MULTIPLIERS AND THE GROUP L_p-ALGEBRAS

JOHN GRIFFIN AND KELLY DENIS MCKENNON
MULTIPLIERS AND THE GROUP L_p-ALGEBRAS

JOHN GRIFFIN AND KELLY McKENNON

Let G be a locally compact group, p a number in $[1, \infty[$, and L_p the usual L_p-space with respect to left Haar measure on G. The space L_p' consists of those functions f in L_p' such that $g*f$ is well-defined and in L_p for each g in L_p. Since each function in L_p' may be identified with a linear operator on L_p which, as it turns out, is bounded; the operator norm may be super-imposed on L_p' and, under this norm $\| \|_p$, L_p' is a normed algebra. The family of right multipliers (i.e., bounded linear operators which commute with left multiplication operators) on any normed algebra A will be written as $m_r(A)$ and the family of left multipliers as $m_l(A)$. The family of all bounded linear operators on L_p which commute with left translations will be written as \mathfrak{M}_p.

It was shown in a previous issue of this journal that the Banach algebra \mathfrak{M}_p is linearly isomorphic to the normed algebra $m_r(L_p')$, whenever the group G is either Abelian or compact. This fact is shown, in the present paper, to hold for general locally compact G. The norm $\| \|_p$ is defective in that, unless $p = 1$, $(L_p, \| \|_p)$ is never complete.

An attempt will be made in the sequel to supply this deficiency by the introduction of a second norm $\| \|'_p$ on L_p' under which L_p' is always a Banach algebra. It will be seen that, for $p = 2$ (and of course for $p = 1$), the Banach algebra $m_r(L_p', \| \|'_p)$ is linearly isometric to \mathfrak{M}_p.

Let G be a fixed, but arbitrary, locally compact topological group with left Haar measure λ. Write C_0 for the family of continuous, complex-valued functions on G with compact support.

Let p be a fixed, but arbitrary, number in $[1, \infty[$ and write $\| \|$ for the norm on the Banach space $L_p = L_p(G, \lambda)$. The group L_p-algebra L_p' is the set

$$\{ f \in L_p : g*f \in L_p \text{ for all } g \in L_p \}.$$

A function $f \in L_p$ is said to be p-tempered and, as shown in [3], the number

$$\| f \|'_p = \sup \{ \| g*f \|_p : g \in C_0, \| g \| \leq 1 \}$$

is finite. Conversely, if $\| f \|'_p$ is finite for some $f \in L_p$, then—as proved in [3]—f is p-tempered and there exists precisely one operator W_f in \mathfrak{M}_p such that

$$\| W_f \| = \| f \|'_p \text{ and } W_f(g) = g*f$$

The number $\| f \|'_p$ is finite if and only if $f = w*h$ for some $w \in L_1$ and $h \in L_p$. The number $\| f \|'_p$ is independent of the choice of $h \in L_p$ corresponding to $f = w*h$.
for all $g \in L_p$.

Let Δ be the modular function for G and let

$$L_{1,p'} = \{ f^{\Delta:i} : f \in L_1 \} \quad (p' = p/(p - 1))$$

which is linearly isometric to L_1 when it bears the norm $|| \cdot ||_{1,p'}$ defined by

$$(2) \quad || h ||_{1,p'} = \int_G |h| \Delta^{-1/p'} d\lambda$$

for each $h \in L_{1,p'}$. As in [1], 20.13 and [2], 32.45, we see that L_p may be viewed as a right Banach $L_{1,p'}$-module and

$$(3) \quad || g*h ||_p \leq || h ||_{1,p'} || g ||_p$$

for all $h \in L_{1,p'}$ and $g \in L_p$. Consequently, for each $f \in L_{1,p'}$, there exists precisely one bounded linear operator W_f on L_p such that, for all $g \in L_p$,

$$(4) \quad W_f(g) = g*f \quad \text{and} \quad || W_f || \leq || f ||_{1,p'}.$$

It is clear that C_0 is a dense subset of $L_{1,p'}$ and so, since $\{ W_f : f \in C_0 \}$ is a subset of the Banach space \mathcal{M}_p, we have

$$(5) \quad \{ W_f : f \in L_{1,p'} \} \subset \mathcal{M}_p.$$

We define the space of p-well tempered functions to be

$$L_{p}^w = \{ h*f : h \in L_p', f \in L_{1,p'} \}.$$

The closure \mathcal{M}_p of the set $\{ W_f : f \in L_{p}^w \}$ in \mathcal{M}_p, was studied in [3]. Its Banach algebra of left multipliers can be identified with \mathcal{M}_p ([3], Th. 6) and it possesses a minimal left approximate identity $\{ W_h \}$ such that $\{ h \} \subset C_0*C_0$ and

$$(6) \quad \lim_{\gamma} || W_{h_\gamma} \circ T \circ W_{h_\gamma}(g) - T(g) ||_p^r = 0$$

for each $g \in L_p^w$ and $T \in \mathcal{M}_p$ (see [3], proofs to Theorem 3 and Lemma 1).

