J

_ a such that ze Di. We

denote this subspace by W. Again by Lemma 3.4 we conclude that

W is the set of all vectors u such that
u* — c*M and v* = c*iV

[ M*~\
N*Y

Since I ̂ α I is orthogonal to W we have that My* + Λtyδ = 0. Thus
L#δJ

yeDB and we have completed the argument that (Di)* £ DB, and
from (Li)* £ L we have that (Li)* £ LB. Thus (Li)* = Lβ.

The next theorem shows that boundary conditions of the type
4.2 can be expressed by conditions of the type 4.1 and conversely.

THEOREM 4.2. Suppose that My Ne ^£fn and that m is the column

rank °/ I 1y* Let D be a 2n x (2n — m) matrix whose columns

form a basis in ^2n for the orthogonal complement of the column

space of ^ \ and let P and Q be the n x (2n — m) matrices such
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that D = \Q \. It follows that ze D+ satisfies condition 4.2 if and

only if

(4.4) P*za + Q*zδ = 0 ,

and it follows that yeD satisfies condition 4.1 if and only if

y* = C * P * and yf = - c*Q* for some c e ^ \

Proof. zeD+ satisfies 4o2 if and only if \ZΛ = Γ ^Z\c for some
Γr 1 L^δJ L " - ^ J r if*η

c G <Sf\ This holds if and only if * | ί s ί n t h e c o l u m n s P a c e o f _ jy* J

and this is equivalent to \Za\ being orthogonal to the orthogonal to

the orthogonal complement of the column space of | ^ . Eq. (4.4)

is simply another way of stating that \ a \ is in the orthogonal com-

plement of the column space of D. The argument for the second

assertion of the theorem is similar.

5* Invertibility and Green's functions* In this section we give
a necessary and sufficient condition for the operator LB9 defined in
§4, to be invertible and show how the inverse operator, when it
exists, may be expressed as an integral operator of the Hubert-
Schmidt type.

THEOREM 5.1, Let M, N e ^ n , let B = (M: N), and let LB be as

in §4. It follows that LB is invertible if and only if the matrix
M + N is nonsingular.

Proof. Since LB is linear it is invertible if and only if the only
solution to LBy — 0 is the zero function. LBy = 0 if and only if y
satisfies the boundary condition 4.1 and y is a linear combination of
the same sequence of solution (φlf •• ,Φn) used to construct ya and
yh. Thus LBy = 0 if and only if

ΛΓlim [K(φl9 , 9n){t)rι[K{<Pu , Ψn){t)]c

(5.1) + JVlim [K(φu , <P.)(t)]-1[K(<Pι, " , 9>.)(ί)]c = 0
t-*b

or (M + N)c = 0

where c is the vector in ^ n such that

V = (Φi, -- ,<Pn)c

Since Eq. 5.1 is satisfied only for c — 0 if and only if M + N is non-
singular the theorem is proved.
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THEOREM 5.2. Let M,Ne^ίn, let B= (M: N), let LB be as in
§4, and suppose that LB is invertible. If f e £f2(w) then ye DB and

G(t, s)f(s)w(s)dsfor all te (α, 6) where
a

G(t, s) =
for a < s <t < b

- [(φi7 ...y φn)(t)](M+ J V ) " W [ ( ^ , •••, θn)(8)]*

for a < t < s <b

wherein (φu , φn) is a linearly independent sequence of solutions
to l(y) = 0 on (a, b) and (θl9 •••, θn) is its adjoint.

Proof. yeDB and LBy = / if and only if condition 4.1 holds
and l{y) = w/ a.e. on (α, 6). By Lemma 1.2 we see that this last
differential equation holds if and only if

•••,<Pn)(τ)Γk(y)(τ)

whenever t, τ e (α, δ). Using the fact that each θk and / is in
we may conclude that if l{y) = w/ a.e. on (a, b) then

•••,Ψn){t)Γk{y)(t)

\t[(θ1,"',θ,)(8ψf(8)w{8)d8
Jσ

and

for all t in (α, b). Multiplying the first of these equations (on the
left) by M and the second by N and adding we see that if l(y) = /
a.e. on (a, b) and 4.1 is satisfied then

N)[K(φlf

(5.2) = \ t

Using the fact that M + N is nonsingular (see Theorem 5.1),
solving Eq. (5.2) for k(y)(t)9 and examining the first components of
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the resultant equation we see that the integral equation indicated in
the theorem is satisfied.

If the integral equation in the theorem is satisfied then differen-
tiating we find that

V'(t) = Σ <Pk(t)θk{t)f(t)w(t)
k=ί

(5.3) + ( V i , , Φ*)'W + m-Wm, ••', θnψf(s)w(s)ds
Ja

- \\(<Pu , <PnY(M + iV)-W[(^, . . . , θnψf(s)w(s)ds

for all t in (α, b). Returning to Definition 1.1 we see that Σ L i Φψθk

is the (j + 1, n) entry of the n x n identity matrix. In case n = 1
Eq. (5.2) is immediate from the integral equation of the theorem,
and in case n ̂  2 the last observation and continued differentiation
of Eq. (5.3) shows that Eq. (5.2) is satisfied. Taking the limits as
t —> a and as t —•> b in Eq. (5.2) we find that

(5.4) Mya + Nyh=[- M(M + N^N + N(M + N)

where

and adding and subtracting M(M + N)~ιM in the term in brackets
on the right side of Eq. (5.4) we see that condition 4.1 is satisfied.

Returning to Eq. (5.2), if we add and subtract

on the right hand side we find that

k(y)(t) = K(φl9 •-., ?>»)(«)[- (M+ NΓ

for all t in (α, 6). Letting t0 be a point in (a, b) and adding and
subtracting

(0i, ~,θ«)(8)]*f(8)w(s)ds

in the term in brackets in the last equation we see that

k(y)(t) = K(φl9 , <Pn)(ί)[c + J| [(φl9
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for all t e (α, 6) where c is a constant vector in <g*n. Thus by (a slight
modification of) Lemma 1.2 y is a solution to l(y) = wf a.e. on (a, δ).
Using Theorem 2.1 we may now conclude that yeDB and LBy = / .
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WHEN ARE WITT RINGS GROUP RINGS?

ROGER WARE

It has been shown that if C is a commutative connected
semi-local ring with involution J then the Witt ring, W{C, J),
of hermitian forms over C is a factor ring of an integral group
ring Z[G]9 with G a group of exponent two. The purpose of
this note is to characterize those pairs (C, J) whose Witt rings
are actually isomorphic to integral group rings (Theorem 1).

I would like to express my thanks to Alex Rosenberg and Manfred
Knebusch for several helpful suggestions.

This paper is in part motivated by the result of Elman and Lam
which states that if F is a superpythagorean field [3, Th. 4.3, Def.
4.4] then the Witt ring, W(F), of F is isomorphic to a group ring
Z[H], where H can be taken to be any subgroup of F*/F*2 of index
two, not containing the square class of —1 [3, Th. 5.13 (8)]. In
Theorem 1 a different proof of the Elman-Lam result is given and it
is shown that the converse is also true. In order to extend the notion
of superpythagorean to semi-local rings, we employ the concept of
signature as defined in [6].

In what follows C will always be a commutative connected (= no
idempotents other than 0 and 1) semi-local ring with involution J and
A will be the fixed ring of /. We allow the possibility that J is the
identity. The groups of units of C and A are denoted by C* and A*
respectively, and N: C* —• A* is the homomorphism given by N(c) = cJ(c).
We denote by W(C, J) the Witt ring of hermitian spaces over C with
respect to the involution J, as defined in [5] The ring theoretic
operations of W(C, J) are induced by the orthogonal direct sum and
tensor product of spaces respectively. For a in A* we let <α> denote
the class in W{C, J) of the rank one hermitian space C with form
(Cu c2) —>c1J(c2)α and [a] the image of a in the group A*/NC*. Then
<α> - <δ> in W(C, J) if and only if [a] = [6] in A*/NC* and <α><6> = <αδ>.
Hence the assignment [a] —*<α> induces a ring homomorphism
ψ : Z[A*/NC*] ->TΓ(C, J). By [5, Th. 1.16], the mapping ψ is surjec-
tive.

