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A continuum M is said to be λ connected if any two of its
points can be joined by a hereditarily decomposable continuum
in M. Here we characterize λ connected plane continua in terms
of Jones' functions K and L.

A nondegenerate metric space that is both compact and connected
is called a continuum. A continuum M is said to be aposyndetίc at
a point p of M with respect to a point q ofMiϊ there exists an open
set U and a continuum H in M such that pe UcHaM — {q}.

In [1], F. Burton Jones defines the functions K and L on a con-
tinuum M into the set of subsets of M as follows:

For each point x of M, the set K(x) (L(x)) consists of all points
y of M such that M is not aposyndetic at x (y) with respect to y (x).

Note that for each point x of M, the set L(x) is connected and
closed in M [1, Th. 3]. For any point x of Mf the set K(x) is closed
II, Th. 2] but may fail to be connected [2, Ex. 4], [3].

Suppose that M is a plane continuum. In this paper it is proved
that the following three statements are equivalent.

I. M is λ connected.
II. For each point x of M, the set K(x) does not contain an

indecomposable continuum.
III. For each point x of M, every continuum in L(x) is decom-

posable.
Throughout this paper E2 is the Euclidean plane. For a given

set S in E2, we denote the closure and the boundary of S relative to
E2 by Cl S and Bd S respectively.

DEFINITION. Let J i b e a continuum in E\ A subcontinuum L
of M is said to be a link in M if L is either the boundary of a
complementary domain of M or the limit of a convergent sequence
of complementary domains of M.

It is known that a plane continuum is λ connected if and only if
each of its links is hereditarily decomposable [5, Th. 2].

THEOREM 1. Suppose that a continuum M in E2 contains an
indecomposable continuum I, that disjoint circular regions V and Z
in E2 meet /, that a point x belongs to M — Cl (V{J Z), and that ε
is a positive real number. Then there exist continua H and F in I,
arc-segments R and T in V, and a point y of IΠ Z such that (1)
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H U F U R U T separates y from x in E2, and (2) if D is the y-com-
ponent of E2 — (H (J F U R U T7), then each point of D is within ε of I.

Proof. Define p and q to be points of V f] I that belong to
distinct composants of I. Let {PJ and {Qn} be monotone descending
sequences of circular regions in E2 centered on and converging to p
and q respectively such that Cl Px n Cl Qι = 0 and Cl (P, U QO is in V.

Suppose that for each positive integer n, only finitely many
disjoint continua in I — (Pn U Qn) intersect Bd Pnf Bd Qn, and Z. Since
I has uncountably many composants, there exists a composant C of I
such that for each n, no continuum in C — (P» U Q») meets BdPw,
Bd Q%, and Z. It follows that for each n, there is a continuum Lw

in C - (Pn UQnUZ) that meets both Bd Pn and Bd Qn. The limit of
{Ln} is a continuum in I — Z that contains {p, q}. But since p and
g belong to different composants of I and Z intersects /, this is a
contradiction. Hence for some integer n, there exists an infinite
collection W of disjoint continua in J — (Pn U Qn) such that each ele-
ment of W meets Bd Pn, Bd Qn, and Z.

There exists a sequence of distinct continua {iίj and two sequences
of disjoint arc-segments {i?J and {TJ such that for each i,

(1) iίi is an element of TΓ,
(2) i24 and Tt are in BdPw and Bd Qn respectively,
(3) Ri and Tt each meets iί2 ί and no other element of {Hi}, and

each has one endpoint in Hzi^ and the other endpoint in H2i+1.
For each positive integer i, let yt be a point of H2i Π ̂  and define

Di to be the complementary domain of H2i^ U ί?2ί+i U Ri U Γ* that
contains ^ . Note that the elements of the sequence {Dt} are disjoint
domains in E2 — Cl (Pn U Q»). Since the union of the continuum
IU Cl (Pn U Qn) with its bounded complementary domains is a compact
subset of E2, for some i, every point of Z^ is within e oΐ I and
ίZs -i U i?2i+i U i?i U Ti separates yt from a? in E2.

THEOREM 2. If M is a X connected continuum in E2, then for
each point x of M, every continuum in the set K(x) is decomposable.

Proof. Assume that for some point x of M, the set K(x) con-
tains an indecomposable continuum /. We shall prove that this as-
sumption implies the existence of a link in M that contains I; this will
contradict the hypothesis of this theorem [5, Th. 2].

Let v and z be points of M — {x} that belong to distinct com-
posants of I. Define {FJ and {Z^ to be monotone descending sequences
of circular regions in E2 centered on and converging to v and z respec-
tively such that Cl V1 n Cl Z1 = 0 and Cl (V, U Zt) is in E2 - {x}.

