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A. R FREEDMAN

"Additivity theorems" are approximations to countable
additivity for set functions. A special case of the additivity
theorem for natural density in ^-dimensions is proved. To
accomplish this a slightly different ^-dimensional asymptotic
density is defined for which the additivity theorem holds in
general.

The additivity theorem (AT) for the case of sets of nonnegative
integers reads as follows: If Au A2, is a disjoint sequence of sets
each of which possesses natural density (i.e., for each ΐ,

exists), then there exists a sequence Bl9BZ9 such that, for each i9

Ai ~ Bi (i.e., the symmetric difference of At and B4 is finite), the
natural density of 7 = [Jΐ=ι Bi exists and v(V) = Σ£=i^(^) This is
as close as we can get to countable additivity for natural density.

In [3] the author has generalized asymptotic density and natural
density to sets of ^-dimensional lattice points. The reader is referred
to that paper with respect to all concepts and notations which remain
undefined below. The question naturally arises as to the validity of
the AT for this generalized natural density. Firstly, it seems natural
to define A ~ B to mean that the symmetric difference of A and B
is contained in J(N) for some N. Then we may conjecture: If A19

A2y is a disjoint sequence of subsets of S (S = all ^-tuples of non-
negative integers) where v(At) exists for each i, then there exists
BUBZ, ••• with Bi ~ Ai for each i such that v{\JZ=ιB^) exists and
equals ΣΓ=i^(^)

At present we are able to prove only a special case of this con-
jecture, namely, when v(At) — 0 for each i. (Using [3, Theorem 5.5]
we could trivially extend this to the case where v(At) Φ 0 for at most
finitely many i.) To accomplish the proof of the special case we
shall, in § 2, introduce a slightly different asymptotic density, upper
asymptotic density and natural density in w-dimensions. For this last
density we prove, in § 3, the AT and apply it, in § 4, to the special
case involving our original density.

2 The ^densities* We consider first the Schnirelmann type
^-density of a set A £ S (see [2]). It is
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We then define the <g*-asymptotic density of A:

= lim d^(A U J(N)) .

Continuing, in analogy to [3, § 5], we define the upper ^-density of
A to be

the upper ^-asymptotic density of A to be

= lim d

and finally, the ^-natural density of A to be v^{A) = δ^(A) -
when the second equality holds.

The densities d, δ, d, δ, and v of [3] will be referred to as if-densi-
ties since they depend on "d" which is commonly called "ϋΓ-density".
In § 4 we shall need to compare the K- and ^-densities.

3* The additivity theorem for ^-natural density* We shall
say that a sequence (xd) of point of S converges to infinity ({xj)—><*>)
if, for each i = 1, 2, , n9 the ith coordinate of Xj converges to
infinity as j -+ co. Two useful corollaries will follow from the

LEMMA. Let A £ S. Then v*>(A) exists if and only if, for each
sequence (Xj) —• oo, we have

limA{LiXί)) exists .
i - S(L(x,))

In this case all the limits are the same and

for each sequence (x/) —> oo.

Proof. Our methods follow closely to those of [3, Theorems 2.6,
2.7, 5.2, 5.3, 5.4]. Therefore, much will be left for the reader. By
[3, Lemma 2.2] we have, when (Xj)—*oo, that

(1) SjLjx,) Π J(N))
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for each N. Thus, for each N,

S(L(xs))

im [AϋJ(N)](L(Xj)) _ H A(L(Xj))

the last equality following from (1) above. Hence, letting
we obtain

(2) 8

Similarly we may obtain

(3)

Now, using [3, Lemma 2.2], for each j , choose M3- > 0 and xdeS
such that

u

Clearly (x, ) —> oo and

-g dAA u J ( M i ) ) + 1
2 3

so that [A u JifiKUxMlSiLiXj)) — δv(A) as j — oo. But

[A U JQ )] (L(xy)) _ S(J(j) Π L(jc,» ^ A{L{x3)) £ [ i
)) S{L(x,)) ~ S(L(Xi)) ~ S(L(Xj))

whence we have proved that there exists a sequence (xs) —> oo such
that

(4)

Similarly we may find (y3) —<• co such that

(5)

Finally, using (2), (3), (4), and (5) we may, as in [3, Theorem 5.4],
complete the proof of the Lemma.
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COROLLARY 1. If v&(A) exists, then, for each ε > 0, there exists
an N = N(ε), such that, if xeS\J(N), then

< ε .

Proof. If there is an ε > 0 such that for each N there is an
xNeS\J(N) with

A(L(xN))
S(L(xN))

^ β ,

then (ΛΓ̂ ) —> oo but A(L(xN))/S(L(xN)) does not converge to v^(A) con-
trary to the Lemma.

COROLLARY 2. v&(A) is a finitely additive set function.