A signature σ of (C,J) is a group homomorphism cr: A* —>{±1}
with the property that σ(iVC*) = 1 and if σ: Z[A* /NC*]-> Z also
denotes the induced ring homomorphism then <7(Kerτ/τ) = 0. As re-
marked in [6], the signatures of (C, J) correspond bijectively with the
ring homomorphisms from W(C, J) to Z. By [5, Example 3.11] the
latter set is in bijective correspondence with the set of non-maximal
prime ideals of W(C, J). If J is the identity and C = A is a field

279



280 ROGER WARE

then the signatures of C correspond to the (total) orderings on C (cf.
[6, Remark 1.7 (ii)]).

Since the kernel of the natural map ψ : Z[A*/NC*] — W(C, J)
contains the element [1] + [ — 1], [5, Cor. 1.17], it follows that any
signature σ of (C,J) has the property that σ(—1) = — 1. Suppose,
in addition, (C, /) has the following property

(*) C has no maximal ideal M with J(M) = M such that either
C/M = F2 or C/M = F4 and A/MΠ A = F2 (Fn = finite field with n
elements).

Then, by [6, Prop. 1.4], a homomorphism σ:A*-+{±l} with
σ(NC*) — 1 and σ(—1) = — 1 is a signature if and only if <7(α) = l implies
σiNfa) + aN(c2)) = 1 for any cu c2 in C with Nfa) + aN(c2) in A*.

The main result is the following.

THEOREM 1. Assume C has property (*) and —1 is not in NC*.
Then the following statements are equivalent:

( i ) For any a in A* with a£ — NC* we have
(NC + aNC) ί l i * = M7* U αiVC*.

(ii) If σ: A* —>{±1} is a homomorphism such that σ(iSΓC*) = 1
and σ( — 1) = —1 then σ is a signature of (C,J).

(iii) If E is a finite subgroup of A*/NC* not containing the
norm class [ — 1] then there exists a signature a of (C, J) such that
σ{E) = 1.

(iv) If H is any subgroup of A*/NC* not containing [ — 1] then
there exists a signature σ such that o(H) = 1.

(v) The kernel of the mapping ψ:Z[A*/NC*]-+ W{C,J) is the
ideal generated by [1] + [ — 1].

(vi) W(C, J) ~ Z[H] where H is a subgroup of index two in
A*/NC*. The group H can be taken to be any subgroup of index two
not containing [ — 1].

(vii) W(C, J) = Z[H] for some group H of exponent two.

Proof, (i) => (ii) As mentioned above it is enough to show that
if a is a unit of A with σ(a) = 1 and cl9 c2 are elements of C such that
b = Nfa) + aN(c2) is also a unit then σ(b) = 1. Since σ(a) — 1 it
follows that aί -NC*. Hence by (i), 6 lies in NC* U aNC* so that
a(b) = 1, as desired.

(ii) => (iii) is clear.
(iii) => (iv). Let Sign (C, J) denote the set of signatures of (C, J)

and for a in A*, let V(a) = {σ in Sign (C, J) \ σ(a) = 1}. The sets V(a),
a in A*, can be taken as a subbase for a topology on Sign (C, J) which
makes Sign (C, J) a compact Hausdorff space and each V(a) a closed
set [6, Lemma 2.3, Th. 2.18, Lemma 3.3 (i)] Now let H be a subgroup
of A*INC* with [-1] g H and choose {a^j c A* such that H = {[α,]}ίe7.
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For any finite subset / o c / , the group Ho generated by {[αj}<β/o is
finite and [ — 1]&HO. Hence, by (iii), there exists a signature σ such
that σ(H0) = 1, i.e., f)ieIo V(at) Φ 0 . Thus {Via^^ is a family of
closed sets with the finite intersection property. Since Sign (C, J) is
compact it follows that f\iBI V{a^) Φ 0 , i.e., there exists a signature
σ with σ(H) = 1.

(iv)=>(v). Let G = A*/NC* and let L be the ideal of Z[G]
generated by [1] + [ —1] Now, minimal prime ideals of Z[G] corre-
spond bijectively with group homomorphisms G —> {±1} and under this
correspondence, prime ideals containing L correspond to homomorphisms
sending [ — 1] to —1 [5, Lemma 3.1]. By (iv), the latter set coincides
with the set of signatures of (C, J ) . Thus if K is the kernel of the
mapping ψ, then LczK and if P is a minimal prime ideal of Z[G]
with LczP then by definition of signature, we must also have Ka P.
Thus to prove (v) it is enough to show that L is the intersection of
all such prime ideals. This is done by showing that Z[G]/L ~ Z[H]
where H is any subgroup of index two in G with [ — 1]£H. State-
ment (v) then follows because Z[H] has no nonzero nilpotent elements.
Note that this will also prove the implication (v) => (vi).

Thus let H be a subgroup of index two in G with [ — 1] g H. Let
S = {[1], -[-1]} and G* = H x S. Then Z[G] = Z[G'] and L is the
ideal generated by all elements of the form 1 — s, se S. Hence
Z[G]/L = Z[G']/L = Z[G'/S] = Z[H].

(v) ==> (vi) is contained in the above argument.
(vi) => (vii) is trivial.
(vii) => (i). Let if be a group of exponent two and / : W(C, J)—>Z[H]

an isomorphism. Since for any a in A*, <α>2 = 1 in W(C, J) it follows
that (/«α»)2 = 1 in Z[H] so by [5, Th. 3.23], / « α » = ± h for some
h in H. Now suppose a is a unit in A with a g NC* and clf c2 are
elements of C such that 6 — N^) + aN(c2) is a unit in A. Then by
[5, Th. 1.16 (iii) and Lemma 1.19] (1 + <α»(l - <δ» = 0 in W(C,J).
Hence

in Z[H]. Thus either / « α » = - 1 , or /«&» = 1, or /«αδ» = 1.
Since/is an isomorphism, / « α » = — 1 implies <α> = < —1> in W(C, J)
which implies ae —NC*, contrary to assumption. If /«&» = 1 then
<&> = 1 in W{C, J), i.e., b — Nic,) + aN(c2) eNC*, so we are done in
this case. If /«αδ» = 1 then / « α » = /«&» so <α> - <δ>, i.e.,
beaNC*, completing the proof.

REMARKS. ( i ) In [3], Elman and Lam studied formally real
(= ordered) fields satisfying condition (iii) of Theorem 1. There, they
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proved a structure theorem, [3, Th. 5.13], for the Witt ring and
algebraic fc-groups of such fields which contains the statement that
the Witt ring is an integral group ring. They also proved several
equivalent conditions characterizing these fields which include the
equivalence of (iii) and (iv) [3, Ths. 4.3, 4.7]. In fact, the foregoing
proof of (iii) => (iv) is the same as the proof SI =» S2 in Theorem 4.3.

(ii) Diller and Dress [2] observed the equivalence of conditions
(i) and (ii) when J = Identity and C = A is a field and showed that
these are equivalent to the following:

For any a in A* with α£ — A*2 the field A(Va) is pythagorean,
i.e., sums of squares are squares [2, Satz 4].

Following Elman-Lam [3, Def. 4.4], we call (C, J) superpythagorean
if (C, J) has property (*) and satisfies the conditions of Theorem 1.

COROLLARY 2. If (C, J) is superpythagorean then every unit of A
which is a sum of norms is itself a norm.

Proof. This follows from condition (i) with a = 1. (See also [6,
Prop. 3.13].)

COROLLARY 3. (cf. [3, Cor. 4.5]). Assume A*/NC* is a finite
group of order 2n, n^l. Then (C, J) is superpythagorean if and only
if C has exactly 2n~1 distinct signatures.