Lemma 1. Let $T \in \mathcal{M}_p(L_p', || \cdot ||_p^r)$ be such that $T(g) = 0$ for all $g \in L_p^w$. Then $T = 0$.

Proof. Assume that $T \neq 0$. Then there exists some $h \in L_p'$ such that $T(h) \neq 0$ and some $g \in C_0$ such that $g*T(h) \neq 0$. Let $\{ h_\gamma \}$ be the net in C_0*C_0 which appears in (6). It follows from (6) that

$$0 = \lim_{\gamma} || W_{h_\gamma} \circ W_h \circ W_{h_\gamma}(g) - W_h(g) ||_p^r$$

$$= \lim_{\gamma} || g*h_\gamma*h_\gamma - g*h ||_p^r.$$
Note that $g * h * g * h$ is in L_p^w for each γ and so

$$
\| g * T(h) \|_p^* = \| T(g * h) \|_p^*
$$

$$
= \lim_{\gamma} \| T(g * h * g * h) \|_p^* = 0 :
$$

an absurdity. Thus, $T = 0$.

Theorem 1. Define $\omega : M_p \to m_r(L'_p, \| \|_p^*)$ by letting $\omega_r(f) = T(f)$ for each $T \in M_p$ and $f \in L'_p$. Then ω is a surjective, isometric, algebra isomorphism.

Proof. Assume false. By [4], Theorem 1, there exists some $T \in m_r(L'_p, \| \|_p^*)$ such that $T \neq 0$ and

$$
T(V(f)) = 0 \text{ for all } V \in \mathfrak{A}_p \text{ and } f \in L'_p.
$$

Since \mathfrak{A}_p possesses a left minimal approximate identity, it is clear that the set $\{V(f) : f \in L'_p, V \in \mathfrak{A}_p\} \cap L^w_p$ is dense in $(L^w_p, \| \|_p^*)$. This implies that

$$
T(g) = 0 \text{ for all } g \in L^w_p.
$$

By Lemma 1, $T = 0$: an absurdity.

For each $f \in L'_p$, let

$$
\| f \|_p^* = \| f \|_p^* + \| f \|_p^*.
$$

We have used the symbol $\| \|_p$ to represent the operator norm on M_p. The map ω defined in Theorem 1 shows that $\| \|_p$ also is the operator norm on M_p when M_p is regarded as a family of operators on $(L'_p, \| \|_p^*)$. We may regard M_p as a family of operators on the normed space $(L'_p, \| \|_p^*)$ and, in this case, we shall write $\| \|_p$ for the operator norm.

Lemma 2. For each $T \in M_p$, we have

$$
\| T \|_p \leq \| T \|.
$$

Proof. For $g \in L'_p$, we have

$$
\| T(g) \|_p^* = \| T(g) \|_p^* + \| T(g) \|_p^*
$$

$$
\leq \| T \| \| g \|_p^* + \| T \| \| g \|_p^* = \| T \| \| g \|_p^*.
$$

Theorem 2. The algebra $(L'_p, \| \|_p^*)$ is a Banach algebra. The set L^w_p is a closed two-sided ideal in $(L'_p, \| \|_p^*)$.
Proof. From Lemma 2, we have

\[||f \ast g||_p = ||W_{\rho}(f) \ast g||_p \leq ||W_{\rho}|| \cdot ||f||_p \leq ||W_{\rho}|| \cdot ||f||_p \]

for all \(f \) and \(g \) in \(L_{\rho} \). Hence \((L_{\rho}, ||||_p) \) is a normed algebra.

Let \(\{f_n\} \) be a Cauchy sequence in \((L_{\rho}, ||||_p) \). There exists a function \(f \in L_{\rho} \) and a bounded linear operator \(W \) on \(L_{\rho} \) such that

\[\lim_{n} ||f_n - f|| = 0 = \lim_{n} ||Wf_n - W||. \]

For all \(g \in C_0 \) such that \(||g|| \leq 1 \), we have

\[||g \ast f||_p = \lim ||g \ast f_n||_p \leq \lim ||f_n||_p \cdot ||g||_p \leq \lim ||f_n||_p. \]

This implies via (1) that \(f \) is in \(L_{\rho} \). For all \(h \in C_0 \), we have

\[W(h) = \lim W_{f_n}(h) = \lim h \ast f_n = h \ast f = W_f(h), \]

all the limits being taken in \(L_{\rho} \). Since \(C_0 \) is dense in \(L_{\rho} \), this yields that \(W = W_f \). We have shown that

\[\lim_{n} ||f_n - f||_p = 0. \]

Thus, \((L_{\rho}, ||||_p) \) is complete.