Proof. For Al9 , Ak disjoint and each possessing ^-natural
density, take any (Xj) —•oo. Then, by the Lemma,

A ( L ( χ ) )

S(L(ΛΓ)) * iS(L(Xj))

as j —+oo.

THEOREM. (Additivity theorem for ^-natural density.) Let
be a sequence of subsets of S, pairwise disjoint and such that v^{
exists for each i. Then there exists a sequence (B^) of sets such that
Bi~ Ai for each i, vr((JΓ=i ̂ ) exists and equals

Proof. The £/s shall be of the form B{ = Ai\J(Ni) for suitable
integers N*. Firstly, for arbitrary Nif let V = UΓ=i B% Then, for
each k, since F D ^ U ^ U U Bk and applying Corollary 2 we have

K(βx U U ft) = M f t U U -ft)

Thus σ = ΣΓ=iM-A*) exists and δ^
We now choose suitable iV/s to assure that S^(F) ^ o . We apply

Corollary 1 noting that, by Corollary 2, the sets Alf Aι (J A2, Ax u A2 U
A3, possess ^-natural density. Take JVΊ = — 1 (i.e., J5X = AJ and,
for k ^ 1, choose iV&+1 > iV̂  such that Λ: G S\J{Nk+1) implies

) ^ vΛAι) + ... + MA 4 + I ) + I
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Now, in accordance with (5) above, find a sequence (xj) —> co such
that

S(L(xj))

Let m(j) be such that x3 e J(Nm{j)+1)\J(Nm{j)). Clearly m(j) —> oo as
j —» oo. We have

= Kmm Iim
-~ S(L(xj)) ;->- S(L(Xj))

rr- Aλ(L{X3))

^ lim (MΛ) + + MA^) + —i—-) = σ .

This completes the proof of the Theorem.
We mention here that the author's student, Mr. F. Wong, has

obtained, in the course of his M.Sc. research, the following related but
slightly different result (see [1]): Let A, <ΞΞ A2 £ S S be an in-
creasing sequence of sets. Then there is a sequence (J^) such that
Bt ~ Ai for each i,

and

4* Comparison of ^" and iΓ-asymptotic densities and the
special case of the AT for iΓ-natural density* It is evident from the
definitions and (2) and (3) above that, for each A g S , δ(A) ^ δ«,(A) ^
δr(A) ^ δ(A). Thus, if the iΓ-natural density of A exists, then so
does the ^"-natural density and the two are equal. We venture to
conjecture the converse, namely, if the ^-natural density of A exists
then so does the iT-natural density. If this conjecture is ture, then
the AT for if-natural density is clearly proved by applying the above
theorem. However, we can prove only a little part of this conjecture,
namely, that v^(A) = 0 if and only if v(A) = 0. From this, with the
AT for ^-natural density, follows immediately the special case of the
AT for iΓ-natural density promised above.

For ι>v(A) = 0 <=> v(A) = 0 it suffices to show that

(7) 8r(A) - 0 — δ(A) = 0 .

We use the remarkable result of B. Mϋller [4, Satz 8] which implies,
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for our purposes, that

8 > effiΐi1 =(1 - ( 1 -
where F e X and, of course, w is the dimension of S (see [2, Theorem
17]).

Now (7) will follow immediately from

δ(A) ίS 1 - (1 - (

which in turn follows, upon taking the limit as N—*°o, from

(9) d(A\J(N)) ̂  1 - (ί*L±iVL=_ΐ) (1 - (dv{A\J{N))Y'r .

To prove (9) we take an arbitrary Fz^ίΓ and show that
[A\T(N)](F)/S(F) does not exceed the right hand side of (9). If the
point (N,N,'-,N)<£F, then [A\J(N)](F) = 0 and we are done.
Hence, assuming that (N, ",N)eF, we have [A \j J(N)](F) ^
(N + 1)" - 1 (here A = S\A). We have, applying (8),

[A U J(N)] (F) > [A U J(N)](F) . [A U J(N)](F) + 1
S(F) [A U J(iV)](F) + 1 Sίί*) + 1

. - (1 - cMJΪ U
(N

so that

[A\J(N)](F)
 = χ
 _ [A

(IV + 1)"
u

We obtain (9) if we can show that d¥(A U J(N)) ^ 1 - dv(A\J(N)).
But this is easy since, for each Λ: e S\0, we have

[AϋJ(N)](L(x)) = 1 _ [A\J(N)](L(x)) χ _ a

We conclude with an example which shows that, while y and yy

may be the same, δ and δ& are not. We leave to the reader the task
of proving that δ(A)φδ^(A) where A is defined presently.

EXAMPLE. Let S be of dimension two. For integers a and 6 let

D(a, b) = [U((a + b, a)) Π L((a + 2b, a + b))]

U [U((a, a + b))Π L((a + b, a + 26))].
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Take at = bt — 1, ai+1 = a{ + 2bif bi+1 = (α< + 1)! and define
A = S\\JT=ιD(ai,bi).
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