Proof. Apply condition (ii) of the theorem together with the fact
that there are exactly 2n~ι homomorphisms A*/NC* —•{±1} sending
[-1] to - 1 .

REMARK. In contrast to the Witt ring, the Witt-Grothendieck
ring K(C, J) of isometry classes of nondegenerate hermitian spaces over
C is seldom an integral group ring. In fact, if — lgiVC*, it is not
difficult to show that the following statements are equivalent:

(a) K(C, J) is the integral group ring of some group,

(b) K(C,J)£ϊZ[A*/NC*],
(c) A*/NC* is cyclic of order two,
(d) W(C, J) s Z,
(e) Ker ψ is additively generated by [1] + [ — 1].
For the remainder of the paper we assume that J is the identity

(so C = A and JVC* = A*2).

PROPOSITION 4. Let A be a local ring with maximal ideal M and
residue class field k = A/M. Assume 1 + M e A*2 (this happens, for
example, if A is henselian [1, Ex. 3, p. 126]). Then

( i ) A is superpythagorean if and only if k is a superpythagorean
field.
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(ii) If, in addition, A is a valuation ring with field of fractions
F then A is superpythagorean if and only if F is a superpythagorean
field.

Proof. ( i ) By [4, Satz 7.1.1, N.B. 7.1.3] there is an isomorphism
of Witt rings W(A) = W(k) and hence A is superpythagorean if and
only if k is.

(ii) Let A be a valuation ring with field of fractions F and
assume A is superpythagorean. Since F is a field, in order to show
a function σ: F* —»{±1} with σ(F*2) — 1 and σ{ — 1) — — 1 is a signature
it is enough to show that σ(a) = 1 implies σ(l + a) = 1. Thus suppose
a is an element of F* with σ(a) = 1 and let σ — σ | A*. Then σ(A*2) = 1
and σ( — 1) = — 1 so σ is a signature of A. Since A is a valuation
ring of F, for any α in F, either a is a unit in A, or α e M, or α"1 e ilί
If a is a unit in A then 1 + a is also a unit (if 1 + αeJl ί then
1 + m = — α for some meM and since 1 + AfcA* 2 this means
1 = 0 (1 + m) = σ( — a) = — σ(α) = — 1, impossible). Since σ is a signa-
ture, σ(l + a) = σ(l + a) = l. If a e M then 1 + a e A*2 so σ(l + α) = 1
and if α"1 e ikf then σ(l + or1) = 1 and

σ(l + α) = σ(a(a~ι + 1)) = ^(^(α" 1 + 1) = 1, showing that ί7 is super-
pythagorean.

Conversely, suppose F is superpythagorean. Since A is integrally
closed in F, the inclusion A* —•ί7* induces an inclusion A*/A*2-+F*/F*2.
Since both are vector spaces over F2 any homomorphims σ: A*/A*2—*{±1}
extends to a homomorphism σ : F*/F*2 —*{±1}. If 5 is a signature of
JP then σ is a signature of A, completing the proof.

REMARK. The last part of the proof actually shows that if A c B
are rings with A* Π B*2 = A*2 then A is superpythagorean if B is.

EXAMPLES. Assume k is a superpythagorean field. Then

(a) The ring of formal power series in ^-variables, &[[-XΊ, •••,
Xn]]9 is superpythagorean. The ring of dual numbers over k,k[ε]9ε

2 = 0,
is superpythagorean.

(b) If n ^ 2 the quotient field k((Xu , Xn)) of k[[Xu , JSΓJ]
is not pythagorean (hence cannot be superpythagorean). However,

(c) [3, Cor. 4.6]. For any n^l the field k{(XJ) (Z»)) of
iterated Laurent series over k is superpythagorean.

Proof, (a) This is immediate from Proposition 4 (i).
(b) It is not difficult to check that X2 + Y2 cannot be a square

in the field k((X, Y)).
(c) Here it is enough to show that k((X)) is superpythagorean.

However, this follows from (a) and Proposition 4 (ii).
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PARACOMPACTIFICATIONS USING

FILTER BASES

J. D. WINE

During the mid nineteen sixties, C. E. Aull presented a series
of papers in which he distinguished several different types of
paracompact subsets. Using these concepts, three classes of
filter bases are introduced and their convergence and other
properties are studied. A variety of characterizations of
paracompactness based on the existence of certain types of
these filter bases and ^-filters are given. A paracompactification
construction involving the addition of limit points for one of the
classes of filter bases is presented in detail. Finally, properties
of the paracompactification are explored with some attention
given to its ring of continuous functions.

Generally, the notation of Gillman and Jerison [7], will be followed.
To avoid confusion when considering a property which could be associ-
ated with any one of several sets under consideration the set symbol
will be affixed before the property symbol.

Filter base classes* We begin with the definitions of the various
paracompact subsets which were introduced by Aull.

DEFINITION 1. A subset Moΐ a topological space Xis a-paracompact
if and only if given an X-open cover of M there is an X-open refinement
which covers M and is locally finite at every point x in X (denote by
X locally finite).

DEFINITION 2. A subset of X is /3-paracompact if and only if it
is paracompact as a subspace of X.

DEFINITION 3. A subset E of X is σ-paracompact if and only if
every X-open cover of E has an X-open X σ-locally finite refinement
which covers E.

DEFINITION 4. An a-filter base (respectively β-filter base, σ-filter
base) is a family j ^ of nonempty zero sets satisfying:

(1) If Z is in ^~ then Z is not α-paracompact (respectively
/3-paracompact, σ-paracompact), and

(2) If Z7 and V are in J^ then their intersection contains an
element of ^ .

In this section we wish to develop some properties of the three
classes of filter bases defined above. For the most part, the proofs

285
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are identical for all three types except for the change in terminology.
When such is the case we shall give the statement in all three forms,
but only prove the result for the α-paracompact case, leaving the
verifications of the others to the readers.

THEOREM 1. An a-filter base {respectively β-filter base, σ-filter
base) on a locally paracompact space cannot converge. (For properties
of a locally paracompact space see [13].)

Proof. By definition a space is locally paracompact if and only if
every point has an α-paracompact neighborhood. No element of the
a-fίltev base can be contained in the α-paracompact neighborhood of
a point so the α-filter base can not converge.

THEOREM 2. If & is an a-filter base (respectively β-filter base,
σ-filter base), then there is a maximal a-filter base (respectively β-filter
base, σ-filter base) which contains &?.

Proof. This is a standard Zorn's lemma argument and is omitted.

D E F I N I T I O N 5. Let X be a space, then Ssf(X) (respectivey (),

is the family of all maximal ^-filter bases (respectively /3-filter

bases, σ-filter bases).

THEOREM 3. If J^ is in sf(X) (respectively &(X), 6^(X)), then
any zero set which contains an element of Jf is an element of

Proof. Let j ^ ~ be an element of ^ which is contained in the
given zero set Z. Then Z cannot be α:-paracompact because F is not.
For any element B of JF*, we must have B Π Z containing B f] F which
contains an element of ^ 7 Hence [z] (J ̂  is an ^-filter base con-
taining ^ 7 which implies Z is an element of

THEOREM 4. If ^ is in j*f(X) (respectively &(X), S^(X)), then
the intersection of two elements of j ^ is an element of ^.

Proof. The result follows immediately from Theorem 3 and the
definition of an α-filter base.

As an immediate result of the last two theorems we have the
theorem below.

THEOREM 5. If J^ is in s*f(X) (respectively &{X), S^(X)), then
is a z-filter.

THEOREM 6. An a-filter base (respectively β-filter base, σ-filter
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base) 3^ is maximal if and only if every zero set Z, such that Z Π F
is not oc-paracompact (respectively β-paracompact, σ-paracompact) for
every F in ^ 7 is an element of J?.