Evidently \((L_{\rho}, ||||_p) \) is a right \(L_{1,\rho^*} \)-module and so by [2], 32.22, \(L_{1,\rho^*} \sim L_{1,\rho^*} \) is a closed linear subspace. But this is just \(L_{\rho^*} \).

That \(L_{\rho^*} \) is a left ideal of \(L_{\rho} \) is clear. Let \(g \) and \(h \) be in \(L_{\rho^*} \) and \(L_{\rho} \) respectively. Choose the net \(\{h_r\} \) so that (6) holds. We have

\[0 = \lim ||W_{h_r} \circ W_h \circ W_{h_r}(g) - W_h(g)||_p \]

\[= \lim ||g \ast h_r \ast h - h \ast h||_p. \]

From Lemma 2 of [3] we see that the nets \(\{W_{h_r}\} \) and \(\{W_{h \ast h_r}\} \) converge to the identity operator and to \(W_1 \), respectively, in the strong operator topology (as operators on \(L_{\rho} \)). Consequently,

\[\lim ||g \ast h_r \ast h - g \ast h||_p \]

\[\leq \lim ||g \ast h_r \ast h - g \ast h||_p + \lim ||g \ast h - g \ast h||_p \]

\[\leq \lim ||g \ast h_r - g||_p \cdot ||h||_p + \lim ||g \ast h - g||_p \]

\[\leq \lim ||W_{h_r}(g) - g||_p \cdot ||h||_p + \lim ||W_{h \ast h_r} - W_h(g)||_p = 0. \]

Thus, we have proved
\[\lim_r \| g*h_r*h*hr - g*h \|_p = 0 \]

and so, since each \(g*h_r*h*hr \) is in the closed set \(L_p^w \), it follows that \(g*h \) is there as well. This shows that \(L_p^w \) is a right ideal.

COROLLARY 1. The subspace \(L_p^w \) of \(L_p \) is \(\mathcal{M}_p \)-invariant.

Proof. Let \(T \) be in \(\mathcal{M}_p \) and \(f \in L_p^w \). It follows from Lemmas 1 and 2 of [3] that there exists a net \(\{f_\alpha\} \) in \(L_p^w \) such that

\[\lim_\alpha \| T(f) - W_{f_\alpha}(f) \|_p = 0 = \lim_\alpha \| T(f) - W_{f_\alpha}(f) \|_p . \]

But this just means

\[\lim_\alpha \| T(f) - f*f_\alpha \|_p = 0 = \lim_\alpha \| T(f) - f*f_\alpha \|_p \]

and so

\[\lim_\alpha \| T(f) - f*f_\alpha \|_p = 0 . \]

But, by Theorem 2, each \(f*f_\alpha \) is in \(L_p^w \) and so \(T(f) \) is as well.

COROLLARY 2. The Banach algebra \(\mathcal{M}_p \) is linearly isometric to \(m_r(L_p^w, \| \cdot \|_p) \).

Proof. It is known that \(\mathcal{M}_p \) is linearly isometric to \(m_r(\mathcal{A}_p, \| \cdot \|) \).

Each element of \(m_r(L_p^w, \| \cdot \|_p) \) clearly may be identified with an element of \(m_r(\mathcal{A}_p, \| \cdot \|) \). Thus, to prove this corollary, it will suffice to show that each element of \(m_r(\mathcal{A}_p, \| \cdot \|) \) can be identified with an element of \(m_r(L_p^w, \| \cdot \|_p) \). But this follows from Corollary 1.

LEMMA 3. Let \(T \in m_r(L_p^w, \| \cdot \|_p) \) be such that \(T(g) = 0 \) for all \(g \in L_p^w \). Then \(T = 0 \).

Proof. Repeat the proof for Lemma 1, noticing that, as in the proof to Theorem 2,

\[\lim_r \| g*h_r*h*hr - g*h \|_p = 0 . \]

It follows from Lemma 2 that the natural restriction mapping of \(\mathcal{M}_p \) into \(m_r(L_p^w, \| \cdot \|_p) \) is a norm non-increasing algebra isomorphism. There arise natural questions:

(i) when is the mapping onto?
(ii) when is the mapping a homeomorphism?
(iii) when is the mapping an isometry?
Question (iii) clearly implies (ii).

PROPOSITION 1. The restriction mapping of \mathcal{M}_p into $m_r(L_p', || ||_p)$ is surjective if and only if it is a homeomorphism.