First we show that for each positive integer if there exists an
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arc Ai in E2 — M that goes from Bd F; to Bd Zi such that each point
of Ai is within i~~ι of /. By Theorem 1, for any given positive integer
i, there exist continua H and F in I, arc-segments R and T in ΐ^,
and a point y of I f) Zi such that if U ί7 U R U Γ separates ?/ from x
in J^2 and each point of D (the ^/-component of E2 - (H U F U J? U T))
is within i"1 of I. Let Z7 be a circular region containing x in JE72

whose closure misses H U -F U R U Γ. Let G be a circular region
containing 2/ in E2 whose closure is in D Π Z^ Since M is not apos-
yndetic at x with respect to y, the component oί M — G that contains
a? is not open relative to M at a?. Hence there exist two components
X and Y of M — G that meet £7. It follows that a simple closed
curve J in (j^2 - Λf) (J G separates X from Γ in E'2 [6, Th. 13, p.
170]. Note that J must intersect both G and *7 [6, Th. 50, p. 18].
Since J Π (M - G) = 0 and i ϊ U F U -K U T separates G from i7 in E2,
there is an arc-segment J? in (J Π D) — M that has one endpoint in
Bd G and the other endpoint in R U T. We define 4, to be an arc
in B - (Vi U Z^ that goes from Bd Vt to BάZ^ Since A, is in D,
each of its points is within ϊ~x of /.

Note that since v and z do not belong to the same composant of
/, the limit of each subsequence of {AJ is /. For each i, let Qi be
the complementary domain of M that contains A{. If {QJ does not
have infinitely many distinct elements, then for some i, the link Bd Qi
in M contains I. Suppose that {Qi} has infinitely many distinct ele-
ments. Then some subsequence of {QJ converges to a link in M [6,
Th. 59, p. 24]. It follows that a link in M contains /. This con-
tradicts the fact that M is λ connected [5, Th. 2]. Hence for each
point x of M, every continuum in K{x) is decomposable.

THEOREM 3. Suppose that M is a continuum in E2 and for each
point x of M, every continuum in K(x) is decomposable. Then for
each point x of M, every continuum in L(x) is decomposable.

Proof. Assume that for some point x of M, there is an indecom-
posable continuum I in L{x). We shall prove that from this assump-
tion it follows that M is not aposyndetic at any point of I with
respect to any other point of J. Hence for each point z of J, the set
K(z) in M contains I. This will contradict our hypothesis.

Suppose there exists a continuum E in M that does not contain
/ whose interior relative to M contains a point of /. There exist
mutually exclusive circular regions V and Z in E2 such that

(1) x does not belong to Cl(V\jZ),
(2) V and Z each meets J,
(3) E and V are disjoint,
(4) M Π Z is contained in E.
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According to Theorem 1, there exist continua H and F in I,
arc-segments R and T in F, and a point y of I f] Z such that H U
F \J R U T separates y from α? in E2. Define D to be the ^/-component
of E2 - (HUFURΌ T). There exists a circular region G in E2

containing y such that Cl G is in .D Π Z. Let £7 be a circular region
in U72 containing x whose closure misses H U F U i2 U T.

Since ikf is not aposyndetic at y with respect to x, the /̂-com-
ponent of M — U is not open relative to M at y. Hence Bd G — M
contains an arc-segment A whose endpoints, p and q, lie in different
components of M — U. There exists a simple closed curve J in
(E2 — M) U U that separates p from q in ϋ72 such that J f] A is con-
nected. Let 5 denote the component of J — U that contains J Π 4̂..
Since H U ί7 U R U ϊ7 separates G from ί7 in i?2 and B does not in-
tersect fί U F, it follows that both components of B — A meet iϋ U T.
Evidently B U F separates p from g in £;2 [6, Th. 32, p. 181]. But
since E is a continuum in E2 — (B U F) that contains {#>, q}, this is
a contradiction. Hence each subcontinuum of M that contains a point
of I in its interior relative to M contains I. This implies that for
any point z of J, the set K(z) in ΛΓ contains I, which contradicts the
hypothesis of this theorem. Hence for each point x of M, every
continuum in L(x) is decomposable.

THEOREM 4. Suppose that for each point x of a plane continuum
My every continuum in L(x) is decomposable. Then M is λ connected.

Proof. Assume that M is not λ connected. It follows that some
link in M contains an indecomposable continuum / [5, Th. 2]. By
Theorem 1 in [4], each subcontinuum of M that contains a nonempty
open subset of I contains I. But this implies that for each point x
of J, the set L(x) contains /, which is impossible. Hence M is λ
connected.

THEOREM 5. Suppose that M is a plane continuum. The follow-
ing three statements are equivalent.

I. M is λ connected.
II. For each point x of M, every continuum in the set K(x) is

decomposable.
III. For each point x of M, every continuum in L(x) is decom-

posable.

Proof. This follows directly from Theorems 2, 3, and 4.
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