Proof. Necessity. Suppose 3?" is maximal and let Z be a zero
set such that Z Π F is not α-paracompact for every F in &~. Then
^/ = {S: S = F Π Z, F in J^) U ̂  is a family of non α:-paracompact
zero sets. Now let S and S* be elements of ^. If both S and S*
are elements of 3f, then S Π S* is in ^ ^ and hence ^. If either
one or both of S and S* is not in ^ 7 then S Π S* has the form
F Π i*7* Π Z where F and .F* are in 3^. In this case E = F f) F* is
in ^ 7 and E f) Z is an element of ^Λ Therefore, ^ is an α-ίilter
base, and since XΠZ is an element of ^ , Z is in 'g/. Since ^
contains the maximal α-ίilter base ^~ we must have ^ = 3?.

Sufficiency. Let J^ satisfy the hypothesis, and let ^ be an
element of s^(X) which contains J?. If ^ is not ̂ , then there is
a ^ in <%s — J?~. Since *2S is maximal and contains ^ , we have Z Π F
is not α-paracompact for every î 7 in ^. Hence, Z is in ^ 7 and ^
must equal ^ .

We shall show later that maximal α-filter bases (respectively /S-filter
bases, σ-filter bases) on a Hausdorff completely regular space are very
large in the sense that they are almost 2-ultrafilters, being contained
in only one 2-ultrafilter.

Paracompact spaces and filter bases* We now present a variety
of characterizations of paracompactness depending on the existence of
α-filter* bases, /3-filter bases, cr-filter bases, and 2-ultrafίlters with
α-paracompact elements. We continue our convention used in the last
section regarding the three types of paracompact subsets and the
statement and proof of theorems. For some of the results involving
/3-filter bases we will have need for the following result.

THEOREM 7. If J?~ is an a-filter base, let _ °̂ be {F° in ^ : F°
is a neighborhood of some element of 3^). Then 3?" is a β-filter
base.

Proof. By Theorem 1 in [4], if some element of J^* were β-
paracompact, the element of ^ for which it is a neighborhood would
be (X-paracompact.

THEOREM 8. Let X be a completely regular space. Then X is
paracompact if and only if there is no free a-filter base (respectively j
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β-filter base, σ-filter base) on X. Also, X is paracompact if and only
if there is no free maximal a-filter base (respectively β-filter base,
σ-filter base) on X.

Proof. Necessity is obvious for all three cases.

Sufficiency. For the cases involving α-filter bases or σ-filter bases
suppose X is not paracompact. Then there is an open cover <& which
has no locally finite (respectively cr-locally finite) refinement. Therefore,
if 2^* is a finite subfamily of &, the union of elements of Ŝ 7* is not
X, and its complement is not α-paracompact (respectively cr-paracompact).
Let & = {F: F is the complement of the union of a finite subfamily
of &} and ^ = {Z in Z(X) : Z contains some F in ^}. An easy
calculation shows J^ to be an α-filter base (respectively ^-filter base).
Since ^ is a cover of X, we may use complete regularity to show that

is free, and we are done.

For the case involving /9-filter bases, we take the α-filter base
obtained above, and use Theorem 7 to obtain the /3-filter base
Since ^ is free, we may use complete regularity to show that
is free.

The last assertion follows from Theorem 2.

COROLLARY 8A. A completely regular space X is paracompact if
and only if every free z-filter has an a-paracompact (respectively
β-paracompact, σ-paracompact) element.

Proof. The proof follows from Theorem 5.

COROLLARY 8B. Let Xbe a regular space. Then Xis paracompact
if and only if there is no a-filter base (respectively β-filter base, σ-filter
base) on X. If we drop the condition of regularity then we must drop
the case for σ-filter bases in the conclusion.

Proof. In the proof of the theorem, we needed complete regularity
only to obtain <§?* free, otherwise regularity sufficed, and regularity
is needed only for the σ-filter base.

We note that for Corollary 8A results corresponding to Corollary
8B can be stated. If the space is locally paracompact and either regular
or Hausdorff a slightly nicer result is possible. We will need the
following results from [13].

THEOREM 9. A Hausdorff locally paracompact space is regular.
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THEOREM 10. Let E be an a-paracompact subset of a regular
(respectively Hausdroff) locally paracompact space and let G be any
open set containing E, then there is a closed a-paracompact neighbor-
hood of E contained in G.

THEOREM 11. If X is a regular (respectively Hausdorff) locally
paracompact space and A is an a-paracompact subset, then A is eom-
pletely separated from any disjoint closed set.

Proof. Let F be a closed set disjoint from A, then by Theorem
10 there is a closed α-paracompact neighborhood V of A which is
contained in X — F. The subspace V is normal since it is regular
and paracompact, hence there is a function g in C(V) such that
0 ^ g(x) ^ 1 and g is zero on A and one on V-int V. Define / taking
X into the closed unit interval by / | V = g and /[X-int V] = 1.
Clearly / is continuous and completely separates A and F.

The Hausdorff case follows from Theorem 9.

THEOREM 12. If X is a regular (respectively Hausdorff) locally
paracompact space and ̂  is in J^f(x), then given any a-paracompact
set A there is an F in j ^ ~ which is disjoint from A.

Proof. Let A and ̂ ~ be as in the hypothesis, and let V be a
closed α-paracompact neighborhood of A. For each F in J^, the inter-
section of F and V is α-paracompact. Therefore, E = F f] (X-int V)
is not α-paracompact. Since E is disjoint from A, there are disjoint
zero set neighborhoods Z(A) and Z(E). By using Theorem 6, it is not
difficult to show Z(E) is an element of

The Hausdorff case follows from Theorem 9.

COROLLARY 12A. If X is a regular (respectively Hausdorff) locally
paracompact space, then no maximal a-filter base has a cluster point.

THEOREM 13. A regular (respectively Hausdorff) locally para-
compact space X is paracompact if and only if every free z-ultrafilter
has an a-paracompact element.

Proof. For the nontrivial part, suppose that every free £-ultrafilter
has an α-paracompact element. Then no free 2-ultrafilter can contain
a maximal α-filter base by Theorem 12. Hence, any maximal α-filter
base on X must be fixed. This is impossible because X is locally
paracompact. Hence, X has no maximal α-filter base and is para-
compact.
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THEOREM 14. If X is a regular (respectively Hausdorff) locally
paracompact space, Sz?(X) and the family of all free z-ultrafilters with
no a-paracompact elements are identical.

Proof. Every such £-ultrafilter must be an element of
Now suppose that &~ is in s*f(X). Then there is a free 2-ultrafilter
% containing &~ and by Theorem 12 no element of <%s is α-paracompact.
Hence J?~ equals <&.

Paracompactίfications using filter bases* In this section we take
up the construction of paracompactiίications obtained by adding limit
points to the various classes of filter bases discussed above.

DEFINITION 6. Let K (respectively Kl9 K2) be an index set for the
maximal ^-filter bases (respectively /3-filter bases, σ-filter bases) on
X, then define <s*fF(X) (respectively &F(X), S^F{X)) to be {J^ : k is in
K (respectively Kl9 K2) and J?h is a free maximal ^-filter base (respec-
tively /3-filter base, σ-filter base)}. For each set G in X define K{G)
(respectively KX(G), K2(G)) to be {k : k is in K (respectively Ku K2) and
there is an F in ^l contained in G}.

To establish the desired topologies on the extensions of X the
following result is needed, its proof is obvious.

THEOREM 15. If G and H are arbitrary sets, then K{G) Π K(H)
equals K(G ΓΊ H) and similarly for Kγ and K2.

Using the previous result, it is a simple computation to obtain the
following.

THEOREM 16. Let πX = {yk:keK, yk is not in X} [j X and
& = {H: H = G{J {yk:k is in K(G)} where G is a cozero set}. Then
& is a base for a tapology on πX. For Kx and K2 we may define
τzγX, &u and π2X, £@2 respectively with the analogous conclusion.