Proof. Let Ψ denote the restriction mapping. If Ψ is onto, the open mapping theorem implies that it is a homeomorphism.

Now suppose that Ψ is a homeomorphism. Let T be an element of $m_r(L_p', || ||_p)$. In view of Lemma 3, T is completely determined by its restriction to L_p'. Thus, T may be identified with a multiplier on $\{\Psi(W_f): f \in L_p^w\}$, and so with a multiplier on its closure $\Psi(\mathcal{M}_p)$ in $\Psi(\mathcal{M}_p)$ as well. It follows that T may be identified with a multiplier on \mathcal{M}_p, which, in view of [3], Theorem 6, may be identified with some $V \in \mathcal{M}_p$. It follows that $\Psi(V) = T$. Hence, Ψ is surjective.

When $p = 1$, then $L_p^t = L_p^w = L_p$ and $|| ||_1 = || ||_p = 1/2 || ||_p$. When $p = 2$, we have the following:

THEOREM 3. The algebra $m_r(L_2, || ||_2)$ is linearly isometric and isomorphic with \mathcal{M}_2.

Proof. In view of the fact that \mathcal{M}_2 is a C^*-algebra, it follows from [5], 4.8.4 that $|| T* || \leq || T* || \cdot || T ||$ for all $T \in \mathcal{M}_2$. But Lemma 2 implies

$$|| T* || \leq || T* || = || T || \quad \text{and} \quad || T || \leq || T ||$$

for $T \in \mathcal{M}_2$ and so $|| T || = || T ||$. Thus, Ψ is an isometry and Theorem 3 now follows from Proposition 1.

References

Received July 24, 1972.

Washington State University
Wm. R. Allaway, *On finding the distribution function for an orthogonal polynomial set* .. 305
Eric Amar, *Sur un théorème de Mooney relatif aux fonctions analytiques bornées* 311
Robert Morgan Brooks, *Analytic structure in the spectrum of a natural system* 315
Bahattin Cengiz, *On extremely regular function spaces* 335
Paul Frazier Duvall, Jr. and Jim Maxwell, *Tame Z^2-actions on E^n* 349
Allen Roy Freedman, *On the additivity theorem for n-dimensional asymptotic density* .. 357
John Griffin and Kelly Denis McKennon, *Multipliers and the group L_p-algebras* . 365
Charles Lemuel Hagopian, *Characterizations of λ connected plane continua* 371
Jon Craig Helton, *Bounds for products of interval functions* 377
Ikuko Kayashima, *On relations between Nörlund and Riesz means* 391
Everett Lee Lady, *Slender rings and modules* .. 397
Shozo Matsuura, *On the Lu Qi-Keng conjecture and the Bergman representative domains* ... 407
Stephen H. McCleary, *The lattice-ordered group of automorphisms of an α-set* 417
Stephen H. McCleary, $o-2$-transitive ordered permutation groups 425
Stephen H. McCleary, o-primitive ordered permutation groups. II 431
Richard Rochberg, *Almost isometries of Banach spaces and moduli of planar domains* 445
R. F. Rossa, *Radical properties involving one-sided ideals* 467
Robert A. Rubin, *On exact localization* .. 473
S. Sribala, *On Σ-inverse semigroups* .. 483
H. M. (Hari Mohan) Srivastava, *On the Konhauser sets of biorthogonal polynomials suggested by the Laguerre polynomials* 489
Stuart A. Steinberg, *Rings of quotients of rings without nilpotent elements* 493
Daniel Mullane Sunday, *The self-equivalences of an H-space* 507
W. J. Thron and Richard Hawks Warren, *On the lattice of proximities of Čech compatible with a given closure space* 519
Frank Uhlig, *The number of vectors jointly annihilated by two real quadratic forms determines the inertia of matrices in the associated pencil* 537
Frank Uhlig, *On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms* 543
Frank Uhlig, *Definite and semidefinite matrices in a real symmetric matrix pencil* 561
Arnold Lewis Villone, *Self-adjoint extensions of symmetric differential operators* . 569
Cary Webb, *Tensor and direct products* ... 579
James Victor Whittaker, *On normal subgroups of differentiable homeomorphisms* .. 595
Jerome L. Paul, *Addendum to: “Sequences of homeomorphisms which converge to homeomorphisms”* ... 615
David E. Fields, *Correction to: “Dimension theory in power series rings”* 616
Peter Michael Curran, *Correction to: “Cohomology of finitely presented groups”* 617
Billy E. Rhoades, *Correction to: “Commutants of some Hausdorff matrices”* 617
Charles W. Trigg, *Corrections to: “Versum sequences in the binary system”* 619