From now on we will be using results from Gillman and Jerison [7],
and hence will require all spaces to be Hausdorff and completely regular.
Let W (respectively Wl9 W2) be the subspace of βX obtained by adding
to X all points p in βX — X for which the £-ultrafilter Ap on X contains
a maximal α-filter base (respectively /3-filter base, σ-filter base). Denote
{Ap: p is in W (respectively W19 W2)} by A(X) (respectively B{X), S(X)).

THEOREM 17. If ^l is in j&(X) {respectively £¥{X), S^{X)) and
Ap is an element of A(X) (respectively B(X), S(X)) such that J^~k is
contained in Ap, then ^ k converges to p.
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Proof. Since the zero set neighborhoods of a point in a Hausdorff
completely regular space are a base for its neighborhood system, it is
sufficient to show that every zero set neighborhood of p contains an
element of ^l. Let V(p) be a zero set neighborhood of p, and let
V*(p) be a zero set neighborhood of p contained in the interior of V(p).

Let E = PP-int̂  V(p), since p is not in E there are disjoint zero
set neighborhoods of E and p, call them F(E) and F(p). Let U{p)
be the intersection of F(p) and V*(p). Then U(p) is a zero set neigh-
borhood of p, and U(p) is contained in int>Γ V(p). Let Z(p) = F(p) Π X,
Z*{p) = U(p) Π X, and Z(£?) = F(E)ΠX; then Z(p), Z*(p), and Z(E)
are zero sets in X. We also have ^(i?) Π Z(p) empty and
Z{p) U Z(E) = X. If p is in X, then it may be that Z(p) = F(p), or
^r*(^) = u(p), but all relations still hold.

Now suppose that Z(p) Π F is α-paracompact for some F in ,_^.
We have that Z*(p) Π ί7 and Z(E) are disjoint zero sets, and because
Z*(p) Π F must be in Ap, Z{E) cannot be in ^ . There is an F' in

such that F ' Π Z(E) is α-paracompact, but then

Ff r\F= {{Fr n f ) n z(#)) u ((F' n F) n

which must be α-paracompact because components of the union are.
This is impossible since Fr Π F is in &\. Hence, Z(E) must be in
^ h or else Z(p) f) F is not α-paracompact, the former is impossible so
the latter is the case. Therefore, Z(p) is in ̂ ~k.

The case for σ-filter bases has only the terminology changed in
the above proof. The case for /9-ίilter bases rests upon the fact that
in a Hausdorff completely regular space the union of two closed
/3-paracompact sets is /3-paracompact, so that the above proof holds
with appropriate terminology changes.

COROLLARY 17A. If X is a Hausdorff completely regular space,
there is a one-to-one correspondence between the filter bases in Jzf(X)
(respectively ^?(X), S^(X)) and the z-ultrafilters containing them.

COROLLARY 17B. Every element in Jϊf{X) {respectively
converges in W (respectively Wl9 W2).

If ^l converges to p in W, denote ^l by ^lip). The one-to-
one correspondence given by Corollary 17A illustrates the previously
mentioned fact that elements of J^(X), &{X), and £f(X) are
nearly ^ -ultrafilters, since in general, a z-filter is contained in many
2-ultrafilters.

THEOREM 18. Let U be the relative topology of the subspace W of
βX. The family <^w = {H: H = G U {p: k(p) is in K(G)} where G is
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a cozero set of X) is a base for U. Analogous statements may be made
regarding W1 and W2.

Proof. Let Z be in Z(X), G = X - Z, and H = W-c\w Z. If we
show H has the desired form, since {clw Z: Z in Z(X)} is a base for
the closed sets in W, we will have the topology generated by έ%?
contains %f.

Let q be an element of W — X. Suppose that q is in H, then
since J^k{q) converges to q, and ϋ i s a neighborhood of q there is an
F in ̂ liq) such that F is contained in H Π X = G. Therefore, {k(q): q
is in H) is contained in K(G). Suppose q is not in H. Then q is in
o\w Z and by the construction of βX given in [7], Z is an element of
A9. Hence, since F an element of <_̂ (<?) implies that F is in Aq, we
must have FίΊ Z nonempty and no F in ̂ k{q) is contained in Hf) X = G.
Therefore, K{G) is contained in {k(q):q is in H} and they are equal
Hence, H = G (J {g: q is in if} = G U {g: &(g) is in ϋΓ(G)}.

To show that the topology generated by ^ is contained in ^ ,
we show that every set in ̂  is a member of ^ . Let i J = G U {p fc(p)
is in K(G)} be an element of &. If p is in H, then there exists an
F in ̂ I ( ί )) such that F is contained in G, so that ί7 ΓΊ (X — #) is empty
and the zero set X — G cannot be an element of Ap. Hence p is not
in clw (X — G), and i ϊ is contained in W-c\w (X — G). If p is an element
of TF — iϊ, no F in ̂ I ( 2 ) ) is in G. Hence every F in ^k{p) has nonvoid
intersection with X — G. Therefore, X — G is an element of Ap and
p is not in W-clw(X — G), so that W-clw(X ~ G) is contained in H.
Hence i ϊ = TΓ - c\w(X - G) and H is an element of ^.

COROLLARY 18A. The space πX (respectively izλX, τuzX) is homeo-
morphic to a subspace of βX, namely W (respectively Wly W2) Hence
πX (respectively πjί, τt2X) is a completely regular Hausdorff space.

Proof. This follows from Theorems 16, 17, and 18; identifying &
and &w in the obvious manner.

We now commence a series of lemmas which lead to the result
that the extensions πX, 7ΓXX, and π2X are paracompact. The first two
are given simply for reference.

LEMMA 19. If ^ is a free z-filter on a completely regular
Hausdorff space, then ^° is also a free z-filter.

LEMMA 20. Let E be a dense subspace of a completely regular
Hausdorff space Y. Then, if d^~ is a free z-filter on Y with each
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element having nonvoίd interior, the trace of ^~ on E is a free
z-filter.

LEMMA 21. If a πX closed (respectively πxX closed, π2X closed)
set F is contained in X, then F is X a-paracompact (respectively
β-paracompact, X σ-paracompact).

Proof. Suppose that F is not X <£-paracompact. Then there is an
X open cover g" which covers F and has no X locally finite refinement
which covers F. Hence, ^ * = ^ (J (X — F) covers X and has no
locally finite refinement which covers X. Therefore, ^~ — {Z in Z(X): Z
contains the complement of the union of a finite subfamily of Ŝ *} is
a free α-filter base on X, and so F is contained in ̂ l{q), a member of
j^fF(X). Hence {Z in Z(X): F is contained in Z} is contained in ^l{q),
which implies q is in cl/τX F = F, and F is not contained in X.

The σ-paracompact case is analogous with the appropriate changes
in terminology.

Now assume F is not /3-paracompact, then F is not α-paracompact,
and there is a free α-filter base ά?~ on X such that J^ contains {Z in
Z(X) : Z contains F). For some 2-ultrafilter Ap and some ^'k{p) in
S^F(X) we have

^ ° c / " c ^ l ( p ) c Ap .

Note that while Ap is an element of A(X) we cannot assume Ap is
in B(X), however this is the case, as we now show. If Zp is the
intersection of a zero set neighborhood of p with X, Zp contains an
element Z of ̂ k{p) in int x ZP. Hence Zp is not /S-paracompact. If F
is an element of _̂ ~°, let Z* be an element of ̂  which is contained in
intxF, then

F n Zv =) intx (F n Zp) = (intx F) Π (intz Zp) Z) Z* Γ) Z

and F Π Zpis not /3-paracompact. Since the trace ^V on the ^-filter of
zero set neighborhoods of p is a ^-filter on X, and since p is a cluster
point of ̂ °, the family ^^" (j ̂ "° generates a /3-filter base containing
^° and converging to p. Hence there is a maximal /3-filter base ^
containing ^"° and itself contained in Ap. Therefore Ap is in B(X)
and p would be in c!τiXi^, which is a contradiction.

LEMMA 22. Let f be an element of C(X) which is bounded on the
complement of an a-paracompact (respectively closed β-paracompact,
closed σ-paracompact) set A by a real number M, then there is an
extension fπ (respectively f ,f") of f in C(πX) (respectively CfaX),
C(π2X)) which is bounded on the remainder by M.
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Proof. Since any / in C(X) equals (/ V 0) + (/ Λ 0), it is sufficient to
show the result for a function / ̂  0 satisfying the conditions in the
hypothesis. Now define g = (M + 1/2) Λ /, then g is in C*(X), and
g restricted to X — A is equal to / restricted to X — A. Since g is in
C*(X)9 there is an extension gπ in C*(τrX). Define fπ by f* restricted
to X is equal to / and fπ(yk) = gπ(yk).

For each k, fπ{yk) ^ M, since if gπ(yk) = r > M then the set
S = ̂ [ ( r — (r — m)/2, r + (r — m)/2)] is an element of the neighbor-
hood system of yk in πX. Hence S must contain a non X α-para-
compact element Z of ̂ l. But S f l X i s contained in A so that Z
would be X α-paracompact.

Now since r — gπ(yk) ^ M, let

M+l/2-rr+M+l/2-rV(r) = (r_M+l/2-r)r+

Then flrff<~[ F(r)] is a neighborhood of yΛ in πX. The neighborhood
is contained in the interval [0, M + 1/2], hence /**""[F(r)] = gπ<Γ~[V{r)].
Any neighborhood of r contained in V(r) is the preimage of a neighbor-
hood of yk under /**". Hence if U(r) is a neighborhood of r, then
there exists an ε neighborhood Vε(r) such that Vε(r) is contained in
U(r) Π F(r). The set fπ*~[Vε(r)] is in the neighborhood system of yk

in πX so that /ff<~[ϊ7(r)], which contains fΓ*~[Vε(r)], is a neighborhood
of yk. Therefore, fr is continuous at yk.

LEMMA 23. Let F be an X a-paracompact (respectively σ-para-
compact) set contained in a πX (respectively π2X) closed neighborhood
V, which is contained in X. Then F is πX a-paracompact (respectively
τr2X σ-paracompact).

Proof. Let gf be a πX open cover of F, and let 5f * = {G* : G*
is equal to G Π int x V, G an element of ^ } . Since V is X α-paracompact
by Lemma 21, if(int^F) is empty. Hence i n t x F = int^Fand ^ * in
both πX and X open. We can now obtain an X locally finite is open
refinement of 5^* which has all of its elements contained in i n t ^ F .
Hence the refinement of 5^* is πX open and πX locally finite, so F
is πX α-paracompact.

LEMMA 24. Let F be an X a-paracompact (respectively σ-para-
compact) set with an X a-paracompact (respectively σ-paracompact)
neighborhood. Then F is πX a-paracompact (respectively π2X σ-para-
compact).

Proof. Let G be the X open set containing F with c\x G being
X α-paracompact. In clx G, F and c\x G — G are closed disjoint sets.
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Since clx G is X α-paracompact and Hausdorff, it is a normal subspace
of X. Hence there are disjoint zero set neighborhoods Zx and Z2 in
Z(clx G) such that i^and clx G — G are contained in the interior with
respect to clx G of Zλ and Z2 respectively. Let h be an element of
C(clx G) such that Z, = hΓ (1), Z2 = K~ (0), and 0 ^ h ^ 1.

Define / taking X into the closed unit interval by / | clx G = h
and / I (X - G) = 0. The function/ is in C(X). If it is the case that
dx G — G is empty, we may immediately define / in C{X) by f[G] = 1
and /[X - G] = 0.

Let Z3 = {x : f(x) ^ 1/2}. .Then we have F c i n t β ^ c ^ c i n t β Z 3 c G.
The function / is bounded on the complement of Zz by 1/2, and Zz is
X α-paracompact. We apply Lemma 22 to get f* in C(πX) such that
fκ is bounded on the remainder by 1/2. Hence Z1 is in Z(πX) and is
a TΓX closed neighborhood of F.

THEOREM 25. TΓX (respectively TΣΊX, π2X) is paracompact.

Proof. If πX is not paracompact, there is a free maximal α-filter
base &~ on TΓX Corollary 8C. By Theorem 5 ^ is a ^-filter. Let J ^ *
be the trace of the s-filter ^"° on X Then ^ " * is a free z-filter.

Suppose Z* is an element of t_^r*, we wish to show that Z* is
not X α-paracompact. There exists a Z in .^Λ such that Z ΓΊ X = ^*.
Let Z' be an element of ^ such that Z' is contained in int πXZ. If
Zr is contained in X then Zf is X α-paracompact by Lemma 21, and if
we assume Z* to be X α-paracompact then Z' is πX α-paracompact by
Lemma 24. Therefore, Zf Π (TΓX — X) is not empty, but then
(intπXZ) Π {τιX — X) is not empty. For each yk in (intπXZ) Π (πX — X),
the intπXZ is a neighborhood of 2/fc. Hence Z must contain an element
F of «^. Since F is then contained in Z* also, Z* is not X α-para-
compact.

Since ,_^r* is an α-filter base on X, there is a maximal α-filter
base Λ/~* on X which contains ^ " * , and since ^ " * is free so is ^x^*.
Hence ^ f * converges to some yk in πX — X. Let ^ * be the unique
a -ultrafilter on X containing ^/"*. Let % be the ^-filter on πX
generated by {cl ZXZ:Z is in ^ * } . The set of cluster points of I P
contains #*> so there is a ^ -ultrafilter ^/ on πX containing ^ and
converging to 7/fc.

Since &~ is a free ^-filter on πX, it cannot be contained in the
convergent 2-ultrafilter ^ . Therefore, there is an E in &~ and an
E* in ^ which are disjoint. Hence E and i£* have disjoint zero set
neighborhoods V and F*. The zero set V is in ^° which implies
Ffl X is in ^* and F contains cl r X (FΠ X) so F is in W. There-
fore, F and F* are both elements of ^ , which is absurd. We have
a contradiction and the proof for the space πX is complete.
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The proof for the space π2X requires only the appropriate termi-
nology changes in the above. For the space πγX> we may use the fact
that /3-paracompactness is a property which is dependent only on the
set, so the application of Lemma 24 is not necessary. Other than this
change the proof is analogous to that for πX.

COROLLARY 25A. The three paracompactificatίons are T4 spaces.

The question as to the relation which exist among πX, πtX9 and
π2X is answered in the following.

THEOREM 26. The three paracompactίfications constructed above
are identical.

Proof. Since all the paracompactiίications are subsets of βX, we
need only show that for points in the remainder, the families of
2-ultrafilters are identical.

Let Ap be a 2-ultrafilter converging in πX — X with its associated
maximal α-filter base ^lip). Let V be a basic open set in πX con-
taining p. Then there is an element F of ^Up) contained in V Π X.
The set Z = X - (VΓi X) is a zero set of X. Since Z and F are
disjoint zero sets, they have disjoint zero set neighborhoods ZQ and F°.
The set F° is an element of the /3-filter base ^~l{p), and F° is contained
in VΠX. Hence ^\{p) converges to p. We can then find a free
maximal /3-filter base converging to p and contained in Ap. Therefore,
Ap is in B(X).

Now suppose Ap is a 2-ultrafilter on X converging to a point in
πxX — X with its associated maximal /S-filter base ^lip). Now ^k{p)

is a free α-filter base which has a unique z-ultrafilter Ap containing
it. Hence the free maximal α-filter base containing ^1{P) must be
contained in Ap, and Ap is in A(X). We have A(X) = B(X) and πX
is identical to πγX.

A similar argument established πγX to be identical to 7Γ2X.

THEOREM 27. A completely regular Hausdorff space X is locally
paracompact if and only if X is open in πX.

Proof. The proof of this is a straight forward argument and so
is omitted.

THEOREM 28. If X is a Hausdorff locally paracompact space, then
F is X a-paracompact if and only if Q\πx F = F.

Proof. Necessity. If F is X α-paracompact, then for each yk in
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πX — X we may apply Theorem 11 to get a zero set Zk in J?k which
is disjoint from F. The set given by (intx Zk) U {Y, 3 is in K(mtx Zk)}
is a neighborhood of yh in πX and is disjoint from F.

Sufficiency. This follows from Lemma 21.

COROLLARY 28A. If X is a locally paracompact Hausdorff space,
and F is an X a-paracompact set, then F is πX a-paracompact.

THEOREM 29. Let X be Hausdorff and completely regular, let G
be an open subset of X, and let G* = G U {yk k is in K(G)}. Then

Proof. Clearly G is contained in G*, so that clπXG is contained
in c\πXG*. If yk is in G*, then there is an Fk in ^l such that Fk

is contained in G. Since _ ^ converges to yk, every neighborhood of
yk has nonvoid intersection with Fk and hence G. Therefore, G* is
contained in dπx G, and so c\πX G* equals c\πX G.

THEOREM 30. Let vX be the Hewitt Realcompactification of X.
Then vX is contained in ΊZX. (This result and the next require all
cardinals to be nonmeasurable.)

Proof. We know vX is the smallest realcompactification of X.
Since πX is paracompact, it is realcompact and vX Π πX is realcompact.
Hence vX must be contained in this intersection.

THEOREM 31. For a Hausdorff completely regular space X the
following are equivalent.

(1) πX is identical to vX.
(2) A(X) is identical to the family of real z-ultr a filters on X.
(3) For each f in C(X) and each J^k in SzfF(X) there is an

element Zf of ^ k such that f is bounded on Zf.

Proof.
(1) => (2) This is obvious.
( 2) ==> ( 3) If A(X) is identical with the family of real ^-ultra-

filters on X, then every _ ^ in J^F(X) is contained in a unique
2-ultrafilter with c.i.p. If some / in C(X) is unbounded on every
element of _ ^ , then for every positive integer n, Zn = {x: \f(x) | ^ n)
has nonvoid intersection with every Z in ̂ k . Hence ̂ k U {Zn : n = 1,
2, •••} generates a ^-filter which contains J^l and does not have c.i.p.
This is a contradiction.

(3)=>(1) Let ̂ kiq) be an element of sfF(X). We show that



298 J. D. WINE

Aq is real. Let /* be the Stone extension of / into the one-point-
compactification of the real numbers (see § 7.5 of [7]). Then by
Theorems 5.7 and 7.6 in [7] we have f*(q) Φ ©o, since Zf is an element
of Ag for each / in C(X). Hence Aq is real, πX is contained in vX.

We shall continue to use /* to represent the Stone extension of
a function / in C(X) into the one-point-compactification of the real
numbers.

THEOREM 32. Let X be a Hausdorff completely regular space, and
let f be in C(X). Then there is a continuous extension fπ in C(πX)
of f if and only if the z-filter f*(^l) — {Z, a zero set in the real
numbers: f~\Z\ is in ^k) converges, for every J?k in J^F(X). (For
properties of /* see §§4.12 and 10.17 of [7].)

Proof. Necessity. Since fπ is continuous, the filter generated by
the image of the neighborhood system of yk in πX converges. Now
^l is a base for a filter &* which contains the neighborhood system
of yk in πX. Therefore the filter generated by {S: S = fπ[F] where
F is in ^1} converges to the real number r — fπ(yk). Hence every
zero set neighborhood of r is an element of this filter. Since every
F in ^l is contained in X, the filter generated by {S: S = fπ[F], F
is in ^1} equals the filter generated by {S: S = f[F], F is in ^ } .
For each zero set neighborhood V(r) of r, fπ"[V(r)] is a zero set
neighborhood of yk, so fπ*~[V(r)] i l l is in ^k, and equals f*~[V{r)\
giving f\^k) convergent.

Sufficiency. To show / has an extension to πX it is sufficient to
show that the limit of the filter generated by S = {f[X Π V] : V is a
neighborhood of yk in πX} exists for every k in K. Let r be the limit
of /*C^I). Then if V(r) is any zero set neighborhood of r, there is
a Z in / # (^I) which is contained in int V(r). Hence f~[Z] is in ^ k

so that Γ\V(r)\ contains an element of J ^ , and f(Γ"[V{r)]) = V(r) is
an element of S, and we are through.

DEFINITION 7. For a Hausdorff completely regular space X, define
σ{X) - {/ in C(X) : f*(p) Φ ^ for every p in πX}.

We note without proof that Cr is identical to {/ in C(X) : πX is
contained in vfX) where vfX is the realcompact subspace of βX equal
to {p in βX:f*(p) Φ OO}. Hence πX = Π {vfX:f is in Cπ}. (See 8B2
and 8B3 in [7].)

THEOREM 33. Let f be in C(X). Then f has an extension fπ in
C(πX) if and only if f is in Cπ(X).
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Proof. Necessity. If / has an extension fπ in C(πX), then /* and
fπ must agree on the dense subset X of πX. Both f* and /* may
be considered as functions into the one-point-compactification of the
real numbers. Hence both are defined for all of πX and must agree.
Since fπ(p) Φ °° for all p in πX, neither is /*, and / is in Cπ(X).

Sufficiency. If / is in Cπ(X)9 f* is a real valued continuous ex-
tension of / to all of πX.

COROLLARY 33A. The family Cπ(X) is a subring of C(X) and is
isomorphic to C(πX).

THEOREM 34. Let f be an element of C(X). Then Zf = {p in
βX: f*(p) Φ c°} is a zero set in βX.

Proof. Define g = | /1 V 1. Then Zf = Zg and it will suffice to
show the result for functions bounded away from zero and positive.
Assume / ^ 1 and define h = 1// then h is in C*(X) and has an
extension hβ in C(βX). The functions hβ and h* are equal. Now
/* I (βX - Z(hβ)) and l/hβ \ (βX. - Z{hβ)) are both extensions of / and
must be equal. Hence Zf and Z(hβ) are equal, for otherwise hβf* would
equal 1 for some point in Zf or Z(hβ).

THEOREM 35. If βX — πX is not empty, it has carinality greater
than or equal to 2C.

Proof. Let / be in CΓ{X) and let Zf be nonvoid. Then Zf is
contained in βX — πX. Since Zf intersects the closure of πX but not
πX\J X we apply Theorem 9.4 in [7] to get the result.

DEFINITION 8. A function / in C(X) bounded on the complement
of an X α-paracompact set is essentially bounded.

THEOREM 36. A function f in C(X) has an extension fπ in C(πX)
bounded on the remainder if and only if it is essentially bounded.

Proof. Necessity. If / in C(X) has the extension /" in C(πX)
with bound M on the remainder, then for each yk in the remainder
the set Vk(ε) = fπ*-[{f{yk) - ε/2,f(yk) + e/2)] is an open neighborhood
of yk for ε > 0. The set πX— U {Vk{e) : yk is in πX — X) is an X
α-paracompact set which has/ bounded by M + ε/2 on its complement.

Sufficiency. This is simply Lemma 22.

THEOREM 37. If πX — X is pseudocompact, then the family of
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essentially bounded functions on X is Cπ(X).

We wish to give some results now which present properties of
α-filter bases in relation to various other properties.

THEOREM 38. The maximal a-filter bases are prime z-filters.

Proof. This is an easy computation and is omitted.

We recall that ^k{q) is the unique free α-filter base on X contained
in the 2-ultrafilter Aq.

THEOREM 39. If ^ k is in Sf{X), then ^k{q) contains Z[0q] (for
properties of 0q see 41, 7.12 - 7.15, 7H in [7]).

Proof. Every prime ideal in C(X) is contained in a maximal ideal
Mp, and contains an 0* for unique p. Z*~[J?l] is a prime ideal. Hence
Z[Z^[J?k{q)]\ contains Z[0q].

COROLLARY 39A. If Xis a P-space, then ^"k{v) = Z[0p] (for proper-
ties of P-spaces see 4J, K, L, 5P, and 7L in [7]).

COROLLARY 39B. If X is a P-space, then cl πXZ = Z for a-para-
compact Z.

THEOREM 40. Let ^l be a free a-filter base such that the open
cover consisting of the complements of members of J?l has no locally
finite open refinement which covers X. Then the intersection of any
subfamily J?~* of j ^ k , which has locally finite complements, is a
member of ά?k.

Proof. Let J ^ be an element of J^F(X), and let gf be {G : G =
X — Z, Z in _^Q. Since & has no locally finite refinement which
covers X, every locally finite subfamily S *̂ of ^ must have
Π {Z: Z = X - G, G in gf *} to be nonvoid. Let Z* be such an inter-
section. We show Z* to be in Fk. If Z* is not in Fk9 then there is
an F in ^ k such that F Π Z* is α-paracompact. Then 3ίf = {G : G
is in 5^* or G = X — F} is an open locally finite refinement of ^ .
There is an open locally finite refinement £ίf* of ^ which covers
Ff) Z*. Then Jg^ u ^ ^ * is a locally finite open refinement of & which
covers X, and we have reached a contradiction.

THEOREM 41. Let X be a space such that for every ̂ k in
the family {G : G = X — Z, Z in ^k) has no open locally finite refine-
ment which covers X. Then for any paracompactification Y of X every
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in s$f(X) must converge in Y.

Proof. Suppose that ^l in JzfF{X) does not converge in Y. Let
= {F: F = clyZ, Z in ̂ k). Then since ^l does not converge in Y,

{G : G = y — F, F in J^} is a Y open cover of Y. Since Y is para-
compact, there is a Y open locally finite refinement ^ * = {G* : j" is in
J) which covers Y. Then {G, : G, = Gf Π X, G* in gf *} is an X open
locally finite refinement of {G : G = X — Z, Z in .JQ which covers X.

THEOREM 42. Let X be a space such that for every ^ k in
the family {G: G — X — Z, Z in <JQ has no open locally finite refine-
ment which covers X. Then if Y is any Hausdorff paracompactification
of X, there exists a continuous function f: πX —> Y that holds X
pointwise fixed.

Proof. Define the function g: X—> Fby g(x) — x. Let g be the
Stone extension of g taking βX into βY and define Xo = g"[Y]. Let
f — g \ χo. Then / is continuous, onto Y, and holds X fixed. Since
^l in jyF(X) must converge in Y to some point y, ̂ k must converge
to some element in f*~(y) Therefore, πX is contained in Xo, and
f — f\ itX is the desired function.

COROLLARY 42A. If X is a space such that for every ̂ l in s>fF{X),
the family {G: G = X — Z, Z in J^l} has no locally finite open refine-
ment which covers X, then πX is the smallest paracompactification
contained in βX.

THEOREM 43. Let X be dense in a Hausdorff completely regular
extension Y such that all J^Ί in SzfF{X) converge in Y. Then Y
contains a paracompactification of X. Further, if Y — X consists only
of limit points of the J^l in SzfF{X) then Y is paracompact.

Proof. Let f:X—>Y be the identity map, let / be the Stone
extension of / into βY, and let Xo = f"[Y]. If /„ = / | Xo, then f0 is
a closed continuous extension of/onto Y, and f[X0 — X] is contained
in Y- X. (See §§10.13 and 10.15 in [7].)

We show that Xo contains πX. Let p be an element in πX — X,
let yp be an element of Y such that Ap converges to yp in Y, and let
V=f(p) Suppose that y is not identical to yp. Then there are
disjoint open neighborhoods V(y) and V(yp) in Y. If V(p) = f*~[V(y)],
G =f*~[V(yp)], then we must have V(p) Π G empty. Since Ap converges
to yp there is a Zp in Ap that is contained in V(yp)9 and hence G, since
/ is the identity. But V(p) is a neighborhood of p in πX, so that
there is an element Zy of Ap contained in V(p). Hence Zy does not
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intersect Zp which is impossible so yp = y, and πX is contained in Xo.
The set f<\πX] contains X, and is /3-paracompact in Y, since f0 is

a closed continuous function. Therefore, / 0 [πJ] is a paracompactiίi-
cation of X contained in Y.

The second assertion follows, since if Y satisfies the given condition,
fo[πX] = Y, and Xo = πX.

THEOREM 44. Let X be a space such that for every ̂ l in
the family {G: G = X — Z, Z in J^l} has no open locally finite refine-
ment which covers X, and let X be dense in a Hausdorff completely
regular extension Y. Then Y contains a paracompactification of X
if and only if Y — X contains a limit point for every J^k in J%?P(X).

Proof. The proof follows from Theorems 41 and 43.

THEOREM 45. If Y is a Hausdorff paracompactification of X such
that some Sr

k in JzfF(X) does not converge in Y, then there is an X
locally finite partition of unity £f contained in Zχ[

Proof. Suppose that ά?k is in *szfF{X) and does not converge in
Y. Then {clF Z: Z is in J?k) has void intersection and generates the
free z-filter JT'* on Y. Let gf = {G: G = Y - Z, Z in &~*}. Then
& is an open cover of Y. Since Y is Hausdorff, there is a locally
finite partition of unity subordinate to ^ , call it g7. If / is in ^,
then Zγ{f) contains some Z ΐvom ^~i* Hence / | X is in Zχ[<β^k], and
there is the subfamily £f = {/ | X:f is in if} of Zχ[J?k] which is an
X locally finite partition of unity.

THEOREM 46. Each J?l in SsfF(X) has the property that the family
[G : G = X — Z, Z is in J?l} has no locally finite open refinement which
covers X only if Z-"l^~k] contains no locally finite partition of unity.

Proof. A locally finite partition of unity which is contained in
Z~\& k] yields a locally finite open refinement of {G : G = X — Z, Z in
^k) by cozero sets.

THEOREM 47. A space X is nonparacompact if and only if for
each free z-filter j ^ ~ there is a family 5^* which consists of comple-
ments of elements of J^~ and has no locally finite open refinement.

Proof. Necessity. Let ̂ ~ be a free ^-filter, and let & — {G3:j
is in J} be an open cover of X which has no open locally finite
refinement. For each x in X, let Gx be an element of ^ which contains
x. Let Z be a zero set which contains x in its complement, and such
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that the complement of Z is contained in Gx. For each x in X let Zx

be that element of J^ which contains x in its complement. Then the
family gf * = {X - Fx: Fx = Z U ZXJ x in X) is the desired family of
open sets.

Sufficiency. This is immediate.

J. Van der Slot [12] and H. Herrlich ([8], [9], [10]) have done work
pertaining to extensions of spaces. If β is a property of topological
spaces a β-extension of X is a space ΊX containing a dense homeo-
morphic image of X and having property β. A /S-extension yX of X
is maximal if for each continuous function / of X into a space Y
having property β there is a continuous extension of / to all of ΎX.
A space Xis β-regular if it is homeomorphic to a subspace of a space
which is the product of spaces each having property β. The following
theorem is due to Van der Slot [12].

THEOREM 48. Let β be a property possessed by Hausdorff spaces.
Then a β-regular Hausdorff space has a maximal β-extension if and
only if β is closed hereditary and productive.

From the above theorem and the fact that paracompactness is not
productive we have the following:

THEOREM 49. A Hausdorff space X does not in general possess
a maximal paracompactification.

It would be of interest to obtain a characterization of those spaces
X which have AF{X) such that if F is in AF(X) then {G: G = X- Z,
Z in F) has no locally finite open refinements. It would also be
interesting to know if it is true in general that πX is the smallest
paracompactification of X contained in βX.
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